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The Question

Let i.i.d. sample {Zi}ni=1 with Z ∼ P ∈ P and suppose there is a parameter

β(P ) ∈ Rp that is unknown but estimable

We aim to test whether distribution P satisfies the following null hypothesis

H0 : P ∈ P0 H1 : P ∈ P \P0

where
P0 ≡ {P ∈ P : β(P ) = Ax for some x ≥ 0}

Key Structure
• The p× d matrix A is known.
• x ≥ 0 with x ∈ Rd denotes all coordinates of x are non-negative.
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Example: Nevo et al. (2016)

Type h ∈ {1, . . . ,H} consumer, data plans k ∈ {1, . . . ,K}, time t utility

uh(ct, yt, vt; k) = vt(
c1−ζh
t

1− ζh
)− ct(κ1h +

κ2h
log(sk)

) + yt

for i.i.d. shock vt, data usage ct, data speed sk, numeraire good yt.

For overage price pk, fee Fk, data allowance C̄k, type h utility from plan k is

max
c1,...,cT

T∑
t=1

Eh[uh(ct, yt, vt; k)]

s.t. Fk + pk max{CT − C̄k, 0}+ YT ≤ I, CT =
T∑

t=1

ct, YT =
T∑

t=1

yt
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Example: Nevo et al. (2016)

For Z observed plan choice and data usage, and m known moment function

EP [m(Z)] =

H∑
h=1

Eh[m(Z)]xh

where x = (x1, . . . , xH) are unknown proportions of each type in population.

Goal: Inference on counterfactual demand, which for known ah equals

H∑
h=1

ahxh

Current Approach
• Build large grid of types, solve Eh[m(Z)] for each type.
• Estimate proportions x = (x1, . . . , xh) by constrained GMM.
• Inference via bootstrap ... but bootstrap can fail.
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Example: Nevo et al. (2016)

Instead, test if counterfactual demand equals hypothesized λ by testing if

β(P ) = Ax for some x ≥ 0

with

β(P ) ≡

 EP [m(Z)]
1
λ

 A ≡

 E1[m(Z)] · · · EH [m(Z)]
1 · · · 1
a1 · · · aH



Comments
• Confidence region through test inversion (in λ).
• We do not require proportion of types to be identified.
• In Nevo et al. (2016) p ≈ 120000 and d ≈ 16800.
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Example: Honore and Lleras-Muney (2006)

Impact of War on Cancer
• (S1, S2) competing risks (e.g. cardio vascular disease and cancer).
• D an indicator for whether war on cancer policy in effect.
• Unspecified distribution for (S1, S2), and for unknown α and β assume

(T ∗, I) =

{
(min{S1, S2}, argmin{S1, S2}) if D = 0

(min{αS1, βS2}, argmin{αS1, βS2}) if D = 1

Partial Identification
• We see (T,D, I) where T is interval censored version of T ∗.
• Parameter (α, β) partially identified (even without interval censoring).

Goal: Construct confidence region for identified set for (α, β).
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Example: Honore and Lleras-Muney (2006)

Key: (α, β) in the identified set iff there is some distribution p on S(α, β) with∑
(s1,s2)∈Sk,i,d(α,β)

p(s1, s2) = P (T = tk, I = i|D = d)

where S(α, β), Sk,i,d(α, β) ⊆ S(α, β) are finite sets depending on (α, β).

For Confidence Region
• Map β(P ) into conditional probabilities (and adding up restriction).
• Map x into unknown distribution p satisfying restriction.
• For each candidate (α, β) sets Sk,i,d(α, β) map into matrix A.
• Test null hypothesis that (α, β) is in identified set by testing whether

β(P ) = Ax for some x ≥ 0
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Additional Applications

Treatment Effects
Balke & Pearl (1994, 1997), Angrist & Imbens (1995), Kline & Walters
(2016), Laffers (2019), Machado, Shaikh & Vytlacil (2019), Kamat (2019)

Feasibility of Linear Program
Honore & Lleras-Muney (2006), Honore & Tamer (2006), Torgotvitsky
(2019), Tebaldi, Torgovisky & Yang (2019).

