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This article studies an asymptotic framework for conducting inference on parameters of the form
φ(θ0), where φ is a known directionally differentiable function and θ0 is estimated by θ̂n. In these settings,
the asymptotic distribution of the plug-in estimator φ(θ̂n) can be derived employing existing extensions to
the Delta method. We show, however, that (full) differentiability of φ is a necessary and sufficient condition
for bootstrap consistency whenever the limiting distribution of θ̂n is Gaussian. An alternative resampling
scheme is proposed that remains consistent when the bootstrap fails, and is shown to provide local size
control under restrictions on the directional derivative of φ. These results enable us to reduce potentially
challenging statistical problems to simple analytical calculations—a feature we illustrate by developing a
test of whether an identified parameter belongs to a convex set. We highlight the empirical relevance of
our results by conducting inference on the qualitative features of trends in (residual) wage inequality in
the U.S.
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1. INTRODUCTION

The Delta method is a cornerstone of asymptotic analysis, allowing researchers to easily derive
asymptotic distributions, compute standard errors, and establish bootstrap consistency.1 However,
an important class of estimation and inference problems in economics fall outside its scope. These
problems study parameters of the formφ(θ0), where θ0 is unknown but estimable andφ is a known
but potentially non-differentiable function. Such a setting arises frequently in economics, with
applications including the construction of parameter confidence regions in moment inequality

1. Interestingly, despite its importance, the origins of the Delta method remain obscure. ver Hoef (2012) attributes
its invention to the economist Robert Dorfman in his article Dorfman (1938), which was curiously published by the
Worcester State Hospital (a public asylum for the insane).
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models (Pakes et al., 2006; Ciliberto and Tamer, 2009), the study of convex partially identified
sets (Beresteanu and Molinari, 2008; Bontemps et al., 2012), and the development of tests of
superior predictive ability (White, 2000; Hansen, 2005), of stochastic dominance (Linton et al.,
2010), and of likelihood ratio ordering (Beare and Moon, 2015).

The aforementioned examples share a structure common to numerous “non-standard”
inference problems in economics: the transformation φ is directionally (but not fully)
differentiable in a local neighbourhood of θ0. In this article, we show this common structure
enables us to reduce challenging statistical questions to simple analytical considerations regarding
the directional derivative of φ – much in the same manner the Delta method and its bootstrap
counterpart fundamentally simplify the analysis of applications in whichφ is (fully) differentiable.
Concretely, we examine a setting in which θ0 is a possibly infinite dimensional parameter and there
exists an estimator θ̂n whose asymptotic distribution we denote by G0—i.e. for some sequence
rn ↑∞, we have

rn{θ̂n −θ0} L→G0. (1)

Within this framework, we study a simple unifying approach for conducting inference on the
parameter φ(θ0) by employing φ(θ̂n) and a suitable estimator of its asymptotic distribution—
a practice common in, for example, the study of moment inequality (Andrews and Soares,
2010), conditional moment inequality (Andrews and Shi, 2013), and incomplete linear models
(Beresteanu and Molinari, 2008).

As has been previously noted in the literature, the traditional Delta method generalizes to the
case where φ is directionally differentiable. In particular, Shapiro (1991) and Dümbgen (1993)
show that the Delta method may be applied whenever φ is Hadamard directionally differentiable
at θ0 (we review Hadamard directional differentiability in Section 2). This extension of the Delta
method readily implies that

rn{φ(θ̂n)−φ(θ0)} L→φ′
θ0

(G0), (2)

where φ′
θ0

denotes the directional derivative of φ at θ0. The utility of the asymptotic distribution

of φ(θ̂n), however, hinges on our ability to consistently estimate it. While it is tempting in these
problems to resort to resampling schemes such as the bootstrap of Efron (1979), we know by
way of example that they may be inconsistent even if they are valid for the original estimator
θ̂n (Bickel et al., 1997; Andrews, 2000; Woutersen and Ham, 2013). In our first main result, we
establish that these examples reflect a deeper underlying principle. Specifically, we establish that
whenever the asymptotic distribution of θ̂n is Gaussian, full differentiability of φ at θ0 is in fact
a necessary and sufficient condition for the consistency of “standard” bootstrap methods. As
a result, we obtain a purely analytical diagnostic for assessing bootstrap consistency in these
settings: one need only verify whether φ is (fully) differentiable. An important consequence of
our characterization of bootstrap consistency is that, in our setting, “standard” bootstrap methods
in fact fail whenever the asymptotic distribution of φ(θ̂n) is not Gaussian—a conclusion that
yields an alternative simple way to detect the failure of the bootstrap.

Intuitively, consistently estimating the asymptotic distribution of φ(θ̂n) requires us to
adequately approximate both the distribution of G0 and the directional derivative φ′

θ0
(see

(2)). While a consistent bootstrap procedure for θ̂n enables us to do the former, the bootstrap
fails for φ(θ̂n) due to its inability to properly estimate φ′

θ0
. These heuristics, however, readily

suggest a remedy to the problem: to compose a suitable estimator φ̂′
n for φ′

θ0
with the bootstrap

approximation to the asymptotic distribution of θ̂n. We formalize this intuition, and provide
conditions on φ̂′

n that ensure the proposed approach yields consistent estimators of the asymptotic
distribution of φ(θ̂n) and its quantiles. Moreover, we further show that multiple superficially
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different resampling schemes in fact follow precisely this approach. For instance, a number of
inferential procedures developed in the context of specific applications can be understood as
employing an estimator φ̂′

n that is derived from an analytical expression of φ′
θ0

. These include,
among others, Andrews and Soares (2010) for moment inequalities, Linton et al. (2010) for tests
of stochastic dominance, and Kaido (2016) for convex partially identified models. Additional
special cases of our approach include the m out of n bootstrap of Shao (1994) and the rescaled
bootstrap of Dümbgen (1993), which can be shown to implicitly rely on an estimator φ̂′

n based on
numerical differentiation; see Hong and Li (2017). Our results thus cast these different resampling
schemes in a framework that highlights their common source of consistency and potentially eases
their comparison.

Whenever φ is directionally differentiable at θ0, the asymptotic distribution of φ(θ̂n)
can depend discontinuously on the value of θ0. This sensitivity contrasts with the finite
sample distribution of φ(θ̂n), which often depends continuously on θ0. As emphasized by
Imbens and Manski (2004), such a discrepancy is cause for concern that employing the
distribution of φ′

θ0
(G0) as the basis for inference can result in tests with poor finite sample

properties. In order to allay these concerns, we additionally study the properties of tests in a
“local” asymptotic framework. Concretely, a local analysis allows us to better approximate the
finite sample properties of tests when θ0 is “close”, but not equal, to a point at which φ is not
fully differentiable. By way of example, we examine the properties of a test that employs φ(θ̂n)
as a test statistic for the hypothesis

H0 :φ(θ0)≤0 H1 :φ(θ0)>0. (3)

Under mild restrictions on θ̂n, our local analysis reveals that convexity of the directional derivative
suffices for establishing the ability of our procedure to (locally) control size. Thus, our results again
reduce a challenging statistical problem (establishing local size control) to a simple analytical
calculation (verifying convexity). We additionally argue that in problems in which the directional
derivative fails to be convex, our local analysis still provides guidance on how to select a critical
value for φ(θ̂n) that results in a test with (local) size control.

In summary, our analysis provides empiricists with a simple analytical framework for
conducting inference. Whenever φ is fully differentiable, we may rely on the standard bootstrap to
obtain critical values. If on the other hand φ is not fully differentiable at or “near” the parameter θ0
and θ̂n is asymptotically Gaussian, then the standard bootstrap fails. In such instances, our results
show critical values can be obtained by instead employing an estimator φ̂′

n of the directional
derivative φ′

θ0
. The ability of the these critical values to adequately (locally) control size can

easily be assessed by analytical calculations as well—for example, for testing (3) it suffices that
φ′
θ0

be convex.
We illustrate the utility of our analysis with two novel applications. First, we employ our results

to develop a procedure for conducting inference on partially identified linear regression models
with interval valued outcomes.2 In particular, we show the bootstrap fails in the presence of discrete
regressors, and propose an inference procedure that extends the work of Beresteanu and Molinari
(2008) and Bontemps et al. (2012) to such a setting. Second, we apply our analysis to construct
a test for the general null hypothesis that a parameter θ0 belongs to a known closed convex set.
These tests enable us to examine, for instance, whether quantile treatment effect functions satisfy
certain shape restrictions, or whether a vector of means belongs to a closed convex set—see, e.g.,
Wolak (1988) and Kitamura and Stoye (2013) for examples of the latter. Our general framework

2. We are grateful to a referee for suggesting this application.
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both implies that the bootstrap often fails in these problems and simultaneously suggests an
alternative resampling procedure that is consistent.

