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Shape Restrictions

Classic Work
• Test implications of consumer and producer theory.
• Exploit theoretically implied restrictions to sharpen estimation.
• Employ restrictions to establish nonparametric identification.

Recent Applications
• Complementarities in discrete games.
• Ramp-up and start-up costs in electricity production.
• Monotonicity of the pricing kernel.
• Literature on moment inequalities.

Goal: Device procedure for testing and imposing general shape restrictions.
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Example 1: Demand

Quantity demanded Qi given price Pi, income Yi, and covariates Wi equals

Qi = g0(Pi, Yi) +W ′iγ0 + Ui

where g0 and γ0 are unknown function and vector, and E[Ui|Pi, Yi,Wi] = 0.

Blundell et al. (2012): Impose Slutzky restriction for inference on g0 – e.g.

H0 : g0(p0, y0) = c0 H1 : g0(p0, y0) 6= c0

Comments
• Exogeneity assumption can be relaxed given instrument.
• Mean independence can be replaced by quantile independence.
• Blundell et al. (2012) finds imposing Slutzky restriction important ...

... but asymptotics assume Slutzky is not binding.
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Example 2: Monotonic RD

Outcome variable Yi, treatment assigned when Ri ≥ 0, and interested in

τ0 ≡ lim
r↓0

E[Yi|Ri = r]− lim
r↑0

E[Yi|Ri = r]

Impose monotonicity of regression function in neighborhood of τ0 and test

H0 : τ0 = 0 H1 : τ0 6= 0

Comments
• Relevant in Lee et al. (2004), Black et al. (2007).
• Obtain confidence region through test inversion.
• Sharp design can be extended to fuzzy or regression kink design.
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Example 3: Complementarities

Agent’s utility for bundle a = (a1, a2) ∈ {0, 1}2 of two goods j ∈ {1, 2} equals

U(a, Zi, εi) =

2∑
j=1

(W ′iγ0,j + εi,j)1{aj = 1}+ δ0(Yi)1{a1 = 1, a2 = 1}

for δ0 unknown function, (Wi, Yi) covariates, ε = (ε1, ε2) normal distribution.

Consider test for whether goods j ∈ {1, 2} are always (in Y ) substitutes

H0 : δ0(y) ≤ 0 for all y H1 : δ0(y) > 0 for some y

Comments
• Parametric approach in Gentzkow (2007) for print and online media.
• Applies to organizational design (Athey and Stern, 1998), and

interactions in discrete games (De Paula and Tang, 2012).
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Example 4: Hospital Referral

Ho and Pakes (2013) derive for two patients j ∈ {1, 2} sent to hospital Hij

E[

2∑
j=1

{γ0(Pij(Hij)− Pij(Hij′)) + g0(Dij(Hij))− g0(Dij(Hij′))}|Zi] ≤ 0

Pij(h)/Dij(h) price/distance to hospital h, g0 unknown increasing function.

Allow nonparametric monotonic g0 while conducting inference on γ0 – e.g.

H0 : γ0 = c0 H1 : γ0 6= c0

Comments
• In general, moment inequalities with semiparametric specifications.
• Special case of moment equality restrictions with positivity constraint.
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This Paper

Goal: Develop general tests that apply to previous examples.

Contributions
• Formalize common structure of shape restrictions.
• Models defined by finite conditional moment restrictions.
• Allow for potential partial identification.
• Analysis must be uniform in underlying distribution.

This Talk
• Focus on how to analyze shape restrictions.
• Model defined by single conditional moment restriction.
• Assume parameter is identified.
• Uniformity in the background.
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General Outline

Formal Setup
• How do we think of shape restrictions in general terms?
• Introduce AM Spaces and their role in our problem.

Test Statistic
• Introduce the test statistic we study.
• Develop an asymptotic approximation to its distribution.

Bootstrap Approximation
• Develop bootstrap procedure to estimate asymptotic approximation.
• Establish bootstrap validity (uniformly in underlying distribution).
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The Model

The parameter of interest θ0 ∈ Θ is the unique solution to the restriction

E[ρ(Xi, θ0)|Zi] = 0

for Xi ∈ Rdx , Zi ∈ Rdz , and ρ : Rdx ×Θ→ R is known function.

