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Abstract

We introduce two simple new variants of the Jackknife Instrumental Variables (JIVE) estimator

for overidentified linear models and show that they are superior to the existing JIVE estimator, signifi-

cantly improving on its small sample bias properties. We also compare our new estimators to existing

Nagar (1959) type estimators. We show that, in models with heteroskedasticity, our estimators have

superior properties to both the Nagar estimator and the related B2SLS estimator suggested in Donald

and Newey (2001). These theoretical results are verified in a set of Monte-Carlo experiments and

then applied to estimating the returns to schooling using actual data.

Econlit Subject Descriptors: C310, J240
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1 Introduction1

It is well known (see, e.g. Staiger and Stock (1997)) that in overidentified models first stage overfitting

can generate small-sample bias in the Two Stage Least Squares (2SLS) estimator. We analyze the Jack-

knife Instrumental Variables (JIVE) estimator that has been proposed to address this overfitting problem

by Phillips and Hale (1977), Angrist, Imbens and Krueger (1995, 1999), and Blomquist and Dahlberg

(1999). While the small sample bias of JIVE does not depend on the degree of overidentification, it does

increase in the number of included exogenous variables in the second stage equation. This number can

be quite large in empirical analysis, e.g., in Angrist and Krueger’s (1991) study of the returns to educa-

tion, there are up to 60 such variables. We suggest two very simple but significant improvements to the

JIVE estimator that eliminate this bias term, reducing both its small sample bias and variability. We call

these new estimators the Improved JIVE (IJIVE) estimator and the Unbiased IJIVE (UIJIVE) estimator.

We then compare our IJIVE and UIJIVE estimators to Nagar’s (1959) bias corrected estimator for

overidentified models. Nagar’s estimator has recently been investigated by Hahn and Hausman (2002)

and Donald and Newey (2001). Interestingly, we show the IJIVE and Nagar estimators are similar in

spirit and have very similar properties under homoskedasticity. However, we show that the IJIVE esti-

mator has superior properties to Nagar’s estimator when the residuals are heteroskedastic. In particular,

the IJIVE and UIJIVE estimators (as well as the original JIVE estimator) are consistent under many in-

strument asymptotics, while the Nagar estimator (as well as Donald and Newey’s related Bias-Adjusted

2SLS (B2SLS) estimator) is not. As Chao and Swanson (2004) have recently shown that the LIML es-

timator is not consistent under many instrument asymptotics with heteroskedasticity, our estimators also

have better properties than LIML with heteroskedasticity.2

We report two sets of Monte-Carlo experiments that verify our theoretical results. In the first set,

we show that our IJIVE and UIJIVE estimators clearly dominate the JIVE estimator, particularly when
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there are many covariates in the system. In the second set of experiments, we compare our IJIVE and

UIJIVE estimators to, among others, the Nagar, B2SLS and LIML estimators. As expected, we find that

the IJIVE and UIJIVE estimators are superior in the presence of heteroskedasticity. Finally, we apply our

new estimators to the Angrist and Krueger (1991) returns to schooling specification and find reasonable

differences between our estimators and the standard JIVE estimator.

2 The JIVE Estimator

Consider the following simultaneous equations model:

Y = X∗β∗ +Wγ ∗ + >i (1)

X∗ = Z∗π∗ +Wδ∗ + ηi .

The endogenous variable Y is an N by 1 vector, X∗ is an N by L1 matrix of endogenous explanatory

variables, W is an N by L2 matrix of exogenous variables, and Z∗ is an N by K1 matrix of exogenous

instruments that are excluded from the main equation. β∗ is L1 by 1, γ ∗ is L2 by 1, π∗ is K1 by L1,

and δ∗ is L2 by L1. We assume K1 ≥ L1. Let L = L1 + L2 and K = K1 + L2. The number of

overidentifying restrictions in this model is K1 − L1 = K − L .

Define the N by L matrix X = d
X∗ W

e
, the N by K matrix Z = d

Z∗ W
e
, β =

⎡⎢⎢⎣ β∗
γ ∗

⎤⎥⎥⎦, and
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π =

⎡⎢⎢⎣ π∗ 0K1xL2

δ∗ IL2

⎤⎥⎥⎦. We can now write our model as

Y = Xβ + >

X = Zπ + η,

where β is an L vector, π is a K by L matrix, > is an N vector, and η is an N by L matrix. We assume

> and η are independent across i and mean independent of W and Z . We also assume initially that > and

η are homoskedastic with L + 1 by L + 1 variance matrix �>η. This homoskedasticity assumption is

relaxed in section 3. We denote the probability limits of Z )Z/N and X )X/N as �z and �x respectively.

The 2SLS estimator is (X )Pz X)−1(X )PzY ) where Pz = Z(Z )Z)−1Z ). While β2SLS is consistent

as N goes to infinity, it is now well known (see Nagar (1959), Phillips and Hale (1977), Staiger and

Stock (1997), and others) that it has poor finite sample properties when there are many instruments Z∗

relative to the dimension of X∗.3 This bias is caused by overfitting in the first stage - with a large number

of instruments, X )Pz approaches X ) and the 2SLS estimator approaches the biased OLS estimator. A

first order approximation to this bias (to order 1/N ) given in Angrist, Imbens, and Krueger (1995) is

(K − L − 1)(π )�zπ)
−1σ>η/N, where σ>η is an L vector of the covariances between > and each of the

L elements of η.4

The JIVE estimator of Phillips and Hale (1977, henceforth PH), Angrist, Imbens, and Krueger (1995,

1999, henceforth AIK), and Blomquist and Dahlberg (1999, henceforth BD) works as follows: Let Z(i)

and X (i) denote matrices equal to Z and X with the ith row removed. Define EX J I V E to be the N x L

dimensional matrix with ith row equal to Ziπ(i), where π(i) = (Z(i))Z(i))−1(Z(i))X (i)). The JIVE
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estimator is5

β J I V E = (EX )J I V E X)−1(EX )J I V EY ). (2)

Note the intuition behind the JIVE estimator: In forming the “predicted value” of X for observation

i , one uses a π coefficient estimated on all observations other than i . This eliminates the overfitting

problems in the first stage. The JIVE estimator can be written in very compact form that doesn’t require

iterating over observations to compute. Following PH and defining DPz = diag(Pz) and CJ I V E =

(I − DPz)
−1(Pz − DPz), we can write the JIVE estimator as6

β J I V E = (X )
C )J I V E X)−1(X

)
C )J I V EY ). (3)

2.1 The Improved JIVE (IJIVE) Estimator

PH and AIK use Edgeworth expansions show that the small sample bias (to order 1/N ) of JIVE is

approximately equal to

(−L1 − L2 − 1)(π )�zπ)
−1σ>η/N (4)

and is generally less than that of 2SLS. As L1 is the number of included endogenous variables in the

second stage equation and L2 is the number of included exogenous variables (including the constant

term) in the second stage equation, in most applications the L2 term will be the primary source of small

sample bias in the JIVE estimator.

Somewhat surprisingly, it turns out that one can eliminate this L2 bias term by simply partialing out

W (including the constant term) from Y, X, and Z before implementing the JIVE estimator.7 We denote

the partialled out JIVE estimator as the IJIVE (Improved JIVE) estimator. More precisely, with HY , HX,
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and HZ now representing variables partialled out with respect to W (e.g. HZ = MwZ), we have

β∗I J I V E = (HX )C )I J I V E
HX)−1(HX )C )I J I V E

HY ), (5)

where

CI J I V E = (I − DHPZ
)−1(IPZ − DHPZ

) (6)

and IPZ = HZ(HZ )HZ)−1HZ ). In Appendix 1, we show using an Edgeworth expansion that β∗I J I V E has a small

sample bias of (−L1 − 1)(π )�HZπ)−1σ>η/N , i.e. our IJIVE estimator eliminates the L2 bias term.8

This bias term proportional to (−L1−1) can compare very favorably to the bias of the original JIVE

estimator proportional to (−L1 − L2 − 1) = (L − 1). In the median application, L1 = 1, whereas L

is at least 2 (constant term plus endogenous variable) and often much larger. For example, in Angrist

and Krueger’s (1991) study, L1 = 1 and L = 61 in specifications with year and state controls. While

small sample variability is hard to explicitly calculate, our monte carlo results suggest that β∗I J I V E has

significantly lower variance than β∗J I V E , making it even more attractive.

