Constrained Conditional Moment Restriction Models

Victor Chernozhukov
MIT

Whitney Newey
MIT

Andres Santos
UC San Diego

March 25, 2016

Shape Restrictions

Classic Work

- Test implications of consumer and producer theory.
- Exploit theoretically implied restrictions to sharpen estimation.
- Employ restrictions to establish nonparametric identification.

Recent Applications

- Complementarities in discrete games.
- Ramp-up and start-up costs in electricity production.
- Monotonicity of the pricing kernel.
- Literature on moment inequalities.

Goal: Device procedure for testing and imposing general shape restrictions.

Example 1: Demand

Quantity demanded Q_{i} given price P_{i}, income Y_{i}, and covariates W_{i} equals

$$
Q_{i}=g_{0}\left(P_{i}, Y_{i}\right)+W_{i}^{\prime} \gamma_{0}+U_{i}
$$

where g_{0} and γ_{0} are unknown function and vector, and $E\left[U_{i} \mid P_{i}, Y_{i}, W_{i}\right]=0$.
Blundell et al. (2012): Impose Slutzky restriction for inference on $g_{0}-$ e.g.

$$
H_{0}: g_{0}\left(p_{0}, y_{0}\right)=c_{0} \quad H_{1}: g_{0}\left(p_{0}, y_{0}\right) \neq c_{0}
$$

Comments

- Exogeneity assumption can be relaxed given instrument.
- Mean independence can be replaced by quantile independence.
- Blundell et al. (2012) finds imposing Slutzky restriction important ...
... but asymptotics assume Slutzky is not binding.

Example 2: Monotonic RD

Outcome variable Y_{i}, treatment assigned when $R_{i} \geq 0$, and interested in

$$
\tau_{0} \equiv \lim _{r \downarrow 0} E\left[Y_{i} \mid R_{i}=r\right]-\lim _{r \uparrow 0} E\left[Y_{i} \mid R_{i}=r\right]
$$

Impose monotonicity of regression function in neighborhood of τ_{0} and test

$$
H_{0}: \tau_{0}=0 \quad H_{1}: \tau_{0} \neq 0
$$

Comments

- Relevant in Lee et al. (2004), Black et al. (2007).
- Obtain confidence region through test inversion.
- Sharp design can be extended to fuzzy or regression kink design.

Example 3: Complementarities

Agent's utility for bundle $a=\left(a_{1}, a_{2}\right) \in\{0,1\}^{2}$ of two goods $j \in\{1,2\}$ equals

$$
U\left(a, Z_{i}, \epsilon_{i}\right)=\sum_{j=1}^{2}\left(W_{i}^{\prime} \gamma_{0, j}+\epsilon_{i, j}\right) 1\left\{a_{j}=1\right\}+\delta_{0}\left(Y_{i}\right) 1\left\{a_{1}=1, a_{2}=1\right\}
$$

for δ_{0} unknown function, $\left(W_{i}, Y_{i}\right)$ covariates, $\epsilon=\left(\epsilon_{1}, \epsilon_{2}\right)$ normal distribution.
Consider test for whether goods $j \in\{1,2\}$ are always (in Y) substitutes

$$
H_{0}: \delta_{0}(y) \leq 0 \text { for all } y \quad H_{1}: \delta_{0}(y)>0 \text { for some } y
$$

Comments

- Parametric approach in Gentzkow (2007) for print and online media.
- Applies to organizational design (Athey and Stern, 1998), and interactions in discrete games (De Paula and Tang, 2012).

Example 4: Hospital Referral

Ho and Pakes (2013) derive for two patients $j \in\{1,2\}$ sent to hospital $H_{i j}$

$$
E\left[\sum_{j=1}^{2}\left\{\gamma_{0}\left(P_{i j}\left(H_{i j}\right)-P_{i j}\left(H_{i j^{\prime}}\right)\right)+g_{0}\left(D_{i j}\left(H_{i j}\right)\right)-g_{0}\left(D_{i j}\left(H_{i j^{\prime}}\right)\right)\right\} \mid Z_{i}\right] \leq 0
$$

$P_{i j}(h) / D_{i j}(h)$ price/distance to hospital h, g_{0} unknown increasing function.
Allow nonparametric monotonic g_{0} while conducting inference on $\gamma_{0}-$ e.g.

$$
H_{0}: \gamma_{0}=c_{0} \quad H_{1}: \gamma_{0} \neq c_{0}
$$

Comments

- In general, moment inequalities with semiparametric specifications.
- Special case of moment equality restrictions with positivity constraint.

This Paper

Goal: Develop general tests that apply to previous examples.

Contributions

- Formalize common structure of shape restrictions.
- Models defined by finite conditional moment restrictions.
- Allow for potential partial identification.
- Analysis must be uniform in underlying distribution.

This Talk

- Focus on how to analyze shape restrictions.
- Model defined by single conditional moment restriction.
- Assume parameter is identified.
- Uniformity in the background.

General Outline

Formal Setup

- How do we think of shape restrictions in general terms?
- Introduce AM Spaces and their role in our problem.

Test Statistic

- Introduce the test statistic we study.
- Develop an asymptotic approximation to its distribution.

Bootstrap Approximation

- Develop bootstrap procedure to estimate asymptotic approximation.
- Establish bootstrap validity (uniformly in underlying distribution).

Related Literature

Shape Restrictions

Matzkin (1994), Hausman \& Newey (1995), Lewbel (1995), Haag, Hoderlein \& Pendakur (2007), Chetverikov (2012), Freyberger \& Horowitz (2012), Beare \& Schmidt (2014), Chetverikov \& Wilhelm (2014), Armstrong (2015), Horowitz \& Lee (2015).

Conditional Moment Models

Newey (1985), Chamberlain (1987, 1992), Ai \& Chen (2003), Chen \& Pouzo (2015), Hong (2011), Santos (2012), Tao (2014).

Partial Identification

Manski (2003), Andrews \& Soares (2010), Chernozhukov, Lee, \& Rosen (2013), Bugni, Canay, \& Shi (2014).