Finally, we highlight the empirical relevance of our results by revisiting a large literature on
the trends on wage dispersion within demographic and education groups in the United States (i.e.
“residual” wage dispersion); see, among others, Katz and Murphy (1992), Juhn et al. (1993), and
Autor et al. (2008). Specifically, our theoretical results allow us to contribute to this literature
by conducting inference on different qualitative features of the residual wage dispersion trends.
For instance, we build confidence regions for the year at which residual wage variance was
the largest and find evidence in support of Card and DiNardo (2002) and Lemieux (2006), who
argue the rise in residual wage inequality occurred primarily in the 1980s. Following Autor et al.
(2008), however, we further examine “upper tail” and “lower tail” residual wage dispersion and
uncover different trends. In particular, we find evidence indicating that “lower tail” residual
wage dispersion has been decreasing monotonically for both men and women since attaining
their maximum in the 1980s. In contrast, we further find that the “upper tail” residual wage
dispersion for men has been increasing over our sample period, while the “upper tail” residual
wage dispersion for women has remained relatively stable since the 1980s.

In related work, an extensive literature has established the consistency of the bootstrap and
its ability to provide a refinement when θ0 is a vector of means and φ is a differentiable function
(Hall, 1992; Horowitz, 2001). Our analysis is most closely related to the pioneering work of
Dümbgen (1993), who first examined the validity of the bootstrap for estimating the asymptotic
distribution of φ(θ̂n) under a potential lack of differentiability. The results in Dümbgen (1993)
imply a characterization of bootstrap consistency that, unlike ours, applies when G0 is not
Gaussian but is harder for practitioners to verify as it concerns properties of both G0 and φ′

θ0
.3

In more recent studies, applications where φ is not fully differentiable have garnered increasing
attention due to their preponderance in the analysis of partially identified models (Manski, 2003).
Hirano and Porter (2012), Song (2014), and Fang (2015), for example, explicitly employ the
directional differentiability of φ as well, though their focus is on estimation rather than inference.
Other work studying these models, though not explicitly relying on the directional differentiability
ofφ, include Chernozhukov et al. (2007, 2013), Romano and Shaikh (2008, 2010), Bugni (2010),
and Canay (2010) among many others.

An emerging body of research has validated the usefulness of our results by both employing
and expanding on them. For instance, Seo (2018) and Beare and Shi (2018) use our framework
to develop tests of stochastic monotonicity and of density ratio ordering respectively. Other
applications of our results also include Jha and Wolak (2015) who estimate transaction costs in
energy future markets, Lee and Bhattacharya (2015) who propose methods for estimating welfare
changes in partially identified discrete choice models, Hansen (2017) who studies the asymptotic
properties of regression kink models, and Masten and Poirier (2017) who conduct inference on
breakdown frontiers. Finally, in a highly complementary paper, Hong and Li (2017) build on our
results and propose employing a numerical derivative to obtain the estimator φ̂′

n.
The remainder of the article is organized as follows. Section 2 formally introduces the model

we study and contains a minor extension of the Delta method for directionally differentiable
functions. In Section 3 we characterize necessary and sufficient conditions for bootstrap
consistency, develop an alternative method for estimating the asymptotic distribution of φ(θ̂n),
and study the local properties of this approach. Section 4 applies these results to develop a test of
whether a Hilbert space valued parameter belongs to a closed convex set. Finally, in Section 5 we
employ our framework to study trends in residual wage inequality in the U.S. A Supplementary

3. We discuss the relationship between these conditions in detail in Section 3.2; see Remark 3.1.
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Appendix includes auxiliary results as well as examples illustrating how to verify our assumptions
in specific applications.

2. SETUP AND BACKGROUND

In this section, we introduce the appropriate notion of directional differentiability and review an
extension of the Delta method due to Shapiro (1991) and Dümbgen (1993).

2.1. General setup

In order to accommodate applications such as conditional moment inequalities and tests of shape
restrictions, we must allow for both the parameter θ0 and the map φ to take values in possibly
infinite dimensional spaces. We therefore impose the general requirement that θ0 ∈Dφ and φ :
Dφ⊆D→E for D and E Banach spaces (i.e. complete normed spaces) with norms ‖·‖D and
‖·‖E, and Dφ the domain of φ.

The estimator θ̂n is assumed to be a function of a sequence of random variables {Xi}n
i=1 into

the domain of φ. The distributional convergence

rn{θ̂n −θ0} L→G0 (4)

is then understood to be in D and with respect to the joint law of {Xi}n
i=1. For instance, if

{Xi}n
i=1 is an i.i.d. sample and each Xi is distributed according to P, then probability statements

for θ̂n : {Xi}n
i=1 →Dφ are understood to be with respect to the product measure

⊗n
i=1P. We

emphasize, however, that our results are applicable to dependent settings as well. In addition, we
note that the convergence in distribution in (4) is meant in the Hoffman-Jørgensen sense, which
does not require θ̂n to be measurable—regrettably, measurability complications can arise naturally
when D is infinite dimensional (van der Vaart and Wellner, 1996). Expectations throughout the
text should therefore be interpreted as outer expectations, though we obviate the distinction in
the notation—the notation is made explicit in the Supplementary Appendix when necessary.

Finally, we introduce notation that is recurrent in the context of our examples. For a set A, we
denote the space of bounded functions on A by

�∞(A)≡{f :A→R such that ‖f ‖∞<∞} ‖f ‖∞ ≡ sup
a∈A

|f (a)|.

If in addition A is a compact subset of some metric space, then all continuous functions on A are
bounded and hence belong to �∞(A). We denote this important subspace by

C(A)≡{f :A→R such that f is continuous}.

2.1.1. Examples. In order to fix ideas, we introduce examples to which we return
throughout the article to clarify our results. We defer a formal analysis to the Supplementary
Appendix, where we also discuss additional applications and illustrate the verification of our
assumptions.

Our first example, due to Andrews (2001), is mainly expository in nature.

Example 2.1 (Parameter on the Boundary). Let X ∈R be a scalar valued random variable, and
suppose we wish to estimate the parameter

φ(θ0)=max{E[X],0}.
Here, θ0 =E[X], D=E=R, and φ :R→R satisfies φ(θ )=max{θ,0}. ‖
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As our second example, we apply our analysis to obtain new results for a model previously
studied by Beresteanu and Molinari (2008) and Bontemps et al. (2012).

Example 2.2 (Interval Outcome Regression). Let Y ∈R, Z ∈Rdz be a set of covariates, ε be
unobserved, and β0 ∈Rdz be the best linear predictor coefficient satisfying

Y =Z ′β0 +ε
with E[εZ]=0. Suppose Y is unobserved, but we instead see lower and upper bounds (Yl,Yu)
satisfying P(Yl ≤Y ≤Yu)=1; e.g., Y may be an interval censored income measure as in
Manski and Tamer (2002). In such a setting, β0 is not identified and Beresteanu and Molinari
(2008) show its identified set is equal to

B0 ≡{β∈Rdz :β= (E[ZZ ′])−1E[ZỸ ] for some Ỹ satisfying Yl ≤ Ỹ ≤Yu a.s.}.
Since B0 is closed and convex, it follows that the identified set for any coordinate of β0 is a closed
interval in R. We consider as the parameter of interest the largest endpoint of such an interval
which, for a suitable choice of p∈Rdz , we may write as

sup
β∈B0

p′β (5)

For example, p= (1,0,...,0)′ yields the largest value in the identified set for the first coordinate
of β0. For our analysis, it is convenient to employ an equivalent representation of (5) due to
Bontemps et al. (2012) who show that

sup
β∈B0

p′β=E[b′
0ZYl +max{b′

0Z,0}(Yu −Yl)], (6)

where b0 ≡ (E[ZZ ′])−1p. Following (6) we set θ0 = (b0,ψ0) for ψ0 :Rdz →R given by

ψ0(b)≡E[b′ZYl +max{b′Z,0}(Yu −Yl)], (7)

and note (6) equals ψ0(b0). Therefore, for any compact set B containing b0 in its interior, we let
D=Rdz ×�∞(B) and define φ(θ )=ψ(b) for any θ= (b,ψ)∈B×�∞(B). ‖

2.2. Differentiability concepts

In both of the previous examples, there exist points at which the map φ is not differentiable.
Nonetheless, at all such points at which differentiability is lost, φ actually remains directionally
differentiable. This is most easily seen in Example 2.1, in which the domain of φ is the real
line. In order to address Example 2.2 and other applications of interest, however, a notion of
directional differentiability that is suitable for more abstract spaces D is necessary. We therefore
follow Shapiro (1990) and define:

Definition 2.1 Let D and E be Banach spaces, and φ :Dφ⊆D→E.