Revealed Preferences
Manski (2014), Deb, Kitamura, Quah & Stoye (2017), Kitamura & Stoye
(2018), Lazzati, Quah & Shirai (2018).

Key Challenge: “Large” p and d⇒ Computational scalability important
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Related Literature

Moment Inequalities
• P ∈ P0 if and only if β(P ) is in set defined by inequalities (in Rp).
• Challenge: For large p, d, computing inequalities is prohibitive.

Shape Restrictions
• P ∈ P0 if and only if β(P ) is in convex set.
• We employ specific structure in computation and assumptions.

Other Related Work
• Kitamura and Stoye (2018) test imposes restrictions on A (satisfied in

the revealed preferences problem that motivates them).
• Andrews, Pakes & Roth (2019) find least favorable for subvector

inference in a class of (conditional) moment inequalities models.
• Cox & Shi (2021) derive tuning parameter free method for inference.
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1 The Geometry

2 The Test

3 Simulations
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Some Notation

Question: For any β ∈ Rp, when is β = Ax for some x ≥ 0?

Three Subspaces

R ≡ {b ∈ Rp : b = Ax for some x ∈ Rd}
N ≡ {x ∈ Rd : Ax = 0}

N⊥ ≡ {y ∈ Rd : ⟨y, x⟩ = 0 for all x ∈ N}

Some Intuition
• If β = Ax text for some x ≥ 0, then in particular we must have that ...

β ∈ R

• If β = Ax1 for some x1 and x2 ∈ N then β = A(x1 + x2) so ...

⇒ Intuitively, if x1 ≱ 0, then maybe can fix it by moving along N
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Simple Lemma

Lemma: If β ∈ R, then there is unique x⋆ ∈ N⊥ satisfying the equality

β = Ax⋆

Key Implications
• β = Ax with x ≥ 0 requires β ∈ R.

• Moreover, the above lemma implies set of solutions to β = Ax equals

{x ∈ Rd : Ax = β} = x⋆ +N

• Whether β = Ax for some x ≥ 0 characterized by β ∈ Rp, x⋆ ∈ Rd via

(i) β ∈ R (ii) {x⋆ +N} ∩Rd
+ ̸= ∅

Key Challenge: Obtaining tractable characterization for (ii).
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Geometric Intuition

Example: Suppose β = Ax⋆1 with x⋆1 ∈ N⊥ ... is there positive solution?Question: What if instead β = Ax⋆2 with x⋆2 ∈ N⊥?Note: In this example positive solution always exists (provided β ∈ R)

R2
+

R2
−

N

N⊥

x⋆
1

N + x⋆
1

x0

x⋆
2

N + x⋆
2
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Geometric Characterization

(i) β ∈ R (ii) {x⋆ +N} ∩Rd
+ ̸= ∅

Goal: Obtain alternative characterization that suggests natural test statistic.

Theorem: There is an x0 ∈ Rd
+ satisfying Ax0 = β if and only if

(i) β ∈ R (ii) ⟨s, x⋆⟩ ≤ 0 for all s ∈ N⊥ ∩Rd
−

Comments
• Condition (i) yields “equalities” and (ii) yields “inequalities.”
• (ii) equivalent to angles between x⋆ and N⊥ ∩Rd

− are obtuse.
• Reflects dependence on x⋆ and “orientation” of N⊥ in Rd.
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1 The Geometry

2 The Test

3 Simulations
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Test Statistic

Key: For x⋆(P ) ∈ N⊥ solving β(P ) = Ax⋆(P ), P ∈ P0 if and only if

(i) β(P ) ∈ R (ii) ⟨s, x⋆(P )⟩ ≤ 0 for all s ∈ N⊥ ∩Rd
−

For talk only: Assume R = Rp so condition (i) is automatically satisfied.

