Using Instrumental Variables for Inference about Policy Relevant Treatment Parameters

Magne Mogstad Andres Santos Alexander Torgovitsky
U. Chicago UCLA U. Chicago

November 10, 2017
Basic Question

IV and Heterogeneity

- IV estimand interpretable as LATE (Imbens & Angrist 1994).
- Sometimes LATE has clear policy relevance.
- Other times, different parameters are of interest (external validity).
Basic Question

IV and Heterogeneity

- IV estimand interpretable as LATE (Imbens & Angrist 1994).
- Sometimes LATE has clear policy relevance.
- Other times, different parameters are of interest (external validity).

Our Paper

- Framework for extrapolation in IV model.
- Use insight of marginal treatment effect (Heckman & Vytlacil 2005).
- Allow flexible specifications and computational tractability.

Goal: Allow for different choices of parameters and assumptions.
The Model

Outcome
- Treatment $D \in \{0, 1\}$, potential outcomes (Y_0, Y_1), and actual outcome

$$Y = DY_1 + (1 - D)Y_0.$$
The Model

Outcome
• Treatment $D \in \{0, 1\}$, potential outcomes (Y_0, Y_1), and actual outcome

\[Y = DY_1 + (1 - D)Y_0. \]

Selection
• For $U \sim U[0, 1]$ and (Y_0, Y_1, U) independent of observable instrument Z

\[D = 1\{U \leq p(Z)\} \]
The Model

Outcome
- Treatment $D \in \{0, 1\}$, potential outcomes (Y_0, Y_1), and actual outcome

$$Y = DY_1 + (1 - D)Y_0.$$

Selection
- For $U \sim U[0, 1]$ and (Y_0, Y_1, U) independent of observable instrument Z

$$D = 1\{U \leq p(Z)\}$$

Comments
- $U \sim U[0, 1]$ normalization $\Rightarrow p(Z) = P(D = 1|Z)$ (propensity score).
- Instrument monotonicity equivalent to separability (Vytlacil 2002).
- Covariates omitted for simplicity but easily incorporated.
The Model

\[D = 1\{U \leq p(Z)\} \]

⇒ Individuals with smaller unobservable \(U \) more likely to receive treatment.

Example: Suppose \(Z \in \{0, 1\} \) is binary and that \(p(1) > p(0) \), then we have

- \(U \in [0, p(0)] \): always-takers
- \(U \in (p(0), p(1)] \): compliers
- \(U \in (p(1), 1] \): never-takers

Comments

- Unobservable \(U \) determines likelihood of receiving treatment.
- Key Concern: \(U \) may not be independent of \((Y_0, Y_1) \) (selection).
The Model

\[\text{MTE}(u) \equiv E[Y_1 - Y_0 | U = u] \]

⇒ summary of unobserved heterogeneity in average treatment effects.
The Model

$$\text{MTE}(u) \equiv E[Y_1 - Y_0 | U = u]$$

⇒ summary of unobserved heterogeneity in average treatment effects.

Key: HV show that many parameters are weighted averages of the MTE

$$\beta^* = E[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) \, du]$$

parameter identified weights
The Model

\[\text{MTE}(u) \equiv E[Y_1 - Y_0 | U = u] \]

⇒ summary of unobserved heterogeneity in average treatment effects.

Key: HV show that many parameters are weighted averages of the MTE

\[\hat{\beta}^* = E \left[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) \, du \right] \]

parameter identified weights

Comments

- \(\hat{\beta}^* \) may (or may not) be identified.
- Recall \(U \sim U[0, 1] \) so that \(\hat{\beta}^* \) is a weighted average.
Example: LATE

\[\beta^* = E\left[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) \, du \right] \]
Example: LATE

\[\beta^* = E\left[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) du \right] \]

Example: Suppose \(Z \in \{0, 1\} \) is binary and that \(p(1) > p(0) \), then we have

\[
E[Y_1 - Y_0 | p(0) < U \leq p(1)] = \int_0^1 E[Y_1 - Y_0 | U = u] \frac{1\{p(0) < u \leq p(1)\}}{p(1) - p(0)} du
\]