(1) Formal Setup

(2) Test Statistic

(3) Asymptotic Approximation

(4) Bootstrap Approximation

(5) Monte Carlo

The Model

The parameter of interest $\theta_{0} \in \Theta$ is the unique solution to the restriction

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) \mid Z_{i}\right]=0
$$

for $X_{i} \in \mathbf{R}^{d_{x}}, Z_{i} \in \mathbf{R}^{d_{z}}$, and $\rho: \mathbf{R}^{d_{x}} \times \Theta \rightarrow \mathbf{R}$ is known function.

Assumption (M)

- $\left\{X_{i}, Z_{i}\right\}_{i=1}^{n}$ is an i.i.d. sample distributed according to $P \in \mathbf{P}$.
- $\Theta \subseteq \mathbf{B}$ for Banach space \mathbf{B} with norm $\|\cdot\|_{\text {B }}$ (allow non/semi/parametric)
- The function $\rho: \mathbf{R}^{d_{x}} \times \Theta \rightarrow \mathbf{R}$ is differentiable in θ.

Results in paper

- Allow for θ_{0} to be partially identified.
- Allow for $\rho\left(X_{i}, \theta\right)$ nondifferentiable in θ (e.g. quantile restrictions).

The Hypothesis

$$
H_{0}: \theta_{0} \in R \quad H_{1}: \theta_{0} \notin R
$$

Goal: The set R must be general enough to include motivating examples ...
... and have enough structure for fruitful asymptotic analysis.

$$
R \equiv\left\{\theta \in \mathbf{B}: \Upsilon_{F}(\theta)=0 \text { and } \Upsilon_{G}(\theta) \leq 0\right\}
$$

Assumption (R)

- $\Upsilon_{F}: \mathbf{B} \rightarrow \mathbf{F}$ for \mathbf{F} a Banach space with norm $\|\cdot\|_{\mathbf{F}}$.
- $\Upsilon_{G}: \mathbf{B} \rightarrow \mathbf{G}$ for \mathbf{G} an AM space with order unit $\mathbf{1}_{\mathbf{G}}$ and norm $\|\cdot\|_{\mathbf{G}}$.

AM Space

Basic Properties

- G has a partial order $\left(\Upsilon_{G}(\theta) \leq 0\right.$ "makes sense").
- " \leq " and " + " interact as in \mathbf{R} (e.g. $g_{1} \geq g_{2}$ implies $g_{1}+g_{3} \geq g_{2}+g_{3}$).
- Any pair $g_{1}, g_{2} \in \mathbf{G}$ has a least upper bound $g_{1} \vee g_{2}$.

Note: By above, can define an "absolute value" on \mathbf{G} by $|g| \equiv g \vee(-g)$.

Order Unit

- Definition: $\mathbf{1}_{\mathbf{G}}$ is an order unit means for any $g \in \mathbf{G}$ there is $\lambda \in \mathbf{R}$ so

$$
|g| \leq \lambda \mathbf{1}_{\mathbf{G}}
$$

- Intuition: $\mathbf{1}_{\mathrm{G}} \in \mathbf{G}$ can be made larger than any element by scaling.

AM Space (Example)

$$
C([0,1]) \equiv\{g:[0,1] \rightarrow \mathbf{R} \text { is continuous }\}
$$

Properties

- Partial Order: " $g_{1} \leq g_{2}$ " iff $g_{1}(a) \leq g_{2}(a)$ for all $a \in[0,1]$.

AM Space (Example)

$$
C([0,1]) \equiv\{g:[0,1] \rightarrow \mathbf{R} \text { is continuous }\}
$$

Properties

- Partial Order: " $g_{1} \leq g_{2}$ " iff $g_{1}(a) \leq g_{2}(a)$ for all $a \in[0,1]$.

AM Space (Example)

$$
C([0,1]) \equiv\{g:[0,1] \rightarrow \mathbf{R} \text { is continuous }\}
$$

Properties

- Partial Order: " $g_{1} \leq g_{2}$ " iff $g_{1}(a) \leq g_{2}(a)$ for all $a \in[0,1]$.
- Absolute Value: $|g|$ is the function $|g|(a)=|g(a)|$ for all $a \in[0,1]$.

AM Space (Example)

$$
C([0,1]) \equiv\{g:[0,1] \rightarrow \mathbf{R} \text { is continuous }\}
$$

Properties

- Partial Order: " $g_{1} \leq g_{2}$ " iff $g_{1}(a) \leq g_{2}(a)$ for all $a \in[0,1]$.
- Absolute Value: $|g|$ is the function $|g|(a)=|g(a)|$ for all $a \in[0,1]$.

AM Space (Example)

$$
C([0,1]) \equiv\{g:[0,1] \rightarrow \mathbf{R} \text { is continuous }\}
$$

Properties

- Partial Order: " $g_{1} \leq g_{2}$ " iff $g_{1}(a) \leq g_{2}(a)$ for all $a \in[0,1]$.
- Absolute Value: $|g|$ is the function $|g|(a)=|g(a)|$ for all $a \in[0,1]$.
- Order Unit: $\mathbf{1}_{\mathrm{G}}$ is the constant function equal to one.

AM Space (Example)

$$
C([0,1]) \equiv\{g:[0,1] \rightarrow \mathbf{R} \text { is continuous }\}
$$

Properties

- Partial Order: " $g_{1} \leq g_{2}$ " iff $g_{1}(a) \leq g_{2}(a)$ for all $a \in[0,1]$.
- Absolute Value: $|g|$ is the function $|g|(a)=|g(a)|$ for all $a \in[0,1]$.
- Order Unit: $\mathbf{1}_{\mathrm{G}}$ is the constant function equal to one.