Initial partialling out of W removes the L2 term from the bias. We now address the −L1 − 1 term.

Define

CU I J I V E = (I − DHPZ
+ ωI )−1(IPZ − DHPZ

+ ωI ),

where ω = (L1 + 1)/N . In the appendix, we show that

β∗U I J I V E = (HX )C )U I J I V E
HX)−1(HX )C )U I J I V E

HY )
is approximately unbiased (to order 1/N ). Intuitively, the additional ωI terms change the trace of C ,

subtracting out the bias in the IJIVE estimator9. In our Monte Carlo results, we also note that β∗U I J I V E
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tends to have lower dispersion than both β∗J I V E and β∗I J I V E .

2.2 The IJIVE Estimator and Nagar’s Estimator

The Nagar (1959) estimator can be written as

β∗Nagar = (HX )C )Nagar
HX)−1(HX )C )Nagar

HY ), (7)

where CNagar = IPZ − λJMZ , λ = (K1/(N − K1)), and JMZ = I −IPZ . DefiningEλ = K1/N gives

CNagar = (1−Eλ)−1(IPZ −EλI ). (8)

ThisEλ formulation of the Nagar estimator is convenient in that it allows easy comparison to the IJIVE

estimator. Note the similarities between (6) and (8): Since the trace of IPZ is equal to K1, the average

value of the diagonal elements of IPZ is K1/N . As such, the Nagar and IJIVE estimators differ only in

that in IJIVE the actual diagonal elements of IPZ are subtracted from IPZ while, in Nagar, the average

value of the diagonal elements of IPZ is subtracted from IPZ . Likewise, in the denominator, the IJIVE

estimator subtracts the actual value of the diagonal of IPZ while Nagar subtracts the average value of the

diagonal elements of IPZ . Under homoskedasticity, the Nagar estimator has the same approximate small

sample bias as IJIVE, i.e. (−L1 − 1)(π )�HZπ)−1σ>η/N .

Donald and Newey (2001) also suggest a variant of the Nagar estimator, which they term the Bias-

Adjusted 2SLS (B2SLS) estimator. This estimator is identical to the Nagar estimator except thatEλ =
(K1 − (L1 + 1))/N . This adjustment is analagous to the adjustment of IJIVE to UIJIVE, and it reduces

the approximate small sample bias of the Nagar estimator to zero.
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3 Many Instruments Asymptotics under Heteroskedasticity

While the IJIVE (UIJIVE) and Nagar (B2SLS) estimators have very similar properties under homoskedas-

ticity, they diverge under heteroskedasticity. The heteroskedasticity we consider is in the instruments Z ,

i.e. we allow heteroskedasticity of > and η in Z . Changing notation slightly, we now assume that the

exogenous variables (W ) have already been partialled out of the model so we have

Y = Xβ + > (9)

X = Zπ + η. (10)

In this formulation, Y is an N vector, X is an N × L1 matrix, Z is an N × K1 matrix, > is an N vector,

and η is an N × L1 matrix. To keep notation simple, in this section we assume X is one dimensional, i.e.

L1 = 1. The results can easily be generalized.

Small sample bias calculations like those above are difficult under heteroskedasticity. As a result, we

turn to many-instrument asymptotics (also called group asymptotics) previously used by Bekker (1994),

Angrist and Krueger (1995), AIK, Chao and Swanson (2005), and Newey (2004)10. The basic idea of

many-instrument asymptotics is to allow the number of instruments K1 to go to infinity at the same

rate as the number of observations. More specifically, we assume (as Newey (2004)) that K1/N → α

(0 < α < 1) as N →∞. This is intended to approximate a situation where the number of instruments

is relatively large and overfitting might be problematic.

The estimators under consideration can all be written as

Eβ = (X
)
C )X)−1(X

)
C )Y )

= (
1
N

X
)
C )X)−1(

1
N

X
)
C )X)β + ( 1

N
X
)
C )X)−1 1

N
X
)
C )>
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with the appropriate C matrix. We simply assume that under the asymptotic sequence studied, the quan-

tities (1/N)X )C )X and (1/N)X )C )> converge in probability to the limit of their (assumed finite) ex-

pectations. Clearly, these very high-level assumptions put restrictions on what is happening to both the

Z matrix and the heteroskedasticity as K1 → ∞. It would be preferable to develop more primitive,

lower level, assumptions on the processes that generate these higher level assumptions. Chao and Swan-

son (2004) do exactly this, thus providing a deeper, more complete, proof of the consistency of JIVE

under many-instrument asymptotics with heteroskedasticity (and guaranteeing that at least some such

sequences do satisfy our high-level assumptions). However, for our purposes, starting with these high

level assumptions is sufficient to demonstrate the fundamental and important differences between IJIVE

(UIJIVE) and Nagar (B2SLS) under heteroskedasticity.11

Under these assumptions, it follows that

p lim(Eβ)− β = p lim
d
X )C )>/N

e
p lim

d
X )C )X/N

e = limN,K1→∞ E
d
X )C )>/N

e
limN,K1→∞ E

d
X )C )X/N

e (11)

so consistency of Eβ depends on the behavior of E
d
X )C )>/N

e
as N and K1 increase. To analyze this

behavior, first note that

X )C )Nagar = X )(Pz − λMz) = (Zπ + η))(Pz − λMz) = π )Z ) + η)C )Nagar (12)
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and

X )C )I J I V E = X )(Pz − DPz)(I − DPz)
−1 (13)

= (Zπ + η))(Pz − DPz)(I − DPz)
−1

= π )Z )(I − DPz)(I − DPz)
−1 + η)C )I J I V E

= π )Z ) + η)C )I J I V E .

Thus, with C representing either CNagar or CI J I V E , the numerator of (11) is

E
d
X )C )>/N

e = E
d
π )Z )>/N

e+ E
d
η)C )>/N

e
(14)

= E
d
η)C )>/N

e
(15)

since Z and > are uncorrelated. Therefore, consistency under many instrument asymptotics relies on the

term

E
d
η)C )>/N

e = 1
N

E(trace(η)C )>)) = 1
N

Etrace(C )>η)) = 1
N

trace(C )E(>η))) (16)

either equaling zero or vanishing asymptotically.

First note that with homoskedasticity, (16) is zero for both CI J I V E and CN AG AR. For CI J I V E ,

this is because 1) CI J I V E has a zero diagonal and 2) E(>η)) is a diagonal matrix due to independence

across observations. Thus, the diagonal of C )E(>η)) is identically zero. For CN AG AR, since the diagonal
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elements of E(>η)) all equal σ>η we have

1
N

trace(C )N AG AR E(>η))) = 1
N

trace((Pz − λMz)E(>η))) (17)

= 1
N
σ>η

v
trace(Pz)− K1

N − K1
trace(Mz)

w
= 1

N
σ>η

v
K1 − K1

N − K1
(N − K1)

w
= 0.

Thus, under homoskedasticity, both IJIVE and Nagar are consistent under many instruments asymptotics.

