Using Instrumental Variables for Inference about Policy Relevant Treatment Parameters

Magne Mogstad
U. Chicago

Andres Santos
UCLA

Alexander Torgovitsky
U. Chicago

November 10, 2017

Basic Question

IV and Heterogeneity

- IV estimand interpretable as LATE (Imbens \& Angrist 1994).
- Sometimes LATE has clear policy relevance.
- Other times, different parameters are of interest (external validity).

Basic Question

IV and Heterogeneity

- IV estimand interpretable as LATE (Imbens \& Angrist 1994).
- Sometimes LATE has clear policy relevance.
- Other times, different parameters are of interest (external validity).

Our Paper

- Framework for extrapolation in IV model.
- Use insight of marginal treatment effect (Heckman \& Vytlacil 2005).
- Allow flexible specifications and computational tractability.

Goal: Allow for different choices of parameters and assumptions.

The Model

Outcome

- Treatment $D \in\{0,1\}$, potential outcomes $\left(Y_{0}, Y_{1}\right)$, and actual outcome

$$
Y=D Y_{1}+(1-D) Y_{0}
$$

The Model

Outcome

- Treatment $D \in\{0,1\}$, potential outcomes $\left(Y_{0}, Y_{1}\right)$, and actual outcome

$$
Y=D Y_{1}+(1-D) Y_{0} .
$$

Selection

- For $U \sim U[0,1]$ and $\left(Y_{0}, Y_{1}, U\right)$ independent of observable instrument Z

$$
D=1\{U \leq p(Z)\}
$$

The Model

Outcome

- Treatment $D \in\{0,1\}$, potential outcomes $\left(Y_{0}, Y_{1}\right)$, and actual outcome

$$
Y=D Y_{1}+(1-D) Y_{0} .
$$

Selection

- For $U \sim U[0,1]$ and $\left(Y_{0}, Y_{1}, U\right)$ independent of observable instrument Z

$$
D=1\{U \leq p(Z)\}
$$

Comments

- $U \sim U[0,1]$ normalization $\Rightarrow p(Z)=P(D=1 \mid Z)$ (propensity score).
- Instrument monotonicity equivalent to separability (Vytlacil 2002).
- Covariates omitted for simplicity but easily incorporated.

The Model

$$
D=1\{U \leq p(Z)\}
$$

\Rightarrow Individuals with smaller unobservable U more likely to receive treatment.
Example: Suppose $Z \in\{0,1\}$ is binary and that $p(1)>p(0)$, then we have

$$
\underbrace{U \in[0, p(0)]}_{\text {always-takers }} \quad \underbrace{U \in(p(0), p(1)]}_{\text {compliers }} \quad \underbrace{U \in(p(1), 1]}_{\text {never-takers }}
$$

Comments

- Unobservable U determines likelihood of receiving treatment.
- Key Concern: U may not be independent of $\left(Y_{0}, Y_{1}\right)$ (selection).

The Model

Heckman and Vytlacil (1999, 2005, "HV") define marginal treatment effect

$$
\operatorname{MTE}(u) \equiv E\left[Y_{1}-Y_{0} \mid U=u\right]
$$

\Rightarrow summary of unobserved heterogeneity in average treatment effects.

The Model

Heckman and Vytlacil (1999, 2005, "HV") define marginal treatment effect

$$
\operatorname{MTE}(u) \equiv E\left[Y_{1}-Y_{0} \mid U=u\right]
$$

\Rightarrow summary of unobserved heterogeneity in average treatment effects.
Key: HV show that many parameters are weighted averages of the MTE

$$
\underbrace{\beta^{\star}}_{\text {parameter }}=E[\int_{0}^{1} \operatorname{MTE}(u) \times \underbrace{\omega^{\star}(u, Z)}_{\text {identified weights }} d u]
$$

The Model

Heckman and Vytlacil (1999, 2005, "HV") define marginal treatment effect

$$
\operatorname{MTE}(u) \equiv E\left[Y_{1}-Y_{0} \mid U=u\right]
$$

\Rightarrow summary of unobserved heterogeneity in average treatment effects.
Key: HV show that many parameters are weighted averages of the MTE

$$
\underbrace{\beta^{\star}}_{\text {parameter }}=E[\int_{0}^{1} \operatorname{MTE}(u) \times \underbrace{\omega^{\star}(u, Z)}_{\text {identified weights }} d u]
$$

Comments

- β^{\star} may (or may not) be identified.
- Recall $U \sim U[0,1]$ so that β^{\star} is a weighted average.

