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Abstract

Estimation of richly speci�ed panel data discrete choice models has al-
ways been plagued by the inability to analytically compute choice probabil-
ities. As basic Method of Simulated Moments (MSM) estimators have not
been successfully applied to the long panel case, recent research has focused
on reducing simulation error enough so that alternative methods that are
not as \immune" to simulation error are usable. In particular, a number
of authors have shown that use of the extremely powerful GHK probability
simulator can reduce biases to acceptable levels in panel probit models. This
paper argues that while the GHK simulator is a very useful tool for panel
probit models, it is not anywhere near as e�ective for models that have deci-
sion rules that are non-linear in unobservables (resulting from, e.g. dynamic
optimization models) or for models that have non-normal unobservables (e.g.
resulting from less parametric unobservable speci�cations). These types of
models are increasingly more bene�cial to study given increases in the size
and length of data and in the ability to solve realistic dynamic choice prob-
lems. We suggest an estimator for these models - or, more generally, for
models where one cannot easily reduce simulation error. This estimator
builds o� McFadden's (1989) original MSM estimator - the key insight is to
simulated unmanageable sums by drawing random elements of these sums.
Naive simulated sum (SUM) estimators have unacceptable levels of simula-
tion error, but by correlating simulation of sums and probabilities, we obtain
an estimator that is both easy to use and very e�ective. In two Monte-Carlo
experiments where the GHK simulator cannot be used e�ectively, we show
that our SUM estimator dominates Simulated Maximum Likelihood (with
the bias correction procedure of Lee (1995)) and the Transition Probability
estimators of Berkovec and Stern (1992) and Keane (1994).
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1. Introduction

Until the 1980's, the discrete choice literature relied on particular functional forms for unobservables

to generate likelihoods that were computable. The simulation literature, led by Lerman and Manski

(1981), changed this by developing econometric methods in which exact choice probabilities need

not be computed. These potentially complicated multivariate integrals are instead simulated. As

plugging such simulated probabilities into a standard likelihood function results in inconsistent

parameter estimates for a �xed number of simulation draws, one approach in this literature has been

to move from likelihood based estimation into Method of Simulated Moments (MSM) frameworks

(McFadden (1989) and Pakes and Pollard (1989)). Because moments have the potential to be linear

in the simulation error, one can often obtain consistent estimates of � as the number of observations

increases for any �xed number of simulation draws. In addition, if one uses optimal instruments,

MSM estimators can be asymptotically (in both observations and simulation draws) as e�cient as

Maximum Likelihood.

Unfortunately, such techniques have not been easily applied to discrete choice panel data - in

particular panel data with unobservables that are correlated over time (e.g. unobserved individual

heterogeneity, serial correlation, or learning). One approach, due to McFadden (1989), is to treat

each possible sequence of choices (through time) as a choice itself. This essentially transforms the

problem into a rather large multinomial choice problem - one where the number of possible (se-

quence) choices is equal to the number of choices in each period (J) to the T th power. However,

since JT increases so quickly in T , actually computing the simulated moment soon becomes infea-

sible (in general), as one must 1) simulate probabilities of, 2) compute instruments for, and 3) sum,

JT elements. McFadden notes that computation is feasible in one special case - when one uses a

pure frequency simulator for the probabilities. Since one draw of a pure frequency simulator places

0 probability on all but one choice sequence, the majority of the elements in the simulated moment

are exactly zero and need not be computed.

Unfortunately, there are two problems with this pure-frequency simulator. The �rst is that the

resulting moment is not continuous in the parameter vector �. This can be very problematic in

numeric optimization, particularly with lots of parameters to estimate. Second, weights need to be

computed for every choice sequence that ever is \drawn" by the pure frequency simulator. This

can be very time consuming, particularly because computing these weights e�ectively is important

in attaining good e�ciency relative to the Maximum Likelihood estimator. As a result of these

problems, McFadden's pure-frequency approach has seen very limited (if any) use in practice.

A second approach, proposed by Keane (1990,1994) and Berkovec and Stern (1992), is to write

moments in transition probabilities, i.e. the probability of the period t decision conditional on

decisions prior to t. This reduces the number of probabilities that need to be computed (or sim-

ulated) from JT to J � T , clearly a much more feasible number. The major issue here is that one

needs to simulate the period t decision conditional on past choices. In fact, unbiased simulators

of these transition probabilities are generally computationally infeasible (for medium to large T ),

so Keane and Berkovec and Stern suggest more feasible, but slightly biased (for a �xed number of



simulation draws) simulators. Even so, Monte-Carlo results in Keane (1994) and Geweke, Keane

and Runkle (1996) show that in multinomial, multiperiod probit models, use of the highly accurate

GHK recursive simulator prevents signi�cant biases in estimates even for small numbers (e.g. 10

or 20) of simulation draws.

On the other hand, and one of the main motivations for the estimator developed in this paper,

is a point we make that for more general error structures, the GHK simulator can not always be

applied e�ectively or easily. Examples include non-normal or less parametric heterogeneity, random

coe�cient models, learning models, or other dynamic optimization models. We show Monte-Carlo

evidence that in these types of models - particularly in long panels, the transition probability MSM

estimator can exhibit very signi�cant biases, even for much larger numbers of simulation draws.

This paper proposes a third MSM estimator to deal with these models, i.e. for discrete choice

panel data with arbitrary error structure. This estimator builds o� McFadden's estimator in that

we examine probabilities of choice sequences rather than transition probabilities. We call it a \sim-

ulated sum" estimator because our estimator avoids the unwieldy JT element sums in McFadden's

formulation by simulating them, i.e. by drawing N random elements of those sums. As such, un-

like McFadden we are able to use smooth sequence probability simulators - as a result our moment

condition is continuous in the parameter vector. Also unlike McFadden, the estimator requires

computing only one small (size N) set of optimal weights and this only needs to be done once. In

contrast to the feasible transition probability (TP) estimator of Keane and Berkovec and Stern,

our simulated sum (SUM) estimator is consistent for any �xed number of simulation draws.

Moving to e�ciency, we show that because the SUM estimator needs to simulate two components

of the moment condition (both the choice sequence probabilities entering the sum as well as the

sum itself), \naive" simulated sum estimators are impractical due to high levels of simulation error.

The crucial step to obtaining a good SUM estimator is purposely correlating the simulation error

in simulating the sum with the simulation error in computing the sequence probabilities. This

turns out to be extremely easy in practice and results in an estimator whose extra variance due

to simulation is asymptotically only 1
N

times the variance of the exact estimator. We note that

for our SUM estimator this 1
N
term is in some sense a lower bound on the simulation error. This

contrasts to the TP estimator, for which 1
N

is essentially an upper bound on the simulation error.

As such, our estimator sacri�ces some e�ciency. However, we exhibit Monte-Carlo results that

suggest 1) this e�ciency loss is not large, even in models where the TP estimator can utilize the

highly accurate GHK simulator (we replicate the AR(1) plus normal random e�ect models of Keane

(1994)), and 2) we avoid the potential biases of the TP estimator, which we show can be quite large

when GHK cannot be used e�ectively. In some simple long panel random coe�cient and dynamic

optimization models, our SUM estimator shows no signs of bias and clearly dominates the TP

estimator in terms of MSE. We also �nd that in these types of models our estimator compares

very favorably to Simulated Maximum Likelihood (SML) alternatives, even when using the bias-

correcting methods of Lee (1995). Importantly, our estimator is also very easy to program and use.

It is essentially at the same level of di�culty as SML - only instead of simulating the probability
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of one choice sequence per observation, one needs to simulate probabilities of N choice sequences.

Recent years have seen increases in both the extensiveness (e.g. size, length) of datasets and

in the ability to solve complex decision models. These developments have increased the bene�ts to

studying discrete-choice panel data models both rich in dynamics (e.g. dynamic optimization) and

in heterogeneity (e.g. more heterogeneity, less restrictive parametric assumptions on heterogeneity).

The caveat is that for these types of models, it will be harder and harder to easily or e�ciently

reduce simulation error1. We feel that the evidence presented here suggests our simulated sum

estimator may be the estimator of choice for these types of models. It is essentially the only

smooth estimator that is consistent for a �xed number of simulation draws2, and thus the only

estimator that is robust to the considerable amounts of simulation error that will typically arise in

these models.

This paper is organized as follows. First, we set up the general panel discrete choice model to

be studied. We then review three commonly used simulators for choice probabilities. We focus

in particular on the powerful GHK simulator and the conditions under which it can (or cannot)

signi�cantly reduce simulation error. We then review prior approaches to estimation with discrete

choice panel data before introducing our SUM estimator. We conclude with our Monte-Carlo study

comparing the various estimators. The appendix contains internet links to the programs used for

the Monte Carlo study.

2. Setup

We consider a generic discrete choice model where consumer i chooses one of J alternatives j in

each period t. Consider the latent unobserved \utilities" from each alternative:

uijt = fj(Xit; y
t�1
i ; �it; �)

and observable discrete choices yit:

yit = j if j = argmax
j

[uijt] (2.1)

where Xit is a set of observed exogenous variables and �it is a scalar or vector of econometric

unobservables. As our superscripts denote past histories of a variable, we allow current util-

1At least in theory, one can always use importance sampling distributions to reduce simulation error to acceptable
levels. The question is whether one wants to have to search out appropriate importance sampling distributions for
every problem, speci�cation, or even parameter value. The GHK simulator solves this problem for the panel probit
model, as it is a very potent simulator regardless of the particular speci�cation. Our argument is that for the more
general models above, there does not exist (or does not exist yet) such a powerful and general tool. In addition, this
\search out a good simulator" approach would need to de�ne what is an \acceptable level" of simulation error for
each problem. We don't feel that this is an easy task.

2Keane (1994) brie
y suggests, but does not evaluate, an alternative to his TP estimator that is consistent for a
�nite number of simulation draws. Unfortunately, this estimator loses some of the nice \e�ciency properties" of the
TP estimator. We also evaluate this estimator and �nd strong evidence that it is, in fact, less e�cient than our SUM
estimator.
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ity (and choice) to depend on all past choices yt�1
i . We assume the �it's are independent of all

Xit's and denote their joint distribution as p(�i1; ::::::; �iT ; �). Note that the general formulation of

fj(Xit; y
t�1
i ; �it; �) encompasses both traditional (\linear") discrete choice models as well as non-

linear ones (arising, for example, from an agent's dynamic programming problem). Also note that

this formulation implicitly allows current utility to depend on both past utilities as well as past

choices.

In this model we can write the joint probability of a choice sequence (yi1; ::::::; yiT ) as:

p(yi1; ::::::; yiT j Xi1; :::::;XiT ; �) =
QT
t=1 p(yit j y

t�1
i ;Xi1; :::::;XiT ; �)

=
R QT

t=1 I
h
yit = argmaxj

h
fj(Xit; y

t�1
i ; �it; �)

ii
p(�i1; ::::::; �iT ; �)

(2.2)

where I [ � ] is the indicator function3. Note that there are JT possible choice sequences, where

J is the number of alternatives j.

An alternative derivation of the choice sequence probability involves integrating inside the prod-

uct, though this integration needs to be conditional on yt�1
i , i.e.

p(yi1; ::::::; yiT j Xi1; :::::;XiT ; �) =
QT
t=1 p(yit j y

t�1
i ;Xi1; :::::;XiT ; �)

=
QT
t=1

R
I
h
yit = argmaxj

h
fj(Xit; y

t�1
i ; �it; �)

ii
p(�it j y

t�1
i ; �)

(2.3)

Given observed data (yT ;XT ); an obvious approach to classical inference about the parame-

ter vector � is Maximum Likelihood estimation using either (2.2) or (2.3). Unfortunately, exact

computation of either of these quantities is infeasible except in very special cases (e.g. the mul-

tidimensional logit model, i.i.d. low dimensional probit) . In general, the integral in (2.2) is of

very large dimension (typically at least J � T ) without an analytical solution. While smaller in

dimension, the integrals in (2.3) are over conditional distributions (p(�it j y
t�1
i ; �)) which are not

generally speci�ed as primitives nor easily computable.