Things are different under heteroskedasticity. While P>η = E(>η)) is still diagonal, the elements on

the diagonal are now generally unequal and functions of Zi . However, since CI J I V E has a zero diagonal,

we still have

1
N

trace(C )I J I V E E(>η))) = 0. (18)

In contrast

1
N

trace(C )N AG AR E(>η))) = 1
N

trace((Pz − λMz)P>η) (19)

= 1
N

;
i
(Pz,i i − K1

N − K1
Mz,i i)σ >iηi

= 1
N

;
i

v
(

N
N − K1

)Pz,i i − K1

N − K1

w
σ>iηi

= 1
N

;
i
(

N
N − K1

)HPz,i iσ>iηi ,

where σ>iηi is the i th diagonal element of P>η, i.e. the covariance between >i and ηi . Pz,i i is the

i th diagonal element of Pz, HPz,ii is Pz,i i − (1/N)3i Pz,i i , and the last line relies on the fact that

1
N
3

i Pz,i i = Trace(Pz)/N = K1/N . This term is not generally zero and does not disappear as N
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and K1 increase. The size of this term depends on how the covariance term is “correlated” with devi-

ations from average Pz,i i . Since both σ>iηi and HPz,i i are functions of Zi , we expect such correlation

generally. Thus, unlike the IJIVE estimator, the Nagar estimator is generally not consistent under many

instruments asymptotics with heteroskedasticity. The intuition behind this result follows directly from

the discussion in the prior section. Unlike IJIVE, which subtracts off the exact diagonal elements of

Pz , the Nagar estimator subtracts off the expectation of this diagonal and the difference between the

expectation and realized value will generally be correlated with σ>iηi .
12

One should consult the working paper version for details, but it is fairly easy to show that we get

the same theoretical results with the UIJIVE and B2SLS estimators - UIJIVE is consistent under many-

instrument asymptotics, while B2SLS is not. The intuition behind this extension is that UIJIVE and

B2SLS only differ from their respective IJIVE and Nagar counterparts by terms that are of order (L1 +

1)/N , which disappear under many-instrument asymptotics. In summary, we have shown that JIVE type

estimators have superior properties to Nagar-type estimators under heteroskedasticity. These superior

properties will be very evident in our Monte-Carlo experiments.

4 Monte Carlo Analysis

We perform two sets of Monte Carlo analyses. The first set compares our IJIVE and UIJIVE estimators

to the JIVE estimator. We focus in particular on what happens as the number of exogenous explanatory

variables W increases, as this influences the small sample improvements of our estimators. As expected,

the IJIVE and UIJIVE estimators perform considerably better than JIVE.

The second set of results compares the IJIVE and UIJIVE estimators to other existing small sample

instrumental variables estimators under heteroskedasticity. Again, as expected, we find that IJIVE and
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UIJIVE perform very well in comparison to the other estimators (in particular with respect to Nagar,

B2SLS, and LIML), and argue that in many situations, these may be the estimators of choice.

4.1 Base Model

Our base model assumes

Yi = β0 + β1Xi + β2Wi + >i

Xi = π0 + π1Zi + π2Wi + ηi ,

where Xi is a scalar endogenous variable and Wi is a set of included exogenous variables that are distrib-

uted i.i.d. N(0, 1). We vary the dimension of Wi in our experiments. In all cases, we set β0 = π0 = 0,

β1 = 1, and all the elements of β2 and π2 equal to 1.

For simplicity, our instruments Zi are a set of mutually exclusive dummy variables.13 One can

think of these dummy variables as representing groups, similar to, e.g., Angrist and Krueger’s (1991)

returns to education specifications where the instruments are groups defined by quarter of birth interacted

with state of birth. With our initial sample size of 100, we assume there are 20 such groups - five

observations in each group. Hence, Zi is 19 dimensional (one of the groups is captured by the constant

term). The parameters on these instruments π1 are distributed i.i.d. N(0, 0.1) and are redrawn across

experimental draws to integrate over a range of potential first stage models. Note that the variance of this

π1 vector determines the strength of the instruments. At our setting of 0.1, the instruments are relatively

weak, but not weak enough to preclude meaningful inference.14 We assume initially that the errors are
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homoskedastic and have the distribution

⎛⎜⎜⎝ >i

ηi

| Zi

⎞⎟⎟⎠ ∼ N

⎛⎜⎜⎝
⎛⎜⎜⎝ 0

0

⎞⎟⎟⎠ ,
⎛⎜⎜⎝ 0.25 0.2

0.2 0.25

⎞⎟⎟⎠
⎞⎟⎟⎠ . (20)

We perform 10000 Monte-Carlo replications. In all tables we report quantiles (10%, 25%, 50%,

75%, 90%) of the distribution of the estimator of β1 around the true β1. The 50% quantile is thus the

median bias of the estimator. We also report the median absolute error of the estimator. Mean biases

and mean squared errors of our estimators are problematic because JIVE and Nagar type estimators

are known not to have second moments. This makes their means extremely sensitive to outliers and

makes mean squared errors meaningless. To address this issue we trimmed the distributions of all the

estimators (at the 5th and 95th percentiles) and report mean bias and mean absolute error for these

trimmed distributions. For potential 90% confidence intervals, we report both infeasible "true" coverage

rates15 and feasible coverage rates using standard asymptotic approximations. For the homoskedastic

case, we simply follow AIK and use the following asymptotic variance for the JIVE estimators16:

Eσ 2
K
X )C X

b
X )C )C X

c−1 X )C )X
L−1

,

where C is either CJ I V E , CI J I V E , or CU I J I V E .

4.2 Experiment 1

In our first set of experiments, we examine the performance of the various JIVE estimators as the dimen-

sion of the exogenous variables increases. The first panel of Table 1 contains results when dim(W )=0,

i.e. when the only non-excluded exogenous variable is the constant term. The large median and mean
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biases of the OLS and 2SLS estimates suggest that there is both a significant endogeneity problem and a

significant overfitting problem. Confidence interval coverage is very poor for these estimators. With only

one non-excluded exogenous variable, we would expect the JIVE estimator to do quite well at reducing

median and trimmed mean bias, and it does. However, even with only the constant term as an included

exogenous variable, the IJIVE and UIJIVE estimators appear to perform better. Both the means and

the medians of IJIVE are about 0.03 closer to the truth than JIVE and the UIJIVE estimator is approxi-

mately mean unbiased (although in terms of median bias, it is similar to JIVE). The distributions of the

IJIVE and UIJIVE estimators are also slightly tighter than the JIVE estimator. Also note that feasible

confidence interval coverage for the IJIVE and UIJIVE estimators (as well as the JIVE estimator) are

reasonable.

Moving through the panels of Table 1 corresponds to adding more exogenous variables to the sys-

tem. The basic trend is that the JIVE’s performance quickly deteriorates while the IJIVE and UIJIVE

estimators continue to perform well. By the last panel, where dim(W ) is equal to 10, the JIVE estimator

has considerable bias - median bias is -0.31 and the mean bias is -0.46. This bias is even larger than that

of 2SLS. In addition, the variance of the JIVE estimator increases tremendously. In contrast, the IJIVE

and UIJIVE estimators continue to perform well, both in terms of bias and variance. It is interesting

to compare the IJIVE and UIJIVE estimators. While IJIVE does slightly better at median bias, UIJIVE

does slightly better in terms of trimmed mean bias. UIJIVE also tends to perform a bit better in the

variance measures (Median and Mean Absolute Error). On the other hand, UIJIVE’s confidence interval

coverage is a bit worse.17 However, the differences between IJIVE and UIJIVE are small compared to

the differences between JIVE and IJIVE/UIJIVE.

For more Monte Carlo results in the homoskedastic case, one can also consult our comment (Acker-

berg and Devereux (2006)) on Davidson and MacKinnon (2006 (DM)). DM show reasonably large bias
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and variance advantages of the LIML estimator (see below) over the original JIVE estimator. In our

comment, we show that across a wide range of specifications, a large portion of these bias and variance

advantages disappear when using the IJIVE and UIJIVE estimators introduced in this paper. This is par-

ticularly interesting because in the DM experiment the only included exogenous variable is a constant

term. The difference between JIVE and IJIVE/UIJIVE would be even greater with a higher dimensional

W .

4.3 Experiment 2

In our second set of experiments, we fix dim(W ) = 0 and add heteroskedasticity to the model to com-

pare the performance of IJIVE and UIJIVE to the Nagar and B2SLS estimators. For comparision pur-

poses, we also consider three other estimators, the LIML estimator, the Jackknife 2SLS estimator of

Hahn, Hausman, and Kursteiner (2002) (HHK), and the Pseudo Empirical Likelihood (PEL) estimator

of Guggenberger and Hahn (2005) (GH).