Running Example

For outcome variable $Y_{i} \in \mathbf{R}$, endogenous $W_{i} \in[0,1]$, instrument $Z_{i} \in \mathbf{R}$

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Build a confidence region for $\theta_{0}\left(w_{0}\right)$ that imposes θ_{0} is monotone.

$$
R=\{\theta \in \mathbf{B}: \underbrace{\theta\left(w_{0}\right)-c_{0}=0}_{\Upsilon_{F}(\theta)=0} \text {, and } \underbrace{\theta^{\prime}(w) \leq 0 \text { for all } w}_{\Upsilon_{G}(\theta) \leq 0}\}
$$

Procedure: Construct confidence region by test inverting (for different c_{0})

$$
H_{0}: \theta_{0} \in R \quad H_{1}: \theta_{0} \notin R
$$

Note: (i) $\Upsilon_{F}(\theta)=\theta\left(w_{0}\right)-c_{0}$, (ii) $\mathbf{F}=\mathbf{R}$, (iii) $\Upsilon_{G}(\theta)=\theta^{\prime}$, (iv) $\mathbf{G}=C([0,1])$.

(1) Formal Setup

(2) Test Statistic

(3) Asymptotic Approximation

4 Bootstrap Approximation

(5) Monte Carlo

Test Statistic

By assumption, θ_{0} is the unique element of Θ satisfying the restriction

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) \mid Z_{i}\right]=0
$$

For $\left\{q_{j}\right\}_{j=1}^{\infty}$ appropriate set of functions of Z_{i}, θ_{0} is unique solution (in Θ) to

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) q_{j}\left(Z_{i}\right)\right]=0 \text { for all } j
$$

Basic Idea

- If $\theta_{0} \in R$, then there is a $\theta \in \Theta \cap R$ such that (\star) holds.
- If $\theta_{0} \notin R$, then there is no $\theta \in \Theta \cap R$ such that (\star) holds.
\Rightarrow Test whether $\theta_{0} \in R$ by examining if (\star) holds for some $\theta \in \Theta \cap R$

Test Statistic

Goal: Test if $\theta_{0} \in R$, by examining if there is a $\theta \in \Theta \cap R$ such that

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) q_{j}\left(Z_{i}\right)\right]=0 \text { for all } j
$$

Construct Statistic

- Replace population moments by sample moments.

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) q_{j}\left(Z_{i}\right)
$$

Test Statistic

Goal: Test if $\theta_{0} \in R$, by examining if there is a $\theta \in \Theta \cap R$ such that

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) q_{j}\left(Z_{i}\right)\right]=0 \text { for all } j
$$

Construct Statistic

- Replace population moments by sample moments.
- Let $q^{k_{n}}\left(Z_{i}\right)=\left(q_{1}\left(Z_{i}\right), \ldots, q_{k_{n}}\left(Z_{i}\right)\right)^{\prime}$ and collect moments.

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) q^{k_{n}}\left(Z_{i}\right)
$$

Test Statistic

Goal: Test if $\theta_{0} \in R$, by examining if there is a $\theta \in \Theta \cap R$ such that

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) q_{j}\left(Z_{i}\right)\right]=0 \text { for all } j
$$

Construct Statistic

- Replace population moments by sample moments.
- Let $q^{k_{n}}\left(Z_{i}\right)=\left(q_{1}\left(Z_{i}\right), \ldots, q_{k_{n}}\left(Z_{i}\right)\right)^{\prime}$ and collect moments.
- Search over $\theta \in \Theta \cap R$ to attempt to zero moments.

$$
\inf _{\theta \in \Theta \cap R}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) q^{k_{n}}\left(Z_{i}\right)\right\|
$$

Test Statistic

Goal: Test if $\theta_{0} \in R$, by examining if there is a $\theta \in \Theta \cap R$ such that

$$
E\left[\rho\left(X_{i}, \theta_{0}\right) q_{j}\left(Z_{i}\right)\right]=0 \text { for all } j
$$

Construct Statistic

- Replace population moments by sample moments.
- Let $q^{k_{n}}\left(Z_{i}\right)=\left(q_{1}\left(Z_{i}\right), \ldots, q_{k_{n}}\left(Z_{i}\right)\right)^{\prime}$ and collect moments.
- Search over $\theta \in \Theta \cap R$ to attempt to zero moments.
- Replace Θ by approximating set Θ_{n} (e.g. splines, polynomials).

$$
\inf _{\theta \in \Theta_{n} \cap R}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) q^{k_{n}}\left(Z_{i}\right)\right\|
$$

Test Statistic

$$
I_{n}(R) \equiv \inf _{\theta \in \Theta_{n} \cap R}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) q^{k_{n}}\left(Z_{i}\right)\right\|
$$

Intuitively: J-test where parameter is restricted by the set R (sieve-GMM)

Comments

- We allow for weighting matrix, but suppress it here for simplicity.
- Norm need not be classic Euclidean norm.
- Class $\left\{q_{j}\right\}_{j=1}^{\infty}$ can change with n (e.g. B-Splines).
- Allowing for multiple moment restrictions is mostly notation.

Running Example

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Build a confidence region for $\theta_{0}\left(w_{0}\right)$ that imposes θ_{0} is monotone.

Example Specifics

- Specific structure of moment $\rho\left(X_{i}, \theta\right)$.

$$
I_{n}(R)=\inf _{\theta \in \Theta_{n} \cap R}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{i}-\theta\left(W_{i}\right)\right) q^{k_{n}}\left(Z_{i}\right)\right\|
$$

Running Example

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Build a confidence region for $\theta_{0}\left(w_{0}\right)$ that imposes θ_{0} is monotone.

Example Specifics

- Specific structure of moment $\rho\left(X_{i}, \theta\right)$.
- Specific structure of restriction set R.

$$
\begin{aligned}
& I_{n}(R)= \inf _{\theta \in \Theta_{n}}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{i}-\theta\left(W_{i}\right)\right) q^{k_{n}}\left(Z_{i}\right)\right\| \\
& \text { s.t. (i) } \theta\left(w_{0}\right)=c_{0}, \\
& \text { (ii) } \theta^{\prime}(w) \leq 0 \text { for all } w \in[0,1]
\end{aligned}
$$

Running Example

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Build a confidence region for $\theta_{0}\left(w_{0}\right)$ that imposes θ_{0} is monotone.