Assumption (M)
• {Xi, Zi}ni=1 is an i.i.d. sample distributed according to P ∈ P.
• Θ ⊆ B for Banach space B with norm ‖ · ‖B (allow non/semi/parametric)
• The function ρ : Rdx ×Θ→ R is differentiable in θ.

Results in paper
• Allow for θ0 to be partially identified.
• Allow for ρ(Xi, θ) nondifferentiable in θ (e.g. quantile restrictions).
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The Hypothesis

H0 : θ0 ∈ R H1 : θ0 /∈ R

Goal: The set R must be general enough to include motivating examples ...

... and have enough structure for fruitful asymptotic analysis.

R ≡ {θ ∈ B : ΥF (θ) = 0 and ΥG(θ) ≤ 0}

Assumption (R)
• ΥF : B→ F for F a Banach space with norm ‖ · ‖F.
• ΥG : B→ G for G an AM space with order unit 1G and norm ‖ · ‖G.
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AM Space

Basic Properties
• G has a partial order (ΥG(θ) ≤ 0 “makes sense”).
• “≤” and “+” interact as in R (e.g. g1 ≥ g2 implies g1 + g3 ≥ g2 + g3).
• Any pair g1, g2 ∈ G has a least upper bound g1 ∨ g2.

Note: By above, can define an “absolute value” on G by |g| ≡ g ∨ (−g).

Order Unit
• Definition: 1G is an order unit means for any g ∈ G there is λ ∈ R so

|g| ≤ λ1G

• Intuition: 1G ∈ G can be made larger than any element by scaling.
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AM Space (Example)

C([0, 1]) ≡ {g : [0, 1]→ R is continuous}

Properties
• Partial Order: “g1 ≤ g2” iff g1(a) ≤ g2(a) for all a ∈ [0, 1].

g1 ≤ g2

g1

g2

0 1
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AM Space (Example)

C([0, 1]) ≡ {g : [0, 1]→ R is continuous}

Properties
• Partial Order: “g1 ≤ g2” iff g1(a) ≤ g2(a) for all a ∈ [0, 1].

g1

g2Not Ordered

0 1
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AM Space (Example)

C([0, 1]) ≡ {g : [0, 1]→ R is continuous}

Properties
• Partial Order: “g1 ≤ g2” iff g1(a) ≤ g2(a) for all a ∈ [0, 1].
• Absolute Value: |g| is the function |g|(a) = |g(a)| for all a ∈ [0, 1].

g1

0 1
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AM Space (Example)

C([0, 1]) ≡ {g : [0, 1]→ R is continuous}

Properties
• Partial Order: “g1 ≤ g2” iff g1(a) ≤ g2(a) for all a ∈ [0, 1].
• Absolute Value: |g| is the function |g|(a) = |g(a)| for all a ∈ [0, 1].

g1

|g1|

0 1
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AM Space (Example)

C([0, 1]) ≡ {g : [0, 1]→ R is continuous}

Properties
• Partial Order: “g1 ≤ g2” iff g1(a) ≤ g2(a) for all a ∈ [0, 1].
• Absolute Value: |g| is the function |g|(a) = |g(a)| for all a ∈ [0, 1].
• Order Unit: 1G is the constant function equal to one.

|g1|
1G

0 1
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AM Space (Example)

C([0, 1]) ≡ {g : [0, 1]→ R is continuous}

Properties
• Partial Order: “g1 ≤ g2” iff g1(a) ≤ g2(a) for all a ∈ [0, 1].
• Absolute Value: |g| is the function |g|(a) = |g(a)| for all a ∈ [0, 1].
• Order Unit: 1G is the constant function equal to one.

|g1|

2 ∗ 1G

0 1
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Running Example

For outcome variable Yi ∈ R, endogenous Wi ∈ [0, 1], instrument Zi ∈ R

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Build a confidence region for θ0(w0) that imposes θ0 is monotone.