3. Simulators of Sequence Probabilities

Given the inability to exactly compute these choice sequence probabilities, attention has turned

to how to simulate them. We brie
y detail the three most commonly used methods: 1) the \pure

frequency" (PF) simulator, 2) what we call the \partially analytic" (PA) simulator, and 3) the

GHK recursive simulator. We end this section by discussing conditions under which the extremely

powerful GHK simulator can signi�cantly reduce simulation error.

3.1. The Pure Frequency (PF) Simulator

The PF simulator is the most straightforward way to simulate choice sequence probabilities and

is discussed in McFadden (1989). One simply takes NS draws from the joint distribution of the

3Note that this likelihood ignores potential initial condition problems due to the lagged dependent variables.
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unobservables p(�1; ::::::; �T ; �) and forms (dropping i subscripts):

pPFs (�) =
1

NS

NSX
ns=1

TY
t=1

I

�
yt = argmax

j

h
fj(Xt; y

t�1; �nst ; �)
i�

where the scalar or vector �nst is the nsth simulation draw on �t. It is straightforward to show that

pPFs (�) is an unbiased simulator of the probability of choice sequence s, ps(�) = p(yi1; ::::::; yiT j

Xi1; :::::;XiT ; �).

An important characteristic of the pure frequency simulator is that it can place probability 0

on sequences (for example, when NS = 1, pPFs (�) = 1 with probability ps(�) and pPFs (�) = 0 with

probability 1-ps(�) ). In some applications (e.g. simulated maximum likelihood) this characteristic

can be problematic, but in the long panel case it can actually be helpful, as we will see below.

Another characteristic of the pure frequency simulator is that it is typically not continuous in the

parameter vector � and has 
ats (@p
PF
s (�)
@�

= 0). The reason is that when � changes, the indicator

functions (and thus the product of indicator functions) may change discretely or not change at all.

Note that the feasibility of the PF simulator is not dependent on the functional form of

fj(Xt; y
t�1; �nst ; �). It is also not particularly dependent on the distribution of �. One solely needs

to be able to take (pseudo) random draws from the joint distribution p(�1; ::::::; �T ; �).

3.2. The Partially Analytic (PA) Simulator

The PA simulator works o� the fact that in most economic applications, one typically wants to

include some source of iid (e.g. over time) unobservables. This is typically necessary in order to

\explain" the data, i.e. so we do not observe probability zero events. These iid unobservables

often result in one-dimensional integrals that are analytically computable conditional on the other

unobservables in the model.

More formally, divide the unobservables � into two components, � and �. The distinction is

that the integral in the choice sequence probability is analytically computable conditional on �, i.e.

ps(�) =

Z
ps(�; �)f(�)

In other words, ps(�; �) - the probability of choice sequence s given the \non-analytic" unobservables

�, can be analytically computed (or feasibly computed to a very high degree of numerical accuracy,

e.g. univariate normal integrals).

Many models �t into this formulation. Typically � contains the i.i.d. error and the persistent

(e.g. over time) errors are in �. One example is a multinomial logit model with random e�ects

and/or random coe�cients. In this case � includes the iid logit errors and � includes the random

coe�cients/e�ects4. Conditional on �, choice probabilities are the standard logit probabilities and

4Note that we have written the distribution of � as not depending on �. This is typically WLOG as any transfor-
mation of the random variable (depending on �) can take place in the ps(�; �) function. A simple of example of this
is where � is a normal random e�ect and � contains the standard deviation of this random e�ect. Keeping f(�) as
the N(0,1) density, we can adjust this standard deviation by multiplying � by � in the ps(�; �) function.
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choice sequence probabilities are products of these standard logit probabilities. Importantly, Stern

(1992) showed that one can also use the PA simulator in most probit models, even in those without

an explicit i.i.d. term. In the binary AR(1) case, for example, one can \pull out" of the AR(1)

process an iid process that is analytically integrable5.

Because the integrals over � are done analytically, the PA simulator typically has less simulation

error than the corresponding PF simulator (for a given number of draws). Computing the PA

simulator is almost as simple as the PF simulator - one simply takes NS draws from the joint

distribution of �, f(�), and forms:

pPAs (�) =
1

NS

NSX
ns=1

ps(�ns; �)

An important characteristic of pPAs (�) is that, unlike pPFs (�), it is usually smooth in the parameter

vector � and that the simulated sequence probabilities are typically strictly between 0 and 16.

As is the PF simulator, the PA simulator is fairly robust to unobservables entering nonlinearly

into the decision rule. In this case it is inconsequential how � enters the decision rule, e.g. it doesn't

matter whether we have ujt = fj(Xt; y
t�1; �)+�jt+�jt or ujt = fj(Xt; y

t�1; �jt; �)+�jt. This makes

the simulator straightforward to apply to discrete choice problems with dynamic optimization on

the part of agents. In these problems, persistent unobservables that are linear in the static utility

function typically enter the decision rule non-linearly (see below). Also, like the PF simulator, the

PA simulator is not particularly dependent on distributional assumptions on the unobservables � .

One simply needs to be able to draw from the joint distribution of �.

3.3. The Geweke-Hajivassiliou-Keane (GHK) Simulator

The last sequence probability simulator we discuss is the extremely powerful GHK simulator de-

veloped by Geweke (1989), Hajivassiliou and McFadden (1990), and Keane (1990). The GHK

simulator is in the class of importance sampling simulators (see, e.g. McFadden (1989), Ross

(1990)) - these are simulators where one draws from some distribution other than p(�1; ::::::; �T ; �)

and then reweights to obtain an unbiased simulator. Importance sampling can reduce simulation

error by oversampling parts of the error distribution that are most informative.

5For example, consider a normal AR(1) process �t with persistance �. The variance matrix �� of this (normalized)
process has diagonal elements 1 and o� diagonal elements �t�s. Stern notes that we can write �t = �At + �NAt , where
�At is an i.i.d. process and �NAt is a serially correlated process. As a result, for, e.g. a binary probit model, choice
probabilties are analytic conditional on �NAt . The intuition here is that one is dividing the variance matrix into ��
=�A� +�NA� where �A� is diagonal and �NA� is not. To make \as much" variation as possible analytically integrable,
one typically wants to make the diagonal of �A� as big as possible while keeping �NA� a proper variance matrix. Stern
(1992) shows that an e�ective way of doing this is to make the diagonal of �NA� equal to the smallest eigenvalue of
��. Stern also examines this technique for the multinomial probit model.

6This is typically the case since the i.i.d. unobservables typically have in�nite support (e.g. logit, normal errors)
and thus put strictly positive probability on any choice sequence.
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For ease of discussion we specialize to the binary choice case, noting that we can now write:

ps(�) = p(y1; ::::::; yT j X1; :::::;XT ; �) =
R QT

t=1 I
�
(2yt � 1)f(Xt; y

t�1; �t; �) > 0
�
p(�1; ::::::; �T ; �)

where the model is yt = 1 i� f(Xt; y
t�1; �t; �) > 0 . For the multinomial case one can consult the

literature above or Borsch-Supan and Hajivassiliou (1992), Keane (1994), Hajivassiliou (1996). The

GHK simulator can be written as follows:

pGHKs (�) = 1
NS

PNS
ns=1

R QT
t=1 I

�
(2yt � 1)f(Xt; y

t�1; �t; �) > 0
�

p(�1; �)p(�2 j �1ns; �)p(�3 j �2ns; �1ns; �)::::::p(�T j �T�1
ns ; �)

= 1
NS

PNS
ns=1

QT
t=1

R
I
�
(2yt � 1)f(Xt; y

t�1; �t; �) > 0
�
p(�t j �

t�1
ns ; �)

(3.1)

where the �tns are recursively generated random draws from the distribution of �t conditional on

both the prior draws �t�1
ns and the condition that I

�
(2yt � 1)f(Xt; y

t�1; �tns; �) > 0
�
= 1. Note that

in this general formulation it has not been speci�ed whether �t is a scalar unobservable or a vector

of unobservables. It is fairly straightforward to show that pGHKs (�) is an unbiased simulator of

ps(�)
7.

Examining the above suggests that we need to do two things to compute pGHKs (�):

1) draw the conditional, truncated, random variables �tns according to the above process.

2) evaluate the integrals over �t in (3.1).

The fact that normal distributions are closed under addition and conditioning makes this process

extremely easy for the panel probit model. For example, consider a probit model with a random

e�ect, an AR(1) process, and an i.i.d. error term, - all normals and entering additively in the latent

variable function, i.e.

ut = f(Xt; y
t�1; �) + �A + �Bt + �Ct

7Let f() denote the joint distribution of (�ns1; ::::; �nsT ) under the recursive drawing scheme. Then

EpGHKs = Ens
1
NS

PNS

ns=1

QT

t=1

R
I(�t)p(�t j �

t�1
ns )

=
R �QT

t=1

R
I(�t)p(�t j �

t�1
ns ; �)d�t

�
f(�ns1; ::::; �nsT )

=
R �QT

t=1
Pr(yt j �

t�1
ns )

�QT

t=1
f(�nst j �

t�1
ns )

=
R
I1;:::;IT

�QT

t=1
Pr(yt j �

t�1
ns )

�QT

t=1

p(�nstj�
t�1

ns )

Pr(ytj�
t�1

ns )

=
R
I1;:::;IT

QT

t=1
p(�nst j �

t�1
ns ) =

R
I1;:::;IT

p(�) = ps

Note that
R
I1;:::;IT

indicates the integral over the region such that It = 1 for t = 1; :::; T (and note that f() = 0

outside of this region). We note for later that unfortunately the individual elements in the product in (3.1) are not

(generally) unbiased (nor consistent) estimates of transition probabilities, i.e. Pr(yt j y
t�1). Lastly, note that GHK

corresponds with an importance sampling density of

h(�1; :::::; �T ) =

Q
p(�tj�

t�1)Q
Pr(ytj�t�1)

de�ned over the above region.
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De�ne �t = �A + �Bt + �Ct so the �t's in (3.1) are scalar. Then

� =

0BBBBB@
�1

:

:

�T

1CCCCCA � N(0;�A +�B +�C)

where �A is a diagonal matrix with diagonal elements equal to the variance of the random e�ect,

�B is the AR(1) covariance matrix, and �C is a diagonal matrix with diagonal elements equal to

the variance of the iid error8.

Since � is a T -variate normal, the conditional distributions p(�t j �
t�1; �) are also normal. The

Cholesky decomposition of � = �A +�B +�C de�nes the mean and variance of these conditional

distributions. As a result, steps 1) and 2) above are extremely simple. For step 2), the integrals

in (3.1) are all over univariate normals and thus equal to simple transformations of the standard

normal CDF. Drawing from the univariate truncated normal distributions for step 1) is also trivial

using uniform random draws and the inverse normal CDF. In the binary choice case, the bulk

of the computational work in evaluating (3.1) is computing NS � T univariate normal CDFs (to

compute the integrals) and NS�T inverse CDFs (to draw from the truncated normal distributions).

Note that this will tend to be, at most, twice as slow as the PA simulator, for which the bulk of

computational work would be in computing NS � T univariate normal CDFs9.

There is a great deal of evidence (e.g. Borsch-Supan and Hajivassiliou (1992), Hajivassiliou,

McFadden, and Ruud (1996)) that the GHK simulator is extremely e�cient for simulating sequence

probabilities in probit models. The �rst two columns of Table 1 present some additional evidence

comparing the GHK simulator to a simple PA simulator where �A and �Bt are drawn from their

marginal distributions and �Ct is integrated over analytically10. The number of simulation draws

is set such that computation time is equalized across the two simulators. The cells report the

simulation variance11 in simulating the log-likelihood of a sample of size 50012. For alternative

8For estimation there needs to be a multiplicative normalization somewhere. Note also that the iid error is
seperately identi�ed from the AR(1). The iid innovation in the AR(1) process persists through time, but the iid error
does not.

9In arriving at this doubled computational time we do not include the time required to draw the \seed" standard
normals and standard uniforms for use in simulation (which itself requires inverse CDFs). The reason is that in
practice, these draws need to be held constant over function evaluations, and as such, it is far more e�cient to draw
them initially and store them for continued use.