Example Specifics

- Specific structure of moment $\rho\left(X_{i}, \theta\right)$.
- Specific structure of restriction set R.
- Let $p^{j_{n}}(w)=\left(p_{1}(w), \ldots, p_{j_{n}}(w)\right)$ and $\Theta_{n}=\left\{\theta=p^{j_{n} \prime} \beta\right.$ some $\left.\beta \in \mathbf{R}^{j_{n}}\right\}$.

$$
\begin{aligned}
I_{n}(R)=\inf _{\beta \in \mathbf{R}^{j_{n}}} & \left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{i}-p^{j_{n}}\left(W_{i}\right)^{\prime} \beta\right) q^{k_{n}}\left(Z_{i}\right)\right\| \\
& \text { s.t. (i) } p^{j_{n}}\left(w_{0}\right)^{\prime} \beta=c_{0}, \text { (ii) } \nabla p^{j_{n}}(w)^{\prime} \beta \leq 0 \text { for all } w \in[0,1]
\end{aligned}
$$

(1) Formal Setup

(2) Test Statistic

(3) Asymptotic Approximation

(4) Bootstrap Approximation

(5) Monte Carlo

Asymptotic Approximation

Goal: Approximate the finite sample distribution of our test statistic $I_{n}(R)$

$$
I_{n}(R) \equiv \inf _{\theta \in \Theta_{n} \cap R}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) q^{k_{n}}\left(Z_{i}\right)\right\|
$$

Local Space

- Intuition: The minimizer $\hat{\theta}_{n}$ of criterion close to θ_{0} asymptotically.
- Precisely: Minimizer $\hat{\theta}_{n}$ asymptotically equal to $\theta_{0}+\frac{h}{\sqrt{n}}$ with $\frac{h}{\sqrt{n}}$ in set

$$
V_{n}\left(\theta_{0}, \ell_{n}\right) \equiv\{\frac{h}{\sqrt{n}} \in \mathbf{B}: \underbrace{\theta_{0}+\frac{h}{\sqrt{n}} \in \Theta_{n} \cap R}_{\hat{\theta}_{n} \text { in } \Theta_{n} \cap R} \text { and } \underbrace{\left.\left\|\frac{h}{\sqrt{n}}\right\|_{\mathbf{B}} \leq \ell_{n}\right\}}_{\hat{\theta}_{n}-\theta_{0} \text { small }}
$$

Key: Asymptotic distribution fundamentally affected by the set $V_{n}\left(\theta_{0}, \ell_{n}\right)$.

Asymptotic Approximation

Theorem: Under Assumptions M, R, and regularity conditions we obtain

$$
I_{n}(R)=\inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\mathbb{W}_{n}+E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]\right\|+o_{p}(1)
$$

where $\mathbb{W}_{n} \in \mathbf{R}^{k_{n}}$ is a Gaussian r.v. and provided $\ell_{n} \downarrow 0$ appropriate rate.

Comments

- Intuitively, statistic equals distance between \mathbb{W}_{n} and a set.
- Special case is J-test in Hansen (1982).
- Theorem is actually uniform in underlying distribution P of the data.

Running Example

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Test null hypothesis $\theta_{0}\left(w_{0}\right)=c_{0}$ while imposing that θ_{0} be monotone.

$$
\begin{aligned}
I_{n}(R)= & \inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\mathbb{W}_{n}+E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]\right\|+o_{p}(1) \\
= & \inf _{h \in \Theta_{n}-\left\{\theta_{0}\right\}}\left\|\mathbb{W}_{n}-E\left[h\left(W_{i}\right) q^{k_{n}}\left(Z_{i}\right)\right]\right\| \\
& \underbrace{}_{\text {imposes that } \theta_{0}+\frac{h}{\sqrt{n}} \in R} \quad \underbrace{\text { s.t. (i) } \theta_{0}\left(w_{0}\right)+\frac{h\left(w_{0}\right)}{\sqrt{n}}=c_{0}, \quad \text { (ii) } \theta_{0}^{\prime}+\frac{h^{\prime}}{\sqrt{n}} \leq 0}, \quad \text { (iii) }\left\|\frac{h}{\sqrt{n}}\right\|_{\mathbf{B}} \leq \ell_{n}
\end{aligned}
$$

Case 1: No Monotonicity

Case 1: No Monotonicity

$$
\begin{gathered}
k_{n}=2 \\
\operatorname{dim}\left\{\Theta_{n}\right\}=2
\end{gathered}
$$

Case 1: No Monotonicity

$$
\begin{gathered}
k_{n}=2 \\
\operatorname{dim}\left\{\Theta_{n}\right\}=2
\end{gathered}
$$

Case 2: Monotonicity Binds

$$
\begin{gathered}
k_{n}=2 \\
\operatorname{dim}\left\{\Theta_{n}\right\}=2
\end{gathered}
$$

Case 2: Monotonicity Binds

$$
\begin{gathered}
k_{n}=2 \\
\operatorname{dim}\left\{\Theta_{n}\right\}=2
\end{gathered}
$$

Case 2: Monotonicity Binds

$$
\begin{gathered}
k_{n}=2 \\
\operatorname{dim}\left\{\Theta_{n}\right\}=2
\end{gathered}
$$

$$
E\left[h(W) q^{k_{n}}(Z)\right]
$$

Proof (Parametric Intuition)

$$
I_{n}(R)=\inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\mathbb{W}_{n}+E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]\right\|+o_{p}(1)
$$

Step 1: Argue minimizer $\hat{\theta}_{n}$ equals $\theta_{0}+\frac{h}{\sqrt{n}}$ with $\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)$ to obtain

$$
I_{n}(R)=\inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta_{0}+\frac{h}{\sqrt{n}}\right) q^{k_{n}}\left(Z_{i}\right)\right\|+o_{p}(1)
$$

Step 2: Conduct Taylor expansion around θ_{0} to obtain for reminder \mathcal{R}_{n} that

$$
\begin{aligned}
\inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)} \| \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta_{0}\right) q^{k_{n}}\left(Z_{i}\right)}_{\approx \mathbb{W}} & +\underbrace{\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)}+\mathcal{R}_{n} \| \\
& \approx E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]
\end{aligned}
$$

General Theorem

Challenge: In nonparametric problem, for \mathcal{R}_{n} to disappear, either

- Model is linear in $\theta \Rightarrow \mathcal{R}_{n}=0$ (running example).
- Rate of convergence for $\hat{\theta}_{n}$ is sufficiently fast (potentially unrealistic).