The LIML estimator can be conveniently written as

βL I ML = (X )C )L I ML X)−1(X )C )L I MLY ), (21)

where

CL I ML = (I − λMz), (22)

and λ is the smallest characteristic root of
b
[Y X]) Pz [Y X]

c b
[Y X]) Mz [Y X]

c−1. The LIML estimator

has known optimality properties under correct specification, but this requires i.i.d. normality and linear-

ity. Chao and Swanson (2004) show that LIML is not consistent under many instruments asymptotics

with heteroskedasticity.
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The Jackknife 2SLS estimator suggested by HHK performs a jackknife bias correction on the 2SLS

estimator. This involves estimating the 2SLS model N + 1 times – once on the full sample, and once

on each subsample of N − 1. Assuming that the bias is linear in 1/N , a linear combination of the full

sample estimator and the average of the N − 1 sample estimators produces an unbiased estimate. This is

β J2SLS = Nβ2SLS − (N − 1)
1
N

;
n
β2SLS−n,

where β2SLS−n is the 2SLS estimate on the dataset without observation n. HHK show that relative to

Nagar (and implicitly JIVE) type estimators, β J2SLS has considerably less variance, more bias, and

lower mean squared error.

The PEL estimator introduced by GH is an analytic version of the Generalized Empirical Likelihood

(GEL) class of estimators. A number of papers have demonstrated attractive theoretical properties of this

class of estimators, even under heteroskedasticity, e.g. Qin and Lawless (1994), Kitamura and Sturtzer

(1997), Imbens, Spady, and Johnson (1998), and Newey and Smith (2004). The primary problem with

GEL estimators is that they do not have a closed form solution, requiring iterative techniques to minimize

an objective function, making them more time consuming and complicated to program and run, as well

as making them potentially sensitive to optimization issues such as local extrema. They are particularly

hard to study in Monte-Carlo experiments because of this. GH introduce an estimator that has the same

third order bias properties as GEL estimators, but that has a closed form solution (see GH for this closed

form). This is the estimator that we consider in our experiments, with the caveat that it is conceivable

that the non-analytic GEL estimators might perform better in small samples.

To construct feasible confidence intervals with heteroskedasticity, we use a White-adjusted asymp-
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totic variance formula, i.e.

V ar(Eβ) = (X )C )X)−1

�
N;

i=1
Ee2

i [C X]i [C X]
)
i

�
(X )C )X)−1),

whereEei are the estimated residuals and [C X]i is the i th row of C X . This formula is used for 2SLS,

Nagar, B2SLS, IJIVE, UIJIVE, and LIML with the appropriate C matrix.18 There are no available as-

ymptotic approximations for J2SLS and PEL under heteroskedasticity, so we simply report the infeasible

CIs.

We introduce heteroskedasticity by allowing the variance matrix in (20) to differ across groups. We

also change the group sizes - specifically, we assume that there are 2 groups of 23 observations and 18

groups of 3 observations (in total there are still 20 groups and 100 observations). This is important be-

cause in the special case where group sizes are identical, diag(Pz) is constant and the Nagar and B2SLS

are consistent under many-instrument asymptotics even with heteroskedasticity. For the heteroskedas-

ticity, we allow the variance matrix (20) to differ across the two types of groups (large (23) and small

(3)).

Table 2 presents results from these heteroskedastic models. In the first panel, results for the model

without heteroskedasticity are presented. Of interest here is how Nagar, B2SLS, J2SLS, and LIML per-

form compared to IJIVE and UIJIVE. As expected, without heteroskedasticity the Nagar and B2SLS

estimators look almost identical to their IJIVE and UIJIVE counterparts. J2SLS, as expected, has con-

siderably lower spread and lower mean and median absolute error, but worse bias and confidence interval

coverage. LIML performs quite well, with almost no bias and the lowest mean and median absolute er-

rors. Surprisingly, PEL performs relatively poorly with high mean and median bias. On the other hand,

this is consistent with some of the monte-carlo results in GH. Again, it is possible that the non-analytic
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GEL estimators might do better than the PEL in small samples.

The next four panels of the table show the results with heteroskedastic errors. In all cases, we hold

the variances in (20) constant at 0.25, only changing the covariances.19 In panel B, we set the covariance

to 0 for the 2 large groups, keeping it at 0.2 for the 18 small groups. One can see the heteroskedasticity

dramatically impact the performance of Nagar, B2SLS, and LIML. All perform very poorly with median

and trimmed mean biases in excess of 0.2, almost as high as 2SLS. They also have poor confidence inter-

val coverage, lower than 70% for 90% confidence intervals. In contrast, the IJIVE and UIJIVE estimators

continue to have very small biases, reasonably low values of mean and median absolute error, and good

confidence interval coverage. The J2SLS estimator also seems to be unaffected by the heteroskedastic-

ity, continuing to have higher mean and median biases than IJIVE and UIJIVE (and worse confidence

interval converage), but lower dispersion. PEL also does not appear to be particularly affected by the

heteroskedasticity, although its performance was not good to start with.

In panel C we reverse the heteroskedasticity, making the covariance 0 for the 18 small groups and 0.2

for the 2 large groups. In this example, there is less of an overfitting problem, evidenced by the fact that

standard 2SLS starts to perform very well. This probably occurs because for the small groups (where

the overfitting problem is most severe) there is no endogeneity problem because of the zero covariance.

Even though 2SLS now performs quite well, Nagar, B2SLS, and LIML are still seriously biased, almost

as bad as OLS. Again, both of our JIVE estimators perform quite well in comparison.

Panels D and E perform two perturbations of these experiments starting from the setup in panel B.

In panel D, we simply weaken the degree of heteroskedasticity, setting the covariance to 0.1 for the two

large groups. We still see quite sizeable biases in the Nagar, B2SLS, and LIML estimators. In panel

E we try to approximate our many-instruments asymptotic arguments by simultaneously increasing both

the number of observations (to 500) and the number of instruments (to 100). As suggested by the many
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instruments asymptotics, the small biases of IJIVE and UIJIVE quickly disappear while their mean and

median absolute errors become very small. In contrast, the biases in Nagar, B2SLS, LIML remain large

and their coverage rates become extremely poor. In sum, our Monte-Carlo results confirm our theoretical

preditions that the IJIVE and UIJIVE estimators are considerably more robust to heteroskedasticity than

are Nagar, B2SLS, and LIML.

5 Application to Return to Education

In a paper that motivated much of the recent literature on overidentified models, Angrist and Krueger

(1991) estimate the return to schooling using quarter of birth as an instrument in a sample of 329,500

men born between 1930-39 (from the 1980 Census). We estimate two of their specifications. In the first

specification, there are 30 instruments created by interacting quarter and year of birth and the control

variables are a set of year indicators (so K = 30 and L = 11). The second specification contains 180

instruments constructed by adding interactions of 50 state and quarter of birth dummies to the original

30 instruments. In this second specification, both state and year fixed effects are included as controls (so

K = 180 and L = 61).

In Table 3, we report estimates for the two specifications along with asymptotic standard errors. The

OLS, 2SLS, LIML, and JIVE coefficients and standard errors are exactly the same as those reported in

AIK (1999). Comparing the JIVE estimates to IJIVE and UIJIVE we see that, as expected, the IJIVE

and UIJVE estimates are smaller and have lower standard errors. This is particularly the case in the

second specification, where L is quite high. These results are again consistent with 1) our theory and

Monte Carlo evidence showing that JIVE is biased away from OLS and 2) our Monte Carlo evidence

suggesting that JIVE has higher variance than IJIVE and UIJIVE. LIML seems to perform adequately
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here, and Nagar and B2SLS generate point estimates and standard errors almost identical to IJIVE and

UIJIVE. This suggests that in these data there is not a significant heteroskedasticity problem affecting

the performance of Nagar, B2SLS, and LIML. While heteroskedasticity does not seem to be an issue in

this particular application, our theoretical and Monte Carlo results definitely suggest that for robustness,

one should prefer the UIJIVE and JIVE estimators.20

6 Conclusions

In this paper, we have suggested two simple but significant improvements to the JIVE estimator that

reduce both its small sample bias and variability. These estimators are similar to Nagar’s estimator when

errors are homoskedastic but have superior theoretical properties to Nagar’s estimator with heteroskedas-

tic errors. In particular, we show that the IJIVE estimator (as well as the UIJIVE estimator) is consistent

under many instruments asymptotics, while the Nagar estimator (as well as Donald and Newey’s related

B2SLS estimator) is not. We verify these theoretical results with two sets of Monte Carlo experiments.