Comments

- LATE identified as IV estimand (i.e. identification of MTE not needed).
- Hence, LATE imposes restrictions on possible values of MTE.
Example: ATE

\[\beta^* = E\left[\int_0^1 MTE(u) \times \omega^*(u, Z) du \right] \]
Example: ATE

\[\beta^* = E[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) du] \]

Example: Suppose \(Z \in \{0, 1\} \) is binary and that \(p(1) > p(0) \), then we have

\[E[Y_1 - Y_0] = \int_0^1 E[Y_1 - Y_0|U = u] (\times 1) du \]

\(\beta^* \) (ATE) \hspace{1cm} \text{MTE} \hspace{1cm} \omega^*(u)

Comments

- ATE is not necessarily identified with binary instrument \(Z \).
- But! LATE still provides information on MTE and hence on ATE.
Basic Idea

\[\beta^* = E[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) du] \] (*)
Basic Idea

\[\beta^* = E \left[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) \, du \right] \]

(*)

Step 1
- Find parameters \(\beta^* \) that are separately identified (e.g. LATE).
- Employ relationship (\(\star \)) to restrict possible values of MTE function.
Basic Idea

\[\beta^* = E[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) du] \]

Step 1

- Find parameters \(\beta^* \) that are separately identified (e.g. LATE).
- Employ relationship (\(\star \)) to restrict possible values of MTE function.

Step 2

- Define the parameter of interest (e.g. ATE).
- Impose desired restriction on MTE (optional).
Basic Idea

\[\beta^* = E\left[\int_0^1 \text{MTE}(u) \times \omega^*(u, Z) du \right] \]

\((\star)\)

Step 1

• Find parameters \(\beta^*\) that are separately identified (e.g. LATE).
• Employ relationship \((\star)\) to restrict possible values of MTE function.

Step 2

• Define the parameter of interest (e.g. ATE).
• Impose desired restriction on MTE (optional).

Step 3

• Conduct inference on possible values of parameter of interest.
• Values must be consistent with MTE restrictions from Steps 1 and 2.
Related Literature

Extrapolation

⇒ We avoid: parametric assumptions, support conditions.
⇒ We allow for: treatment heterogeneity, no closed form solutions.
Related Literature

Extrapolation

⇒ We avoid: parametric assumptions, support conditions.
⇒ We allow for: treatment heterogeneity, no closed form solutions.

Inference

⇒ Our problem: specific convex programming problem.
⇒ Allows for: uniformly valid inference under weak assumptions.
1. General Framework

2. Numerical Illustration

3. Inference: Basic Outline

4. Efficacy of Price Subsidies for Bed Nets
Notation

Assumption M: (Y, D, Z) are generated according to the model

\[Y = DY_1 + (1 - D)Y_0 \]
\[D = 1\{U \leq p(Z)\} \]
\[(Y_0, Y_1, U) \perp Z \]
\[U \sim U[0, 1] \]

Note: Covariates ignored for notational simplicity but simple to add.
Notation

Assumption M: \((Y, D, Z)\) are generated according to the model

\[
Y = DY_1 + (1 - D)Y_0 \\
D = 1\{U \leq p(Z)\}
\]

\((Y_0, Y_1, U) \perp Z\)

\(U \sim U[0, 1]\)

Note: Covariates ignored for notational simplicity but simple to add.

Marginal Treatment Response (MTR)

\[
m_d(u) \equiv E[Y_d|U = u] \text{ for } d \in \{0, 1\}
\]

where \(m = (m_0, m_1) \in \mathcal{M}\) for some known set \(\mathcal{M}\) (prior assumptions)

Note: By definition, \(\text{MTE}(u) = m_1(u) - m_0(u)\) (but + flexibility with \(m_d\)).
Target Parameter

\[\beta^* = E[\int_0^1 m_0(u)\omega_0^*(u, Z)du] + E[\int_0^1 m_1(u)\omega_1^*(u, Z)du] \]

where \(\omega_d^* \) are known or identified weighting functions for \(d \in \{0, 1\} \).
Target Parameter

\[\beta^* = E\left[\int_0^1 m_0(u)\omega_0^*(u, Z)du \right] + E\left[\int_0^1 m_1(u)\omega_1^*(u, Z)du \right] \]

where \(\omega_d^* \) are known or identified weighting functions for \(d \in \{0, 1\} \).