10Stern's PA simulator, where one additionally pulls out the iid \component" of �Bt , does slightly better. The
reason we focus on the simple PA simulator is that in the more complicated models below where the GHK simulator
is not easily applicable, Stern's PA simulator is also not easily applicable.

11We report simulation variance rather than simulation standard error because this gives us a better idea of the
time-wise e�ciency of GHK. Simulation variance should be approximately proportional to NS, so a simulator that
has half the simulation variance for equal computational time should also take half the time for the same simulation
variance (or simulation error).

12We examine at simulation error in the log-likelihood function rather than simultion error in probabilities because in
some experiments this appeared to correspond better to error in estimated parameters than does error in probabilities.
This makes a di�erence for the comparisons because the GHK simulator does relatively better with small probabilities
than the other simulators. The general structure of the model is very similar to those in Keane (1994). This model
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parameter values, GHK can be 5-60 times more e�cient than the PA simulator time-wise (the

relative variance column gives the approximate time-wise e�ciency of GHK, e.g. for the baseline

model, GHK is 13 times quicker than the PA at achieving a given simulation variance)13. Note

that the relative e�ectiveness of the GHK simulator increases as the length of the panel increases.

The intuition behind GHK's e�ectiveness is that it is a very potent form of importance sampling,

i.e. it oversamples parts of the error distribution that are most informative. Importantly, this

importance sampling is continuously re�ned as one works forward through time in the iterative

process. Draws of �tns come from an importance sampling distribution that implicitly depends on

all past choices. It is not surprising that there exists such a good importance sampling simulator

for panel probit sequence probabilities14. What is surprising about the GHK simulator is the

combination of its ease and its e�ectiveness. It is essentially a \cookbook" procedure that works

extremely well for any simple probit model with arbitrary correlation structure.

3.4. Limitations of the GHK Simulator

Unfortunately, for more general error structures the GHK simulator can lose a considerable amount

of its e�ectiveness and ease. We focus on two cases - the �rst are situations where there is non-

normality in the unobservables. The second is when the decision rule is non-linear in the unob-

servables. Such non-linearities can arise naturally through dynamic optimization on the part of

agents. The essential problem in both cases is that one can (generally) no longer \add" multiple

unobservables (e.g. �A; �Bt ; and �Ct from above) in period t into a single scalar unobservable �t for

which the density p(�t j �
t�1) can be \analytically" (i.e. quickly and accurately) integrated over

and drawn from.

Again, it is important to note that even in these more general cases, there exist good impor-

tance sampling distributions. The problem is �nding and implementing them. Our argument is

that the already \found" GHK importance sampling scheme (and slight derivatives of it) lose their

e�ectiveness on these problems. As a result, unless one wants to search out idiosyncratic impor-

tance sampling densities for idiosyncratic speci�cations, there is large value in �nding estimation

procedures that are robust to signi�cant amounts of simulation error.

has the following setup: T = 8, the single covariate Xit has mean 6, within (individual) variance 2, and across
individual variance 3. The constant term equals -0.9 and the coe�cient on X is .25. Variances of the 3 unobservables
and � are reported on the table.

13All simulations were done in highly optimized C code. Notethat in timing, we did not include the time required
to draw the \seed" standard normals and standard uniforms for use in simulation. The reason is that in practice,
these draws need to be held constant over function evaluations, and as such, it is far more e�cient to draw them
initially and store them for continued use. As such, the bulk of computation time for the PA simulator is computing
the normal CDF (this needs to be done NS � T times), for GHK in computing the normal CDF and inverse normal
CDF (each needs to be done NS �T times). As a result, the PA simulator was about 1.7 times as fast per simulation
draw. We used lookup tables and interpolation to compute both normal CDFs and inverse CDFs. These were faster
(about 2X) than any other methods we have seen, and seemingly fairly accurate (in estimation, their use had virtually
0 e�ect on estimated parameters). Use of slower CDF/PDF methods relatively helped (very slightly) the PA method
speedwise.

14In fact, in theory there is an optimal importance sampling distribution such that simulation error equals zero
(although this optimal distribution requires knowledge of the integral itself).
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3.4.1. Non-Normal Unobservables

First consider the simple example:

ut = f(Xt; d
t�1; �) + �A + �Ct

where �Ct is still an i.i.d normal unobservable but now the random e�ect �A has some non-normal

distribution (e.g. a mixture of normals). As a result, steps 1 and 2 above will typically not

be straightforward. In particular, it is unlikely that we will be able to easily either draw from

or integrate over the conditional distributions of the summed unobservables p(�t j �
t�1) (where

�t = �A + �Ct ). Thus, the \scalar" (referring to the dimension of �t) GHK process described above

will not be easily applicable15.

In this situation there are two options to apply the spirit of GHK to this problem. The �rst is

to continue to follow equation (3.1) now treating �t as the vector (�
A; �Ct ) rather than the scalar sum

�A + �Ct . We call this \vector" GHK. In this case, we do know p(�t j �
t�1) (and it is fairly simple -

the �rst element of �t equals the �rst element of �t�1 with probability 1, the second element is an

i.i.d normal). Thus for t > 1, the integration (which are essentially one-dimensional normals since

the �rst element �A is degenerate) and drawing (in fact one doesn't even need to draw because the

�rst element is degenerate and the second element is iid and thus inconsequential for the future)

is straightforward. The only minor complication is for t = 1. To follow (3.1) exactly, the �rst

integral (which is 2-dimensional) would probably need to be simulated and one might need to use

acceptance/rejection methods to draw (�A; �C1 ) from the appropriate truncated distribution16.

Perhaps more important than these complications is the fact that this \vector" GHK method

will typically have signi�cantly worse importance sampling properties than a \scalar" GHK method

that utilizes the distribution of the sum �A + �Ct . In the vector method, the random e�ect �A is

drawn from a truncated distribution depending on the t = 1 choice but is then held �xed through

time. Thus, although �A is still being importance sampled, this importance sampling is only based

on the period 1 choice. This contrasts to the scalar GHK case where at every t, �t (and thus �A) is

implicitly importance sampled depending on all past choices. We show below that this distinction

has very large implications on the precision of simulated choice sequence probabilities.

Note that if one adds back in a non-normal serially correlated unobservable (�Bt ) to the above

matters get worse as one needs to evaluate (probably by simulation) multiple integrals in each time

period as well as drawing from multidimensional truncated distributions17. This is extremely costly

because one is essentially doing simulations within simulation, i.e. one would need to simulate T

two dimensional integrals for every GHK draw.

A second approach is to break up �A; �Bt ; and �Ct individually in the sequential conditioning.

15Note that one could draw from or integrate over these conditional distributions using simulation, but this would
involve embedding simulation procedures within simulation procedures, something that would pretty clearly not be
time-e�cient.

16There is an easier way to deal with T = 1 which involves sequentially drawing �A and �C1 . See below for related
discussion.

17If �Bt were a serially correlated normal one could work with the sum �Bt + �Ct to simplify things.
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This eliminates the need to either simulate multiple integrals or draw from multivariate truncated

distributions within each GHK draw. Unfortunately, since the three unobservables in each period

combine to satisfy only one inequality, we can only draw one of the three unobservables in each

period from the truncated importance sampling distribution18. For example, we could draw �Ans and

�C1ns; ::::::; �
C
Tns from their marginal distributions and then recursively draw �Bnst's from the truncated

conditional distributions such that the observed choices are realized. Formally we can write this

simulator as

pGHKs (�) = 1
NS

PNS
ns=1

R QT
t=1 I

h
(2yt � 1)f(Xt; y

t�1; �Ans; �
B
t ; �

C
tns; �) > 0

i
p(�B1 ; �)p(�

B
2 j �B1ns; �)p(�

B
3 j �B2ns; �

B
1ns; �)::::::p(�

B
T j �B;T�1

ns ; �)

We call this \partial GHK" as some of the unobservables (�Ans; �
C
1ns; ::::::; �

C
Tns ) are being simulated

from their marginal distributions while conditional on these unobservables, the remaining unob-

servables (the �Bnst's) are being importance sampled according to truncated distribution. There are

other alternatives based on which unobservables get importance sampled. For example, one could

draw �B1ns and �
C
1ns; ::::::; �

C
Tns from their marginal distributions, and then �Ans and �

B
2ns; ::::::; �

B
Tns from

truncated conditional distributions. A third alternative would be to draw �Ans and �B1ns; ::::::; �
B
Tns

from their marginal distributions and the �Cnst's from truncated conditional distributions. Note that

this last alternative corresponds exactly to our simple PA simulator19.

The last two columns of Table 1 compare these alternative GHK methods to the full GHK

simulator. As with the simple PA simulator, there is a very large degradation in simulation ef-

�ciency relative to full GHK. The reasoning behind this degradation is the same as that in the

discussion of the \vector GHK" above - i.e. �A is either not being importance sampled or is being

importance sampled based on only the period 1 decision. Which performs best out of the 2 partial

GHK simulators and the PA simulator (which is also the last partial GHK simulator) depends on

parameter values. What this evidence suggests is that these partial GHK simulators are not good

substitutes for full GHK. Thus, for models where full GHK cannot be used, we may have to live

with large amounts of simulation error.

The previous arguments also apply to random coe�cients models, e.g.

ut = �iXt + �t

with random coe�cients �i. Again the crucial distinction is what one is willing to assume about the

unobservables. If the random coe�cients are assumed normally distributed (as well as the �t), one

could do full GHK (Although there is a caveat that the variance matrix di�ers over individuals (due

to di�erences in X's) and this would therefore require separately computing the variance covariance

18Note the di�erence between this and the multinomial probit model, where there are also multiple observables in
each period. The key there is to write the inequalities as a sequence of recursive indicator functions (this cannot be
done with any e�ectiveness in our case).

19In this alternative one doesn't actually have to draw the �Cnst's since they are i.i.d. and have no impact on the
future.
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matrix and Cholesky decompositions for each observation - this can be time consuming for large

T .) More importantly for our purposes, if one is not willing to assume that the �i are normal,

ability to capitalize on full GHK will again be limited.

Normals may be the obvious �rst choice for heterogeneity - whether it is random e�ects, random

coe�cients, or serially correlated processes. However, given the size and extent of today's panel

data sets, assuming normality is clearly \overparameterized" in the sense of Heckman and Singer

(1987). The point of the above is to argue that as we move towards less parametric speci�cations,

we can no longer rely on the GHK simulator to signi�cantly reduce simulation error.

3.4.2. Non-Linear Models

Another set of models where the GHK simulator cannot be applied e�ectively are models where the

latent variable is a non-linear function of the unobservables. An often cause of such non-linearities

is optimal dynamic behavior on the part of agents. Consider, for example, a simple model where

an agents single period utility (or pro�t) is linear in the unobservables, i.e.

Ut = Xt� + g(dt�1) + �A + �Bt + �Ct

where �A; �Bt , and �Ct are again respectively a random e�ect, AR(1) process, and iid process, all

normal. Because past choices a�ect current utility, one might assume a forward looking agent who

maximizes the expected discounted value of future utilities
P1

t=1 �
tUt. In general, this sort of a

model will result in a decision rule (i.e. latent variable function) that is non-linear in the persistent

unobservables, i.e.

dt = 1 iff ut = f(Xt; d
t�1; �A; �Bt ; �) + �Ct > 0

Note that f( ) is a function of �A and �Bt individually, not just the sum. In the static optimization

problem, it doesn't matter whether a high �A + �Bt was caused by a high �A or a high �Bt . In the

dynamic case it does because of their di�erent implications for the future. �A persists completely

into the future, while �2t will \depreciate". Note that the iid error �
C
t will typically enter the decision

rule linearly since it has no e�ect on the future20.