The first shows that our IJIVE and UIJIVE estimators clearly dominate the JIVE estimator, particularly

when there are many exogenous variables in the system. The second shows that the IJIVE and UIJIVE

estimators are superior to Nagar and B2SLS in the presence of heteroskedasticity. We also compare our

estimators to three other estimators that have been advocated in the literature; the Limited Information

Maximum Likelihood (LIML) estimator, the Jackknife Two Stage Least Squares (J2SLS) estimator, and

the PEL estimator. We find that LIML is also sensitive to heteroskedasticity. While the J2SLS estimator

typically has considerably lower variance and lower mean squared error than our estimators, it also typ-

ically has more bias. This combination of lower variance and higher bias can generate poor confidence

interval coverage. Our work suggests that the estimators of choice when one is worried about robustness
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to heteroskedasticity in a situation with overidentification depends on one’s goals. If one is interested

in minimizing mean squared error, J2SLS may be appropriate. If one is concerned with limiting bias,

hypothesis testing, and confidence interval coverage, IJIVE/UIJIVE may be the estimators of choice.

References

[1] Ackerberg Daniel A. and Paul J. Devereux , “Improved JIVE estimators for Overidentified Linear

Models with and without Heteroskedasticity,” mimeo (2003).

[2] Ackerberg Daniel A. and Paul J. Devereux , “Comment on ‘The Case Against JIVE,” Journal of

Applied Econometrics 21:6, September/October (2006), 835-838.

[3] Angrist Joshua D. and Alan B. Krueger, “Split sample instrumental variables estimates of the return

to schooling,” Journal of Business and Economic Statistics 13:2, April (1995), 225-35.

[4] Angrist, Joshua D. and Alan B. Krueger, “Does compulsory school attendance affect schooling and

earnings?,” Quarterly Journal of Economics 106:4, November (1991), 979-1014.

[5] Angrist, Joshua D., Guido W. Imbens, and Alan B. Krueger, “Jackknife Instrumental Variables

Estimation,” NBER technical working paper 172 (1995).

[6] Angrist, Joshua D., Guido W. Imbens, and Alan B. Krueger, “Jackknife Instrumental Variables

Estimation,” Journal of Applied Econometrics 14:1, January/February (1999), 57-67.

[7] Bekker, Paul A., “Alternative approximations to the distributions of instrumental variables estima-

tors,” Econometrica, 62:3, May (1994), 657-682.

22



[8] Blomquist Soren and Matz Dahlberg, “Small sample properties of LIML and jackknife IV estima-

tors: experiments with weak instruments,” Journal of Applied Econometrics 14:1, January/February

(1999), 69-88.

[9] Chao, John C. and Norman R. Swanson, “Consistent estimation with a large number of weak in-

struments,” Econometrica 73:5, September (2005), 1673-1692.

[10] Chao, John C. and Norman R. Swanson, “Estimation and Testing using Jackknife IV in Het-

eroskedastic Regressions with Many Weak Instruments,” Rutgers University Working Paper,

(2004).

[11] Chao, John C., Norman R. Swanson, Jerry A. Hausman, Whitney K. Newey, and Tiemen

Woutersen, “Asymptotic Distribution of JIVE in a Heteroskedastic IV Regression with Many In-

struments,” Working Paper (2007).

[12] Chao, John C., Norman R. Swanson, Jerry A. Hausman, Whitney K. Newey, and Tiemen

Woutersen, “Instrumental Variables Estimation with Heteroskedasticity and Many Instruments,”

Working Paper (2008).

[13] Davidson, Russell and James G. MacKinnon, “The Case Against JIVE,” Journal of Applied Econo-

metrics 21:6, September/October (2006), 827-833.

[14] Devereux, Paul J., “Improved Errors-in-Variables Estimators for Grouped Data,” Journal of Busi-

ness and Economic Statistics 25:3, July (2007a), 278-287.

[15] Devereux, Paul J., “Small Sample Bias in Synthetic Cohort Models of Labor Supply,” Journal of

Applied Econometrics 22:4, (2007b), 839-848.

23



[16] Donald Stephen G. and Whitney K. Newey, “Choosing the number of instruments,” Econometrica

69:5, September (2001), 1161-1191.

[17] Greene, William H., Econometric Analysis, 5th Edition, Prentice Hall, NJ (2003).

[18] Guggenberger Patrik and Jinyong Hahn, “Finite Sample Properties of the 2-step Empirical Likeli-

hood Estimator,” Econometric Reviews 24:3, (2005), 247-263.

[19] Hahn, Jinyong and Jerry Hausman, “Notes on Bias in Estimators for Simultaneous Equation Mod-

els,” Economics Letters 75:2, April (2002), 237-241.

[20] Hahn, Jinyong, Hausman, Jerry, and Kuersteiner, Guido, “Estimation with Weak Instruments: Ac-

curacy of Higher Order Bias and MSE Approximations,” Econometrics Journal 7:1, (2004), 272-

306.

[21] Hansen, Christian, Jerry Hausman, and Whitney K. Newey, “Estimation with Many Instrumental

Variables,” CeMMAP Working Paper 19/06 (2006).

[22] Imbens, Guido W., Richard H. Spady, and Phillip Johnson, “Information Theoretic Approaches to

Inference in Moment Condition Models,” Econometrica 66:2, March (1998), 333-357.

[23] Kitamura, Yuichi and Michael Stutzer, “An Information-Theoretic Alternative to Generalized

Method of Moments Estimation,” Econometrica 65:4, July (1997), 861-874.

[24] Nagar, A.L., “The bias and moment matrix of the general k-class estimators of the parameters in

simultaneous equations,” Econometrica 27:4, October (1959), 575-595.

[25] Newey, Whitney K., “Many Instrument Asymptotics,” mimeo, MIT (2004).

24



[26] Newey, Whitney K. and Richard J. Smith, “Higher Order Properties of GMM and Generalized

Empirical Likelihood Estimators,” Econometrica 72:1, January (2004), 219-255.

[27] Phillips, Gary D. and C. Hale, “The Bias of Instrumental Variable Estimators of Simultaneous

Equation Systems” International Economic Review 18:1, February (1977), 219-228.

[28] Qin, Jing and Jerry Lawless, “Empirical Likelihood and General Estimating Equations,” The Annals

of Statistics 22:1, (1994), 300-325.

[29] Staiger Douglas and James H. Stock, “Instrumental variables regression with weak instruments,”

Econometrica 65:3, May (1997), 557-586.

25



7 Appendix 1: Higher Order Asymptotic Proofs

This appendix examines the higher order asymptotic properties of the IJIVE and UIJIVE estimators

introduced in the paper. In all these proofs, we utilize the following result from AIK (1995):

Lemma 1 :

Assume the following model

Y = Xβ + > (23)

X = Zπ + η (24)

where the error terms > and η are i.i.d.. Assume that we can write an estimatorEβ in the form

Eβ = (X )C )X)−1(X )C )Y ) (25)

where C is an Nx N matrix such that the elements of C are of stochastic order Op(1/
√

N) and

C X = Zπ + Cη

Then, with Pzπ = Zπ(π )Z )Zπ)−1π )Z ) and �z = p lim(Z )Z/N), the approximate bias of Eβ to order

1/N equals

(π )�zπ)
−1E

1
N
d
η)(C ) − C )Pzπ − 1)>

e
.

¥
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With this lemma in hand, consider a partialled out version of (1), i.e.

HY = HXβ∗ +H> (26)

HX = HZπ∗ +Hη (27)

where HY = MwY , HX = MwX∗, HZ = MwZ∗,H> = Mw>,Hη = Mwη and Mw = I −W (W )W )−1W ).