Example 1: Average Treatment Effect (ATE)

\[E[Y_1 - Y_0] = \int_0^1 E[Y_0|U = u] \times (-1) \, du + \int_0^1 E[Y_1|U = u] \times (+1) \, du \]

\[m_0(u) \quad \omega_0^*(u, Z) \quad m_1(u) \quad \omega_1^*(u, Z) \]
Target Parameter

\[\beta^* = E\left[\int_0^1 m_0(u)\omega^*_0(u, Z)du \right] + E\left[\int_0^1 m_1(u)\omega^*_1(u, Z)du \right] \]

where \(\omega^*_d \) are known or identified weighting functions for \(d \in \{0, 1\} \).

Example 2: Average Treatment on Treated (ATT)

\[E[Y_1 - Y_0 | D = 1] \]
\[= E\left[\int_0^1 m_0(u)\left(-\frac{1\{u \leq p(Z)\}}{P(D = 1)}\right)du \right] + E\left[\int_0^1 m_1(u)\left(\frac{1\{u \leq p(Z)\}}{P(D = 1)}\right)du \right] \]

\[\omega^*_0(u, Z) \quad \omega^*_1(u, Z) \]
What We Know

Problem: Target parameter identified when MTR $m = (m_0, m_1)$ identified ...
... but the MTR functions $m = (m_0, m_1)$ may not be identified ...

However: We do have some information about $m = (m_0, m_1)$ through LATE

Example: Suppose $Z \in \{0, 1\}$ is binary and that $p(1) > p(0)$, then we have

$$\text{Cov}(Y, Z) = \text{Cov}(D, Z) = E\left[Y_1 - Y_0 | p(0) \leq U \leq p(1) \right] = \int_0^1 \left\{ m_1(u) - m_0(u) \right\} 1 \{ p(0) \leq u \leq p(1) \} p(1) - p(0) du$$

Key: LATE imposes a linear restriction on MTR ... are there others?

Mogstad, Santos, and Torgovitsky. November 10, 2017. UCLA
What We Know

Problem: Target parameter identified when MTR \(m = (m_0, m_1) \) identified but the MTR functions \(m = (m_0, m_1) \) may not be identified ...

However: We do have some information about \(m = (m_0, m_1) \) through LATE

Example: Suppose \(Z \in \{0, 1\} \) is binary and that \(p(1) > p(0) \), then we have

\[
\frac{\text{Cov}(Y, Z)}{\text{Cov}(D, Z)} = E[Y_1 - Y_0 | p(0) < U \leq p(1)]
\]

\[
= \int_0^1 \{m_1(u) - m_0(u)\} \frac{1\{p(0) < u \leq p(1)\}}{p(1) - p(0)} du
\]

Key: LATE imposes a linear restriction on MTR ... are there others?

Mogstad, Santos, and Torgovitsky. November 10, 2017. UCLA
Proposition: If Assumption M holds and $E[s^2(D, Z)] < \infty$, then it follows

$$E[Ys(D, Z)] = E[\int_0^1 m_0(u)\omega_{0s}(u, Z)du] + E[\int_0^1 m_1(u)\omega_{1s}(u, Z)du]$$

where $\omega_{0s}(u, Z) \equiv s(0, Z)1\{u > p(Z)\}$
and $\omega_{1s}(u, Z) \equiv s(1, Z)1\{u \leq p(Z)\}$.

Comments
- LATE corresponds to $s(D, Z) = (Z - E[Z]) / \text{Cov}(D, Z)$.
- Additional choices of $s(D, Z) \Rightarrow$ more restrictions on MTR.
- Sufficiently many $s(D, Z) \Rightarrow$ reflect all information in conditional means.
Using MTR Restrictions

What We Want

\[\beta^* = E \left[\int_0^1 m_0(u)\omega^*_0(u, Z)du \right] + E \left[\int_0^1 m_1(u)\omega^*_1(u, Z)du \right] \]

Note: \(\beta^* \) is linear in \(m \) – i.e. \(\beta^* = \Gamma^*(m) \) where \(\Gamma^* : \mathcal{M} \rightarrow \mathbb{R} \) equals

\[\Gamma^*(m) = E \left[\int_0^1 m_0(u)\omega^*_0(u, Z)du \right] + E \left[\int_0^1 m_1(u)\omega^*_1(u, Z)du \right] \]
Using MTR Restrictions