In this case it is the non-linearities in the decision rule that prevents us from combining (adding)

the unobservables into a single scalar. Again, a vector GHK procedure with �t = (�1; �2t ; �
3
t ) is

conceivable but involves integrating over and drawing from two dimensional distributions (for every

T within every simulation draw NS), which would be prohibitively expensive to do21. Similarly,

20This assumes that the unobservables �A; �Bt , and �Ct are individually (seperately) observed by the optimizing
agent. This makes sense, e.g., if �A is the individuals known taste for a particular alternative. Things would be
di�erent if the agent only observed the sum �t = �A + �Bt + �Ct . While this assumption might make integration easier
(in this case there really is only one unobservable in each period), it makes dynamic programming much harder as
the program loses its simple Markov nature and becomes more of a learning problem (the state space at t would need
to include information on all past �t's because, e.g. they all provide information on �A).

21Even if one could do this, the importance sampling would likely be much less successful, as again, e.g. �A would
be importance sampled based only on the period 1 decision. Note that in a simpler model without the iid error
�Ct , the integrals are back to one dimensional. Thus, if f(:) is monotonic in �Bt (which is not necessarily the case),
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partial GHK is possible, but would generally su�er from the same problems as those addressed in

Table 1 - i.e. it will tend to be a far less e�ective importance sampling distribution.

4. Review of Existing MSM Estimators for Panel Data

We now review more thoroughly two extant MSM methods of estimating panel data discrete choice

models. As MSM estimators can be more robust to simulation error than ML estimators, this is

a natural place to turn for the non-normal and non-linear models described above where it will

generally be hard to reduce simulation error.

The �rst method, due to McFadden (1989), follows his simulation methods for the single period

discrete choice model by simply treating sequences of choices as choices. Let s index the JT possible

choice sequences (i.e. possible (yi1; ::::::; yiT )), let ps(�) denote the probability of choice sequence

s (given by (2.2)), and let ds be an indicator variable equal to 1 for the observed choice sequence

for individual i. McFadden considers the moment (for observation i - we drop i subscripts and

explanatory variables from now on) :

g(�) =
JTX
s=1

ws (ds � ps(�)) (4.1)

where ws are exogenous weight vectors of dimension greater than that of �. As ds = 1 with

probability ps(�0) (�0 is the true parameter vector), the expectation of g(�) is equal to 0 at �0.

Thus, the estimator �� that sets the sample average of the g(�)'s as close as possible to zero is

a consistent estimator of �0 for any exogenous w's. If ws = @ ln(ps(�))
@�

; then (4.2) reduces to the

Maximum Likelihood �rst order condition and �� is e�cient.

The beauty of this estimator is that the ps's need not be exactly computed for consistency in

the sample size. If one replaces the ps with unbiased simulations of these values, bps(�) = ps(�)+ �s

(where �s is mean 0 simulation error), we obtain:

gMSM (�) =
JTX
s=1

ws (ds � bps(�)) = JTX
s=1

ws (ds � ps(�)� �s) (4.2)

Since gMSM (�) is linear in the simulation error �j , this error averages out over observations. Thus,

regardless of the (�nite) variance of the simulation error (i.e. the number of simulation draws),

�MSM is consistent as the number of observations increases (for proofs see McFadden (1989) and

Pakes and Pollard (1989)).

Unfortunately, there are number of problems with McFadden's panel data estimator. First,

one could do the integral \analytically". However, this would require inverting f(:), which could potentially be time
consuming given that in the typical dynamic programming problem, one will only have numeric approximations to
f(:). In addition, this reduction to a one dimensional integral would quickly disappear with either the addition of
any other time varying unobservables or moving to a multinomial model (In a multinomial dynamic choice problem,
one will generally not be able to write the problem do as a sequence of recursive inequalities (think this through
again....)).
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as T increases, it quickly becomes infeasible to calculate (or in general simulate) probabilities of

and weights for all JT choice sequences. McFadden handily avoids these computational problems

by utilizing a pure frequency simulator of the ps's. Since a draw from a pure frequency simulator

places probability zero on all choice sequences except for one, most of the moments corresponding

to the JT elements in the \choice sequence set" are equal to zero. In fact, the number of non-zero

elements in the sum is at most NS + 1, where NS is the number of pure frequency simulation

draws (the 1 corresponds to the observed choice sequence where ds = 1).

While this method provides consistent parameter estimates for a �nite number of simulation

draws, there are a couple of problems. First the pure frequency simulator provides relatively high

variance simulation error. Typically one can obtain much lower simulation variance using the

partially analytic or GHK methods described above. None of these methods can be used in this

formulation as they place positive probability on each of the JT choice sequences and thus result

in an incomputable sum. On the other hand, even the variance using a pure frequency simulator

is very manageable. First note that the variance of the true g(�) (the variance due to the data

generating process, i.e. the realization of ds) is:

V ar (g(�)) = V ar

0@ JTX
s=1

ws (ds � ps(�))

1A = V ar

0@ JTX
s=1

wsds

1A = �

Now, the variance of McFadden's MSM pure frequency moment, gPF (�) is:

V ar(gPF (�)) = V ar
�PJT

s=1wsds

�
+ V ar

�PJT

s=1wsbps(�)�
= �+ V ar

�
1
NS

PNS
n=1

PJT

s=1wsbpns (�)�
= �+ 1

NS
V ar

�PJT

s=1 wsbpns (�)�
= (1 + 1

NS
)� at �0

where bpns (�) is equal to 1 for the sequence generated by the nth simulation draw. Note that the last

line follows because at �0, bpns (�0) has a distribution identical to ds. As the variance of the GMM

estimator �GMM is proportional to V ar (g(�)) = �, this implies that the asymptotic (as �PF ! �0)

variance of �PF is only (1+ 1
NS

) times the variance of �GMM . Even though smooth simulators will

typically do better than (1 + 1
NS

)�, they obviously can't do better than � - so even for small NS

(e.g. 10) the e�ciency loss from using a PF simulator relative to smooth simulators will be small.

Perhaps more problematic with McFadden's solution is that the pure frequency simulator results

in an objective function that is not continuous in �. This follows directly from the fact that the PF

sequence probability simulator bpns (�) changes discretely (or not at all) in �. The resulting jumps

and 
ats22 in gPF (�) can be a huge problem to �nding (correctly) global extremum of the objective

function. A second issue regarding this discreteness is that it results in the non-zero elements of

the sum in (4.2) changing over �. Thus one needs to compute ws for all sequences that are ever

22One can potentially eliminate the 
ats by allowing the weights to change with �, although this would be time
consuming if one wants to approximate optimal weights. This also would not eliminate the jumps.
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encountered in an optimization procedure (i.e. for all � ever searched over). If one is attempting to

approximate optimal ws's this is particularly time consuming because the score is hard to simulate

precisely, particularly with the low sequence probabilities which will occur as T increases.

Keane (1990,1994) and Berkovec and Stern (1991) suggest an alternative method for dealing

with discrete choice panel data. We call this the transition probability (TP) estimator as they

form moments in transition probabilities, i.e. the expectations (probabilities) of choices in period

t conditional on observed choices in periods 1,....,t� 1. Formally, with the dummy variable djt = 1

i� yt = j (and dt =

0BBBBB@
d1t

:

:

dJt

1CCCCCA), they examine the moment:

g(�) =
TX
t=1

JX
j=1

wjt (djt � Pr(djt = 1 j d1; :::::; dt�1; �))

where Pr(djt = 1 j d1; :::::; dt�1 ; �) is the probability that j is chosen at t conditional on past

choices. This moment clearly has expectation 0 at �0, and one can again show that given an optimal

weight matrix, this moment is equal to the derivative of the likelihood function (in particular the

formulation in (2.3)). Note that in theory this formulation is more parsimonious than McFadden's

in that only T � J conditional probabilities need to be calculated, rather than JT choice sequence

probabilities.

The main issue here is that to simulate these conditional probabilities, one needs to integrate

out over the distribution of period t unobservables conditional on the history of choices (and ex-

ogenous variables). With any persistence in errors through time (e.g. individual heterogeneity,

serial correlation), this conditional distribution does depend on this history and is not analyti-

cally known. These authors tackle this problem by simulating these transition probabilities. The

crudest version of this approach is to take draws from the joint distribution of unobservables in

periods 1,....,t. These unobservables generate a sequence of choices for the periods 1,....,t � 1. If

this sequence equals the observed choice sequence for 1,....,t � 1, this draw is called an accepted

conditioning sequence. Repeatedly doing this, the period t unobservables from the accepted con-

ditioning sequences are draws from the correct conditional distribution and can be used to form

unbiased simulation estimates of the conditional probabilities of choices in period t. The problem

with this crude method is that even for medium T , it can take a large number of attempts just to

get 1 accepted conditioning sequence, let alone enough to get a precise simulation estimate. This

renders this acceptance/rejection method computationally impractical except for very small T .

Both authors suggest a second method which is much more computationally e�cient. First

note that

Pr(djt = 1 j d1; :::::; dt�1; �) =
Pr(d1; :::::; dt�1; djt = 1; �)

Pr(d1; :::::; dt�1; �)
=

pst�1;j(�)

pst�1(�)
(4.3)

where pst�1(�) is the probability of the observed choice sequence through time t� 1, and pst�1;j(�)
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is the joint probability of the observed choice sequence through time t�1 and djt = 1. Both pst�1(�)

and pst�1;j(�) are choice sequence probabilities that can be simulated using the methods described

in section 2. The di�erence between the Keane approach and the Berkovec and Stern approach is

that Berkovec and Stern use a PA simulator to simulate the numerator and denominator of (4.3)

while Keane uses the GHK simulator23. Keane's moment condition, for example, is:

gTP (�) =
TX
t=1

JX
j=1

wjt

 
djt �

bpGHK
st�1;j

(�)bpGHK
st�1 (�)

!

It is important to note that because both these methods must simulate the denominator of this

transition probability, neither provides unbiased simulations of either the transition probability or

the conditional moment. As such, neither estimator is consistent for a �xed number of simulation

draws. However, Keane shows that the TP estimator is consistent if NSp
N
! 1 as N ! 1. In

addition, the extra variance induced by simulation should be less than (1+ 1
NS

)� (asymptotically)

since these smooth simulators of transition probabilities should exhibit less variance than those of

the unbiased acceptance/rejection method described above.

Keane exhibits Monte-Carlo evidence24 that even for small NS (e.g. 10), the small sample bias

of the TP estimator is negligible in some 8-period binomial probit models with AR(1) plus random

e�ect unobservables . Geweke, Keane, and Runkle (1997) present some additional Monte-Carlo

evidence verifying this limited bias on longer panel multinomial probit models. Importantly, both

these Monte-Carlo experiments study pure probit models, i.e. models where all the unobservables

are normal and enter the decision rule additively. As a result the GHK simulator is fairly easily

applicable and very e�ective at simulating probabilities and transition probabilities. The goal

of this paper is to study the models described at the end of section 2 in which GHK is not as

easy or e�ective, i.e. dynamic programming models or models with less parametric heterogeneity.

Unfortunately, we �nd evidence that the TP estimator does not perform nearly as well in these

models. It appears that the TP estimator can exhibit signi�cant biases, even when many more

simulation draws are used.

Keane (1994) also mentions (but does not test) an alternative moment condition that does

result in consistent estimates for �xed NS. He gets this by multiplying the moment by bp
st�1(�) ,

i.e.

gCTP (�) =
TX
t=1

JX
j=1

w
0

jt

�
djtbpst�1(�)� bpst�1;j(�)

�
where the optimal weights are now w

0

jt =
wjtbp

st�1(�)
. As long as di�erent random draws are used to

compute both the elements of w
0

jt than are used to compute djtbpst�1(�) � bp
st�1;j

(�) this moment

has expectation 0 at �0 for �xed NS. As such, the estimator should be consistent for �xed NS.

23As Keane develops his estimator as an importance sampling version of the acceptance-rejection method described
above, it is not completely obvious that his simulated transition probabilities are ratios of GHK sequence probabilities.

24The TP estimator has been applied to actual data in, e.g. Berkovec and Stern (1991), Elrod and Keane, Stern
(1994), Roberts & (1997).
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While this estimator is also asymptotically e�cient (in NS and N), this simulation estimator

loses the \replication of the data generating process" characteristic of the original TP estimator

and it is not clear how much variance simulation error adds to estimates. In Monte-Carlo results

below, we exhibit evidence that while this estimator does appear to have virtually no small-sample

bias, it works very poorly (e�ciency-wise - in comparison to our proposed estimator) for random

coe�cient/dynamic programming models in which the GHK simulator cannot be used e�ectively.