R = {θ ∈ B : θ(w0)− c0 = 0︸ ︷︷ ︸, and θ′(w) ≤ 0 for all w︸ ︷︷ ︸}
ΥF (θ) = 0 ΥG(θ) ≤ 0

Procedure: Construct confidence region by test inverting (for different c0)

H0 : θ0 ∈ R H1 : θ0 /∈ R

Note: (i) ΥF (θ) = θ(w0)− c0, (ii) F = R, (iii) ΥG(θ) = θ′, (iv) G = C([0, 1]).
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1 Formal Setup

2 Test Statistic

3 Asymptotic Approximation

4 Bootstrap Approximation

5 Monte Carlo
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Test Statistic

By assumption, θ0 is the unique element of Θ satisfying the restriction

E[ρ(Xi, θ0)|Zi] = 0

For {qj}∞j=1 appropriate set of functions of Zi, θ0 is unique solution (in Θ) to

E[ρ(Xi, θ0)qj(Zi)] = 0 for all j (?)

Basic Idea
• If θ0 ∈ R, then there is a θ ∈ Θ ∩R such that (?) holds.
• If θ0 /∈ R, then there is no θ ∈ Θ ∩R such that (?) holds.

⇒ Test whether θ0 ∈ R by examining if (?) holds for some θ ∈ Θ ∩R
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Test Statistic

Goal: Test if θ0 ∈ R, by examining if there is a θ ∈ Θ ∩R such that

E[ρ(Xi, θ0)qj(Zi)] = 0 for all j

Construct Statistic
• Replace population moments by sample moments.

1√
n

n∑
i=1

ρ(Xi, θ)qj(Zi)
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Test Statistic

Goal: Test if θ0 ∈ R, by examining if there is a θ ∈ Θ ∩R such that

E[ρ(Xi, θ0)qj(Zi)] = 0 for all j

Construct Statistic
• Replace population moments by sample moments.
• Let qkn(Zi) = (q1(Zi), . . . , qkn(Zi))

′ and collect moments.

1√
n

n∑
i=1

ρ(Xi, θ)q
kn(Zi)
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Test Statistic

Goal: Test if θ0 ∈ R, by examining if there is a θ ∈ Θ ∩R such that

E[ρ(Xi, θ0)qj(Zi)] = 0 for all j

Construct Statistic
• Replace population moments by sample moments.
• Let qkn(Zi) = (q1(Zi), . . . , qkn(Zi))

′ and collect moments.
• Search over θ ∈ Θ ∩R to attempt to zero moments.

inf
θ∈Θ∩R

‖ 1√
n

n∑
i=1

ρ(Xi, θ)q
kn(Zi)‖
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Test Statistic

Goal: Test if θ0 ∈ R, by examining if there is a θ ∈ Θ ∩R such that

E[ρ(Xi, θ0)qj(Zi)] = 0 for all j

Construct Statistic
• Replace population moments by sample moments.
• Let qkn(Zi) = (q1(Zi), . . . , qkn(Zi))

′ and collect moments.
• Search over θ ∈ Θ ∩R to attempt to zero moments.
• Replace Θ by approximating set Θn (e.g. splines, polynomials).

inf
θ∈Θn∩R

‖ 1√
n

n∑
i=1

ρ(Xi, θ)q
kn(Zi)‖
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Test Statistic

In(R) ≡ inf
θ∈Θn∩R

‖ 1√
n

n∑
i=1

ρ(Xi, θ)q
kn(Zi)‖

Intuitively: J-test where parameter is restricted by the set R (sieve-GMM)

Comments
• We allow for weighting matrix, but suppress it here for simplicity.
• Norm need not be classic Euclidean norm.
• Class {qj}∞j=1 can change with n (e.g. B-Splines).
• Allowing for multiple moment restrictions is mostly notation.
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Running Example

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Build a confidence region for θ0(w0) that imposes θ0 is monotone.

Example Specifics
• Specific structure of moment ρ(Xi, θ).

In(R) = inf
θ∈Θn∩R

‖ 1√
n

n∑
i=1

(Yi − θ(Wi))q
kn(Zi)‖
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Running Example

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Build a confidence region for θ0(w0) that imposes θ0 is monotone.

Example Specifics
• Specific structure of moment ρ(Xi, θ).
• Specific structure of restriction set R.

In(R) = inf
θ∈Θn

‖ 1√
n

n∑
i=1

(Yi − θ(Wi))q
kn(Zi)‖

s.t. (i) θ(w0) = c0, (ii) θ′(w) ≤ 0 for all w ∈ [0, 1]
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Running Example

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Build a confidence region for θ0(w0) that imposes θ0 is monotone.