What We Want

\[\beta^* = E\left[\int_0^1 m_0(u)\omega_0^*(u, Z)du \right] + E\left[\int_0^1 m_1(u)\omega_1^*(u, Z)du \right] \]

Note: \(\beta^* \) is linear in \(m \) – i.e. \(\beta^* = \Gamma^*(m) \) where \(\Gamma^*: \mathcal{M} \rightarrow \mathbb{R} \) equals

\[\Gamma^*(m) = E\left[\int_0^1 m_0(u)\omega_0^*(u, Z)du \right] + E\left[\int_0^1 m_1(u)\omega_1^*(u, Z)du \right] \]

What We Know

\[E[Y_s(D, Z)] = E\left[\int_0^1 m_0(u)\omega_{0s}(u, Z)du \right] + E\left[\int_0^1 m_1(u)\omega_{1s}(u, Z)du \right] \]

Note: Linear restrictions – i.e. \(E[Y_s(D, Y)] = \Gamma_s(m) \) where \(\Gamma_s(m) \) equals

\[\Gamma_s(m) = E\left[\int_0^1 m_0(u)\omega_{0s}(u, Z)du \right] + E\left[\int_0^1 m_1(u)\omega_{1s}(u, Z)du \right] \]
Proposition: Let \mathcal{M} be convex, S a set of functions of (D, Z), and define

$$
\underline{\beta^*} \equiv \inf_{m \in \mathcal{M}} \Gamma^*(m) \text{ s.t. } E[Y s(D, Z)] = \Gamma_s(m) \text{ for all } s \in S
$$

$$
\bar{\beta}^* \equiv \sup_{m \in \mathcal{M}} \Gamma^*(m) \text{ s.t. } E[Y s(D, Z)] = \Gamma_s(m) \text{ for all } s \in S
$$

Then closure of feasible (s.t. linear constraints) values of β^* equals $[\underline{\beta^*}, \bar{\beta}^*]$.

Comments

- Convex optimization problem \Rightarrow simple estimators (when feasible).
- Constraints may be unfeasible \Rightarrow model is misspecified.
- For appropriate S can exhaust information in conditional means.
 ... but still may not correspond to identified set (unless Y binary).
1 General Framework

2 Numerical Illustration

3 Inference: Basic Outline

4 Efficacy of Price Subsidies for Bed Nets
Basic Design

Data Generating Process

- Instrument takes three values $Z \in \{0, 1, 2\}$.
- Outcome Y is binary $Y \in \{0, 1\}$.
- Propensity score $p(0) = 0.35$, $p(1) = 0.6$, and $p(2) = 0.7$.

Parameter of Interest

$$\text{LATE}(0.35, 0.9) \equiv E[Y_1 - Y_0 | U \in (0.35, 0.9)] = 0.046$$

Comments

- Three LATEs nonparametrically identified.
- Parameter of interest measures sensitivity to expanding complier group.
- MTR functions not identified (unless M is restricted).
Basic Information

Weights (where $\neq 0$)

$d = 0$

$d = 1$

Figure: MTRs Used in the Data Generating Process (DGP)
Nonparametric bounds: [-0.421, 0.500]

Weights (where $\neq 0$)

$d = 0$

$d = 1$

MTR

Figure: Maximizing MTRs When Using Only the IV Slope Coefficient
Adding Information

Nonparametric bounds: [-0.411, 0.500]

Weights
(where \(\neq 0 \))

\(d = 0 \)

\(d = 1 \)

MTR

Maximizing MTRs

LATE(0.35, 0.90)

IV slope

OLS slope

Figure: Maximizing MTRs When Using Both the IV and OLS Slope Coefficients
Adding All Information

Nonparametric bounds: [-0.138, 0.407]

Figure: Maximizing MTRs When Using All IV–like Estimands (Sharp Bounds)
Nonparametric bounds, MTRs decreasing: [-0.095, 0.077]

Weights (where $\neq 0$)

$u = 0$ 0.2 0.4 0.6 0.8 1

-2 0 2

MTR

Maximizing MTRs

$LATE(0.35, 0.90)$

$(1 - D)1[Z = 1]$ $(1 - D)1[Z = 2]$ $(1 - D)1[Z = 3]$

Figure: Maximizing MTRs When Restricted to be Decreasing
Adding Smoothness

Order 9 polynomial bounds, MTRs decreasing: \([0.000, 0.067]\)

Figure: Maximizing MTRs When Further Restricted to be a 10th Order Polynomial
Available Information

- Valuable information in the data beyond identified LATEs.
- Parameters can be informative without being interesting (e.g. OLS).