The Pseudoinverse
• Under R = Rp, for any b ∈ Rp there is unique x(b) ∈ N⊥ solving

b = Ax(b)

• Under R = Rp, the (MP) pseudoinverse A† of A is d× p matrix solving

x(b) = A†b
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Test Statistic

⟨s, x⋆(P )⟩ ≤ 0 for all s ∈ N⊥ ∩Rd
−

... or equivalently, since A†β(P ) = x⋆(P ), we may re-write condition as

⟨s,A†β(P )⟩ ≤ 0 for all s ∈ N⊥ ∩Rd
−

... or equivalently, since range{A†} = N⊥, we may re-write condition as

⟨A†s,A†β(P )⟩ ≤ 0 for all s ∈ Rp s.t. A†s ≤ 0 (in Rd)
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Test Statistic

⟨A†s,A†β(P )⟩ ≤ 0 for all s ∈ Rp s.t. A†s ≤ 0 (in Rd)

Test Statistic

Tn = sup
s∈V̂n

⟨A†s,A†β̂n⟩

V̂n = {s ∈ Rp : A†s ≤ 0 and ∥Ω̂n(AA
′)†s∥1 ≤ 1}

Comments
• Weighting matrix Ω̂n can be used to obtain scale invariance.
• Norm constraint ensures Tn ̸= +∞ with positive probability.
• Test statistic can be computed by linear programming.
• The norm ∥ · ∥1 yields better coupling rates than, e.g., ∥ · ∥2.
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Test Statistic

Assumption T
• β̂n is function of i.i.d. sample {Zi}ni=1 with Zi ∼ P ∈ P.

• Ω̂n is consistent for Ω uniformly in P ∈ P (under ∥ · ∥o,∞).
• For some sequence an ↓ 0 and influence function ψ we have

∥Ω†{
√
n{β̂n − β(P )} − 1√

n

n∑
i=1

ψ(Zi)}∥∞ = OP (an)

Comments
• Weighting matrix Ω need not be invertible.
• Estimator β̂n is asymptotically linear.
• Norm ∥ · ∥∞ leads to favorable rate conditions in p.
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Asymptotic Distribution

Theorem: Under Assumption T and regularity conditions, we have

Tn ≡ sup
s∈V̂n

√
n⟨A†s,A†β̂n⟩

= sup
s∈V

⟨A†s,A†Gn⟩+
√
n⟨A†s,A†β(P )⟩+OP (rn)

for some centered gaussian Gn ∈ Rp (uniformly in P ∈ P)

Comments
• Set V ⊂ Rp just population analogue to V̂n.
• Under moment conditions, rn ↓ 0 provided p2/n+ an ↓ 0 (up to logs).
• ∥ · ∥1 constraint defining V̂n (and V) facilitate coupling under ∥ · ∥∞.
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Critical Value

Tn = sup
s∈V

⟨A†s,A†Gn⟩︸ ︷︷ ︸
can be simulated

+
√
n⟨A†s,A†β(P )⟩︸ ︷︷ ︸
nuisance parameter

+OP (rn)

Like Moment Inequalities
• From geometry section, ⟨A†s,A†β(P )⟩ ≤ 0 for all s ∈ V, P ∈ P0.
• Multiple techniques available from moment inequalities literature.

... But Different
• Replace

√
n⟨A†s,A†β(P )⟩ with zero (may not be least favorable).

• Moment selection (e.g., Andrews & Soares 2010), two step procedures
(e.g., Romano, Shaikh & Wolf 2014) can suffer in power.

Key: Nuisance parameter has additional structure beyond it being negative!
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Critical Value

First Step

β̂r
n ∈ arg min

b∈Rp
sup
s∈V̂n

|⟨A†s,A†β̂n −A†b⟩| s.t. Ax = b for some x ≥ 0

Bootstrap Statistic

T ⋆
n ≡ sup

s∈V̂n

⟨A†s,A†Ĝ⋆
n⟩+ λn

√
n⟨A†s,A†β̂r

n⟩

where 1 ≥ λn ↓ 0 and Ĝ⋆
n =

√
n{β̂⋆

n − β̂n} with β̂⋆
n “bootstrapped” β̂n

Critical Value

ĉn(1− α) ≡ inf{u : P (T ⋆
n ≤ u|{Zi}ni=1) ≥ 1− α}
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Some Intuition

Question: Why does this bootstrap approximation control size?