Theorem: Under Assumptions M, R, and regularity conditions we obtain

$$
I_{n}(R) \leq \inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\mathbb{W}_{n}+E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]\right\|+o_{p}(1)
$$

where $\mathbb{W}_{n} \in \mathbf{R}^{k_{n}}$ is a Gaussian r.v. and provided $\ell_{n} \downarrow 0$ appropriate rate.

Comments

- Same asymptotic approximation, but potentially conservative.
- We recover original theorem if rate of convergence is sufficiently fast.
(3) Asymptotic Approximation

(4) Bootstrap Approximation

(5) Monte Carlo

Bootstrap Approximation

Goal: Build bootstrap estimate of the distribution for approximation to $I_{n}(R)$

$$
U_{n}(R) \equiv \inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\mathbb{W}_{n}+E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]\right\|
$$

Standard Unknowns

- The law of the Gaussian r.v. $\mathbb{W}_{n} \in \mathbf{R}^{k_{n}}$.
- The derivative $E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]$ for $\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)$.

Challenging Unknown

- The local parameter space $V_{n}\left(\theta_{0}, \ell_{n}\right)$.

Standard Unknown I

$$
\mathbb{W}_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \rho\left(X_{i}, \theta_{0}\right) q^{k_{n}}\left(Z_{i}\right)+o_{p}(1)
$$

Note: \mathbb{W}_{n} has covariance matrix $\Sigma_{n} \equiv E\left[\rho^{2}\left(X_{i}, \theta_{0}\right) q^{k_{n}}\left(Z_{i}\right) q^{k_{n}}\left(Z_{i}\right)^{\prime}\right]$.

Multiplier Bootstrap

- Randomly drawn i.i.d. $\left\{\omega_{i}\right\}_{i=1}^{n}$ independent of data with $\omega_{i} \sim N(0,1)$

$$
\hat{\mathbb{W}}_{n} \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \omega_{i}\left\{\rho\left(X_{i}, \hat{\theta}_{n}\right) q^{k_{n}}\left(Z_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \rho\left(X_{j}, \hat{\theta}_{n}\right) q^{k_{n}}\left(Z_{j}\right)\right\}
$$

- Conditional on data, $\hat{\mathbb{W}}_{n} \sim N\left(0, \hat{\Sigma}_{n}\right)$ and $\hat{\Sigma}_{n}$ is sample analogue to Σ_{n}.

Standard Unknown II

$$
E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]
$$

For $\hat{\theta}_{n}$ the argmin found when computing full sample test statistic $I_{n}(R)$ let

$$
\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \rho\left(X_{i}, \hat{\theta}_{n}\right)[h] q^{k_{n}}\left(Z_{i}\right)
$$

Comments

- Estimator must be consistent uniformly on suitable set of h.
- Use numerical method when $\rho: \mathbf{R}^{d_{x}} \times \Theta \rightarrow \mathbf{R}$ is not differentiable.
- Numerical approach not linear in $h \Rightarrow$ Final statistic harder to compute.

Local Space

$$
V_{n}\left(\theta_{0}, \ell_{n}\right) \equiv\left\{\frac{h}{\sqrt{n}} \in \mathbf{B}: \theta_{0}+\frac{h}{\sqrt{n}} \in \Theta_{n} \cap R \text { and }\left\|\frac{h}{\sqrt{n}}\right\|_{\mathbf{B}} \leq \ell_{n}\right\}
$$

Note: If we knew θ_{0}, then we would know $V_{n}\left(\theta_{0}, \ell_{n}\right)$ for any $\ell_{n} \ldots$
\Rightarrow Use local parameter space of $\hat{\theta}_{n}$ to "estimate" $V_{n}\left(\theta_{0}, \ell_{n}\right)$.

Assumption (L)

- Parameter θ_{0} in "interior" of Θ_{n} (i.e. only R matters).
- There is a linear map $\nabla \Upsilon_{G}\left(\theta_{0}\right): \mathbf{B} \rightarrow \mathbf{G}$ and a neighborhood of θ_{0} with

$$
\left\|\Upsilon_{G}\left(\theta_{1}\right)-\Upsilon_{G}\left(\theta_{0}\right)-\nabla \Upsilon_{G}\left(\theta_{0}\right)\left[\theta_{1}-\theta_{0}\right]\right\|_{\mathbf{G}} \leq K_{g}\left\|\theta_{1}-\theta_{0}\right\|_{\mathbf{G}}^{2}
$$

- There is a linear map $\nabla \Upsilon_{F}\left(\theta_{0}\right): \mathbf{B} \rightarrow \mathbf{F}$ and a neighborhood of θ_{0} with

$$
\left\|\Upsilon_{F}\left(\theta_{1}\right)-\Upsilon_{F}\left(\theta_{0}\right)-\nabla \Upsilon_{F}\left(\theta_{0}\right)\left[\theta_{1}-\theta_{0}\right]\right\|_{\mathbf{F}} \leq K_{f}\left\|\theta_{1}-\theta_{0}\right\|_{\mathbf{F}}^{2}
$$

Local Space: Inequalities

Example: For $\theta: \mathbf{R} \rightarrow \mathbf{R}$ suppose the only constraint is $\theta(w) \leq 0$ for all w.
For size control we don't want to "overestimate" local parameter space ...

Local Space: Inequalities

Example: For $\theta: \mathbf{R} \rightarrow \mathbf{R}$ suppose the only constraint is $\theta(w) \leq 0$ for all w.
... which may happen due to estimation uncertainty!

Local Space: Inequalities

Example: For $\theta: \mathbf{R} \rightarrow \mathbf{R}$ suppose the only constraint is $\theta(w) \leq 0$ for all w.
Fix: Adjust for estimation uncertainty in $\hat{\theta}_{n} \ldots$

Local Space: Inequalities

Example: For $\theta: \mathbf{R} \rightarrow \mathbf{R}$ suppose the only constraint is $\theta(w) \leq 0$ for all w.
... and incorporate additional information on constraint.