Before proceeding with presentation of our estimator we brie
y discuss other methods for esti-

mating discrete-choice panel data models. Simulated Maximum Likelihood has in some sense been

revived with the development of the GHK simulator. Borsch-Supan and Hajivassiliou (1992) show

that use of GHK can reduce biases to reasonable levels in some small scale problems. In addition,

post-estimation bias correction procedures have been suggested by Lee (1995). In our Monte-Carlo

models that cannot fully utilize GHK, we �nd very signi�cant biases in the SML estimator. We

also �nd that while these bias-correction procedures do help a bit, they do not eliminate the biases

in our longer panel models. Hajivassiliou and McFadden (1998) introduce the Method of Simulated

Scores (MSS) for application to very general latent variable models (i.e. pure discrete choice mod-

els, truncated and censored models, etc.). This MSS methodology encompasses the SML estimator,

but also includes two other alternatives for panel discrete choice models. The �rst of these other

alternatives uses acceptance rejection techniques to simulate the score without bias (and result in

estimates consistent for �xed NS), but is hard for longer panels and it is discontinuous in �. The

second method uses Gibbs sampling to simulate the score (which is unbiased for an in�nite number

of Gibbs resamplings), but depends on normality-type assumptions. Pure Bayesian methods have

also been taken to panel discrete choice data in McCulloch and Rossi (1994) and Geweke, Keane,

and Runkle (1998). These appear to work well, but are also tied down fairly heavily to assumptions

of normality and linearity25.

5. Our Simulated Sum Estimator

5.1. Naive Simulated Sum Estimators

Starting with McFadden's original moment:

gMSM (�) =
JTX
s=1

ws (ds � bps(�)) (5.1)

recall that the problem with using smooth simulators for the bps(�)'s is that unless T is very small,

this sum will have too many elements to compute. Our basic idea is that one can simulate this

unmanageable sum by summing random elements of the sum. In other words, we want to randomly

draw N choice sequences, sum them, and multiply by an appropriate factor. Clearly it is very easy

25McCulloch and Rossi note that their Gibbs sampling routine can work with a random e�ect composed of a
mixture of normals. On the other hand, actual linearity of f(X; �) in X and � seems important for the feasibility
(speedwise) of their methodology.
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to draw such random sequences. For example, in a binary choice model (J = 2), one can simply

draw T -vectors where each element is equal to 1 with probability .526. This results in the following

simulated sum moment:

gSUM1(�) =
JT

N

NX
n=1

wn (dn � bpn(�))
where n indexes N randomly chosen choice sequences. Since gSUM1(�) is an unbiased simulator of

gMSM (�), i.e.

EngSUM1(�) = JTEnwn (dn � bpn(�)) = JT
JTX
s=1

ws (ds � bps(�)) 1

JT
= gMSM(�)

it is also an unbiased simulator of g(�), and thus has expectation 0 at �0. gSUM1(�) can therefore

be used as a moment to estimate � consistently for any �nite number (N) of simulated sequences

and �nite number of simulation draws used to compute bpn(�)27.
As is McFadden's pure frequency simulator, gSUM1(�) is feasible to compute, since it only in-

volves summing N components, not JT . On the other hand, if one keeps the random sequences the

same over di�erent � and if one uses a smooth simulator bpn(�), gSUM1(�) is continuous in �, unlike

McFadden's estimator. In addition, one only needs to compute N ws's, and this only needs to be

done once because (unlike McFadden) the sequences don't change over alternate �. Thus gSUM1(�)

solves the two computational major problems of the McFadden pure frequency simulator.

Unfortunately, for reasonable N , the estimator �SUM1 that minimizes the sample average of

gSUM1(�) will have unacceptable levels of simulation error. Essentially we are utilizing N randomly

chosen moments out of JT . As this choice is without regard to which are the most informative of

these JT moments, intuitively one would expect us to obtain N
JT

of the information in the true

moment. Note that the above procedure is essentially equivalent to arbitrarily choosing N of the

sequence moments to consider, i.e. there is not even a reason to randomly choose them (this will

not the case below). One can show (see Appendix 1) that even ignoring the variance due to the

simulation of bpn(�), the variance of gSUM1(�) is on the order of (1+JT

N
)�, which compared to the

(1+ 1
N
)� of the alternative estimators is far too large for practical use28.

We therefore consider the alternative moment,

gSUM2(�) =
JTX
s=1

wsds �
JT

N

NX
n=1

wnbpn(�)
which simply notes that

PJT

s=1wsds has only one non-zero element (that corresponding to the

26This formulation places equal weight on the JT possible sequences. Later we will draw sequences according to
di�erent weighting schemes.

27Consistency and asymptotic normality follow directly (given their regularity assumptions) from the proofs in
McFadden and Ruud (1994). Note that conditional on the ws, the simulation error, i.e. the di�erence between
gSUM1(�) and g(�), is bounded by 2 � JT maxs fwsg (element by element) and thus stochastically bounded.

28Again, recall that the variance of an MSM estimator of � is proportional to the variance of gMSM(�).
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observed choice sequence) and thus can be computed exactly. gSUM2(�) thus simulates only the

second sum, that of the weights times the probabilities. As the simulated sum is an unbiased

simulator of the true sum, i.e.

En

"
JT

N

NX
n=1

wnbpn(�)
#
=

JTX
s=1

wsbps(�)
gSUM2(�) also has expectation 0 at �0

29 and can be used to consistently estimate �.

We now consider how the variance of gSUM2(�) compares to that of gMSM (�) and g(�). First

we compute this variance ignoring simulation error in the probabilities, i.e. assume bps(�) = ps(�).

We return to this extra source of variance later. Note that the ws's are vectors - we adopt the

convention that w2
s = wsw

0

s (same for all other vectors).

V ar(gSUM2(�)) = V ar

0@ JTX
s=1

wsds

1A+ V ar

 
JT

N

NX
n=1

wnpn(�)

!

= �+
J2T

N2
NV ar(wnpn(�))

= � +
J2T

N

24 1

JT

X
s

w2
sps(�)

2 �

 
1

JT

X
s

wsps(�)

!2
35

= �+
1

N

24X
s

w2
sps(�)

2JT �

 X
s

wsps(�)

!2
35

Note that if ps(�)
2JT = ps(�) , this variance is asymptotically (1+ 1

N
)�30. This would be the case

if all choice sequences have equal probability of occurring (in the data generating process), i.e.

ps(�) =
1
JT

. With unequal probabilities this variance is higher.

Examination of the last derivation suggests that one might reduce this variance by importance

sampling sequences, i.e. choosing random sequences with probabilities other than 1
JT

. One natural

and very feasible importance sampling density is to select sequences according to the probabilities

of those sequences occurring in the data, i.e. ps(�). This is extremely easy to do (at a particular

�) - simply take a draw from the joint distribution of unobservables and see what choice sequence

29Note that the elements of this sum have di�erent expectations (unlike gSUM1(�) where the expectation of each
element is zero). Thus, with gSUM2(�) there is a need for (pseudo) randomization, i.e. we cannot arbitrarily pick
sequences to sum.

30Since

JTX
s=1

w
2
sps(�0)�

24 JTX
s=1

wsps(�0)

352

= E

240@ JTX
s=1

wsds

1A235�E

240@ JTX
s=1

wsds

1A352

= V ar

0@ JTX
s=1

wsds

1A

19



these unobservables generate at �. As the importance sampled draws need to be weighted by their

inverse probabilities (assume that we can compute these probabilities for the moment) we obtain

the moment

gSUM3(�) =
JTX
s=1

wsds �
1

N

NX
n=1

wnpn(�)

pn(�)
=

JTX
s=1

wsds �
1

N

NX
n=1

wn (5.2)

where

[pn(�) = ps(�); wn = ws] with probability ps(�)

In this case

V ar(gSUM3(�)) = � + V ar

 
1

N

NX
n=1

wn

!

= �+
1

N
V ar(wn)

= � +
1

N

24X
s

w2
sps(�)�

 X
s

wsps(�)

!2
35

= (1 +
1

N
)� at �0

so in theory this estimator achieves the McFadden pure frequency variance of (1+ 1
N
)� regardless

of what the ps(�)'s are
31;32.

Unfortunately, there are three caveats regarding gSUM3(�). First, we need to hold the simulated

sequences constant over alternative values of � so that 1) our moment condition is continuous in

�, and so 2) we can avoid computing new wn's at di�erent �. Thus, in practice, we need to draw

the simulated sequences at some initial value of �, say �0. This results in

gSUM3(�) =
JTX
s=1

wsds �
1

N

NX
n=1

wnpn(�)

pn(�0)

so the p's in the numerator and denominator do not exactly cancel out unless � = �0. As such,

this (1+ 1
N
)� result is dependent on the initial values at which sequences are drawn33. Second,

if we cannot compute pn(�
0) exactly, simulation error in the denominator will prevent consistency

for �xed number of simulation draws. We solve this issue later. Lastly, we have ignored the extra

variance in gSUM3(�) due to simulating the pn(�)'s. We consider this source of variance next.

To evaluate this additional variance, we consider a generic partially analytic simulator of se-

quence probabilities. As in section 2, we divide the unobservables (�1; ::::::; �T ) into two components,

31This should not be surprising because gSUM3 essentially is gPF (at the � at which sequences are drawn). As we
shall see below, the di�erence is away from this � - while gPF changes the sequences, we hold the sequences constant
and change the p's.

32There may be better ways to importance sample these sequences (in particular based on the weights ws), but
we feel that these would be too time-intensive to make for an e�cient procedure. Simulating based on just p is both
easy and very quick.

33As such, we pay particular attention to starting �0 in our Monte-Carlo work
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� and �, the di�erence between the two being that the integral in the choice sequence probability

is analytically computable conditional on �, i.e.

ps(�) = p(yi1; ::::::; yiT j Xi1; :::::;XiT ; �) =

Z
ps(�; �)f(�)

Note that this formulation is generic enough to include not only the common PA simulators men-

tioned in section 2, but also the PF simulator (when � contains all the unobservables) and the

GHK simulator (let � be the vector of uniform random variables used in the recursive simulation

- conditional on � one can compute analytically the probability of each choice sequence). We can

now write our simulated probabilities as just a function of the random draws �, i.e.

bps(�NS ; �) = ps(�) + �s(�NS ; �)

where �NS contains NS draws of � and where �(�NS ; �) is a simulation error term that has

expectation 0 given the use of any of the unbiased probability simulators mentioned above.

Now suppose that we still draw simulated sequences with the probabilities pj(�) and that we

can somehow exactly compute the appropriate weight pj(�) to put in the denominator. Note that

we are again ignoring the fact that we need to draw simulated sequences according to some initial

� = �0. We now have:

gSUM4(�) =
JTX
s=1

wsds �
1

N

NX
n=1

wnbpn(�NS ; �)
pn(�)

There are three sources of variance in gSUM4(�) - that due to ds, �NS , and the simulated sequences

n. Appendix 2 shows that:

V ar(gSUM4(�)) = � + V ar

 
1

N

NX
n=1

wnbpn(�NS ; �)
pn(�)

!

= �+ V ar�

 X
s

wsbps(�NS ; �)
!
+

1

N

24X
s

w2
sps(�)�

 X
s

wsps(�)

!2
35

+
1

N

"X
s

w2
sE�s(�NS ; �)

2

ps(�)

#
�

1

N
E

24 X
s

ws�s(�NS ; �)

!2
35

There are �ve terms in this expression. It is useful to evaluate these terms by hypothetically

considering a pure frequency simulator (e.g. all the unobservables are in �). In this case the

second term is asymptotically 1
NS

�. The third term is asymptotically 1
N
�. Essentially these two

terms respectively would correspond to the extra variance induced by either only simulating the

probabilities or only simulating the sum. The last two terms arise from the interaction between

the two simulation processes and are problematic. The last term is small so it doesn't help us. On

the other hand, the fourth term is big. Note that it depends on variance of the simulation error.
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In the pure frequency case

E�s(�NS ; �)
2 =

ps(�)(1� ps(�))

NS

so that this term

1

N

"X
s

w2
sE�s(�NS ; �)

2

ps(�)

#
=

1

N �NS

"X
s

w2
s(1� ps(�))

#
�

1

N �NS

"X
s

w2
s

#

which unfortunately is at least order JT

N
�.