Example: LATE

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Example: LATE

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Example: Suppose $Z \in\{0,1\}$ is binary and that $p(1)>p(0)$, then we have

$$
\underbrace{E\left[Y_{1}-Y_{0} \mid p(0)<U \leq p(1)\right]}_{\beta^{\star}(\text { LATE })}=\int_{0}^{1} \underbrace{E\left[Y_{1}-Y_{0} \mid U=u\right]}_{\text {MTE }} \underbrace{\frac{1\{p(0)<u \leq p(1)\}}{p(1)-p(0)}}_{\omega^{\star}(u)} d u
$$

Comments

- LATE identified as IV estimand (i.e. identification of MTE not needed).
- Hence, LATE imposes restrictions on possible values of MTE.

Example: ATE

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Example: ATE

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Example: Suppose $Z \in\{0,1\}$ is binary and that $p(1)>p(0)$, then we have

$$
\underbrace{E\left[Y_{1}-Y_{0}\right]}_{\beta^{\star}(\mathrm{ATE})}=\int_{0}^{1} \underbrace{E\left[Y_{1}-Y_{0} \mid U=u\right]}_{\mathrm{MTE}} \underbrace{(\times 1)}_{\omega^{\star}(u)} d u
$$

Comments

- ATE is not necessarily identified with binary instrument Z.
- But! LATE still provides information on MTE and hence on ATE.

Basic Idea

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Basic Idea

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Step 1

- Find parameters β^{\star} that are separately identified (e.g. LATE).
- Employ relationship (\star) to restrict possible values of MTE function.

Basic Idea

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Step 1

- Find parameters β^{\star} that are separately identified (e.g. LATE).
- Employ relationship (\star) to restrict possible values of MTE function.

Step 2

- Define the parameter of interest (e.g. ATE).
- Impose desired restriction on MTE (optional).

Basic Idea

$$
\beta^{\star}=E\left[\int_{0}^{1} \operatorname{MTE}(u) \times \omega^{\star}(u, Z) d u\right]
$$

Step 1

- Find parameters β^{\star} that are separately identified (e.g. LATE).
- Employ relationship (\star) to restrict possible values of MTE function.

Step 2

- Define the parameter of interest (e.g. ATE).
- Impose desired restriction on MTE (optional).

Step 3

- Conduct inference on possible values of parameter of interest.
- Values must be consistent with MTE restrictions from Steps 1 and 2.

Related Literature

Extrapolation

Heckman \& Robb (1985), Heckman, Tobias, \& Vytlacil (2003), Manski (2003), Heckman \& Vytlacil (2005), Chamberlain (2010), Angrist \& Fernandez-Val (2013), Brinch, Mogstad, \& Wiswall (2015) ... (and more!)
\Rightarrow We avoid: parametric assumptions, support conditions.
\Rightarrow We allow for: treatment heterogeneity, no closed form solutions.

Related Literature

Extrapolation

Heckman \& Robb (1985), Heckman, Tobias, \& Vytlacil (2003), Manski (2003), Heckman \& Vytlacil (2005), Chamberlain (2010), Angrist \& Fernandez-Val (2013), Brinch, Mogstad, \& Wiswall (2015) ... (and more!)
\Rightarrow We avoid: parametric assumptions, support conditions.
\Rightarrow We allow for: treatment heterogeneity, no closed form solutions.

Inference

Imbens \& Manski (2004), Romano \& Shaikh (2008), Beresteanu \& Molinari (2008), Bontemps, Magnac \& Maurin (2012), Bugni, Canay, \& Shi (2015), Kaido, Molinari, \& Stoye (2016), Chernozhukov, Newey, \& Santos (2016) ...
\Rightarrow Our problem: specific convex programming problem.
\Rightarrow Allows for: uniformly valid inference under weak assumptions.

(1) General Framework

(2) Numerical Illustration

(3) Inference: Basic Outline

(4) Efficacy of Price Subsidies for Bed Nets

Notation

Assumption M: (Y, D, Z) are generated according to the model

$$
\begin{aligned}
& Y=D Y_{1}+(1-D) Y_{0} \\
& D=1\{U \leq p(Z)\}
\end{aligned}
$$

$$
\begin{gathered}
\left(Y_{0}, Y_{1}, U\right) \perp Z \\
U \sim U[0,1]
\end{gathered}
$$

Note: Covariates ignored for notational simplicity but simple to add.