Consider a C matrix equal to either CI J I V E or CU I J I V E where CI J I V E = (I − DHPz
)−1(HPz − DHPz

)

and CU I J I V E = (I − DHPz
+ � I )−1(HPz − DHPz

+ � I ). Here HPz = HZ(HZ )HZ)−1HZ ), DHPz
is the diagonal

matrix with the diagonal equal to the diagonal of HPz, and � = L1+1
N . Note that for both IJIVE and

UIJIVE, CHX = HZπ + CHη (see derivation (13) in text). Thus, we can write either estimator as

Eβ∗ = (HX )C )HX)−1(HX )C )HY ) (28)

and the lemma implies that the approximate bias ofEβ∗ to order 1/N equals

(π )I�zπ)
−1E

1
N
dHη)(C ) − C )JPzπ − 1)H>e , (29)

where JPzπ = HZπ(π )HZ )HZπ)−1π )HZ ) and I�z = p lim(HZ )HZ/N ). Note that this approximate bias is L1

dimensional – corresponding to the number of columns of HX and the dimension ofHη. The lth element of

this approximate bias is

(π )I�zπ)
−1E

1
N
dHη)l(C ) − C )JPzπ − 1)H>e (30)

whereHηl is the lth column ofHη.
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First examine the first term of this approximate bias. We have21

E
tHη)lC )H>

N

u
= E

t
η)l MwC )Mw>

N

u
(31)

= trace
t

MwC )MwE(>η)l)
N

u
= σ>ηl trace

t
MwC )Mw

N

u
= σ>ηl trace

t
(I − Pw)C )(I − Pw)

N

u
= σ>ηl trace

t
(I − Pw)C )

N

u
(32)

= −σ>ηl

v
trace

t
C )

N

u
− trace

t
PwC )

N

uw
(33)

For IJIVE, the first of these two terms (trace
b
C )I J I V E

c
/N ) is zero. For UIJIVE,

trace
t

C )U I J I V E
N

u
= trace

�
(HPz − DHPz

+� I )(I − DHPz
+� I )−1

N

�
(34)

= 1
N

N;
i=1

t
�

1− JPz,i i +�
u

where JPz,i i is the i th diagonal element of HPz . The first two terms of an expansion of 1
N

N3
i=1

b
�/(1− JPz,i i +�)

c
around the mean of JPz,i i (K1/N ) are

1
N

N;
i=1

t
L1 + 1

N − K1 + L1 + 1

u
+ 1

N

N;
i=1

�
�

(1− K1
N +�)2

�tJPz,i i − K1

N

u
(35)

and the omitted terms in the expansion are all of higher order than 1/N . The first term in (35) equals

(L1 + 1)/N to order 1/N because (L1 + 1)/(N − K1 + L1 + 1) − (L1 + 1)/N is of order 1/N2, and
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the second term is zero since the trace of HPz is identically K1.22 Hence, to order 1/N we have

trace
t

C )U I J I V E
N

u
= L1 + 1

N

For IJIVE, the second term of equation (33) is

−σ>ηl trace
t

PwC )I J I V E
N

u
= −σ>ηl trace

�
Pw(HPz − DHPz

)(I − DHPz
)−1

N

�

= σ>ηl trace

�
PwDHPz

(I − DHPz
)−1

N

�

= σ>ηl

1
N

N;
i=1

�JPz,i i Pw,i i
1− JPz,i i

�

Note we are using the facts that trace(C )I J I V E) = 0 and PwHPz = 0. In the last line, Pw,i i is the i th

diagonal element of Pw, and σ>ηl is the covariance between > and the lth element of η.

To determine the order of this term, we expand the summands around the mean of JPz,i i , K1/N, and

the mean of Pw,i i , L2/N . The first three terms of this expansion of (1/N)
N3

i=1
(JPz,i i Pw,i i )/(1 − JPz,i i )

equal

1
N

N;
i=1

�� K1
N

L2
N

1− K1
N

�
+
� K1

N

1− K1
N

�t
Pw,i i − L2

N

u
+
�
−

K1
N

L2
N

(1− K1
N )

2
+

L2
N

1− K1
N

�tJPz,i i − K1

N

u�
(36)

where the omitted terms of the expansion are all of order higher than 1/N . Since the traces of Pw and HPz

are identically L2 and K1 respectively, the second and third terms of (36) sum to zero, and the first term
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is of order 1/N2. Therefore, to order 1/N ,

E
tHη)lC )I J I V EH>

N

u
= 0

Thus, the first term of the approximate bias for IJIVE is zero. The exact same approach can be used to

show that −σ>ηl trace
b
(PwC )U I J I V E)/N

c
is 0 to order 1/N . Therefore, to order 1/N ,

E
tHη)lC )U I J I V EH>

N

u
= L1 + 1

N
(37)

Now move to the second term of the approximate bias (29). Noting that JPzπMw =JPzπ and JPzπ Pw =

0, we have

E

�Hη)lC )JPzπH>
N

�
= E

�
η)l MwC )JPzπMw>

N

�

= E

�
η)l MwC )JPzπ>

N

�

= E

�
η)lC )JPzπ>

N

�
− E

�
η)l PwC )JPzπ>

N

�

= σ>ηl

�
trace

�
C )JPzπ

N

�
− trace

�
C )JPzπ Pw

N

��

= σ>ηl

v
L1

N

w
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For IJIVE, the last equality results uses the fact that

trace
b
C )I J I V E

JPzπ
c = trace

bJPzπC )I J I V E
c

(38)

= trace
rJPzπ(HPz − DHPz

)(I − DHPz
)−1
s

= trace
rJPzπ(I − DHPz

)(I − DHPz
)−1
s

= trace(JPzπ) = L1

For UIJIVE, the equality results uses the fact that JPzπ Pw = 0 and trace(C )U I J I V E
JPzπ) = L1 (proof is

similar to the above).

With these results in hand, return to (29). Stacking the bias terms for the L1 elements of β∗, we

obtain an approximate bias of IJIVE to order 1/N of

(π )I�zπ)
−1σ>η

v−L1 − 1
N

w

where σ>η is the L vector of covariances between > and the first L1 elements of η.

Again, stacking the bias terms for the L1 elements of β, the approximate bias of β∗U I J I V E to order

1/N is

(π )I�zπ)
−1σ>η

v
L1 + 1− L1 − 1

N

w
= 0 (39)
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Notes

1Corresponding author: Daniel A. Ackerberg, Dept. of Economics, UCLA, Los Angeles, CA 90095.

Thanks to Jin Hahn for very helpful discussions. All errors are our own. The first author acknowledges

generous support under NSF grant #0339850.

2Chao and Swanson (2004) also independently prove that the original JIVE estimator is consistent un-

der Bekker-type asymptotics with heteroskedasticity and Chao et al. (2007) provide further results. Chao

et al. (2008) propose and study new, related, estimators. These are the only studies we know of, other

than ours, that examine the theoretical properties of these types of estimators under heteroskedasticity.

3A conceptually distinct issue is the case where instruments are weak in terms of having very low

correlation with the endogenous variable. This causes biases in 2SLS even in just-identified models. The

estimators we propose are not designed to deal with this "weak instruments" problem.

4Note that since W is in both Z and X , the last L2 of the η’s are identically zero, and thus the last L2

of the L covariances in σ>η are identically zero.

5AIK also suggest a alternative version of the JIVE estimator, with

Hπ(i) = (Z )Z)−1(Z(i))X (i)).(N/(N − 1))

As all evidence suggests that these two JIVE estimators have similar properties, we focus on the version

in equation (2).

6While this formulation is quite compact, it does require the manipulation of an N x N matrix, which

can be problematic in large datasets. Davidson and MacKinnon (2006) provide an alternative formula-

tion of the JIVE estimator that avoids this (this can also be applied to our IJIVE and UIJIVE estimators).

7For intuition on why partialling out W beforehand eliminates the L2 bias term, see a prior version of
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this paper, Ackerberg and Devereux (2003) available at http://www.econ.ucla.edu/ackerber/newjive14all.pdf.