Local Space: Inequalities

$$
G_{n}\left(\hat{\theta}_{n}\right) \equiv\left\{\frac{h}{\sqrt{n}}: \Upsilon_{G}\left(\hat{\theta}_{n}+\frac{h}{\sqrt{n}}\right) \leq\left(\Upsilon_{G}\left(\hat{\theta}_{n}\right)-K_{g} r_{n}\left\|\frac{h}{\sqrt{n}}\right\|_{\mathbf{B}} \mathbf{1}_{\mathbf{G}}\right) \vee\left(-r_{n} \mathbf{1}_{\mathbf{G}}\right)\right\}
$$

where $r_{n} \downarrow 0$ at a rate slower than the uniform (in P) $\hat{\theta}_{n}$ rate of convergence.

Comments

- Main instance in which AM structure and order unit exploited.
- Presence of K_{g} necessary for nonlinear constraints Υ_{G}.
- Related to generalized moment selection (Andres \& Soares 2010).

Running Example

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Test null hypothesis $\theta_{0}\left(w_{0}\right)=c_{0}$ while imposing that θ_{0} be monotone. Here: $\Upsilon_{G}: \mathbf{B} \rightarrow \mathbf{G}$ where $\Upsilon_{G}(\theta)=\theta^{\prime}$ (linear) and $\mathbf{G}=C([0,1])$.

$$
\begin{aligned}
& G_{n}\left(\hat{\theta}_{n}\right) \equiv\{\frac{h}{\sqrt{n}}: \underbrace{\Upsilon_{G}\left(\hat{\theta}_{n}+\frac{h}{\sqrt{n}}\right.}_{\hat{\theta}_{n}^{\prime}+\frac{h^{\prime}}{\sqrt{n}}}) \leq(\underbrace{\Upsilon_{G}\left(\hat{\theta}_{n}\right)}_{\hat{\theta}_{n}^{\prime}}-\underbrace{K_{g} r_{n}\left\|\frac{h}{\sqrt{n}}\right\|_{\mathbf{B}}}_{0} \mathbf{1}_{\mathbf{G}}) \vee\left(-r_{n} \mathbf{1}_{\mathbf{G}}\right)\} \\
& \Rightarrow G_{n}\left(\hat{\theta}_{n}\right) \equiv\left\{\frac{h}{\sqrt{n}}: \frac{h^{\prime}(w)}{\sqrt{n}} \leq \max \left\{0,-r_{n}-\hat{\theta}_{n}^{\prime}(w)\right\} \text { for all } w \in[0,1]\right\}
\end{aligned}
$$

Local Space: Equalities

$$
\left\{\frac{h}{\sqrt{n}}: \Upsilon_{F}\left(\theta_{0}+\frac{h}{\sqrt{n}}\right)=0\right\}
$$

Special Case

- Suppose the constraint $\Upsilon_{F}: \mathbf{B} \rightarrow \mathbf{F}$ is linear.
- Since under the null hypothesis $\Upsilon_{F}\left(\theta_{0}\right)=0$, linearity implies that

$$
\left\{\frac{h}{\sqrt{n}}: \Upsilon_{F}\left(\theta_{0}+\frac{h}{\sqrt{n}}\right)=0\right\}=\left\{\frac{h}{\sqrt{n}}: \Upsilon_{F}\left(\frac{h}{\sqrt{n}}\right)=0\right\}
$$

\Rightarrow Under linearity, the impact of Υ_{F} on local parameter space is known!

Local Space: Equalities

Example: Suppose $\mathbf{B}=\mathbf{R}^{2}$ and $\mathbf{F}=\mathbf{R}$, and no inequality constraints.
When constraints are nonlinear, local parameter space can be different ...

Local Space: Equalities

Example: Suppose $\mathbf{B}=\mathbf{R}^{2}$ and $\mathbf{F}=\mathbf{R}$, and no inequality constraints.
... but still provide a good approximation in a neighborhood of zero!

Local Space: Equalities

Example: Suppose $\mathbf{B}=\mathbf{R}^{2}$ and $\mathbf{F}=\mathbf{R}$, and no inequality constraints.
Moreover, as $\hat{\theta}_{n}$ approaches $\theta_{0} \ldots$

Local Space: Equalities

Example: Suppose $\mathbf{B}=\mathbf{R}^{2}$ and $\mathbf{F}=\mathbf{R}$, and no inequality constraints.
... the "reliable" neighborhood becomes larger.

Local Space: Equalities

Example: Suppose $\mathbf{B}=\mathbf{R}^{2}$ and $\mathbf{F}=\mathbf{R}$, and no inequality constraints.

... the "reliable" neighborhood becomes larger.

Local Space: Equalities

$$
F_{n}\left(\hat{\theta}_{n}\right) \equiv\left\{\frac{h}{\sqrt{n}}: \Upsilon_{F}\left(\hat{\theta}_{n}+\frac{h}{\sqrt{n}}\right)=0 \text { and }\left\|\frac{h}{\sqrt{n}}\right\|_{\mathbf{B}} \leq \ell_{n}\right\}
$$

where we choose $\ell_{n} \downarrow 0$ sufficiently fast to justify the outlined argument.

Comments

- Bandwidth ℓ_{n} has multiple roles (derivative, nonlinearity in Υ_{G}, and Υ_{F}) $\Rightarrow \ell_{n}$ is necessary even if Υ_{F} is linear.
- Can study nonlinear functionals despite slow convergence of $\hat{\theta}_{n}$.
- Stronger requirements to handle Υ_{G} and Υ_{F} when latter is nonlinear.