(i) The map φ is said to be Hadamard differentiable at θ ∈Dφ tangentially to a set D0 ⊆D,
if there is a continuous linear map φ′

θ :D0 →E such that

lim
n→∞‖φ(θ+tnhn)−φ(θ )

tn
−φ′

θ (h)‖E =0, (8)
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for all sequences {hn}⊂D and {tn}⊂R such that tn →0, hn →h∈D0 as n→∞ and
θ+tnhn ∈Dφ for all n.

(ii) The map φ is said to be Hadamard directionally differentiable at θ ∈Dφ tangentially to
a set D0 ⊆D, if there is a continuous map φ′

θ :D0 →E such that

lim
n→∞‖φ(θ+tnhn)−φ(θ )

tn
−φ′

θ (h)‖E =0, (9)

for all sequences {hn}⊂D and {tn}⊂R+ such that tn ↓0, hn →h∈D0 as n→∞ and
θ+tnhn ∈Dφ for all n.

As has been extensively noted in the literature, Hadamard differentiability is particularly
suited for generalizing the Delta method to normed vector spaces (Reeds, 1976; Gill et al., 1989).
It is therefore natural to employ an analogous approximation requirement when considering an
appropriate definition of a directional derivative (compare (8) and (9)). Despite this similarity,
two key differences distinguish (full) Hadamard differentiability from Hadamard directional
differentiability. First, in (9) the sequence of scalars {tn} must approach 0 “from the right”,
heuristically giving the derivative a direction. Second, the map φ′

θ :D0 →E is no longer required
to be linear, though it is possible to show (9) implies φ′

θ must be continuous and homogenous of
degree one (Shapiro, 1990). As the next proposition shows, whether φ′

θ is linear or non-linear is
the key property distinguishing whether φ is fully or directionally Hadamard differentiable.

Proposition 2.1 Let D, E be Banach spaces, D0 ⊆D be a subspace, and φ :Dφ⊆D→E. Then,
φ is Hadamard directionally differentiable at θ ∈Dφ tangentially to D0 with linear derivative
φ′
θ :D0 →E if and only if φ is Hadamard differentiable at θ tangentially to D0.

2.3. The Delta method

While the Delta method for Hadamard differentiable functions has become a standard tool
in econometrics (van der Vaart, 1998), the availability of an analogous result for Hadamard
directional differentiable maps does not appear to be as well known. To the best of our knowledge,
this powerful generalization was independently established in Shapiro (1991) and Dümbgen
(1993), but only recently employed in econometrics; see Beare and Moon (2015) and Kaido
(2016) for examples.

The desired generalization of the Delta method only relies on two key assumptions.

Assumption 1 (On the Map φ).

(i) D and E are Banach spaces with norms ‖·‖D and ‖·‖E.
(ii) φ :Dφ⊆D→E is Hadamard directionally differentiable at θ0 tangentially to D0.

Assumption 2 (On the Estimator θ̂n)

(i) θ0 ∈Dφ and θ̂n : {Xi}n
i=1 →Dφ satisfies rn{θ̂n −θ0} L→G0 in D for some rn ↑∞.

(ii) G0 is tight and its support is included in D0.

Assumption 1 formalizes our previous discussion by requiring that the map φ be Hadamard
directionally differentiable at θ0. In Assumption 2(i), we impose that the estimator θ̂n for θ0 be
asymptotically distributed according to some limit G0. The scaling rn equals

√
n in Examples 2.1
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and 2.2, but may differ in non-parametric problems. Finally, Assumption 2(ii) requires that the
support of the limiting process G0 be included in the tangential set D0. In addition, Assumption
2(ii) imposes that G0 be tight, which is a mild regularity condition that is automatically satisfied
when G0 is finite dimensional. As previously noted by Shapiro (1991) and Dümbgen (1993),
Assumptions 1 and 2 imply the validity of the Delta method for directionally differentiable maps.

Theorem 2.1 Let Assumption 1 and Assumption 2 hold. Then, it follows that

rn{φ(θ̂n)−φ(θ0)}=φ′
θ0

(rn{θ̂n −θ0})+op(1), (10)

and therefore rn{φ(θ̂n)−φ(θ0)} L→φ′
θ0

(G0) in E.

The asymptotic distribution of φ(θ̂n) was first established under measurability assumptions
by Shapiro (1991). These measurability requirements were subsequently relaxed by Dümbgen
(1993). Here, we provide a mild extension to their results by establishing the Delta method also
holds “in probability” (i.e. result (10)), which we require for our analysis. Heuristically, the
asymptotic distribution of φ(θ̂n) follows from

rn{φ(θ̂n)−φ(θ0)}≈φ′
θ0

(rn{θ̂n −θ0}), (11)

Assumption 2(i), and the continuous mapping theorem applied to φ′
θ0

. Thus, the key requirement
is not that φ′

θ0
be linear, or equivalently that φ be Hadamard differentiable, but rather that (11)

holds in an appropriate sense—a condition ensured by Hadamard directional differentiability.
Following this insight, Theorem 2.1 can be established using the exact same arguments as in the
proof of the Delta method for (fully) Hadamard differentiable maps (van der Vaart and Wellner,
1996). It is worth noting that directional differentiability of φ is only assumed at θ0. In particular,
continuity of φ′

θ0
in θ0 is not required since such condition is often violated; see, e.g., Example 2.1.

Remark 2.1 The Hadamard directional differentiability of φ at θ0 only demands that φ′
θ0

be
well defined on the domain D0; see Definition 2.1(ii). While G0 belongs to D0 with probability
one by Assumption 2(ii), rn{θ̂n −θ0} may not belong to D0 and thus not be in the domain of
φ′
θ0

. In such instances, the expression φ′
θ0

(rn{θ̂n −θ0}) in (10) can be understood as the value a

continuous extension of φ′
θ0

to D takes at the point rn{θ̂n −θ0}; see the proof of Theorem 2.1 for
additional details. ‖

2.3.1. Examples revisited. We next revisit our examples to illustrate how to apply
Theorem 2.1.

Example 2.1 (cont.) Recall in this example θ0 =E[X] and φ(θ )=max{θ,0} for any θ ∈R. Given
a sample {Xi}n

i=1 we set θ̂n = X̄n ≡∑n
i=1Xi/n, and by direct calculation it is straightforward to

verify Assumption 1 holds with D0 =R and directional derivative

φ′
θ0

(h)=
⎧⎨
⎩

h if θ0>0
max{h,0} if θ0 =0

0 if θ0<0
(12)

for any h∈R. In accord with Proposition 2.1, we note that φ′
θ0

is non-linear if and only if φ is
not fully differentiable at θ0 (i.e. θ0 =0). Verifying Assumption 2 then simply requires a central
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limit theorem to apply, in which case we obtain