T ⋆
n≡ sup

s∈V̂n

⟨A†s,A†Ĝ⋆
n⟩+ λn

√
n⟨A†s,A†β̂r

n⟩

≈ sup
s∈V̂n

⟨A†s,A†Ĝ⋆
n⟩+ λn

√
n⟨A†s,A†β(P )⟩ (if λn → 0)

≥ sup
s∈V̂n

⟨A†s,A†Ĝ⋆
n⟩+

√
n⟨A†s,A†β(P )⟩ (by ⟨A†s,A†β(P )⟩ ≤ 0)

d
≈ sup

s∈V
⟨A†s,A†Gn⟩+

√
n⟨A†s,A†β(P )⟩ (bootstrap cons.)

≈ Tn (by theorem)

Key: Bootstrap provides uniform upper bound ... but is it conservative?

Fang, Santos, Shaikh, Torgovitsky. March 30, 2022. UCLA



Some Intuition

Question: Why does this bootstrap approximation control size?

T ⋆
n≡ sup

s∈V̂n

⟨A†s,A†Ĝ⋆
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n⟩+

√
n⟨A†s,A†β(P )⟩ (by ⟨A†s,A†β(P )⟩ ≤ 0)

d
≈ sup

s∈V
⟨A†s,A†Gn⟩+

√
n⟨A†s,A†β(P )⟩ (bootstrap cons.)

≈ Tn (by theorem)

Key: Bootstrap provides uniform upper bound ... but is it conservative?

Fang, Santos, Shaikh, Torgovitsky. March 30, 2022. UCLA



Some Intuition

Question: Why does this bootstrap approximation control size?

T ⋆
n≡ sup

s∈V̂n

⟨A†s,A†Ĝ⋆
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Some Intuition

Suppose: P is fixed and n→ ∞ (i.e. pointwise, not uniform analysis)

Tn≈ sup
s∈V

⟨A†s,A†Gn⟩+
√
n⟨A†s,A†β(P )⟩

= max{0, sup
s∈V

⟨A†s,A†Gn⟩+
√
n⟨A†s,A†β(P )⟩} (since 0 ∈ V)
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What About Bootstrap?

T ⋆
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√
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s∈V

⟨A†s,A†Ĝ⋆
n⟩+ λn

√
n⟨A†s,A†β(P )⟩} (since 0 ∈ V)
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n⟩+ λn
√
n⟨A†s,A†β(P )⟩ (shown before)

= max{0, sup
s∈V

⟨A†s,A†Ĝ⋆
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Critical Value

Assumption B
• There are random variables {Wi,n}ni=1 independent of {Zi}ni=1 with

∥Ω†{Ĝ⋆
n − 1√

n

n∑
i=1

(Wi,n − W̄n)ψ(Zi)}∥∞ = OP (an)

• The distribution of {Wi,n}ni=1 is exchangeable.

Comments
• Asymptotically linear assumption analogous to requirement on β̂n.
• Exchangeability covers multiplier, score, and nonparametric bootstrap.
• Derive coupling results for exchangeable bootstrap under ∥ · ∥∞.
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Asymptotic Size

Theorem: Under Assumptions T, B, regularity conditions, and α ∈ (0, 0.5)

lim sup
n→∞

sup
P∈P0

P (Tn > ĉn(1− α)) ≤ α

Comments
• Bootstrap coupling requires p2/n ↓ 0 (up to logs).
• Anti-concentration: Under fixed p and studentization automatic.
• Anti-concentration: Dependence on p through (AA′)†V.
• Conservative universal (in A) bounds on dependence on p available.
• Under same conditions, two stage critical value also valid.
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Simulation Design

Y = 1{C0 + C1W ≥ U}

U ∼ logistic, unobservable V ≡ (C0, C1)
′ and observable W discrete.

Comments
• W , V , and U all mutually independent.
• Random coefficients logit (Fox, Kim, Ryan, Bajari, 2011).
• C0 ∈ [0.5, 1], C1 ∈ [−3, 0] with

√
d points of support each.