8Note that because of the partialling out of W , this bias vector is L1dimensional – σ>η is now the

vector of correlations between > and only the first L1 elements of η. Note also that the first L1 by L1

block of (π )�Zπ)
−1 is identical to (π )�HZπ)−1. This, combined with the fact that the last L2 elements of

σ>η in the JIVE bias formula are zero, implies that the first L1 elements of the (π )�Zπ)
−1σ>η component

in the JIVE bias are equal to the (π )�HZπ)−1σ>η component in the IJIVE bias.

9As we note below, this correction is similar to the correction used by Donald and Newey (2001) on

the Nagar estimator to get an approximately unbiased estimator.

10AIK show that the original JIVE estimator is consistent under these asymptotics under the assump-

tion of homoskedasticity.

11Because of their superior properties, we focus on the consistency of the IJIVE and UIJIVE estimators

with heteroskedasticity under many-instrument asymptotics. Note that this proof of consistency trivially

applies to the original JIVE estimator as well.

12Note that in one special case, this bias term disappears – when the diagonal of Pz is constant (i.e.

HPz,i i = 0 ∀i). This special case occurs, for example, when instruments are group dummies and there are

equal numbers of observations in each group (in this case, Pz,i i = K1/N ∀i). See Devereux (2007a) and

Devereux (2007b) for analysis of grouping models.

13In the working paper version (Ackerberg and Devereux (2003)), we examine both discrete and con-

tinuous instruments and find similar results.

14The average first stage F-statistic in our base model is around 3. While this indicates that the in-

struments are weak, they are significant at conventional levels. The reason we chose this level for our

Monte-Carlos is that it makes the differences between the various estimators more obvious in the experi-

ments - these differences get smaller as the the F-statistic increases (see Ackerberg and Devereux (2006)
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for Monte-Carlos at higher F-statistic levels).

15This true coverages rates simply use the empirical distribution of the estimates across replications to

form confidence intervals, similar to what would be done with bootstrapped confidence intervals.

16To derive this formula, note that each of the JIVE estimators can be rewritten as a standard, just-

identified, IV estimator (i.e. Eβ = bEX )Xc−1 EX )Y ) where the instrument EX = C X is the "first stage

predicted value" using the appropriate C (CJ I V E , CI J I V E , or CU I J I V E ). Under conventional asymptot-

ics (and regularity conditions), error in the estimation of the instrument EX disappears (see Greene (2003),

pp 76-78 and Theorem 5.3). Thus, the estimator is asymptotically normal with the standard IV variance

V ar(Eβ) = Eσ 2 bX )PEX X
c−1, which expands to the formula in the main text. A developing literature (e.g.

Hansen, Hausman and Newey (2005), Chao and Swanson (2004)) develop more sophisticated alterna-

tive asymptotic approximations that are likely to perform better than those we use. However, for our

estimators of choice, these standard asymptotic approximations seem to do reasonably well, at least in

our particular Monte-Carlo experiments.

17Note that these specifications only have one endogenous explanatory variable. Given our theoretical

results, one might expect the relative performance of the UIJIVE estimator (vs. IJIVE) to increase as the

number of endogenous variables increases. Also note that the small median biases apparent in IJIVE and

UIJIVE when dim(W )=10 are coming from high order terms - when one increases N to, e.g., 200 the

biases quickly disappear (this is not the case with the JIVE biases).

18This is again derived under standard asymptotics, i.e. using White-adjusted standard errors for a

just-identified IV estimator where the instrument is EX = C X . Again, recent work (Chao and Swanson

(2004)) develops alternative approximations that could perform better. In any case, if coverage rates are

poor for our infeasible confidence intervals, it is likely that even the best feasible asymptotic approxima-

tion will also be poor.

34



19Allowing heteroskedasticity in the covariances (rather than the variances) seems to have more of a

detrimental effect on the performance of the Nagar, B2SLS, and LIML estimators.

20We have also tried implementing the J2SLS estimator. J2SLS is very time-consuming in this appli-

cation because of the large sample size and the large number of explanatory variables and instruments

(unlike JIVE type estimators, for which there is a shortcut, the J2SLS estimator actually requires running

N + 1 separate regressions). For the first specification (which took 4 days to run), we obtained a point

estimate of 0.092. The second specification would take considerably longer to run.

21Note that for all these proofs, the bias terms are of dimension L1, the number of endogenous vari-

ables X∗. Note that η is L1x N dimensional. The proofs should be interpreted as element by element

computations of small sample bias, e.g. σ>η is the covariance of > with one of the L1 elements of η.

22Note that we could have used an alternative �,

� =
t

L1 + 1
N

ut
N − K1

N − L1 − 1

u

to get the first term in the expansion exactly equal to (L1 + 1)/N . This differs from the first term

using the current � only in a term of order 1/N2. While the alternative � would make the proof a

bit cleaner, we chose the current � to make our UIJIVE adjustment analagous to Donald and Newey’s

B2SLS adjustment to Nagar.
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Table 1 - Number of Exogenous Included Variables
Median Trimmed Trimmed 90% C.I. 90% C.I.

Absolute Mean Mean Coverage Coverage
10% 25% Median 75% 90% Error Bias Abs. Error (Infeasible) (Feasible)

 Panel A:  Dim(W) = 0
OLS 0.4809 0.5290 0.5817 0.6369 0.6836 0.5818 0.5825 0.5825 0.0000 0.0000
2SLS 0.1136 0.1866 0.2694 0.3503 0.4265 0.2695 0.2689 0.2689 0.2913 0.2615
JIVE -0.5813 -0.2467 -0.0314 0.1209 0.2316 0.1684 -0.0828 0.1965 0.9129 0.9064
IJIVE -0.4868 -0.2007 -0.0039 0.1383 0.2450 0.1622 -0.0464 0.1777 0.9017 0.8901
UIJIVE -0.3696 -0.1377 0.0358 0.1649 0.2680 0.1552 0.0040 0.1583 0.8774 0.8582

Panel B:  Dim(W) = 1
OLS 0.4807 0.5286 0.5818 0.6358 0.6822 0.5818 0.5820 0.5820 0.0000 0.0000
2SLS 0.1120 0.1900 0.2712 0.3513 0.4238 0.2713 0.2701 0.2701 0.2811 0.2571
JIVE -0.6511 -0.2855 -0.0537 0.1036 0.2237 0.1735 -0.1124 0.2133 0.9147 0.9175
IJIVE -0.4690 -0.1892 -0.0015 0.1376 0.2491 0.1574 -0.0408 0.1730 0.9011 0.8859
UIJIVE -0.3503 -0.1270 0.0384 0.1640 0.2698 0.1516 0.0094 0.1546 0.8765 0.8537

Panel C:  Dim(W) = 5
OLS 0.4807 0.5283 0.5807 0.6350 0.6833 0.5807 0.5815 0.5815 0.0000 0.0000
2SLS 0.1166 0.1939 0.2754 0.3584 0.4379 0.2754 0.2761 0.2761 0.2887 0.2530
JIVE -1.1700 -0.5118 -0.1606 0.0487 0.1963 0.2400 -0.2793 0.3487 0.9166 0.9513
IJIVE -0.4439 -0.1662 0.0180 0.1581 0.2691 0.1612 -0.0206 0.1717 0.8924 0.8706
UIJIVE -0.3344 -0.1052 0.0548 0.1836 0.2885 0.1585 0.0266 0.1572 0.8689 0.8348

Panel D:  Dim(W) = 10
OLS 0.4772 0.5261 0.5818 0.6365 0.6837 0.5818 0.5812 0.5812 0.0000 0.0000
2SLS 0.1251 0.2023 0.2839 0.3651 0.4474 0.2839 0.2843 0.2843 0.2743 0.2444
JIVE -2.1177 -0.8620 -0.3059 0.0010 0.3047 0.4383 -0.4607 0.6746 0.8985 0.9602
IJIVE -0.4018 -0.1460 0.0386 0.1733 0.2887 0.1634 0.0036 0.1690 0.8770 0.8542
UIJIVE -0.2963 -0.0888 0.0725 0.1978 0.3074 0.1608 0.0482 0.1582 0.8521 0.8199

Notes: First five columns show quantiles of the distribution of the estimator over the 10000 replications. Trimming for the 
"Trimmed Mean Bias" and "Trimmed Mean Abs. Error" columns is done at the 5th and 95th quantiles.  In the last two
columns, C.I. refers to confidence interval.  Infeasible C.I.'s use the empirical distribution of the estimates to form the
confidence intervals.  Feasible C.I.'s use the asymptotic approximation formula on page 9 (page 11 for Table 2).