√
n{max{X̄n,0}−max{E[X],0}} L→φ′

θ0
(G0)=

⎧⎨
⎩

G0 if E[X]>0
max{G0,0} if E[X]=0

0 if E[X]<0
(13)

by Theorem 2.1 and where G0 ∈R is normally distributed. ‖
Example 2.2 (cont.) In this application θ0 = (b0,ψ0) where b0 = (E[ZZ ′])−1p∈Rdz and the
function ψ0 :Rdz →R was defined in (7). Given a sample {Yl,i,Yu,i,Zi}n

i=1 we employ as

estimators b̂n ≡ (
∑n

i=1ZiZ ′
i/n)−1p, the function ψ̂n :Rdz →R given by

ψ̂n(b)≡ 1

n

n∑
i=1

{b′ZiYl,i +max{b′Zi,0}(Yu,i −Yl,i)},

and let θ̂n = (b̂n,ψ̂n). Since E[ZZ ′] is invertible, it is possible to establish under appropriate
moment conditions that for any compact B⊂Rdz the estimator θ̂n satisfies

√
n{θ̂n −θ0} L→G0 = (Gb,Gψ )∈Rdz ×�∞(B)

for some Gaussian G0; see the Supplementary Appendix. In particular, Gψ has almost sure
continuous sample paths, so that Assumption 2 holds with D0 =Rdz ×C(B). Recall here φ(θ )=
ψ(b) for any θ= (b,ψ)∈B×�∞(B). Hence, setting B so that b0 belongs to its interior, we obtain
that b̂n ∈B with probability tending to one and

φ(θ̂n)= 1

n

n∑
i=1

⎧⎪⎨
⎪⎩p′

⎛
⎝1

n

n∑
j=1

ZjZ
′
j

⎞
⎠

−1

ZiYl,i

+max

⎧⎪⎨
⎪⎩p′

⎛
⎝1

n

n∑
j=1

ZiZ
′
i

⎞
⎠

−1

Zi,0

⎫⎪⎬
⎪⎭(Yu,i −Yl,i)

⎫⎪⎬
⎪⎭, (14)

which equals the “plug-in” estimator proposed by Bontemps et al. (2012). We also note φ is
Hadamard directionally differentiable tangentially to D0 at θ0 with φ′

θ0
satisfying

φ′
θ0

(h)=hψ (b0)+E[h′
bZ(Yl +(Yu −Yl)1{b′

0Z>0})]+E[max{h′
bZ,0}(Yu −Yl)1{b′

0Z =0}] (15)

for any h= (hb,hψ )∈Rdz ×C(B). By Proposition 2.1, it then follows φ is Hadamard differentiable
at θ0 if and only if P(p′(E[ZZ ′])−1Z =0)=0. Moreover, applying Theorem 2.1 and (15) we obtain
that

√
n{φ(θ̂n)−φ(θ0)} converges in distribution to

Gψ (b0)+E[G′
bZ(Yl +(Yu −Yl)1{b′

0Z>0})]+E[max{G′
bZ,0}(Yu −Yl)1{b′

0Z =0}], (16)

where expectations are taken over (Yl,Yu,Z) (but not G0). The asymptotic distribution in (16)
can be shown to equal that obtained by Bontemps et al. (2012). ‖
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It is also instructive to discuss an example of a map φ that is not Hadamard directionally
differentiable. To this end, we examine a simplification of the regression kink model in Hansen
(2017). Suppose that (Y ,Z)∈R2 satisfies for some (γ0,β0)∈R2

Y =|Z −γ0|β0 +ε
with E[ε|Z]=0. Let θ0 = (β0,γ0) and θ̂n = (β̂n,γ̂n) be the non-linear least square estimates,
which Hansen (2017) shows to be asymptotically normally distributed. For some bounded B⊂R
containing γ0 in its interior, we consider the problem of estimating E[Y |Z =z] at different values
of z in B. To this end, we set φ :R2 →�∞(B) to equal

φ(θ )(z)=|z−γ |β
for any θ= (β,γ ) and z∈B – notice φ(θ̂n) is then a function mapping each value of z∈B into the
corresponding forecast for Y . Further let φ′

θ0
:R2 →�∞(B) be given by

φ′
θ0

(h)(z)≡ (1{z<γ0}γ +1{z=γ0}|γ |−1{z>γ0}γ )β0 +|z−γ0|β

for any h= (β,γ )∈R2 and z∈B. At any fixed z∈B we can then conclude that

lim
n→∞| 1

tn
{φ(θ0 +tnhn)(z)−φ(θ0)(z)}−φ′

θ0
(h)(z)|

= lim
n→∞| 1

tn
{|z−(γ0 +tnγn)|(β0 +tnβn)−|z−γ0|β0}−φ′

θ0
(h)(z)|=0 (17)

for any tn ↓0 and hn = (γn,βn)→ (β,γ )=h∈R2. Hence, the forecast at a fixed z is a Hadamard
directionally differentiable function of (β,γ ). However, φ :R2 →�∞(B) is not Hadamard
directionally differentiable because (17) fails to hold uniformly in z∈B.4 Thus, while Theorem
2.1 establishes the asymptotic distribution of a forecast at a fixed z, it fails to deliver the joint
asymptotic distribution of the collection of forecasts indexed by z∈B (in �∞(B)). However, this
is not a weakness of the Delta method: It can be shown that

√
n{φ(θ̂n)−φ(θ0)} in fact does not

converge in distribution in �∞(B).

3. THE BOOTSTRAP

While Theorem 2.1 enables us to obtain an asymptotic distribution, a suitable method for
estimating this limiting law is still required. In this section, we present a new result establishing
necessary and sufficient conditions for the bootstrap to provide a consistent estimate of the
asymptotic distribution of rn{φ(θ̂n)−φ(θ0)}. We further propose an alternative to the bootstrap
that generalizes existing approaches in the literature.

3.1. Bootstrap setup

Throughout, we let θ̂∗
n denote a “bootstrapped version” of θ̂n, and assume the limiting distribution

of rn{θ̂n −θ0} can be consistently estimated by the conditional law of

rn{θ̂∗
n − θ̂n}

4. Noting that here ‖·‖E =‖·‖∞, the claim can be established by setting h= (β,γ ), employing a sequence zn =
γ0 +γ tn, and then showing |(φ(θ0 +tnh)(zn)−φ(θ0)(zn))/tn −φ′

θ0
(h)(zn)|�0.
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given the data. In order to allow for diverse resampling schemes, we simply impose that θ̂∗
n

be a function of the data {Xi}n
i=1 and random weights {Wi}n

i=1 that are independent of {Xi}n
i=1.

This general definition encompasses the non-parametric, Bayesian, block, m out of n, score, and
weighted bootstrap as special cases.

Formalizing the notion of bootstrap consistency further requires us to employ a measure of
distance between the limiting distribution and its bootstrap estimator. To this end, we follow
van der Vaart and Wellner (1996) and utilize the bounded Lipschitz metric. Specifically, for a
metric space A with norm ‖·‖A, we define the set of functions

BL1(A)≡{f :A→R s.t. |f (a)|≤1 and |f (a)−f (a′)|≤‖a−a′‖A for all a,a′ ∈A}.

The bounded Lipschitz distance between two measures L1 and L2 on A then equals the largest
discrepancy in the expectation they assign to functions in BL1(A), denoted

dBL(L1,L2)≡ sup
f ∈BL1(A)

∣∣∣∣
∫

f (a)dL1(a)−
∫

f (a)dL2(a)

∣∣∣∣.
Given the introduced notation, we can measure the distance between the conditional law of

rn{θ̂∗
n − θ̂n} given {Xi}n

i=1 and the limiting distribution of rn{θ̂n −θ0} by5

sup
f ∈BL1(D)

|E[f (rn{θ̂∗
n − θ̂n})|{Xi}n

i=1]−E[f (G0)]|. (18)

Employing the conditional distribution of rn{θ̂∗
n − θ̂n} given the data to approximate the

distribution of G0 is then asymptotically justified if their distance, equivalently (18), converges in
probability to zero. This type of consistency can be employed to validate the use of critical values
obtained from the conditional distribution of rn{θ̂∗

n − θ̂n} given {Xi}n
i=1 to conduct inference or

construct confidence regions (Kosorok, 2008).
We formalize the above discussion by imposing the following assumptions on θ̂∗

n .