Notation

Assumption M: (Y, D, Z) are generated according to the model

$$
\begin{array}{lc}
Y=D Y_{1}+(1-D) Y_{0} & \left(Y_{0}, Y_{1}, U\right) \perp Z \\
D=1\{U \leq p(Z)\} & U \sim U[0,1]
\end{array}
$$

Note: Covariates ignored for notational simplicity but simple to add.

Marginal Treatment Response (MTR)

$$
m_{d}(u) \equiv E\left[Y_{d} \mid U=u\right] \text { for } d \in\{0,1\}
$$

where $m=\left(m_{0}, m_{1}\right) \in \mathcal{M}$ for some known set \mathcal{M} (prior assumptions)
Note: By definition, $\operatorname{MTE}(u)=m_{1}(u)-m_{0}(u)$ (but + flexibility with m_{d}).

Target Parameter

$$
\beta^{\star}=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

where ω_{d}^{\star} are known or identified weighting functions for $d \in\{0,1\}$.

Target Parameter

$$
\beta^{\star}=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

where ω_{d}^{\star} are known or identified weighting functions for $d \in\{0,1\}$.

Example 1: Average Treatment Effect (ATE)

$$
\begin{gathered}
E\left[Y_{1}-Y_{0}\right]=\int_{0}^{1} \underbrace{E\left[Y_{0} \mid U=u\right]} \times \underbrace{(-1)} d u+\int_{0}^{1} \underbrace{E\left[Y_{1} \mid U=u\right]} \times \underbrace{(+1)} d u \\
m_{0}(u) \quad \omega_{0}^{\star}(u, Z)
\end{gathered}
$$

Target Parameter

$$
\beta^{\star}=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

where ω_{d}^{\star} are known or identified weighting functions for $d \in\{0,1\}$.

Example 2: Average Treatment on Treated (ATT)

$$
\begin{aligned}
& E\left[Y_{1}-Y_{0} \mid D=1\right] \\
& \quad=E[\int_{0}^{1} m_{0}(u) \underbrace{\left(-\frac{1\{u \leq p(Z)\}}{P(D=1)}\right)}_{\omega_{0}^{\star}(u, Z)} d u]+E[\int_{0}^{1} m_{1}(u) \underbrace{\left(\frac{1\{u \leq p(Z)\}}{P(D=1)}\right)}_{\omega_{1}^{\star}(u, Z)} d u]
\end{aligned}
$$

What We Know

Problem: Target parameter identified when MTR $m=\left(m_{0}, m_{1}\right)$ identified but the MTR functions $m=\left(m_{0}, m_{1}\right)$ may not be identified ...

However: We do have some information about $m=\left(m_{0}, m_{1}\right)$ through LATE

What We Know

Problem: Target parameter identified when MTR $m=\left(m_{0}, m_{1}\right)$ identified but the MTR functions $m=\left(m_{0}, m_{1}\right)$ may not be identified ...

However: We do have some information about $m=\left(m_{0}, m_{1}\right)$ through LATE

Example: Suppose $Z \in\{0,1\}$ is binary and that $p(1)>p(0)$, then we have

$$
\begin{aligned}
\frac{\operatorname{Cov}(Y, Z)}{\operatorname{Cov}(D, Z)} & =E\left[Y_{1}-Y_{0} \mid p(0)<U \leq p(1)\right] \\
& =\int_{0}^{1}\left\{m_{1}(u)-m_{0}(u)\right\} \frac{1\{p(0)<u \leq p(1)\}}{p(1)-p(0)} d u
\end{aligned}
$$

Key: LATE imposes a linear restriction on MTR ... are there others?

MTR Restrictions

Proposition: If Assumption M holds and $E\left[s^{2}(D, Z)\right]<\infty$, then it follows

$$
E[Y s(D, Z)]=E\left[\int_{0}^{1} m_{0}(u) \omega_{0 s}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1 s}(u, Z) d u\right]
$$

where $\omega_{0 s}(u, Z) \equiv s(0, Z) 1\{u>p(Z)\}$ and $\omega_{1 s}(u, Z) \equiv s(1, Z) 1\{u \leq p(Z)\}$.