Bootstrap Approximation

Goal: Build bootstrap estimate of the distribution for approximation to $I_{n}(R)$

$$
U_{n}(R) \equiv \inf _{\frac{h}{\sqrt{n}} \in V_{n}\left(\theta_{0}, \ell_{n}\right)}\left\|\mathbb{W}_{n}+E\left[\nabla_{\theta} \rho\left(X_{i}, \theta_{0}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right]\right\|
$$

Strategy

- Replace \mathbb{W}_{n} by its bootstrap analogue \mathbb{W}_{n}.
- Replace the derivative by its estimator.
- Replace local parameter space by outlined construction.

$$
\begin{aligned}
\hat{U}_{n}(R) & \equiv \inf _{\frac{h}{\sqrt{n}}}\left\|\hat{\mathbb{W}}_{n}+\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \rho\left(X_{i}, \hat{\theta}_{n}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right\| \\
& \text { s.t. (i) } \frac{h}{\sqrt{n}} \in G_{n}\left(\hat{\theta}_{n}\right), \text { (ii) } \frac{h}{\sqrt{n}} \in F_{n}\left(\hat{\theta}_{n}\right), \text { (iii) } \frac{h}{\sqrt{n}} \in \overline{\operatorname{span}\left\{\Theta_{n} \cap R\right\}}
\end{aligned}
$$

Running Example

$$
Y_{i}=\theta_{0}\left(W_{i}\right)+\epsilon_{i} \quad E\left[\epsilon_{i} \mid Z_{i}\right]=0
$$

Goal: Test null hypothesis $\theta_{0}\left(w_{0}\right)=c_{0}$ while imposing that θ_{0} be monotone.

General Bootstrap

$$
\begin{aligned}
\hat{U}_{n}(R) & \equiv \inf _{\frac{h}{\sqrt{n}}}\left\|\hat{\mathbb{W}}_{n}+\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \rho\left(X_{i}, \hat{\theta}_{n}\right)[h] q^{k_{n}}\left(Z_{i}\right)\right\| \\
& \text { s.t. (i) } \frac{h}{\sqrt{n}} \in G_{n}\left(\hat{\theta}_{n}\right), \text { (ii) } \frac{h}{\sqrt{n}} \in F_{n}\left(\hat{\theta}_{n}\right), \text { (iii) } \frac{h}{\sqrt{n}} \in \overline{\operatorname{span}\left\{\Theta_{n} \cap R\right\}}
\end{aligned}
$$

In This Example

$$
\hat{U}_{n}(R) \equiv \inf _{\beta \in \mathbf{R}^{j_{n}}}\left\|\hat{\mathbb{W}}_{n}-\frac{1}{n} \sum_{i=1}^{n} q^{k_{n}}\left(Z_{i}\right) p^{j_{n}}\left(W_{i}\right)^{\prime} \beta\right\|
$$

$$
\text { s.t. (i) } \nabla p^{j_{n}^{\prime}} \beta \leq 0 \vee\left(-r_{n} \mathbf{1}_{\mathbf{G}}-\hat{\theta}_{n}\right) \text {, (ii) } p^{j_{n}}\left(w_{0}\right)^{\prime} \beta=0 \text { and }\|\beta\| \leq \sqrt{n} \ell_{n}
$$

Bootstrap Validity

$$
\hat{c}_{n, 1-\alpha} \equiv \inf \left\{u: P\left(\hat{U}_{n}(R) \leq u \mid\left\{X_{i}, Z_{i}\right\}_{i=1}^{n}\right) \geq 1-\alpha\right\}
$$

Theorem: Under Assumptions L, M, R, and regularity conditions we obtain

$$
\limsup _{n \rightarrow \infty} P\left(I_{n}(R)>\hat{c}_{n, 1-\alpha}\right) \leq \alpha
$$

Comments

- Theorem is actually uniform in underlying distribution P of the data.
- Bandwidth ℓ_{n} unnecessary if rate of convergence sufficiently fast.
- Bandwidth r_{n} unfortunately necessary for inequality constraints.
- Consistency and characterization of local power in paper.

(1) Formal Setup

(3) Asymptotic Approximation
(4) Bootstrap Approximation

(5) Monte Carlo

Simulation Design

$$
\left(\begin{array}{c}
X_{i}^{*} \\
Z_{i}^{*} \\
\epsilon_{i}
\end{array}\right) \sim N\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left[\begin{array}{ccc}
1 & 0.5 & 0.3 \\
0.5 & 1 & 0 \\
0.3 & 0 & 1
\end{array}\right]\right)
$$

and set $X_{i}=\Phi\left(X_{i}^{*}\right)$, instrument $Z_{i}=\Phi\left(Z_{i}^{*}\right)$, with Y_{i} generated according to

$$
Y_{i}=\sigma\left\{1-2 \Phi\left(\frac{X_{i}-0.5}{\sigma}\right)\right\}+\epsilon_{i}
$$

Comments

- Function θ_{0} can be constant ($\sigma \approx 0$) or strictly monotonic ($\sigma \approx 1$).
- For sieve ($p^{j_{n}}$) and moments ($q^{k_{n}}$) use b-splines of order 3.
- 500 observations, 200 bootstrap samples, 5000 replications.

The Hypothesis

$$
H_{0}: \theta_{0} \in R \quad H_{1}: \theta_{0} \notin R
$$

Goal: Test whether $\theta_{0}(0.5)=0$ (true) employing two different approaches

Without Exploiting Monotonicity

- Set $\Upsilon_{F}(\theta)=\theta(0.5), \mathbf{F}=\mathbf{R}$, and no restriction Υ_{G} to get the set

$$
R=\{\theta: \theta(0.5)=0\}
$$

Imposing Monotonicity

- Set $\Upsilon_{F}(\theta)=\theta(0.5), \mathbf{F}=\mathbf{R}, \Upsilon_{G}(\theta)=\theta^{\prime}, \mathbf{G}=C([0,1])$ to get the set

$$
R=\left\{\theta: \theta(0.5)=0 \text { and } \theta^{\prime}(w) \leq 0 \text { for all } w \in[0,1]\right\}
$$