Assumption 3 (On the Bootstrap θ̂∗
n )

(i) θ̂∗
n : {Xi,Wi}n

i=1 →Dφ with {Wi}n
i=1 independent of {Xi}n

i=1.

(ii) θ̂∗
n satisfies supf ∈BL1(D) |E[f (rn{θ̂∗

n − θ̂n})|{Xi}n
i=1]−E[f (G0)]|=op(1).

(iii) rn{θ̂∗
n − θ̂n} is asymptotically measurable (jointly in {Xi,Wi}n

i=1).

(iv) f (rn{θ̂∗
n − θ̂n}) is a measurable function of {Wi}n

i=1 outer almost surely in {Xi}n
i=1 for any

continuous and bounded f :D→R.

Assumption 3(i) defines θ̂∗
n in accord with our discussion, while Assumption 3(ii) imposes

the consistency of the conditional law of rn{θ̂∗
n − θ̂n} given the data for the distribution of G0—

i.e. the bootstrap “works” for the estimator θ̂n. We note that in finite dimensional problems (i.e.
θ0 ∈Rd), Assumption 3(ii) is equivalent to the bootstrap cdf being consistent for the cdf of G0
at all its continuity points. In addition, in Assumptions 3(iii)-(iv) we demand mild measurability
requirements on rn{θ̂∗

n − θ̂n}.

5. More precisely, E[f (rn{θ̂∗
n − θ̂n})|{Xi}n

i=1] denotes the outer expectation with respect to the joint law of {Wi}n
i=1,

treating the observed data {Xi}n
i=1 as constant.
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3.2. Bootstrap failure

Whenever φ is (fully) Hadamard differentiable and the bootstrap “works” for θ̂n, the consistency
of the bootstrap is inherited by φ(θ̂n)—i.e. the limiting distribution of rn{φ(θ̂n)−φ(θ0)} can be
consistently estimated by the conditional law of

rn{φ(θ̂∗
n )−φ(θ̂n)} (19)

given the data (Bickel and Freedman, 1981; van der Vaart and Wellner, 1996). We refer to the
conditional law of (19) given the data as the “standard” bootstrap.

Unfortunately, while the Delta method generalizes to Hadamard directionally differentiable
functionals, we know by way of example that the consistency of the standard bootstrap may
not (Bickel et al., 1997; Andrews, 2000). These examples serve as a warning that the standard
bootstrap may fail when φ is not (fully) Hadamard differentiable, yet can provide little guidance
as to whether the standard bootstrap is actually valid in particular applications. Our first main
result establishes that these examples are in fact special cases of a deeper principle, namely
that whenever G0 is Gaussian the standard bootstrap is consistent if and only if φ is (fully)
differentiable at θ0.

Theorem 3.1 Let Assumptions 1, 2, and 3 hold, and suppose that G0 is Gaussian and its support
is a vector subspace of D. Then, it follows that φ is (fully) Hadamard differentiable at θ0 ∈Dφ
tangentially to the support of G0 if and only if

sup
f ∈BL1(E)

|E[f (rn{φ(θ̂∗
n )−φ(θ̂n)})|{Xi}n

i=1]−E[f (φ′
θ0

(G0))]|=op(1). (20)

A powerful implication of Theorem 3.1 is that in verifying whether the standard bootstrap is
valid at a conjectured θ0, a researcher need only verify whether φ is (fully) differentiable at θ0.
In effect, Theorem 3.1 thus reduces the potentially challenging statistical problem of verifying
bootstrap validity to a simple and purely analytical calculation. The theorem requires both that
G0 be Gaussian and that its support be a vector subspace of D. The former requirement may
be relaxed at the cost of additional notation, and we thus focus on the Gaussian case due to
its ubiquity; see Remark 3.2. In addition, we note that under Gaussianity the condition that the
support of G0 be a vector subspace is equivalent to zero (in D) belonging to the support of G0.

A further implication of Theorem 3.1 that merits discussion follows from employing that
Gaussianity of G0 and bootstrap consistency together imply φ is (fully) differentiable and hence
that φ′

θ0
must be linear. In particular, whenever φ′

θ0
is linear and G0 is Gaussian φ′

θ0
(G0) must also

be Gaussian (in E), and thus bootstrap consistency implies Gaussianity ofφ′
θ0

(G0) or, equivalently,

Gaussianity of the asymptotic distribution of φ(θ̂n). Conversely, we conclude that the standard
bootstrap fails whenever the limiting distribution is not Gaussian. Thus, the presence of a non-
Gaussian limiting distribution may be viewed by practitioners as a simple yet reliable signal of
the failure of the standard bootstrap. We formalize this conclusion in the following Corollary.

Corollary 3.1 Let Assumptions 1, 2, 3 hold, and suppose G0 is Gaussian and its support is
a vector subspace of D. If the limiting distribution of rn{φ(θ̂n)−φ(θ0)} is not Gaussian, then it
follows that the standard bootstrap is inconsistent.

Remark 3.1 The limit of the standard bootstrap measure was first studied in Dümbgen (1993),
whose results imply bootstrap consistency is equivalent to the distribution of

φ′
θ0

(G0 +h)−φ′
θ0

(h) (21)
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being constant in h for all h in the support of G0.6 This characterization of bootstrap consistency
does not rely on Gaussianity and thus applies under more general conditions than those of
Theorem 3.1. Our results complement Dümbgen (1993) by showing that, under the additional
requirement that G0 be Gaussian, bootstrap consistency is in fact also equivalent to φ being
(fully) differentiable at θ0. ‖

Remark 3.2 Gaussianity of G0 plays an important role in the proof of Theorem 3.1 in enabling
us to relate the distribution of (21) to that of φ′

θ0
(G0) through the Cameron-Martin theorem. A

similar insight is employed by van der Vaart (1991) and Hirano and Porter (2012) who compare
characteristic functions in a limit experiment to conclude regular estimability of a functional
implies its differentiability. More generally, Theorem 3.1 can be shown to hold provided the
support of G0 is a vector subspace of D and the density of the distribution of G0 +h with respect
to the law of G0 is suitably smooth for all h in a dense subspace of the support of G0. ‖

3.3. An alternative approach

In what follows, we develop a resampling scheme that, unlike the standard bootstrap, remains
valid when φ is Hadamard directionally (but not fully) differentiable. As we show, our approach
can be interpreted as a generalization of certain existing methods and thus provides insights into
their common structure and consistency.

3.3.1. Consistent alternative. The Delta method, as stated in Theorem 2.1, establishes
that the asymptotic distribution we aim to estimate is given by the law of φ′

θ0
(G0). Crucially, the

desired limiting distribution depends only on two unknowns: (i) The distribution of G0, and (ii)
The directional derivativeφ′

θ0
. By hypothesis, however, the bootstrap “works” for θ̂n, and therefore

the distribution of G0 can be consistently estimated by the conditional law of rn{θ̂∗
n − θ̂n} given

the data. The analogy principle thus suggests estimating the distribution of φ′
θ0

(G0) by employing
the conditional law given data of the statistic

φ̂′
n(rn{θ̂∗

n − θ̂n}), (22)

where φ̂′
n :D→E is a suitable estimator of the directional derivative φ′

θ0
.7

In order to ensure the validity of this approach we impose the following condition:

Assumption 4 (On the Estimator φ̂′
n)

The map φ̂′
n :D→E is a function of {Xi}n

i=1, satisfying for every compact set K ⊆D0, Kδ≡
{a∈D : infb∈K ‖a−b‖D<δ}, and every ε>0, the property

lim
δ↓0

limsup
n→∞

P
(

sup
h∈Kδ

‖φ̂′
n(h)−φ′

θ0
(h)‖E>ε

)
=0. (23)

6. See Theorem S.3.1 in the Supplementary Appendix for an analogous result under Assumptions 1–3.
7. For inference purposes, one might alternatively first obtain a confidence region Cn for θ0 and employ φ(Cn) as a

confidence region for φ(θ0). Though valid under virtually no assumptions on φ, this “projection” approach is potentially
quite conservative; see, e.g., Dufour and Taamouti (2005), Romano and Shaikh (2008, 2010), and Woutersen and Ham
(2013).
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Intuitively, a minimum requirement to demand of the estimator φ̂′
n is that φ̂′

n(h) be consistent
for φ′

θ0
(h) at any h∈D0. However, since our estimand is not φ′

θ0
(h) at a fixed h, but rather the

distribution of φ′
θ0

(G0), a certain amount of “uniformity” in the consistency of φ̂′
n(h) (over h) is

needed. Assumption 4 formalizes the appropriate notion of uniformity that we require. It is worth
noting, however, that in many applications stronger, but simpler, conditions than (23) can be
easily verified; see Remarks 3.3 and 3.4 below, and the examples discussed in the Supplementary
Appendix.