What is going on here is that the two simulation errors are interacting with each other. As

a simple example, suppose both N = 1 and NS = 1 with a pure frequency simulator (and for

simplicity assume that ps =
1
JT

8s). We are therefore simulating
PJT

s=1 wsps with JTwnbpn. With

the PF simulator, bpn = 1 with probability 1
JT

and 0 otherwise. Therefore JTwnbpn will = 0 most of

the time (with probability 1� 1
JT

) and = JTwn otherwise. With smooth simulators such as PA or

GHK, these simulation variances decrease, but some brief experiments suggested that this decrease

is not to acceptable levels.

5.2. Our Preferred Simulated Sum Estimator

The key to obtaining a simulated sum estimator with reasonable simulation error is to purposely

correlate the simulation error in the simulated sequences with that of the simulated sequence

probabilities. Intuitively, in the above pure frequency example, we would want to make sure that

the sequence that gets positive probability is also the drawn simulated sequence. In the case of

smooth simulators, the way we do this is by using the exact same random draws �NS (recall

that �NS is a set of NS random draws on the \non-analytic" unobservables �) to both draw the

simulated sequences and to compute simulated probabilities.

In particular, �rst draw the set �NS . Note that this set of draws implies a distribution over

possible sequences, fbps(�NS ; �0)gJTs=1 . Now importance sample (draw) N sequences according to

this exact distribution. This is very simple to do: First, one can randomly select a particular

draw �n from the set of draws �NS
34 - Secondly, one can take a draw from the distribution of the

\analytic" unobservables, �n. The combined (�n; �n) (at �0) will generate a such a choice sequence.

Importantly, since we are now importance sampling sequences from a known distribution we

have simultaneously solved one of the above caveats. We now know exactly the appropriate weight

to give each importance sampling draw, i.e. 1bps(�NS ;�) . This means that there is no denominator

bias in using these importance sampling weights, and that gSUM (�) as de�ned by:

gSUM (�) =
JTX
s=1

wsds �
1

N

NX
n=1

wnbpn(�NS ; �)bpn(�NS ; �0) (5.3)

34One can actually do slightly better by selecting these draws deterministically, see below.
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=
JTX
s=1

wsds �
1

N

NX
n=1

wn at � = �0

and is an unbiased simulator of the exact moment gGMM (�) for any �xed N and NS35. Thus,b�SUM that minimizes k
P

i gSUMi(�)k should be consistent as I goes to in�nity for �xed N and NS.

From the second line of (5.3), note that at � = �0 the variance of gSUM(�) is equivalent to

the variance of McFadden's pure frequency MSM estimator, i.e. (1 + 1
N
)�. In fact, at � = �0, the

estimators are identical. The estimators di�er away from �0. As � moves away from �0, McFad-

den's estimator changes sequences (which is what creates discontinuities and requires computing

instruments for many sequences). In contrast, our SUM estimator holds the sequences constant

but uses smooth simulators to change the sequence weights bpn(�NS ;�)bpn(�NS ;�0) . This is why we interpret our
estimator as a smoothed version of McFadden's estimator. Although the (1 + 1

N
)� variance result

disappears away from � = �0 36, there is hope that either reasonable starting values or iterating

estimation can come close to this ideal . We pay particular attention to initial �0 in our Monte

Carlo study.

5.3. Operation of our Simulated Sum Estimator

Before proceeding to the Monte-Carlo results, we brie
y summarize the operationalization of our

SUM estimator. We begin with the case where NS = N .

1) DrawNS sets of unobservables ((�1; �1); ::::::; (�ns; �ns)). Store the choice sequences (s1; :::::; sns)

generated by these unobservables at some initial �0 and the simulated probabilities of these sequences
conditional on the same �NS = (�1; ::::::; �ns), i.e. bpn(�NS ; �0)37.

2) Using di�erent random draws (NSW ), simulate and store optimal weights ws for both the

observed choice sequence and the NS simulated sequences.

3) To evaluate the moment condition for a particular �, compute bpn(�NS ; �) for each of the N

sequences and compute (5.3).

35Formally,

E�;n

h
1
N

PN

n=1

wnbpn(�NS ;�)bpn(�NS;�0) i = E�Enj�

h
1
N

PN

n=1

wnbpn(�NS;�)bpn(�NS;�0) i
= E�Enj�

h
wnbpn(�NS;�)bpn(�NS;�0) i

= E�

hP
s

wsbps(�NS;�)bps(�NS;�0) bps(�NS ; �0)i
= E�

�P
s
wsbps(�NS ; �)�

=
P

s
wsps(�)

and the simulated moment is unbiased.
36For two reasons - unlike McFadden's estimator for only one.
37Note that this procedure does not literally draw randomly from the set �NS . We instead are implicitly drawing

randomly without replacement. This is not only easier than actually drawing randomly, but also performs slightly
better for obvious reasons.
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Note that besides the straightforward drawing of the simulated sequences and the weights, the

SUM estimator is essentially equivalent in computational complexity to SML. One simply needs to

simulate probabilities of N sequences rather than 1 observed sequence. For cases when NS > N ,

one can just use the �rst N �ns's to draw simulated sequences38. If N > NS, one can cycle though

the �ns's multiple times to draw the simulated sequences (e.g. if N = 2 �NS, one can use each �ns

to draw two simulated sequences.)

6. Monte-Carlo Results

This section contains three sets of Monte-Carlo results. The �rst are a partial replication of the

short (T = 8) panel probit models of Keane (1994) in which GHK was used to simulate transition

probabilities. We �nd that while our SUM estimator using a PA simulator sacri�ces some e�ciency

relative to the SML and TP estimators using GHK, it performs reasonably well. The second and

third experiments are intended to emulate the non-normal and non-linear cases above where GHK

is not e�ective. We �nd that in longer panels (T = 24) our SUM estimator dominates the SML, TP,

and Keane's (1994) Consistent Transition Probability (CTP) estimators in terms of mean squared

error. We lastly note that a natural way to compare estimators with di�erent levels of e�ciency

and bias is with root MSE. However, if one has any interest in hypothesis testing (rather than just

point estimation) this metric undervalues consistent estimates. In other words, even if our SUM

estimator had done worse in MSE than the inconsistent and biased SML and TP estimators, we

would value it for its consistency and apparent lack of bias.

6.1. Computational Issues

We �rst describe some of the issues with the operationalization of each of the estimators. All are

programmed in equally highly optimized C code39 (see appendix for programs). The SML estimates

are fairly straightforward - we simply need to set the number of simulation draws used in computing

the sequence probabilities. Starting parameters are irrelevant except for the starting point of the

search procedure. After estimation, we use the bias correction procedure detailed in Lee (1995).

For the three MSM estimators, there are two additional issues. First, starting parameters

are important. In all three MSM estimators, one needs starting parameters for approximating

the optimal weight matrices. For the SUM estimator, starting parameters are also important for

the generation of simulated sequences. Unless otherwise noted, we use the SML estimates as the

starting parameters. The median times reported for the MSM estimators do not include the time

used to compute the initial SML estimate, so this needs to be added in for comparison purposes.

Second, to gain e�ciency it is helpful to use lots of draws for computation of the weight matrices.

In the TP estimator, we typically chose NSW , the number of simulation draws for the weight matrix

38Since the �ns's are in no particular order, this is equivalent to random sampling without replacement.
39Experiments 1 and 2 were run on an UltraSparc 143 Mhz chip. Experiment 3 was run on a PII - 400 Mhz chip.
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to be 10 times NS, the number of simulation draws used in simulating the transition probabilities40.

For the CTP estimator, there is both a numerator (
@

�
p
st�1;j

(�)

p
st�1(�)

�
@�

) and denominator (pst�1(�))

of the weights - these both need to be simulated. In some brief experimentation, we found that

1) it was more e�cient to use separate simulation draws for the numerator and denominator, and

2) it was helpful to signi�cantly boost the number of simulation draws used for the denominator

(NSW2) relative to those used for the numerator (NSW ).

For our SUM estimator, there are also three choices - NS, NSW , and N - the number of

simulated sequences. Conforming to our result that around � = �0 the variance depends on N and

not NS, we typically set NS = 1 and chose N to satisfy a given computational time. In some

experimentation, we did �nd that one could often do better by decreasing N and increasing NS.

We typically chose NSW to be 10 times N41.

We note that these relationships (e.g. for the TP estimator the choice between NS and NSW ;

for the CTP estimator the choice between NS, NSW , and NSW2; and for the SUM estimator the

choice between NS, N , and NSW ; all to satisfy a given computation time) were not optimized in

any formal way. Doing so would be unfairly biasing conclusions towards the MSM estimators, as

an advantage of SML is its lack of multidimensional \control" parameters that need to be decided

upon42.

6.2. Experiment 1

We �rst brie
y replicate one of the Monte-Carlo models in Keane (1994). In these models we allow

SML and the TP estimators to use the GHK simulator. The point is to see how well our SUM

estimator (using only a PA simulator) fares. Our hypothesis is that we will lose some e�ciency

relative to SML and TP using GHK.

This model has the following setup: T = 8, the single covariate Xit has mean 6, within (in-

dividual) variance 2, and across individual variance 3. The normal error structure is AR(1) plus

random e�ects. In the model which we replicate the persistence of the AR(1) process is � = :6 and

its marginal variance is .8. The variance of the random e�ect is .2.

Table 2 presents results from three estimation approaches on 1000 simulated datasets. The �rst

is Simulated Maximum Likelihood (SML) using 10 draws of the GHK simulator. The second is the

TP estimator also using 10 GHK draws. The third is our SUM estimator with N = 20 and NS = 1,

i.e. we draw 20 simulated sequences and use 1 simulation draw of the PA simulator to compute

40We used one sided approximations to the derivatives in the weight matrix. We didn't �nd much di�erence between
approximating @ ln p

@�
or approximating @p

@�
and dividing by p.

41Another issue with the SUM estimator is the possbility of a shortcut in computing the probabilities of multiple
sequences given the same simulation draws on �'s. In the normal, linear, case (where GHK is applicable) with no
lagged dependent variables, one only needs to compute T CDF's, not N � T , as one would need more generally. We
only use this shortcut once in our experiments, in Experiment 1 where we also allow use of full GHK for the SML
and TP estimators. The idea is that generally, when GHK is available, the shortcut will also be - when GHK is not
available (due to non-linearities or non-normality), the shortcut will also generally not be.

42There is an additional control variable in the MSM estimators which is the time allocated to the SML estimation
of intial parameters.
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the probability of each sequence (for all estimators we use di�erent draws across observations).

Timewise, SML took about 10 seconds, while the TP and SUM estimators took approximately

20 seconds to estimate (including computation of the weight matrix (at the SML estimates)).

There are two reasons why the SML was considerably faster than the TP estimator for the same

number of simulation draws. First, there is no weight matrix to compute. Second, the objective

function tended to be better behaved, lessening the number of function evaluations necessary for

optimization43.

The SML and TP results in table 2 are essentially identical to the results in Keane. While

the SML estimator exhibits fairly large biases, the TP estimator (as well as the SUM estimator)

exhibits almost none. On the other hand, increasing the SML draws eliminated these biases fairly

quickly (as did applying Lee's bias correction procedure). We are more concerned with the relative

e�ciency of our SUM estimator. As evidenced by the table, standard deviations of the distribution

of the estimated coe�cients are clearly higher than those of the other 2 - usually by around 20% .

As we expected, this suggests that while our SUM estimator performs reasonably, it clearly gives

up some e�ciency to the GHK based procedures when full GHK is available.44

6.3. Experiment 2

Our second experiment expands the Keane model in two ways. First, we triple the length of the

panel to 24 periods. This signi�cantly lowers sequence probabilities and increases simulation error

for all simulators. Second, we do not allow use of the GHK simulator. Note that even though

we keep (for lack of anything obvious to switch to) the linear, normally distributed framework

where GHK actually can be applied , our intention is to emulate either a non-linear or non-normal

environment where GHK would not be e�ective. We therefore use the PA simulator to simulate all

sequence probabilities (and derivatives).