Shape Restrictions

- When credible, they can substantially improve bounds.
- Value in parametric and nonparametric restrictions.

Additional Comments

- Computational approach allows flexibility without analytical solution.
- Different information for different parameters (e.g. LATE(0.35, \(\bar{u} \))).
General Framework

Numerical Illustration

Inference: Basic Outline

Efficacy of Price Subsidies for Bed Nets
Setup

Goal: Build confidence regions and/or conduct specification tests.
Setup

Goal: Build confidence regions and/or conduct specification tests.

Formally: Given i.i.d. sample \(\{Y_i, Z_i, D_i\}_{i=1}^n \) with \((Y, Z, D) \sim P \in \mathcal{P}\), we test

\[
H_0 : P \in \mathcal{P}_0 \quad \quad H_1 : P \in \mathcal{P} \setminus \mathcal{P}_0
\]

where for some linear map \(\Gamma_P \) and element \(\beta_P \) we define \(\mathcal{P}_0 \) to equal

\[
\mathcal{P}_0 \equiv \{ P \in \mathcal{P} : \Gamma_P(m) = \beta_P \text{ for some } m \in \mathcal{M} \}
\]

Allows For

- Confidence regions for target parameter.
- Specification tests for different maintained assumptions.
Test Statistic

\[P_0 \equiv \{ P \in \mathbf{P} : \Gamma_P(m) = \beta_P \text{ for some } m \in \mathcal{M} \} \]
$P_0 \equiv \{ P \in P : \Gamma_P(m) = \beta_P \text{ for some } m \in M \}$

Test Statistic

$T_n \equiv \inf_{m \in M} \sqrt{n} \| \hat{\beta} - \hat{\Gamma}(m) \|$

Comments

- Theory allows for use of sieve \mathcal{M}_n (if needed for computation).
- Linear minimum distance problem, complications arise from \mathcal{M}.
- “Irregular” behavior \Rightarrow Bootstrap failure (Fang and Santos (2016)).
Inference Results

Test Statistic

\[T_n \equiv \inf_{m \in M} \sqrt{n} \| \hat{\beta} - \hat{\Gamma}(m) \| \]

Main Result Propose Bootstrap critical values and establish size control.

Contributions

- Size control is uniform in large class of distributions \(P \).
- Allow shape restrictions, and parametric/nonparametric specifications.
- Employ with finite or infinite number of moment restrictions.
- More generally applicable to linear programming problems.
- Bootstrap statistic obtained as a bilinear optimization problem.
General Framework

Numerical Illustration

Inference: Basic Outline

Efficacy of Price Subsidies for Bed Nets
Background

The Data

- Randomized control experiment in Kenya by Dupas (2014).
- Households randomly assigned a price (out of 17) for antimalaria net.
- Total of 1200 households in six villages.
- Follow up check to see if malaria net was in use.

Policy Concerns

- Subsidising inframarginal consumers that would have purchased.
- Unwilling to purchase may be unwilling to use (nonmonetary cost).
- Higher price may exclude poor or credit constrained individuals.
Background

The Setup

- Y indicator for whether net is in use.
- Z randomly assigned price.
- D indicator for whether net was purchased.

Figure: Impact of Price on the Household’s Purchase of Bed Net (logit regression)
Policy Examination

First Target Parameter

- Obtain the average treatment effect.
- Interpretable as comparing no availability of net with free nets.