Implementation

Step 1

- Compute full sample statistic (using $1^{\text {st }}$-stage GMM weighting matrix)

$$
\begin{aligned}
I_{n}(R)= & \inf _{\beta \in \mathbf{R}^{j_{n}}}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{i}-p^{j_{n}}\left(W_{i}\right)^{\prime} \beta\right) q^{k_{n}}\left(Z_{i}\right)\right\| \\
& \quad \text { s.t. (i) } p^{j_{n}}\left(w_{0}\right)^{\prime} \beta=0, \text { (ii) } \nabla p^{j_{n}}(w)^{\prime} \beta \leq 0 \text { for all } w \in[0,1]
\end{aligned}
$$

Step 2

- Compute 200 weighted bootstrap $\hat{\mathbb{W}}_{n}$ and solve the optimizations

$$
\begin{aligned}
& \hat{U}_{n}(R) \equiv \inf _{\beta \in \mathbf{R}^{j_{n}}}\left\|\hat{\mathbb{W}}_{n}-\frac{1}{n} \sum_{i=1}^{n} q^{k_{n}}\left(Z_{i}\right) p^{j_{n}}\left(W_{i}\right)^{\prime} \beta\right\| \\
& \text { s.t. (i) } \nabla p^{j_{n} \prime} \beta \leq 0 \vee\left(-r_{n} \mathbf{1}_{\mathbf{G}}-\hat{\theta}_{n}\right) \text {, (ii) } p^{j_{n}}\left(w_{0}\right)^{\prime} \beta=0 \text {, (iii) }\left\|\frac{\beta}{\sqrt{n}}\right\|_{\infty} \leq \ell_{n}
\end{aligned}
$$

Implementation

Step 3

- Given 200 bootstrap statistics $\left\{\hat{U}_{n, b}(R)\right\}_{b=1}^{200}$ reject null hypothesis if

$$
\frac{1}{200} \sum_{b=1}^{200} 1\left\{\hat{U}_{n, b}(R)>I_{n}(R)\right\}<\alpha
$$

Examine Sensitivity

- To choice of k_{n} (number of moments).
- To choice of j_{n} (dimension of sieve).
- To choice of r_{n} (imposing monotonicity).

Data Driven: bootstrap quantile $\left\|\hat{\theta}_{n}-\theta_{0}\right\|_{1, \infty} \Rightarrow$ small \approx aggressive.

- To choice of ℓ_{n} (local parameter space).

Data Driven: bootstrap quantile der. est. error \Rightarrow small \approx aggressive.

Table: Level Test Imposing Monotonicity - Empirical Size

j_{n}	q_{ℓ}	q_{r}	$\sigma=1$					
			$k_{n}=6$			$k_{n}=13$		
			10\%	5\%	1\%	10\%	5\%	1\%
3	5\%	5\%	0.077	0.037	0.008	0.092	0.043	0.008
3	5\%	95\%	0.053	0.026	0.005	0.075	0.033	0.008
3	95\%	5\%	0.077	0.037	0.008	0.092	0.043	0.008
3	95\%	95\%	0.053	0.026	0.005	0.075	0.033	0.008
4	5\%	5\%	0.055	0.026	0.006	0.073	0.033	0.008
4	5\%	95\%	0.055	0.026	0.006	0.073	0.033	0.008
4	95\%	5\%	0.055	0.026	0.006	0.073	0.033	0.008
4	95\%	95\%	0.055	0.026	0.006	0.073	0.033	0.008
			$\sigma=0.01$					
			$k_{n}=6$			$k_{n}=13$		
j_{n}	q_{ℓ}	q_{r}	10\%	5\%	1\%	10\%	5\%	1\%
3	5\%	5\%	0.102	0.053	0.012	0.109	0.054	0.011
3	5\%	95\%	0.100	0.051	0.011	0.107	0.053	0.011
3	95\%	5\%	0.102	0.053	0.012	0.109	0.054	0.011
3	95\%	95\%	0.100	0.051	0.011	0.107	0.053	0.011
4	5%	5\%	0.101	0.051	0.011	0.106	0.052	0.011
4	5%	95\%	0.101	0.051	0.011	0.106	0.052	0.011
4	95\%	5\%	0.101	0.051	0.011	0.106	0.052	0.011
4	95\%	95\%	0.101	0.051	0.011	0.106	0.052	0.011

Table: Level Test Not Imposing Monotonicity - Empirical Size

		$k_{n}=6$				$k_{n}=13$		
σ	j_{n}	10%	5%	1%		10%	5%	1%
1	3	0.106	0.051	0.010		0.107	0.056	0.012
1	4	0.072	0.034	0.006		0.078	0.038	0.008
0.01	3	0.106	0.052	0.010		0.107	0.056	0.011
0.01	4	0.073	0.034	0.006		0.077	0.038	0.008

Summary

- Adequate size control across specifications.
- Imposing monotonicity test can be undersized for $\sigma=1$.
- Test insensitive to choice of ℓ_{n}.

Next: Examine power performance for $j_{n}=3$ and "aggressive" r_{n} and ℓ_{n} in

$$
Y_{i}=\sigma\left\{1-2 \Phi\left(\frac{X_{i}-0.5}{\sigma}\right)\right\}+\delta+\epsilon_{i}
$$

Figure: Empirical Power - Strict Monotonicity ($\sigma=1$)

\rightarrow Shape Restricted - - Unrestricted

$$
\sigma \equiv 1 \text { and } k_{n} \equiv 13
$$

\rightarrow Shape Restricted - - Unrestricted

Figure: Empirical Power - Monotonicity Binds ($\sigma=0.01$)
$\sigma \equiv 0.01$ and $k_{n} \equiv 6$

\rightarrow - Shape Restricted - - Unrestricted

$$
\sigma \equiv 0.01 \text { and } k_{n} \equiv 13
$$

\rightarrow Shape Restricted - - Unrestricted

Conclusion

Main Contributions

- General framework for testing or imposing shape restrictions.
- Applies to general class of conditional moment restriction models.
- Uniform analysis in nonparametric/semiparametric models.
- Simulations show promising power advantages.

Open Questions

- Data driven choices of j_{n} and k_{n} - some results in estimation.
- Data driven choices of ℓ_{n} and r_{n} - accessible in special cases.
- Straightforward extension to other models (e.g. likelihood based)