Table 3a presents SML estimates with bias correction. Due to the longer panel and the fact

that we can no longer use GHK, we boost our number of simulation draws to 100. As can be seen,

there are very considerable biases in all coe�cients except for �x. The next three parts of the table

analyze the 3 MSM estimators. The TP estimator also has very signi�cant biases, but slightly less

than those of the SML estimator. Interestingly, many of them are the opposite direction of the

biases of the SML estimator. As expected, the CTP estimates exhibit very little bias. However,

there is a huge e�ciency loss. Standard deviations are 5-8 times larger than those of the SML

estimator.

Lastly, our SUM estimates in Table 3d also exhibit essentially no bias. However, it is far more

43We used the Nelder-Mead Simplex routine for optimization.
44A couple of other notes. We also tried our SUM estimator starting at arbitrary parameters (e.g. .1,.1,.1,.1) - then

iterating the estimation process 2 or 3 times. This led to similar standard errors, although the TP estimator degraded
less (in response to bad starting values) for the initial iteration. We also increased T and obtained similar results -
if anything the TP estimator performed relatively better. On the other hand, the fact that we programmed these
routines in C has implications on these comparisons. Compiled languages such as Gauss and Matlab are ine�cient at
loops, which are a neccesity for the recursive GHK simulator. Since the PA simulator can easily programmed without
loops, our SUM estimator might perform a bit better for someone constrained to these languages.
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e�cient than the CTP estimator, with standard deviations 2-6 times smaller. Although the S.D.'s

of the SUM estimates tend to be about twice those of SML, the lack of bias makes up for it in terms

of root-MSE, particularly in the parameters of the error process. Again, we feel that root-MSE

undervalues consistency because of the bene�ts of hypothesis testing.

Given that the MSM estimators incur extra time (~455 sec) for the computation of the SML

estimates as starting parameters, we boost the SML simulation draws to 300 in Table 4. This

model now takes approximately 20 minutes per run. Note that the biases decrease, but not by that

much. � is underestimated by 30%, the variance of the random e�ect is overestimated by 25%, and

the �rst o� diagonal element of the variance matrix is underestimated by 20%. Root-MSEs for the

error parameters still don't come close to those of the SUM estimates in Table 3d, even though

total estimation time is now considerably longer (1177sec > (365sec + 455sec)).

The last three parts of Table 4 increase the number of simulation draws for the MSM estimators.

Importantly, these use as starting values the SML estimates from Table 3, not Table 4, so we again

need to add 455sec to computation times. All SD's decrease and the biases of the TP estimator go

down a bit, but the SUM estimator still clearly dominates in terms of MSE.

6.4. Experiment 3

Our third set of experiments examines a random coe�cients model. We keep T = 24, and to focus

on the e�ects of the random coe�cients we also set � = 0, resulting in the model:

uit = �ixit + �1i + �2it

where xit is distributed identically to the above, �1i is a normal random e�ect with variance 0.25.

�2it is now completely i.i.d. error. Rather than add explanatory variables to introduce more random

coe�cients/e�ects, a simple way to increase the dimensionality of the integrals is to allow di�erent

random coe�cients in di�erent sets of time periods. We simply divide the time frame into 6 sets

of 4 periods and assume a di�erent �ir for each set r of periods (distributed independently with

mean �x =0.25 and standard deviation �r = 0.25). This is also interesting as we can see if there are

any di�erential biases according to time period. It also may in some sense imitate learning models

where consumers are hit with particular shocks after particular time periods (e.g. learning shocks

after consumption experiences). Again, note that full GHK actually could be applied to this literal

model45 but the goal is to emulate models with �i's either non-normal or entering non-linearly

due to dynamics. Thus, we again restrict attention to the PA simulator where the integrals over

(�i1; ::::; �i6; �
1
i ) are directly simulated and the integrals over the �2it are analytically computed.

Results are presented in Table 5. Bias-corrected SML estimates with 75 draws exhibit large

biases in all the parameters. The TP estimator also exhibits large biases in all the parameters.

Interestingly, the biases on the random coe�cient standard deviation increase as one goes from �1

to �6. This results from the fact that the simulated transition probabilities have more bias in them

45Although it would require di�erent Cholesky decompositions for di�erent individuals.
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as time increases (since the component probabilities are smaller and harder to simulate). This

di�erential bias might be a matter of large concern, e.g. if one is estimating the trying to estimate

the tail of a learning process (which only occurs far ahead in time).

The CTP estimates again appear relatively unbiased, but sacri�ce e�ciency to the SML and

TP estimators (though the sacri�ce is less than that in Experiment 2). Lastly our SUM estimates

also appear unbiased and dominate the CTP estimates by 1.5 to 2.5 times in terms of e�ciency.

The root-MSE comparison to SML and TP again falls in favor of the SUM estimator.

Lastly, we again boosted the SML simulation draws. Results are given in Table 6a. Biases

decrease, but are still very signi�cant. Comparing the SML results in 6a (total time = 2786

seconds) vs. the SUM results in Table 5d (total time = 735+822=1557 sec), we see that the SUM

estimates have considerably less MSE in almost half the time.

7. Conclusions

28



8. Appendices

8.1. Appendix 1

The minor (but annoying) complication here is that the elements in the sum of the true moment

are correlated (if dj = 1, the other d's must = 0). Formally, letting wj(dj � pj) = xj , and noting

that there are two sources of variance: the variance due to the realizations of xj and variance due

to the random draws n (again, in practice there is a third source of variance - that due to simulated

pj's which we ignore at the moment):
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Line 2 follows from the Law of Iterated Variance. Line 3 because the randomly drawn sequences

are independent. Line 5 as � = V ar(
P

j xj). Line 7 because E [xj ] = E
hP

j xj

i
= 0. The last line

is approximate since the variance of the sum (�) is not equal to the sum of the variances due to

correlation but this correlation is of order (The example here is with J = 2; T = 1 - clearly one

only needs to choose one of the moment conditions)
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8.2. Appendix 2
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Table 1 - Comparison of Various Sequence Probability Simulators
Baseline Parameters -T=8, I=500,�=0.6,�2

RE
=.33,�2

AR1
=.33,�2

IID
=.33

Perturbation Full GHK PA Partial GHK 1 Partial GHK 2

Var Var Rel. Var. Var Rel Var Var Rel Var

Base Parameters 4.85 63.98 13.17 162.83 33.52 168.46 34.68

�=0.9 6.86 32.79 4.77 566.93 82.56 617.11 89.87

�=0.3 3.32 78.05 23.47 119.82 36.04 122.12 36.73

�2
RE

=.10, �2
AR1

=.45, �2
IID

=.45 2.30 44.57 19.36 135.63 58.91 168.41 73.15

�2
RE

=.45, �2
AR1

=.10, �2
IID

=.45 4.81 24.99 5.18 898.44 186.48 981.17 203.65

�2
RE

=.45, �2
AR1

=.45, �2
IID

=.10 8.33 226.80 27.22 50.09 6.01 59.09 7.09

�2
RE

=.80, �2
AR1

=.10, �2
IID

=.10 9.86 64.84 6.57 194.45 19.71 161.62 16.38

�2
RE

=.10, �2
AR1

=.80, �2
IID

=.10 6.27 403.02 64.22 22.52 3.58 41.15 6.55

�2
RE

=.10, �2
AR1

=.10, �2
IID

=.80 0.66 7.08 10.71 1478.07 2236.16 1531.45 2316.91

T=20 13.59 339.78 24.98 1281.61 94.25 1258.29 92.53

T=50 45.85 2503.84 54.60 5913.31 128.96 5979.05 130.40

T=50, �=0.9 66.97 1624.36 24.25 34006.48 507.72 32070.26 478.81

T=100 98.80 7802.21 78.96 16814.77 170.17 17544.78 177.56

T=100, �=0.9 219.05 6861.51 31.32 95850.80 437.57 112838.10 515.11
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Table 2 - Replication of Experiment in Keane
Table 2a- Simulated Maximum Likelihood

I=500, T=8, NS=10, Median Time = 10 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9018 0.0878 0.878 -0.68

�x 0.25 0.2500 0.0140 0.0140 0.20

�2
RE

0.20 0.2175 0.0567 0.0594 9.77

� 0.60 0.5400 0.0427 0.0736 -44.29

Table 2b - Transition Probability

I=500, T=8, NS=10, NSW=50, Median Time = 20 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.8946 0.0877 0.0878 1.92

�x 0.25 0.2492 0.0140 0.0140 -1.64

�2
RE

0.20 0.1935 0.0660 0.0663 -3.06

� 0.60 0.6047 0.0437 0.0440 3.45

Table 2c - Simulated Sum

I=500, T=8, N=20, NS=1, NSW=200, Median Time = 22 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.8997 0.1077 0.1076 0.09

�x 0.25 0.2499 0.0173 0.0173 -0.07

�2
RE

0.20 0.1897 0.0849 0.0855 -3.81

� 0.60 0.6013 0.0527 0.0527 0.82

Notes: For all models, 1000 replications were used. SML estimates
used for starting parameters for the TP and SUM models.
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Table 3 - Basic Model
Table 3a- SML with Bias Correction

I=1000, T=24, NS=100, Median Time = 455 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9577 0.0417 0.0711 -13.8431

�x 0.25 0.2491 0.0065 0.0065 -1.2419

�2
RE

0.20 0.2841 0.0216 0.0868 38.8296

� 0.60 0.2722 0.0168 0.3281 -194.7793

E[�t�t�1] 0.68 0.4791 0.0154 0.2014 -129.9734

Table 3b - Transition Probability

I=1000, T=24, NS=50, NSW=500, Median Time = 436 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.8419 0.0469 0.0744 12.3604

�x 0.25 0.2356 0.0064 0.0156 -22.3786

�2
RE

0.20 0.1222 0.0464 0.0904 -16.7243

� 0.60 0.7455 0.0260 0.1478 55.8107

E[�t�t�1] 0.68 0.7776 0.0151 0.0988 64.4991

Table 3c - Keane's Consistent Transition Probability

I=1000, T=24, NS=50, NSW=500, NSW2=1000, Median Time = 530 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9718 0.3394 0.3453 -2.1152

�x 0.25 0.2593 0.0470 0.0477 1.9860

�2
RE

0.20 0.2057 0.1033 0.1030 0.5583

� 0.60 0.5612 0.1140 0.1199 -3.3941

E[�t�t�1] 0.68 0.6552 0.0824 0.0857 -3.0059

Table 3d - Simulated Sum

I=1000, T=24, N=20, NS=1, NSW=200, Median Time = 365 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9041 0.0761 0.0759 -0.5401

�x 0.25 0.2487 0.0108 0.0109 -1.1843

�2
RE

0.20 0.1945 0.0422 0.0423 -1.2954

� 0.60 0.6110 0.0388 0.0401 2.8461

E[�t�t�1] 0.68 0.6877 0.0250 0.0261 3.0782

Notes: For all models, 100 replications were used. SML estimates
used for starting parameters for the TP, KTP, and SSUM models.
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Table 4 - Increased Simulation Draws
Table 4a - SML with Bias Correction

I=1000, T=24, NS=300, Median Time = 1177 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9505 0.0356 0.0618 -6.7944

�x 0.25 0.2498 0.0045 0.0044 -0.1468

�2
RE

0.20 0.2572 0.0206 0.0607 13.3025

� 0.60 0.4095 0.0167 0.1911 -54.6552

E[�t�t�1] 0.68 0.5615 0.0133 0.1191 -42.5900

Table 4b - Transition Probability - Increased Draws

I=1000, T=24, NS=100, NSW=1000, Median Time = 812 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.8740 0.0352 0.0433 4.0312