Remark 3.3 In certain applications, it is sufficient for the estimator φ̂′
n to satisfy

sup
h∈K

‖φ̂′
n(h)−φ′

θ0
(h)‖E =op(1), (24)

for any compact set K ⊆D. For instance, if D=Rd, then the closure of Kδ is compact for any
compact K and δ<∞, and hence (24) implies (23). Alternatively, if D is separable and rn{θ̂∗

n − θ̂n}
is Borel measurable as a function of {Xi,Wi}n

i=1, then condition (23) may be relaxed to (24) as
well. ‖

Remark 3.4 Assumption 4 greatly simplifies whenever the modulus of continuity of φ̂′
n can be

controlled. For instance, if ‖φ̂′
n(h1)−φ̂′

n(h2)‖E ≤Cn‖h1 −h2‖D for all h1,h2 ∈D and a possibly
random Cn satisfying Cn =Op(1), then showing that for any h∈D0

‖φ̂′
n(h)−φ′

θ0
(h)‖E =op(1)

suffices for establishing (23) holds; see Lemma S.3.6 in the Supplementary Appendix. ‖

Given Assumption 4 we can now establish the validity of the proposed procedure.

Theorem 3.2 If Assumptions 1, 2, 3, and 4 hold, then it follows that

sup
f ∈BL1(E)

|E[f (φ̂′
n(rn{θ̂∗

n − θ̂n}))|{Xi}n
i=1]−E[f (φ′

θ0
(G0))]|=op(1).

Theorem 3.2 shows that the conditional law of φ̂′
n(rn{θ̂∗

n − θ̂n}) given the data is indeed a
consistent estimator for the asymptotic distribution of rn{φ(θ̂n)−φ(θ0)}. Interestingly, multiple
superficially different resampling schemes share the common structure in (22) but differ on
their implicit choice of estimator φ̂′

n of the directional derivative. For instance, in a variety
of problems researchers have proposed sample analogue estimators of limiting distributions
in “non-standard” problems; see, e.g., Linton et al. (2005), Andrews and Soares (2010), and
Andrews and Shi (2013). As we show in the Supplementary Appendix, these procedures may be
interpreted as employing estimators φ̂′

n that are implicitly inspired by an analytical computation
of the directional derivative.

An estimator φ̂′
n satisfying Assumption 4 may also be obtained by relying on numerical

methods that avoid analytically computing φ′
θ0

. For example, building on our Theorem 3.2,
Hong and Li (2017) propose estimating φ′

θ0
by employing

φ̂′
sn,n(h)≡ 1

sn
{φ(θ̂n +snh)−φ(θ̂n)}, (25)

which is a numerical derivative computed with step size sn. Under Assumptions 1 and 2, it is
possible to show that φ̂′

sn,n satisfies Assumption 4 provided that rnsn →∞; i.e. provided that
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the step size is of smaller order than the estimation uncertainty in θ̂n (see Lemma S.3.8 in
the Supplementary Appendix). This numerical estimator is implicit in the rescaled bootstrap
of Dümbgen (1993), which is numerically identical to composing φ̂′

sn,n with a non-parametric
bootstrap estimator of the distribution of G0. Additionally, Hong and Li (2017) show the m out
of n bootstrap of Shao (1994) is numerically equivalent to setting sn =1/rm and composing φ̂′

sn,n
with the m out of n bootstrap estimator of the distribution of G0.

The wide array of possible choices for φ̂′
n poses the question of what estimator φ̂′

n to employ.
While a conclusive answer to such question is beyond the scope of this article, we note that in
our experience we have found estimators based on analytical expressions for φ′

θ0
to be preferable.

In particular, employing the specific structure of φ′
θ0

it is often possible to devise estimators φ̂′
n

whose “tuning” parameter choices are simpler to motivate than that of the step size sn in (25).
On the other hand, such analytical estimators must be obtained on an application specific basis.
In this regard, the numerical estimator offers the flexibility of being widely applicable.

It is also worth noting that the proof of Theorem 3.2 does not actually rely on φ′
θ0

being
the directional derivative of φ at θ0. Therefore, Theorem 3.2 can more generally be interpreted
as providing a method for approximating distributions of random variables that are of the form
τ (G0), where G0 ∈D is a tight random variable and τ :D→E is an unknown continuous map;
see, e.g., Chen and Fang (2015) for an application of this principle. Finally, it is important to
emphasize that due to a lack of continuity of φ′

θ0
in θ0, the “naive” estimator φ̂′

n =φ′
θ̂n

often fails

to satisfy Assumption 4.

Remark 3.5 The standard bootstrap itself may also be interpreted as relying on a numerical
derivative as in (25) with step size sn =1/rn since

rn{φ(θ̂∗
n )−φ(θ̂n)}= φ̂′

r−1
n ,n

(rn{θ̂∗
n − θ̂n}).

However, in accord with Theorem 3.1, the estimator φ̂′
r−1

n ,n
does not satisfy Assumption 4 whenever

φ is not (fully) Hadamard differentiable. In fact, Theorem 2.1 implies that for any h∈D, φ̂r−1
n ,n(h)

converges in distribution to φ′
θ0

(G0 +h)−φ′
θ0

(G0). This conclusion underscores the importance

of the condition snrn →∞ in establishing the consistency of φ̂′
sn,n whenever φ is not (fully)

Hadamard differentiable. ‖

3.3.2. Examples revisited. We next revisit Examples 2.1 and 2.2 to illustrate the
implications of our results.

Example 2.1 (cont.) Recall in this example φ is fully Hadamard differentiable if and only if
θ0 �=0. Hence, in accord with Andrews (2000), Theorem 3.1 implies the standard bootstrap is
consistent if and only if θ0 �=0. Theorem 3.2, however, provides an alternative to the standard
bootstrap. For instance, we may estimate φ′

θ0
employing

φ̂′
n(h)=

⎧⎨
⎩

h if
√

nX̄n/σ̂n>κn
max{h,0} if |√nX̄n/σ̂n|≤κn

0 if
√

nX̄n/σ̂n<−κn

, (26)

where σ̂n is the sample standard deviation of {Xi}n
i=1 and κn is a positive sequence satisfying

κn ↑∞. It is then straightforward to verify φ̂′
n satisfies Assumption 4 provided κn/

√
n↓0. By
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Theorem 3.2, we may therefore set θ̂∗
n = X̄∗

n for X̄∗
n the bootstrapped sample mean, and employ

the conditional distribution given the data of

φ̂′
n(

√
n{X̄∗

n −X̄n})

to estimate the law of φ′
θ0

(G0) (as in (13)). With regards to the choice of κn, we note that φ̂′
n

may be understood as implicitly conducting a pretest of whether θ0 =0. The condition κn ↑∞ is
equivalent to the Type I error of such pretest tending to zero, and thus we may let κn =�−1(1−αn)
for � the standard normal cdf and αn ↓0. ‖
Example 2.2 (cont.) In this problem φ is fully Hadamard differentiable if and only if

P(p′(E[ZZ ′])−1Z =0)=0. (27)

Therefore, Theorem 3.1 implies that the standard bootstrap is consistent if and only if (27) holds—
a result previously conjectured by Beresteanu and Molinari (2008) and Bontemps et al. (2012).
In order to devise a resampling scheme that remains consistent when condition (27) fails we
apply Theorem 3.2. To this end, recall D=Rdz ×�∞(B) and for any h= (hb,hψ )∈Rdz ×�∞(B)
we estimate φ′

θ0
(as in (15)) by setting

φ̂′
n(h)=hψ (b̂n)+ 1

n

n∑
i=1

h′
bZi

(
Yl,i +(Yu,i −Yl,i)1

{√
nb̂′

nZi

‖Zi‖ >κn

})