• Support of W is evenly spaced grid on [0, 2] (cardinality equals p− 2).
• 250 bootstrap draws, 5000 or 1000 replications.
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Simulation Design

Restrictions
• For V support of V , π(v) = P (V = v), and v = (c1, c2)

′ we have

P (Y = 1|W = w) =
∑
v∈V

π(v)
1

1 + exp{−c0 − c1w}

• Unknown probabilities {π(v) : v ∈ V} satisfy
∑

v∈V π(v) = 1.

Parameter of Interest
• Consumer type v = (c0, c1) with price w̄ has purchase prob. elasticity

ϵ(v, w̄) ≡ c0w̄(1−
1

1 + exp{−c0 − c1w̄}
)

• Inference on F (t|w̄) ≡ P (ϵ(V, w̄) ≤ t) =
∑

v∈V π(v)1{ϵ(v, w̄) ≤ t}
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Design Partially Identified
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Figure: Dark: W with 4 support points, Lighter: W with 16 support points
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Simulation Design

The General Problem

β(P ) = Ax for some x ≥ 0

In this Design
• x ∈ Rd is the unknown probabilities {π(v) : v ∈ V}.
• β(P ) ∈ Rp, first p− 2 coordinates correspond to P (Y = 1|W = w).
• The p− 1 coordinate of β(P ) equals 1 (

∑
v∈V π(v) = 1).

• The p coordinate of β(P ) equals hypothesized value for F (−1|1).

Bandwidth Selection
• Law of iterated logarithm: λrn = (log(e ∨ p) log(e ∨ log(e ∨ n)))−1/2.
• Bootstrap: Set 1/λbn to be 1− (log(e ∨ log(e ∨ n)))−1/2 quantile of

sup
s∈V̂i

n

⟨A†s,A†Ĝi
n⟩
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(Almost) Identified Case
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Null Rejection: Bootstrap Bandwidth

Table: Null Hypothesis that Fϵ(−1|1) equals lower bound of identified set.

d

n p 100 400 1600 4900 1002 2252 3172

1000 6 .036 .034 .034 .037 .038 .036 .036
18 .040 .035 .036 .041 .039 .038 .036

2000
6 .042 .042 .049 .046 .047 .052 .061

18 .031 .028 .032 .032 .030 .030 .028
38 .053 .046 .051 .052 .052 .067 .053

4000

6 .045 .048 .049 .054 .058 .051 .065
18 .028 .031 .029 .028 .030 .038 .035
38 .031 .034 .039 .036 .040 .035 .037
51 .042 .051 .051 .040 .047 .047 .030

8000

6 .049 .055 .056 .048 .054 .055 .073
18 .034 .035 .036 .030 .032 .040 .041
38 .033 .035 .035 .037 .037 .025 .047
51 .034 .043 .035 .040 .037 .035 .038
83 .043 .042 .050 .048 .042 .054 .046
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Null Rejection: RoT Bandwidth

Table: Null Hypothesis that Fϵ(−1|1) equals lower bound of identified set.

d

n p 100 400 1600 4900 1002 2252 3172

1000 6 .020 .019 .021 .021 .022 .019 .021
18 .037 .029 .029 .033 .033 .031 .030

2000
6 .030 .025 .033 .032 .033 .027 .039

18 .023 .021 .028 .027 .025 .027 .020
38 .048 .039 .043 .045 .047 .062 .046

4000

6 .034 .034 .038 .042 .046 .035 .058
18 .023 .026 .024 .022 .025 .032 .028
38 .026 .029 .033 .032 .035 .032 .033
51 .038 .044 .045 .034 .042 .041 .027

8000

6 .040 .046 .048 .040 .046 .050 .061
18 .028 .028 .032 .025 .027 .032 .034
38 .027 .029 .030 .032 .032 .021 .043
51 .029 .036 .028 .034 .033 .030 .031
83 .038 .035 .046 .041 .034 .048 .042
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Power Curves

Figure: Power for 10% nominal level test
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Conclusion

Summary
• Mapped problems of interest into tests of β(P ) = Ax for some x ≥ 0.
• Obtained new geometric characteristic of the null hypothesis.
• Derived test that can be evaluated by solving linear programs.
• Alternative tests also follow from geometric characterization.
• Immediate extension to (some) alternative sampling frameworks.
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