�x 0.25 0.2425 0.0054 0.0091 -7.5572

�2
RE

0.20 0.1710 0.0242 0.0374 -6.5454

� 0.60 0.6922 0.0185 0.0940 27.2528

E[�t�t�1] 0.68 0.7451 0.0125 0.0662 28.3677

Table 4c - Consistent Transition Probability - Increased Draws

I=1000, T=24, NS=100, NSW=1000, NSW2=1000, Median Time = 999 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9578 0.3308 0.3304 -0.9568

�x 0.25 0.2609 0.0417 0.0424 1.4417

�2
RE

0.20 0.2009 0.0878 0.0863 0.0573

� 0.60 0.5922 0.0651 0.0644 -0.6501

E[�t�t�1] 0.68 0.6764 0.0479 0.0472 -0.4038

Table 4d - Simulated Sum - Increased Draws

I=1000, T=24, N=35, NS=1, NSW=350, Median Time = 864 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.90 -0.9096 0.0528 0.0528 -0.9990

�x 0.25 0.2497 0.0088 0.0086 -0.1605

�2
RE

0.20 0.2027 0.0412 0.0406 0.3587

� 0.60 0.6077 0.0305 0.0310 1.3897

E[�t�t�1] 0.68 0.6880 0.0188 0.0202 2.3340

Notes: For all models, 30 replications were run. SML estimates from Table 3 (with 100
simulation draws) were used for starting parameters for the TP, KTP, and SSUM models.
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Table 5- Random Coe�cient Models
Table 5a - SML with Bias Correction

I=1000, T=24, NS=75, Median Time = 735 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.7773 0.0501 0.1324 24.4458

�x 0.25 0.2003 0.0096 0.0505 -51.4719

�RE
2 0.25 0.1832 0.0313 0.0737 -21.3011

�1 0.25 0.1944 0.0181 0.0584 -30.5868

�2 0.25 0.1951 0.0162 0.0571 -33.706

�3 0.25 0.1911 0.0167 0.0611 -35.1183

�4 0.25 0.1942 0.0168 0.0581 -33.0445

�5 0.25 0.1918 0.0181 0.0608 -32.0196

�6 0.25 0.1954 0.0152 0.0565 -35.6487

Table 5b - Transition Probability - Start Values - SML w/ 75 draws

I=1000, T=24, NS=50, NSW=500, Med Time = 993 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.9685 0.0687 0.0968 -9.9642

�x 0.25 0.2726 0.0176 0.0287 12.823

�RE
2 0.25 0.3539 0.0535 0.1167 19.4126

�1 0.25 0.2434 0.0207 0.0216 -3.1649

�2 0.25 0.2539 0.0185 0.0188 2.1106

�3 0.25 0.2699 0.0229 0.0303 8.7035

�4 0.25 0.3104 0.0273 0.0662 22.0912

�5 0.25 0.3748 0.0312 0.1286 39.9665

�6 0.25 0.4569 0.0448 0.2116 46.1823

Table 5c - Keane's Consistent TP- Start Values - SML w/ 75 draws

I=1000, T=24, NS=50, NSW=500, NSW2=1000, Med Time = 991 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.8939 0.0974 0.0971 0.6169

�x 0.25 0.247 0.0278 0.0278 -1.0679

�RE
2 0.25 0.2521 0.0861 0.0857 0.2457

�1 0.25 0.2537 0.0304 0.0304 1.2261

�2 0.25 0.2513 0.0361 0.0359 0.3647

�3 0.25 0.2527 0.032 0.0319 0.8451

�4 0.25 0.2542 0.0336 0.0337 1.2581

�5 0.25 0.2533 0.0368 0.0368 0.9136

�6 0.25 0.2628 0.0571 0.0583 2.2499

Table 5d - Simulated Sum - Start Values - SML w/ 75 draws

I=1000, T=24, N=20, NS=1, NSW=200, Med. Time = 822 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.8911 0.0688 0.0690 1.2833

�x 0.25 0.2485 0.0152 0.0152 -0.9209

�RE
2 0.25 0.2516 0.0495 0.0493 0.3235

�1 0.25 0.2480 0.0198 0.0198 -0.9973

�2 0.25 0.2506 0.0197 0.0196 0.3168

�3 0.25 0.2523 0.0221 0.0221 1.0567

�4 0.25 0.2522 0.0222 0.0222 1.0185

�5 0.25 0.2509 0.0197 0.0197 0.4916

�6 0.25 0.2497 0.0194 0.0193 -0.1037

Notes: For all models, 100 replications were run.
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Table 6- R. C. Model - Increased Draws
Table 6a - SML with Bias Correction

I=1000, T=24, NS=300, Median Time = 2786 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.8647 0.0572 0.0663 3.32

�x 0.25 0.2275 0.0130 0.0258 -9.28

�RE
2 0.25 0.2204 0.0435 0.0519 -3.66

�1 0.25 0.2350 0.0192 0.0241 -4.18

�2 0.25 0.2299 0.0153 0.0250 -7.03

�3 0.25 0.2335 0.0181 0.0242 -4.86

�4 0.25 0.2362 0.0188 0.0230 -3.95

�5 0.25 0.2324 0.0185 0.0253 -5.09

�6 0.25 0.2353 0.0115 0.0184 -6.83

Table 6b - Transition Probability - Starting Values - SML w/75 draws

I=1000, T=24, NS=100, NSW=1000, Median Time = 1758 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.9316 0.0599 0.0669 -2.89

�x 0.25 0.2595 0.0131 0.0161 3.96

�RE
2 0.25 0.3050 0.0405 0.0679 -0.14

�1 0.25 0.2495 0.0158 0.0156 7.43

�2 0.25 0.2475 0.0157 0.0157 -0.86

�3 0.25 0.2591 0.0160 0.0182 3.12

�4 0.25 0.2785 0.0154 0.0322 10.13

�5 0.25 0.3110 0.0194 0.0639 17.16

�6 0.25 0.3581 0.0200 0.1099 29.49

Table 6c - Keane's Consistent TP - Starting Values - SML w/ 75 draws

I=1000, T=24, NS=1000, NSW=1000, NSW2=1000, Median Time = 1815 sec

Parameter True Value Mean Estimate SD of Estimate MSE T-Stat Bias

Constant -0.9 -0.8907 0.0819 0.0810 0.61

�x 0.25 0.2464 0.0196 0.0196 -0.99

�RE
2 0.25 0.2505 0.0550 0.0540 0.05

�1 0.25 0.2538 0.0230 0.0229 0.90

�2 0.25 0.2432 0.0177 0.0186 -2.07

�3 0.25 0.2486 0.0260 0.0256 -0.28

�4 0.25 0.2473 0.0200 0.0198 -0.73

�5 0.25 0.2520 0.0274 0.0270 0.40

�6 0.25 0.2532 0.0345 0.0341 0.50

Table 6d - Simulated Sum - Starting Values - SML w/ 75 draws

I=1000, T=24, N=35, NS=1, NSW=350, Median Time = 1578 sec

Constant -0.9 -0.9002 0.0640 0.0630 -0.01

�x 0.25 0.2510 0.0128 0.0126 0.45

�RE
2 0.25 0.2433 0.0426 0.0424 -0.85

�1 0.25 0.2547 0.0180 0.0183 1.43

�2 0.25 0.2492 0.0202 0.0199 -0.19

�3 0.25 0.2536 0.0214 0.0213 0.92

�4 0.25 0.2545 0.0184 0.0186 1.36

�5 0.25 0.2531 0.0146 0.0147 1.17

�6 0.25 0.2497 0.0160 0.0158 -0.09

Notes: For all models, 30 replications were run.

6



References

[1] Berkovec, James; Stern, Steven. 1991. \Job Exit Behavior of Older
Men", Econometrica, 59(1), January 1991, pages 189-210.

[2] B}orsch Supan, A., and Hajivassiliou, V. 1993. \Smooth Unbiased Mul-
tivariate Probability Simulators for Maximum Likelihood Estimation of
Limited Dependent Variable Models", Journal of Econometrics, 58(3),
347-368.

[3] Elrod and Keane. 1995, \A Factor-Analytic Probit Model for Represent-
ing the Market Structure in Panel Data", Journal of Marketing Research,
Feb. 1995, Vol. XXXII, 1-16.

[4] Geweke, J. 1989, \E�cient Simulation from the Multivariate Normal
Distribution Subject to Linear Inequality Constraints and the Evalua-
tion of Constraint Probabilities"

[5] Geweke, John F.; Keane, Michael P.; Runkle, David E. 1997, \Statistical
Inference in the Multinomial Multiperiod Probit Model", Journal of

Econometrics, 80(1), pages 125-65.

[6] Hajivassiliou, V. 1993, \Simulation of multivariate normal rectangle
probabilities and their derivatives: the e�ects of vectorization", Inter-
national Journal of Supercomputer Applications, Fall, 231-253.

[7] Hajivassiliou, V. 1994, \A Simulation Estimation Analysis of Exter-
nal Repayments Problems of Developing Countries", Journal of Applied
Econometrics, 9(2), 109-132.

[8] Hajivassiliou, V. 1996. \A Monte Carlo Comparison of Leading Simu-
lation Estimators for LDV Models", Mimeo, Department of Economics,
London School of Economics.

[9] Hajivassiliou, V. 1997, \Simulation-Based Inference and Diagnostic
Tests: Some Practical Issues", Cambridge University Press

[10] Hajivassiliou, V. and Ruud, P. 1994, \Classical Estimation Methods
Using Simulation" Pages 2383-2441 of: Engle, R., and McFadden, D.
(eds), Handbook of Econometrics, Vol. 4. North Holland.

1



[11] Hajivassiliou, Vassilis A.; McFadden, Daniel L. 1998, \The Method of
Simulated Scores for the Estimation of LDV Models", Econometric,
66(4), July 1998, pages 863-96.

[12] Hajivassiliou, V., McFadden, D., and Ruud, P. 1996, \Simulation of
Multivariate Normal Rectangle Probabilities and Their Derivatives:
Theoretical and Computational Results", Journal of Econometrics,
72(1&2), 85-134.

[13] Keane, M. 1994. \A Computationally E�cient Practical Simulation Es-
timator for Panel Data", Econometrica, 62(1), 95-116.

[14] Keane, Michael P.; Wolpin, Kenneth I. 1994, \The Solution and Esti-
mation of Discrete Choice Dynamic Programming Models by Simulation
and Interpolation", Review of Economics and Statistics, 76(4), Novem-
ber 1994, pages 648-72.

[15] Lee, Lung Fei. 1995, \Asymptotic Bias in Simulated Maximum Like-
lihood Estimation of Discrete Choice Models", Econometric Theory,
11(3), August 1995, pages 437-83.

[16] Lee, Lung Fei. 1998, \Simulated Maximum Likelihood Estimation of Dy-
namic Discrete Choice Statistical Models: Some Monte Carlo Results",
Journal of Econometrics 82(1), January 1998, pages 1-35.

[17] Lerman, S. and Manski, C. 1981. \On the Use of Simulated Frequen-
cies to Approximate Choice Probabilities", Pages 305-319 of: Manski,
C., and McFadden, D. (eds), Structural Analysis of Discrete Data with

Econometric Applications. MIT Press.

[18] McCulloch, R., and Rossi, P. 1994, \An Exact Likelihood Analysis of
the Multinomial Probit Model", Journal of Econometrics, 64.

[19] McFadden, D. 1989, \A Method of Simulated Moments for Estimation
of Discrete Response Models without Numerical Integration", Econo-
metrica, 57(5), 995-1026.

[20] McFadden, Daniel; Ruud, Paul A. 1994, \Estimation by Simulation",
Review of Economics and Statistics, 76(4), November 1994, pages 591-
608.

2



[21] Pakes, A., and Pollard, D. 1989, \Simulation and the Asymptotics of
Optimization Estimators", Econometrica, 57, 1027-1057.

[22] Stern, S. 1992, \A Method for Smoothing Simulated Moments of Dis-
crete Probabilities in Mutinomial Probit Models", Econometrica, 60,
943-952.

[23] Stern, Steven 1994,\Two Dynamic Discrete Choice Estimation Problems
and Simulation Method Solution", Review of Economics and Statistics,
76(4), November 1994, pages 695-702.

3