Example Specifics
• Specific structure of moment ρ(Xi, θ).
• Specific structure of restriction set R.
• Let pjn(w) = (p1(w), . . . , pjn(w)) and Θn = {θ = pjn′β some β ∈ Rjn}.

In(R) = inf
β∈Rjn

‖ 1√
n

n∑
i=1

(Yi − pjn(Wi)
′β)qkn(Zi)‖

s.t. (i) pjn(w0)′β = c0, (ii) ∇pjn(w)′β ≤ 0 for all w ∈ [0, 1]
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1 Formal Setup

2 Test Statistic

3 Asymptotic Approximation

4 Bootstrap Approximation

5 Monte Carlo
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Asymptotic Approximation

Goal: Approximate the finite sample distribution of our test statistic In(R)

In(R) ≡ inf
θ∈Θn∩R

‖ 1√
n

n∑
i=1

ρ(Xi, θ)q
kn(Zi)‖

Local Space
• Intuition: The minimizer θ̂n of criterion close to θ0 asymptotically.
• Precisely: Minimizer θ̂n asymptotically equal to θ0 + h√

n
with h√

n
in set

Vn(θ0, `n) ≡ { h√
n
∈ B : θ0 +

h√
n
∈ Θn ∩R︸ ︷︷ ︸ and ‖ h√

n
‖B ≤ `n︸ ︷︷ ︸}

θ̂n in Θn ∩R θ̂n − θ0 small

Key: Asymptotic distribution fundamentally affected by the set Vn(θ0, `n).

Chernozhukov, Newey, and Santos. March 25, 2016. UCSD



Asymptotic Approximation

Theorem: Under Assumptions M, R, and regularity conditions we obtain

In(R) = inf
h√
n
∈Vn(θ0,`n)

‖Wn + E[∇θρ(Xi, θ0)[h]qkn(Zi)]‖+ op(1)

where Wn ∈ Rkn is a Gaussian r.v. and provided `n ↓ 0 appropriate rate.

Comments
• Intuitively, statistic equals distance between Wn and a set.
• Special case is J-test in Hansen (1982).
• Theorem is actually uniform in underlying distribution P of the data.
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Running Example

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Test null hypothesis θ0(w0) = c0 while imposing that θ0 be monotone.

In(R) = inf
h√
n
∈Vn(θ0,`n)

‖Wn + E[∇θρ(Xi, θ0)[h]qkn(Zi)]‖+ op(1)

= inf
h∈Θn−{θ0}

‖Wn − E[h(Wi)q
kn(Zi)]‖

s.t. (i) θ0(w0) +
h(w0)√

n
= c0, (ii) θ′0 +

h′√
n
≤ 0︸ ︷︷ ︸, (iii) ‖ h√

n
‖B ≤ `n

imposes that θ0 +
h√
n
∈ R
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Case 1: No Monotonicity

kn = 2

dim{Θn} = 2

E[h(W )qkn(Z)]
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Case 1: No Monotonicity

kn = 2

dim{Θn} = 2

E[h(W )qkn(Z)]

W
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Case 1: No Monotonicity

kn = 2

dim{Θn} = 2

E[h(W )qkn(Z)]

W
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Case 2: Monotonicity Binds

kn = 2

dim{Θn} = 2

E[h(W )qkn(Z)]
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Case 2: Monotonicity Binds

kn = 2

dim{Θn} = 2

E[h(W )qkn(Z)]

W
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Case 2: Monotonicity Binds

kn = 2

dim{Θn} = 2

E[h(W )qkn(Z)]

W
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Proof (Parametric Intuition)

In(R) = inf
h√
n
∈Vn(θ0,`n)

‖Wn + E[∇θρ(Xi, θ0)[h]qkn(Zi)]‖+ op(1)

Step 1: Argue minimizer θ̂n equals θ0 + h√
n

with h√
n
∈ Vn(θ0, `n) to obtain

In(R) = inf
h√
n
∈Vn(θ0,`n)

‖ 1√
n

n∑
i=1

ρ(Xi, θ0 +
h√
n

)qkn(Zi)‖+ op(1)