Second Target Parameter

- Obtain LATE from no net to propensity score at Ksh 150 (avg price).
- Interpretable as the effect of introducing the net into the market.
- Propensity score at 150 estimated via logit prediction.
Information Specification

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
<th>(13)</th>
<th>(14)</th>
<th>(15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>✓</td>
</tr>
<tr>
<td>Linear in (p(Z))</td>
<td>✓</td>
</tr>
<tr>
<td>OLS</td>
<td>✓</td>
</tr>
<tr>
<td>1((Z \leq 50))</td>
<td>✓</td>
</tr>
<tr>
<td>1((Z \leq 150))</td>
<td>✓</td>
</tr>
</tbody>
</table>

Panel A. Population Average Treatment Effect

Bounds

| K (polynomial order) | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP |
|----------------------|---|---|----|----|----|---|---|----|----|----|---|---|----|----|----|----|
| Lower | .6521 | .4646 | .3857 | .3275 | .2533 | .6521 | .4956 | .4700 | .4537 | .3954 | .6365 | .5602 | .5269 | .4487 |
| Upper | .6772 | .7269 | .7362 | .7445 | .7515 | .6521 | .7269 | .7362 | .7445 | .7515 | .7104 | .7178 | .7229 | .7253 |

90% Confidence Interval

| K (polynomial order) | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP |
|----------------------|---|---|----|----|----|---|---|----|----|----|---|---|----|----|----|----|
| Lower | .5486 | .3761 | .2995 | .2421 | .4282 | .4032 | .3511 | .3204 | .5206 | .4130 | .3652 | .3260 |
| Upper | .7462 | .8019 | .8102 | .8139 | .7516 | .8093 | .8179 | .8209 | .7491 | .7910 | .7941 | .7978 |

Panel B. PRTE at Free Provision versus a Price of 150 Ksh

Bounds

| K (polynomial order) | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP |
|----------------------|---|---|----|----|----|---|---|----|----|----|---|---|----|----|----|----|
| Lower | .6600 | .5881 | .5626 | .5444 | .4817 | .6600 | .5881 | .5626 | .5444 | .4856 | .6758 | .6506 | .6214 | .5573 |
| Upper | .7049 | .8140 | .8469 | .8817 | .9732 | .6600 | .7085 | .7172 | .7275 | .7941 | .6895 | .6988 | .7140 | .7492 |

90% Confidence Interval

| K (polynomial order) | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP | 2 | 6 | 10 | 20 | NP |
|----------------------|---|---|----|----|----|---|---|----|----|----|---|---|----|----|----|----|
| Lower | .5417 | .5005 | .4695 | .4479 | .3890 | .3472 | .3414 | .3320 | .5079 | .4755 | .4584 | .4281 |
| Upper | .7686 | .9161 | .9519 | .9746 | .7732 | .9263 | .9616 | .9838 | .7713 | .9093 | .9291 | .9511 |

Specifications of the IV-like Estimands

<table>
<thead>
<tr>
<th>Intercept</th>
<th>(s(d, z) = 1)</th>
<th>(s(d, z) = 1)</th>
<th>(s(d, z) = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear in (p(Z))</td>
<td>(s(d, z) = p(z))</td>
<td>(s(d, z) = p(z))</td>
<td>(s(d, z) = p(z))</td>
</tr>
<tr>
<td>OLS</td>
<td>(s(d, z) = d)</td>
<td>(s(d, z) = d)</td>
<td>(s(d, z) = d)</td>
</tr>
<tr>
<td>1((Z \leq 50))</td>
<td>(s(d, z) = 1(z \leq 50))</td>
<td>(s(d, z) = 1(z \leq 50))</td>
<td>(s(d, z) = 1(z \leq 50))</td>
</tr>
<tr>
<td>1((Z \leq 150))</td>
<td>(s(d, z) = 1(z \leq 150))</td>
<td>(s(d, z) = 1(z \leq 150))</td>
<td>(s(d, z) = 1(z \leq 150))</td>
</tr>
</tbody>
</table>
Conclusion

Summary

• General method for inference on a specified target parameter.
• Does not require continuous/large support instruments (though help).
• Allows for specification testing.
• Computation is fast and reliable – linear/bilinear programming.
• Uniformly valid inference in linear programs.

In Progress

• Extensive Monte Carlo experiments.
• Developing R package (with Bradley Setzler).
• Additional guidance on bandwidth selection.