Table 2 - Heteroskedasticity
Median Trimmed Trimmed 90% C.I, 90% C.I,

Absolute Mean Mean Coverage Coverage
10% 25% Median 75% 90% Error Bias Abs. Error (Infeasible) (Feasible)

Panel A:  Baseline - σ(large) = 0.2, σ(small) = 0.2
OLS 0.4787 0.5394 0.5988 0.6582 0.7076 0.5988 0.5976 0.5976 0.0000 0.0000
2SLS 0.1166 0.1973 0.2865 0.3795 0.4652 0.2866 0.2887 0.2887 0.3404 0.2388
J2SLS -0.1498 -0.0134 0.1159 0.2375 0.3439 0.1587 0.1096 0.1548 0.8282 -
IJIVE -0.5920 -0.2213 -0.0019 0.1534 0.2816 0.1775 -0.0564 0.2045 0.9009 0.8780
UIJIVE -0.4023 -0.1331 0.0487 0.1885 0.3082 0.1690 0.0138 0.1743 0.8802 0.8351
NAGAR -0.5631 -0.2214 -0.0078 0.1453 0.2667 0.1720 -0.0596 0.1984 0.9007 0.8921
B2SLS -0.3850 -0.1312 0.0428 0.1809 0.2934 0.1634 0.0110 0.1683 0.8807 0.8483
LIML -0.3380 -0.1488 -0.0015 0.1196 0.2203 0.1313 -0.0220 0.1370 0.9006 0.9166
PEL -0.0534 0.0663 0.1800 0.2901 0.3902 0.1914 0.1757 0.1884 0.7110 -

Panel B:  σ(large) = 0.0, σ(small) = 0.2
OLS 0.2082 0.2642 0.3248 0.3849 0.4396 0.3248 0.3244 0.3244 0.0267 0.0267
2SLS 0.0915 0.1767 0.2731 0.3671 0.4593 0.2733 0.2732 0.2732 0.3994 0.3066
J2SLS -0.1525 -0.0208 0.1100 0.2395 0.3527 0.1558 0.1064 0.1556 0.8406 -
IJIVE -0.5626 -0.2045 0.0011 0.1603 0.3020 0.1783 -0.0444 0.2013 0.8997 0.8745
UIJIVE -0.4230 -0.1468 0.0318 0.1761 0.3060 0.1654 0.0012 0.1741 0.8870 0.8527
NAGAR -0.1089 0.0577 0.2157 0.3821 0.5634 0.2464 0.2198 0.2487 0.8271 0.6800
B2SLS -0.0644 0.0813 0.2260 0.3781 0.5347 0.2445 0.2300 0.2463 0.7869 0.6345
LIML -0.0572 0.0797 0.2251 0.3742 0.5312 0.2430 0.2289 0.2436 0.7848 0.6228
PEL -0.0325 0.0942 0.2287 0.3667 0.4994 0.2361 0.2306 0.2393 0.7261 -

Panel C:  σ(large) = 0.2, σ(small) = 0.0
OLS 0.1515 0.2099 0.2722 0.3358 0.3944 0.2722 0.2729 0.2729 0.1062 0.1026
2SLS -0.1683 -0.0779 0.0176 0.1120 0.1942 0.0954 0.0165 0.0932 0.8969 0.8816
J2SLS -0.2599 -0.1292 0.0069 0.1369 0.2588 0.1329 0.0030 0.1317 0.8991 -
IJIVE -0.3904 -0.1843 -0.0074 0.1568 0.3334 0.1674 -0.0160 0.1765 0.9008 0.9199
UIJIVE -0.3138 -0.1431 0.0128 0.1635 0.3203 0.1545 0.0088 0.1569 0.8998 0.9118
NAGAR -0.8318 -0.4574 -0.2242 -0.0527 0.0783 0.2455 -0.2780 0.2975 0.9143 0.8652
B2SLS -0.6658 -0.3808 -0.1833 -0.0271 0.0918 0.2049 -0.2193 0.2434 0.9080 0.8642
LIML -0.5715 -0.3655 -0.1914 -0.0513 0.0684 0.2065 -0.2143 0.2312 0.8804 0.8734
PEL -0.3416 -0.1889 -0.0442 0.0898 0.2102 0.1404 -0.0525 0.1437 0.8968 -

Panel D:  σ(large) = 0.1, σ(small) = 0.2
OLS 0.3460 0.4014 0.4604 0.5189 0.5731 0.4604 0.4599 0.4599 0.0002 0.0001
2SLS 0.1033 0.1864 0.2790 0.3739 0.4648 0.2791 0.2808 0.2808 0.3824 0.2747
J2SLS -0.1556 -0.0210 0.1138 0.2362 0.3510 0.1577 0.1073 0.1563 0.8392 -
IJIVE -0.5925 -0.2177 -0.0007 0.1573 0.2998 0.1794 -0.0527 0.2070 0.9001 0.8764
UIJIVE -0.4208 -0.1465 0.0391 0.1814 0.3088 0.1688 0.0040 0.1777 0.8841 0.8458
NAGAR -0.3251 -0.0766 0.1020 0.2512 0.3982 0.1914 0.0778 0.1923 0.8634 0.8015
B2SLS -0.2151 -0.0231 0.1325 0.2716 0.4060 0.1897 0.1186 0.1861 0.8337 0.7508
LIML -0.2107 -0.0316 0.1142 0.2506 0.3856 0.1742 0.1045 0.1731 0.8534 0.7830
PEL -0.0465 0.0730 0.2005 0.3247 0.4498 0.2124 0.2002 0.2115 0.7476 -

 Panel E:  σ(large) = 0.0, σ(small) = 0.2, Ν = 500
OLS 0.2563 0.2811 0.3068 0.3374 0.3630 0.3069 0.3087 0.3087 0.0000 0.0000
2SLS 0.1577 0.2027 0.2433 0.2836 0.3220 0.2435 0.2426 0.2426 0.0170 0.0130
J2SLS -0.0239 0.0246 0.0803 0.1344 0.1853 0.0853 0.0800 0.0861 0.7410 -
IJIVE -0.1644 -0.0802 -0.0028 0.0608 0.1182 0.0703 -0.0115 0.0711 0.9060 0.8770
UIJIVE -0.1537 -0.0720 0.0031 0.0655 0.1228 0.0684 -0.0045 0.0695 0.8970 0.8680
NAGAR 0.0578 0.1197 0.1820 0.2452 0.3013 0.1822 0.1815 0.1815 0.3850 0.3490
B2SLS 0.0618 0.1227 0.1835 0.2473 0.3023 0.1838 0.1839 0.1839 0.3660 0.3260
LIML 0.0725 0.1281 0.1899 0.2508 0.3062 0.1902 0.1893 0.1893 0.3080 0.2850
PEL 0.0966 0.1441 0.2076 0.2652 0.3233 0.2076 0.2068 0.2068 0.2460 -

Notes: See Table 1



Table 3 - Angrist - Kreuger Data
OLS 2SLS LIML JIVE IJIVE UIJIVE Nagar B2SLS

Panel A: Year Effects, K=30, L=11
Estimate 0.071 0.089 0.093 0.096 0.094 0.093 0.094 0.093
S.E. 0.0003 0.016 0.018 0.022 0.019 0.019 0.019 0.019

Panel B: Year and State Effects, K=180, L=61
Estimate 0.067 0.093 0.106 0.121 0.110 0.109 0.109 0.109
S.D. 0.0003 0.009 0.012 0.020 0.012 0.012 0.012 0.012