+ 1

n

n∑
i=1

max{h′
bZi,0}(Yu,i −Yl,i)1

{∣∣∣∣∣
√

nb̂′
nZi

‖Zi‖

∣∣∣∣∣≤κn

}
, (28)

where κn is a positive sequence satisfying κn ↑∞. In the Supplementary Appendix we establish
φ̂′

n satisfies Assumption 4 provided κn/
√

n↓0. Moreover, for {X∗
i }n

i=1 a sample drawn with
replacement from {Xi}n

i=1 and defining G∗
b,n ∈Rdz and G∗

ψ,n ∈�∞(B) by

G∗
b,n ≡√

n

⎧⎨
⎩
(

1

n

n∑
i=1

Z∗
i Z∗′

i

)−1

p− b̂n

⎫⎬
⎭

G∗
ψ,n(b)≡ 1√

n

n∑
i=1

{b′Z∗
i Y∗

l,i +max{b′Z∗
i ,0}(Y∗

u,i −Y∗
l,i)−ψ̂n(b)},

we may set rn{θ̂∗
n − θ̂n} to equal (G∗

b,n,G
∗
ψ,n). Theorem 3.2 then implies the conditional

distribution of φ̂′
n((G∗

b,n,G
∗
ψ,n)) given the data is consistent for the law of φ′

θ0
(G0) (as in (16)).8

With regards to the choice of κn, we may follow a similar logic as in Example 2.1. In particular,
since sup‖u‖=1(b̂n −b0)′u=‖b̂n −b0‖, we may set κn to equal the conditional 1−αn quantile of
‖G∗

b,n‖ given data for some αn ↓0. ‖

8. To the best of our knowledge, the only previously available procedure for estimating the asymptotic distribution
under a failure of (27) is subsampling (Politis et al., 1999).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/86/1/377/5094886 by U

C
LA D

igital C
ollections Services user on 08 July 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[17:35 13/12/2018 OP-REST180076.tex] RESTUD: The Review of Economic Studies Page: 393 377–412

FANG & SANTOS DIRECTIONALLY DIFFERENTIABLE FUNCTIONS 393

3.4. Local analysis

The asymptotic approximation implied by Theorem 2.1 may depend discontinuously on θ0 when
θ0 is a point at which φ fails to be (fully) Hadamard differentiable; see, e.g., Example 2.1. In
contrast, the finite sample distribution ofφ(θ̂n) depends continuously on the value of the parameter
θ0. This discrepancy is cause for concern that tests justified by Theorems 2.1 and 3.2 may fail to
adequately control size whenever φ is fully differentiable at θ0 but θ0 is “close” to a point at which
φ fails to be (fully) differentiable. We next allay these concerns by conducting a complementary
local analysis.

3.4.1. The local limit. The objective of our local analysis is to better model a finite
sample situation in which θ0 is “close” to a point at which φ fails to be (fully) differentiable. To
this end, we therefore employ an asymptotic framework in which θ0 depends on the sample size
and converges to a point at which differentiability of φ may fail. We formalize such an approach
by explicitly denoting the dependence of θ0 on the underlying distribution of {Xi}n

i=1 and letting
said distribution change with the sample size.

For ease of exposition, we will assume {Xi}n
i=1 is an i.i.d sample; see the Supplementary

Appendix for results that apply to dependent data. We further let P denote the set of possible
marginal distributions for Xi. In order to allow the distribution of the data to change with the
sample size we next introduce the concept of a “path” (in P). A “path” is simply an arbitrary
univariate model t �→Pt ∈P for the distribution of Xi that is defined on a neighbourhood of zero
and for some function g satisfies

lim
t→0

∫ (
1

t
{dP1/2

t −dP1/2
0 }− 1

2
gdP1/2

0

)2

=0, (29)

where dP1/2
t denotes the square root of the density of Pt . A parametrization satisfying (29) is

called quadratic mean differentiable and g is referred to as the “score”.9 We may then let the
distribution of Xi change with the sample size n by setting it to equal Pλ/

√
n for some λ∈R –

here λ is called the “local” parameter. Notice that the distribution of Xi then converges to P0 and,
moreover, by (29) such convergence is suitably smooth.

Finally, we make the dependence of the parameter estimated by θ̂n on the distribution of
Xi explicit by writing θ (P) for the value said estimand takes when Xi is distributed according
to P—i.e. we characterize said estimand through a map θ :P→D. Under our local framework,
θ (Pλ/

√
n) then converges to θ (P0) and, with a mild abuse of notation, we write this limiting

value as θ0 =θ (P0). In this manner, we formalize the notion that in finite samples the parameter
estimated by θ̂n (i.e. θ (Pλ/

√
n)) may be “close” to a point (i.e. θ0 =θ (P0)) at which φ is possibly

not (fully) differentiable.
The paths we consider in the described “local” construction are required to satisfy:

Assumption 5 (Local Analysis) The path t �→Pt satisfies for any λ the following:

(i) There is a θ ′(λ)∈D0 such that ‖rn{θ (Pλ/
√

n)−θ (P0)}−θ ′(λ)‖D →0.

(ii) θ (Pλ/
√

n)∈Dφ and rn{θ̂n −θ (Pλ/
√

n)} Lλ→G0, where
Lλ→ denotes convergence in distribu-

tion under {Xi}n
i=1 i.i.d. with each Xi distributed according to Pλ/

√
n.

(iii) G0 is tight and its support is included in D0.

9. If dPt(x) is differentiable in t, then under appropriate conditions g(x)= ∂
∂t logdPt(x)|t=0.
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Assumption 5(i) demands that the parameter θ (Pt) be suitably differentiable as a function of
t. In turn, Assumption 5(ii) imposes that the asymptotic behaviour of θ̂n not be affected by local
perturbations to the data-generating process—estimators satisfying such property for any path in
P are often called “regular”. Finally, Assumption 5(iii) clarifies that the limiting distribution G0
in Assumption 5(ii) must satisfy the same regularity conditions as those imposed in Assumption
2(ii). These requirements are sufficiently general to enable us to model a rich set of applications in
which φ is fully differentiable at θ (P) but θ (P) is “close” to a point at which full differentiability
fails; see our discussion of Examples 2.1 and 2.2 below.

The following Lemma is a simple modification of Theorem 2.1, and can be interpreted as
extending the local analysis in Dümbgen (1993) to contiguous perturbations.

Lemma 3.1 If Assumptions 1 and 5 hold, then for any λ∈R it follows that

rn{φ(θ̂n)−φ(θ (Pλ/
√

n))} Lλ→φ′
θ0

(G0 +θ ′(λ))−φ′
θ0

(θ ′(λ)), (30)

where θ0 =θ (P0) and
Lλ→ denotes convergence in law under {Xi}n

i=1 ∼⊗n
i=1Pλ/

√
n.

Crucially, the asymptotic distribution of Lemma 3.1 depends on the local parameter λ
whenever φ′

θ0
is non-linear—i.e. whenever φ is not (fully) Hadamard differentiable at θ0. In

particular, Lemma 3.1 provides an approximation which reflects that how “close” θ (P) is to a
point at which φ is not fully differentiable can impact the finite sample distribution of φ(θ̂n). Such
conclusion contrasts with the pointwise (in P) analysis of Theorem 2.1 and emphasizes care should
be taken when applying Theorems 2.1 and 3.2 for inference. As we next argue, however, Lemma
3.1 also provides the key for understanding when our analysis delivers inference procedures with
reliable size control.

3.4.2. Implications for testing. We consider hypothesis testing problems in which φ is
scalar valued (E=R), and we are concerned with evaluating whether the distribution P of Xi
satisfies

H0 :φ(θ (P))≤0 H1 :φ(θ (P))>0. (31)

A natural test statistic for this problem is given by rnφ(θ̂n), and a natural test is to reject for
large values of said test statistic. In particular, Theorem 3.2 suggests that a level α test can be
constructed by comparing rnφ(θ̂n) to the critical value

ĉ1−α≡ inf{c :P(φ̂′
n(rn{θ̂∗

n − θ̂n})≤c|{Xi}n
i=1)≥1−α};

that is, ĉ1−α is the 1−α conditional quantile of φ̂′
n(rn{θ̂∗

n − θ̂n}) given the data. The quantile ĉ1−α
can be approximated via simulation by computing multiple draws of θ̂∗

n .
In order to evaluate the ability of the proposed test to provide size control, we evaluate its

rejection probability along a “local” sequence of distributions. In particular, we focus on sequences
of distributions that converge to a distribution P0 such that φ(θ (P0))=0—i.e. such that P0 is on
the “boundary” of the null hypothesis. Our next result builds on Lemma 3.1 to characterize the
desired limiting rejection probability.