Comments

- LATE corresponds to $s(D, Z)=(Z-E[Z]) / \operatorname{Cov}(D, Z)$.
- Additional choices of $s(D, Z) \Rightarrow$ more restrictions on MTR.
- Sufficiently many $s(D, Z) \Rightarrow$ reflect all information in conditional means.

Using MTR Restrictions

What We Want

$$
\beta^{\star}=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

Note: β^{\star} is linear in $m-$ i.e. $\beta^{\star}=\Gamma^{\star}(m)$ where $\Gamma^{\star}: \mathcal{M} \rightarrow \mathbf{R}$ equals

$$
\Gamma^{\star}(m)=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

Using MTR Restrictions

What We Want

$$
\beta^{\star}=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

Note: β^{\star} is linear in $m-$ i.e. $\beta^{\star}=\Gamma^{\star}(m)$ where $\Gamma^{\star}: \mathcal{M} \rightarrow \mathbf{R}$ equals

$$
\Gamma^{\star}(m)=E\left[\int_{0}^{1} m_{0}(u) \omega_{0}^{\star}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1}^{\star}(u, Z) d u\right]
$$

What We Know

$$
E[Y s(D, Z)]=E\left[\int_{0}^{1} m_{0}(u) \omega_{0 s}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1 s}(u, Z) d u\right]
$$

Note: Linear restrictions - i.e. $E[Y s(D, Y)]=\Gamma_{s}(m)$ where $\Gamma_{s}(m)$ equals

$$
\Gamma_{s}(m)=E\left[\int_{0}^{1} m_{0}(u) \omega_{0 s}(u, Z) d u\right]+E\left[\int_{0}^{1} m_{1}(u) \omega_{1 s}(u, Z) d u\right]
$$

Using MTR Restrictions

Proposition: Let \mathcal{M} be convex, \mathcal{S} a set of functions of (D, Z), and define

$$
\begin{aligned}
& \underline{\beta}^{\star} \equiv \inf _{m \in \mathcal{M}} \Gamma^{\star}(m) \text { s.t. } E[Y s(D, Z)]=\Gamma_{s}(m) \text { for all } s \in \mathcal{S} \\
& \bar{\beta}^{\star} \equiv \sup _{m \in \mathcal{M}} \Gamma^{\star}(m) \text { s.t. } E[Y s(D, Z)]=\Gamma_{s}(m) \text { for all } s \in \mathcal{S}
\end{aligned}
$$

Then closure of feasible (s.t. linear constraints) values of β^{\star} equals $\left[\underline{\beta}^{\star}, \bar{\beta}^{\star}\right]$.

Comments

- Convex optimization problem \Rightarrow simple estimators (when feasible).
- Constraints may be unfeasible \Rightarrow model is misspecified.
- For appropriate \mathcal{S} can exhaust information in conditional means. ... but still may not correspond to identified set (unless Y binary).

(1) General Framework

(2) Numerical Illustration

(3) Inference: Basic Outline

4. Efficacy of Price Subsidies for Bed Nets

Basic Design

Data Generating Process

- Instrument takes three values $Z \in\{0,1,2\}$.
- Outcome Y is binary $Y \in\{0,1\}$.
- Propensity score $p(0)=0.35, p(1)=0.6$, and $p(2)=0.7$.

Parameter of Interest

$$
\operatorname{LATE}(0.35,0.9) \equiv E\left[Y_{1}-Y_{0} \mid U \in(0.35,0.9]\right]=0.046
$$

Comments

- Three LATEs nonparametrically identified.
- Parameter of interest measures sensitivity to expanding complier group.
- MTR functions not identified (unless \mathcal{M} is restricted).

Basic Information

Weights
(where $\neq 0$)

$$
d=0
$$

Figure: MTRs Used in the Data Generating Process (DGP)

Just a Start

Nonparametric bounds: $[-0.421,0.500]$

Figure: Maximizing MTRs When Using Only the IV Slope Coefficient

Adding Information

Nonparametric bounds: $[-0.411,0.500]$

Figure: Maximizing MTRs When Using Both the IV and OLS Slope Coefficients

Adding All Information

Nonparametric bounds: $[-0.138,0.407]$

Figure: Maximizing MTRs When Using All IV-like Estimands (Sharp Bounds)

Adding Shape Restrictions

Nonparametric bounds, MTRs decreasing: [-0.095,0.077]

Figure: Maximizing MTRs When Restricted to be Decreasing

Adding Smoothness

Order 9 polynomial bounds, MTRs decreasing: [0.000,0.067]

Figure: Maximizing MTRs When Further Restricted to be a 10th Order Polynomial

Summary

Available Information

- Valuable information in the data beyond identified LATEs.
- Parameters can be informative without being interesting (e.g. OLS).