Step 2: Conduct Taylor expansion around θ0 to obtain for reminder Rn that

inf
h√
n
∈Vn(θ0,`n)

‖ 1√
n

n∑
i=1

ρ(Xi, θ0)qkn(Zi)︸ ︷︷ ︸+
1

n

n∑
i=1

∇θρ(Xi, θ0)[h]qkn(Zi)︸ ︷︷ ︸+Rn‖

≈W ≈ E[∇θρ(Xi, θ0)[h]qkn(Zi)]
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General Theorem

Challenge: In nonparametric problem, for Rn to disappear, either
• Model is linear in θ ⇒ Rn = 0 (running example).
• Rate of convergence for θ̂n is sufficiently fast (potentially unrealistic).

Theorem: Under Assumptions M, R, and regularity conditions we obtain

In(R) ≤ inf
h√
n
∈Vn(θ0,`n)

‖Wn + E[∇θρ(Xi, θ0)[h]qkn(Zi)]‖+ op(1)

where Wn ∈ Rkn is a Gaussian r.v. and provided `n ↓ 0 appropriate rate.

Comments
• Same asymptotic approximation, but potentially conservative.
• We recover original theorem if rate of convergence is sufficiently fast.
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1 Formal Setup

2 Test Statistic

3 Asymptotic Approximation

4 Bootstrap Approximation

5 Monte Carlo
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Bootstrap Approximation

Goal: Build bootstrap estimate of the distribution for approximation to In(R)

Un(R) ≡ inf
h√
n
∈Vn(θ0,`n)

‖Wn + E[∇θρ(Xi, θ0)[h]qkn(Zi)]‖

Standard Unknowns
• The law of the Gaussian r.v. Wn ∈ Rkn .
• The derivative E[∇θρ(Xi, θ0)[h]qkn(Zi)] for h√

n
∈ Vn(θ0, `n).

Challenging Unknown
• The local parameter space Vn(θ0, `n).

Chernozhukov, Newey, and Santos. March 25, 2016. UCSD



Standard Unknown I

Wn =
1√
n

n∑
i=1

ρ(Xi, θ0)qkn(Zi) + op(1)

Note: Wn has covariance matrix Σn ≡ E[ρ2(Xi, θ0)qkn(Zi)q
kn(Zi)

′].

Multiplier Bootstrap

• Randomly drawn i.i.d. {ωi}ni=1 independent of data with ωi ∼ N(0, 1)

Ŵn ≡
1√
n

n∑
i=1

ωi{ρ(Xi, θ̂n)qkn(Zi)−
1

n

n∑
j=1

ρ(Xj , θ̂n)qkn(Zj)}

• Conditional on data, Ŵn ∼ N(0, Σ̂n) and Σ̂n is sample analogue to Σn.
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Standard Unknown II

E[∇θρ(Xi, θ0)[h]qkn(Zi)]

For θ̂n the argmin found when computing full sample test statistic In(R) let

1

n

n∑
i=1

∇θρ(Xi, θ̂n)[h]qkn(Zi)

Comments
• Estimator must be consistent uniformly on suitable set of h.
• Use numerical method when ρ : Rdx ×Θ→ R is not differentiable.
• Numerical approach not linear in h⇒ Final statistic harder to compute.
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Local Space

Vn(θ0, `n) ≡ { h√
n
∈ B : θ0 +

h√
n
∈ Θn ∩R and ‖ h√

n
‖B ≤ `n}

Note: If we knew θ0, then we would know Vn(θ0, `n) for any `n ...

⇒ Use local parameter space of θ̂n to “estimate” Vn(θ0, `n).

Assumption (L)
• Parameter θ0 in “interior” of Θn (i.e. only R matters).

• There is a linear map ∇ΥG(θ0) : B→ G and a neighborhood of θ0 with

‖ΥG(θ1)−ΥG(θ0)−∇ΥG(θ0)[θ1 − θ0]‖G ≤ Kg‖θ1 − θ0‖2G

• There is a linear map ∇ΥF (θ0) : B→ F and a neighborhood of θ0 with

‖ΥF (θ1)−ΥF (θ0)−∇ΥF (θ0)[θ1 − θ0]‖F ≤ Kf‖θ1 − θ0‖2F
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Local Space: Inequalities

Example: For θ : R→ R suppose the only constraint is θ(w) ≤ 0 for all w.