Shape Restrictions

- When credible, they can substantially improve bounds.
- Value in parametric and nonparametric restrictions.

Additional Comments

- Computational approach allows flexibility without analytical solution.
- Different information for different parameters (e.g. LATE $(0.35, \bar{u}))$.

(1) General Framework

(2) Numerical Illustration

(3) Inference: Basic Outline

(4) Efficacy of Price Subsidies for Bed Nets

Setup

Goal: Build confidence regions and/or conduct specification tests.

Setup

Goal: Build confidence regions and/or conduct specification tests.
Formally: Given i.i.d. sample $\left\{Y_{i}, Z_{i}, D_{i}\right\}_{i=1}^{n}$ with $(Y, Z, D) \sim P \in \mathbf{P}$, we test

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P} \backslash \mathbf{P}_{0}
$$

where for some linear map Γ_{P} and element β_{P} we define \mathbf{P}_{0} to equal

$$
\mathbf{P}_{0} \equiv\left\{P \in \mathbf{P}: \Gamma_{P}(m)=\beta_{P} \text { for some } m \in \mathcal{M}\right\}
$$

Allows For

- Confidence regions for target parameter.
- Specification tests for different maintained assumptions

Test Statistic

$$
\mathbf{P}_{0} \equiv\left\{P \in \mathbf{P}: \Gamma_{P}(m)=\beta_{P} \text { for some } m \in \mathcal{M}\right\}
$$

Test Statistic

$$
\mathbf{P}_{0} \equiv\left\{P \in \mathbf{P}: \Gamma_{P}(m)=\beta_{P} \text { for some } m \in \mathcal{M}\right\}
$$

Test Statistic

$$
T_{n} \equiv \inf _{m \in \mathcal{M}} \sqrt{n}\|\hat{\beta}-\hat{\Gamma}(m)\|
$$

Comments

- Theory allows for use of sieve \mathcal{M}_{n} (if needed for computation).
- Linear minimum distance problem, complications arise from \mathcal{M}.
- "Irregular" behavior \Rightarrow Bootstrap failure (Fang and Santos (2016)).

Inference Results

Test Statistic

$$
T_{n} \equiv \inf _{m \in \mathcal{M}} \sqrt{n}\|\hat{\beta}-\hat{\Gamma}(m)\|
$$

Main Result Propose Bootstrap critical values and establish size control.

Contributions

- Size control is uniform in large class of distributions P.
- Allow shape restrictions, and parametric/nonparametric specifications.
- Employ with finite or infinite number of moment restrictions.
- More generally applicable to linear programming problems.
- Bootstrap statistic obtained as a bilinear optimization problem.

(1) General Framework

(2) Numerical Illustration

(3) Inference: Basic Outline

(4) Efficacy of Price Subsidies for Bed Nets

Background

The Data

- Randomized control experiment in Kenya by Dupas (2014).
- Households randomly assigned a price (out of 17) for antimalaria net.
- Total of 1200 households in six villages.
- Follow up check to see if malaria net was in use.

Policy Concerns

- Subsidising inframarginal consumers that would have purchased.
- Unwilling to purchase may be unwilling to use (nonmonetary cost).
- Higher price may exclude poor or credit constrained individuals.

Background

The Setup

- Y indicator for whether net is in use.
- Z randomly assigned price.
- D indicator for whether net was purchased.

Figure: Impact of Price on the Household's Purchase of Bed Net (logit regression)

Policy Examination

First Target Parameter

- Obtain the average treatment effect.
- Interpretable as comparing no availability of net with free nets.

Second Target Parameter

- Obtain LATE from no net to propensity score at Ksh 150 (avg price).
- Interpretable as the effect of introducing the net into the market.
- Propensity score at 150 estimated via logit prediction.

Conclusion

Summary

- General method for inference on a specified target parameter.
- Does not require continuous/large support instruments (though help).
- Allows for specification testing.
- Computation is fast and reliable - linear/bilinear programming.
- Uniformly valid inference in linear programs.

In Progress

- Extensive Monte Carlo experiments.
- Developing R package (with Bradley Setzler).
- Additional guidance on bandwidth selection.