For size control we don’t want to “overestimate” local parameter space ...

θ0

θ̂n
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Local Space: Inequalities

Example: For θ : R→ R suppose the only constraint is θ(w) ≤ 0 for all w.

... which may happen due to estimation uncertainty!

θ0

Vn(θ0,+∞)

θ̂n

Vn(θ̂n,+∞)
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Local Space: Inequalities

Example: For θ : R→ R suppose the only constraint is θ(w) ≤ 0 for all w.

Fix: Adjust for estimation uncertainty in θ̂n ...

θ0

Vn(θ0,+∞)

θ̂n

Vn(θ̂n,+∞)− rn1G
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Local Space: Inequalities

Example: For θ : R→ R suppose the only constraint is θ(w) ≤ 0 for all w.

... and incorporate additional information on constraint.

θ0

Vn(θ0,+∞)

θ̂n

Gn(θ̂n)
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Local Space: Inequalities

Gn(θ̂n) ≡ { h√
n

: ΥG(θ̂n +
h√
n

) ≤ (ΥG(θ̂n)−Kgrn‖
h√
n
‖B1G) ∨ (−rn1G)}

where rn ↓ 0 at a rate slower than the uniform (in P ) θ̂n rate of convergence.

Comments
• Main instance in which AM structure and order unit exploited.
• Presence of Kg necessary for nonlinear constraints ΥG.
• Related to generalized moment selection (Andres & Soares 2010).
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Running Example

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Test null hypothesis θ0(w0) = c0 while imposing that θ0 be monotone.

Here: ΥG : B→ G where ΥG(θ) = θ′ (linear) and G = C([0, 1]).

Gn(θ̂n) ≡ { h√
n

: ΥG(θ̂n +
h√
n

)︸ ︷︷ ︸ ≤ (ΥG(θ̂n)︸ ︷︷ ︸−Kgrn‖
h√
n
‖B︸ ︷︷ ︸1G) ∨ (−rn1G)}

θ̂′n +
h′√
n

θ̂′n 0

⇒ Gn(θ̂n) ≡ { h√
n

:
h′(w)√

n
≤ max{0,−rn − θ̂′n(w)} for all w ∈ [0, 1]}
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Local Space: Equalities

{ h√
n

: ΥF (θ0 +
h√
n

) = 0}

Special Case
• Suppose the constraint ΥF : B→ F is linear.
• Since under the null hypothesis ΥF (θ0) = 0, linearity implies that

{ h√
n

: ΥF (θ0 +
h√
n

) = 0} = { h√
n

: ΥF (
h√
n

) = 0}

⇒ Under linearity, the impact of ΥF on local parameter space is known!
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Local Space: Equalities

Example: Suppose B = R2 and F = R, and no inequality constraints.

When constraints are nonlinear, local parameter space can be different ...

{θ : ΥF (θ) = 0}

θ0

θ̂n

Vn(θ0,+∞)

Vn(θ̂n,+∞)
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Local Space: Equalities

Example: Suppose B = R2 and F = R, and no inequality constraints.

... but still provide a good approximation in a neighborhood of zero!

{θ : ΥF (θ) = 0}

θ0

θ̂n

Vn(θ0,+∞)

Vn(θ̂n,+∞)

“good” approx.
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Local Space: Equalities

Example: Suppose B = R2 and F = R, and no inequality constraints.

Moreover, as θ̂n approaches θ0 ...

{θ : ΥF (θ) = 0}

θ0

θ̂n

Vn(θ0,+∞)

Vn(θ̂n,+∞)
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Local Space: Equalities

Example: Suppose B = R2 and F = R, and no inequality constraints.

... the “reliable” neighborhood becomes larger.

{θ : ΥF (θ) = 0}

θ0

θ̂n

Vn(θ0,+∞)

Vn(θ̂n,+∞)

“good” approx.
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Local Space: Equalities

Example: Suppose B = R2 and F = R, and no inequality constraints.

... the “reliable” neighborhood becomes larger.

{θ : ΥF (θ) = 0}

θ0
θ̂n

Vn(θ0,+∞)

Vn(θ̂n,+∞)

“good” approx.
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Local Space: Equalities

Fn(θ̂n) ≡ { h√
n

: ΥF (θ̂n +
h√
n

) = 0 and ‖ h√
n
‖B ≤ `n}

where we choose `n ↓ 0 sufficiently fast to justify the outlined argument.

Comments
• Bandwidth `n has multiple roles (derivative, nonlinearity in ΥG, and ΥF )

⇒ `n is necessary even if ΥF is linear.
• Can study nonlinear functionals despite slow convergence of θ̂n.
• Stronger requirements to handle ΥG and ΥF when latter is nonlinear.
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Bootstrap Approximation

Goal: Build bootstrap estimate of the distribution for approximation to In(R)

Un(R) ≡ inf
h√
n
∈Vn(θ0,`n)

‖Wn + E[∇θρ(Xi, θ0)[h]qkn(Zi)]‖

Strategy
• Replace Wn by its bootstrap analogue Ŵn.
• Replace the derivative by its estimator.
• Replace local parameter space by outlined construction.

Ûn(R) ≡ inf
h√
n

‖Ŵn +
1

n

n∑
i=1

∇θρ(Xi, θ̂n)[h]qkn(Zi)‖

s.t. (i)
h√
n
∈ Gn(θ̂n), (ii)

h√
n
∈ Fn(θ̂n), (iii)

h√
n
∈ span{Θn ∩R}
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Running Example

Yi = θ0(Wi) + εi E[εi|Zi] = 0

Goal: Test null hypothesis θ0(w0) = c0 while imposing that θ0 be monotone.

General Bootstrap

Ûn(R) ≡ inf
h√
n

‖Ŵn +
1

n

n∑
i=1

∇θρ(Xi, θ̂n)[h]qkn(Zi)‖

s.t. (i)
h√
n
∈ Gn(θ̂n), (ii)

h√
n
∈ Fn(θ̂n), (iii)

h√
n
∈ span{Θn ∩R}

In This Example

Ûn(R) ≡ inf
β∈Rjn

‖Ŵn −
1

n

n∑
i=1

qkn(Zi)p
jn(Wi)

′β‖

s.t. (i) ∇pjn′β ≤ 0 ∨ (−rn1G − θ̂n), (ii) pjn(w0)′β = 0 and ‖β‖ ≤
√
n`n
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Bootstrap Validity

ĉn,1−α ≡ inf{u : P (Ûn(R) ≤ u|{Xi, Zi}ni=1) ≥ 1− α}

Theorem: Under Assumptions L, M, R, and regularity conditions we obtain

lim sup
n→∞

P (In(R) > ĉn,1−α) ≤ α

Comments
• Theorem is actually uniform in underlying distribution P of the data.
• Bandwidth `n unnecessary if rate of convergence sufficiently fast.
• Bandwidth rn unfortunately necessary for inequality constraints.
• Consistency and characterization of local power in paper.
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Simulation Design

 X∗i
Z∗i
εi

 ∼ N
 0

0
0

 ,

 1 0.5 0.3
0.5 1 0
0.3 0 1



and set Xi = Φ(X∗i ), instrument Zi = Φ(Z∗i ), with Yi generated according to

Yi = σ{1− 2Φ

(
Xi − 0.5

σ

)
}+ εi

Comments
• Function θ0 can be constant (σ ≈ 0) or strictly monotonic (σ ≈ 1).
• For sieve (pjn) and moments (qkn) use b-splines of order 3.
• 500 observations, 200 bootstrap samples, 5000 replications.
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The Hypothesis

H0 : θ0 ∈ R H1 : θ0 /∈ R

Goal: Test whether θ0(0.5) = 0 (true) employing two different approaches ...

Without Exploiting Monotonicity
• Set ΥF (θ) = θ(0.5), F = R, and no restriction ΥG to get the set

R = {θ : θ(0.5) = 0}

Imposing Monotonicity
• Set ΥF (θ) = θ(0.5), F = R, ΥG(θ) = θ′, G = C([0, 1]) to get the set

R = {θ : θ(0.5) = 0 and θ′(w) ≤ 0 for all w ∈ [0, 1]}
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Implementation

Step 1

• Compute full sample statistic (using 1st-stage GMM weighting matrix)

In(R) = inf
β∈Rjn

‖ 1√
n

n∑
i=1

(Yi − pjn(Wi)
′β)qkn(Zi)‖

s.t. (i) pjn(w0)′β = 0, (ii) ∇pjn(w)′β ≤ 0 for all w ∈ [0, 1]

Step 2
• Compute 200 weighted bootstrap Ŵn and solve the optimizations

Ûn(R) ≡ inf
β∈Rjn

‖Ŵn −
1

n

n∑
i=1

qkn(Zi)p
jn(Wi)

′β‖

s.t. (i) ∇pjn′β ≤ 0∨(−rn1G−θ̂n), (ii) pjn(w0)′β = 0, (iii) ‖ β√
n
‖∞ ≤ `n
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Implementation

Step 3

• Given 200 bootstrap statistics {Ûn,b(R)}200
b=1 reject null hypothesis if

1

200

200∑
b=1

1{Ûn,b(R) > In(R)} < α

Examine Sensitivity
• To choice of kn (number of moments).

• To choice of jn (dimension of sieve).

• To choice of rn (imposing monotonicity).
Data Driven: bootstrap quantile ‖θ̂n − θ0‖1,∞ ⇒ small ≈ aggressive.

• To choice of `n (local parameter space).
Data Driven: bootstrap quantile der. est. error⇒ small ≈ aggressive.
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Table: Level Test Imposing Monotonicity - Empirical Size

σ = 1
kn = 6 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1%
3 5% 5% 0.077 0.037 0.008 0.092 0.043 0.008
3 5% 95% 0.053 0.026 0.005 0.075 0.033 0.008
3 95% 5% 0.077 0.037 0.008 0.092 0.043 0.008
3 95% 95% 0.053 0.026 0.005 0.075 0.033 0.008
4 5% 5% 0.055 0.026 0.006 0.073 0.033 0.008
4 5% 95% 0.055 0.026 0.006 0.073 0.033 0.008
4 95% 5% 0.055 0.026 0.006 0.073 0.033 0.008
4 95% 95% 0.055 0.026 0.006 0.073 0.033 0.008

σ = 0.01
kn = 6 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1%
3 5% 5% 0.102 0.053 0.012 0.109 0.054 0.011
3 5% 95% 0.100 0.051 0.011 0.107 0.053 0.011
3 95% 5% 0.102 0.053 0.012 0.109 0.054 0.011
3 95% 95% 0.100 0.051 0.011 0.107 0.053 0.011
4 5% 5% 0.101 0.051 0.011 0.106 0.052 0.011
4 5% 95% 0.101 0.051 0.011 0.106 0.052 0.011
4 95% 5% 0.101 0.051 0.011 0.106 0.052 0.011
4 95% 95% 0.101 0.051 0.011 0.106 0.052 0.011
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Table: Level Test Not Imposing Monotonicity - Empirical Size

kn = 6 kn = 13
σ jn 10% 5% 1% 10% 5% 1%
1 3 0.106 0.051 0.010 0.107 0.056 0.012
1 4 0.072 0.034 0.006 0.078 0.038 0.008

0.01 3 0.106 0.052 0.010 0.107 0.056 0.011
0.01 4 0.073 0.034 0.006 0.077 0.038 0.008

Summary

• Adequate size control across specifications.
• Imposing monotonicity test can be undersized for σ = 1.
• Test insensitive to choice of `n.

Next: Examine power performance for jn = 3 and “aggressive” rn and `n in

Yi = σ{1− 2Φ(
Xi − 0.5

σ
)}+ δ + εi
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Figure: Empirical Power - Strict Monotonicity (σ = 1)
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Figure: Empirical Power - Monotonicity Binds (σ = 0.01)
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Conclusion

Main Contributions

• General framework for testing or imposing shape restrictions.
• Applies to general class of conditional moment restriction models.
• Uniform analysis in nonparametric/semiparametric models.
• Simulations show promising power advantages.

Open Questions

• Data driven choices of jn and kn – some results in estimation.
• Data driven choices of `n and rn – accessible in special cases.
• Straightforward extension to other models (e.g. likelihood based)
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