Theorem 3.3 Let {Xi}n
i=1 be i.i.d. with Xi distributed according to Pλ/

√
n for some path t �→Pt,

and set θ0 =θ (P0). If Assumptions 1, 3, 4, 5 hold, φ(θ0)=0, and the cdf of φ′
θ0

(G0) is continuous
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and increasing at its 1−α quantile, denoted c1−α , then

limsup
n→∞

Pn
λ/

√
n(rnφ(θ̂n)> ĉ1−α)≥P(φ′

θ0
(G0 +θ ′(λ))>c1−α). (32)

Moreover: (i) Result (32) holds with equality whenever c1−α is a continuity point of the cdf of
φ′
θ0

(G0 +θ ′(λ)), and (ii) The limiting rejection probability equals α when λ=0.

Because the local sequence may approach P0 from the “null” (i.e. φ(θ (Pλ/
√

n))≤0) or the
“alternative” (i.e. φ(θ (Pλ/

√
n))>0), Theorem 3.3 can be employed to study both the local size and

power of the proposed test. The presence of an inequality in (32), rather than an equality, is due
to convergence in distribution only implying convergence of the corresponding cdfs at continuity
points of the limit. Indeed, as noted by Theorem 3.3, result (32) holds with equality whenever
c1−α is a continuity point of the cdf of φ′

θ0
(G0 +θ ′(λ)). Notably, since c1−α is by hypothesis

a continuity point of the cdf of φ′
θ0

(G0), Theorem 3.3 implies the limiting rejection probability
is equal to α whenever λ=0—i.e. whenever P does not change with the sample size. In other
words, Theorem 3.3 implies “pointwise” (in P) size control of the proposed test.

In accord with the spirit of the Delta method, a purely analytical condition suffices for
leveraging Theorem 3.3 to show the proposed test can also provide local size control. Concretely,
whenever φ′

θ0
is convex and G0 is Gaussian, the conclusion of Theorem 3.3 can be strengthened

to show that if Pλ/
√

n satisfies the null hypothesis for all n, then

lim
n→∞Pn

λ/
√

n(rnφ(θ̂n)> ĉ1−α)=P(φ′
θ0

(G0 +θ ′(λ))>c1−α); (33)

that is, convexity of φ′
θ0

enables us to verify continuity of the limiting cdf at c1−α . As a result of
(33), it follows that the proposed test delivers local size control if and only if

P(φ′
θ0

(G0 +θ ′(λ))>c1−α)≤α (34)

for any sequence {Pλ/√n}∞n=1 satisfying the null hypothesis. This potentially daunting to verify
condition is fortunately also implied by convexity ofφ′

θ0
. Intuitively, sinceφ(θ (Pλ/

√
n)) converges

to φ(θ (P0)) and φ(θ (P0)) takes the largest value in the null hypothesis (i.e. zero), the derivative
φ′
θ0

(θ ′(λ)) must be negative.10 Hence, since φ′
θ0

is homogeneous of degree one by construction,
convexity implies

φ′
θ0

(G0 +θ ′(λ))=2φ′
θ0

(
1

2
G0 + 1

2
θ ′(λ)

)
(homogeneity)

≤φ′
θ0

(G0)+φ′
θ0

(θ ′(λ)) (convexity)

≤φ′
θ0

(G0) (φ′
θ0

(θ ′(λ))≤0).

In other words, the distribution ofφ′
θ0

(G0) is the “least favorable” (in the sense of having the largest
quantiles) among all local limits. Since c1−α is precisely the 1−α quantile of this “least favorable”
distribution, it follows that convexity of φ′

θ0
suffices for establishing the local size control of the

proposed test (formally, (34) holds as required). In summary, the potentially challenging task of
verifying local size control can be reduced to the simple to verify requirement that the directional
derivative be convex.

The following Corollary formalizes our preceding discussion.

10. More precisely, we are employing that φ′
θ0

(θ ′(λ))= limn→∞ rn{φ(θ (Pλ/√n))−φ(θ (P0))}≤0.
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Corollary 3.2 Let the conditions of Theorem 3.3 hold, G0 be Gaussian, D0 be a convex set,
and φ′

θ0
:D0 →R be a convex function. If φ(θ (Pλ/

√
n))≤0 for all n, then

limsup
n→∞

Pn
λ/

√
n(rnφ(θ̂n)> ĉ1−α)≤α.

While φ′
θ0

is convex in most of the examples we study, we emphasize that this condition can
fail to hold. It is thus important to note that when φ′

θ0
is not convex, a test that rejects whenever

rnφ(θ̂n) exceeds ĉ1−α may fail to provide local size control. Nonetheless, Theorem 3.3 still gives
us the means for obtaining a suitable critical value in such instances. In particular, in order for
a test that rejects whenever rnφ(θ̂n) exceeds a critical value c� to provide local size control, the
critical value c� must satisfy

P(φ′
θ0

(G0 +θ ′(λ))>c�)≤α
whenever φ(θ (Pλ/

√
n))≤0 for all n. While the desired c� may not equal c1−α when φ′

θ0
is not

convex, it is sometimes still possible to find c� by employing the analytical expression for the
directional derivative; see, e.g., our discussion of Example 2.2 below. Finally, we emphasize that
even though we have focused on hypothesis testing, the local analysis in this Section is equally
applicable to the construction of confidence regions.

Remark 3.6 The proof of Theorem 3.3 further implies that whenever c1−α is a continuity point
of the cdf of φ′

θ0
(G0 +θ ′(λ)) we must have that

lim
n→∞Pn

λ/
√

n(rnφ(θ̂n)> ĉ1−α)=P(φ′
θ0

(G0 +θ ′(λ))>c1−α). (35)

Applying result (35) to sequences {Pλ/√n}∞n=1 that approach P0 from the alternative (i.e.
φ(θ (Pλ/

√
n))>0), allows us to characterize the local power of the test. It is worth noting that

(35) reduces to a familiar expression whenever φ is (fully) differentiable at θ0. In such a setting,
φ′
θ0

is linear, which implies Z0 ≡φ′
θ0

(G0) is Gaussian, and therefore

P(φ′
θ0

(G0 +θ ′(λ))>c1−α)=P(Z0 +φ′
θ0

(θ ′(λ))>c1−α);

that is, the local power is determined by the probability that the sum of a Gaussian variable Z0
and a Pitman drift φ′

θ0
(θ ′(λ)) exceeds the 1−α quantile of Z0. ‖

3.4.3. Examples revisited. We return to Examples 2.1 and 2.2 to illustrate the preceding
local analysis.

Example 2.1 (cont.) Notice in this application θ (P)=EP[X], where EP denotes the expectation
when X is distributed according to P. To examine the impact on the distribution of max{X̄,0}
of θ (P) being “close” to zero, we consider a path such that θ (Pλ/

√
n)=EPλ/√n

[X]=λ/√n.
Assumption 5 then holds with θ ′(λ)=λ, and hence

√
n{φ(θ̂n)−φ(θ (Pλ/

√
n))} Lλ→max{G0 +λ,0}−max{λ,0} (36)

by Lemma 3.1. In particular, result (36) reflects that the finite sample distribution of max{X̄,0}
depends on the distance of EP[X] to zero. Nonetheless, the directional derivative φ′

θ0
(h)=

max{h,0} is convex, and hence Corollary 3.2 implies we may employ the bootstrap procedure
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of Theorem 3.2 to obtain a test of (31) that locally controls size.11 This observation has
previously been extensively employed by the literature on models defined by moment inequalities
(Andrews and Soares, 2010). ‖
Example 2.2 (cont.) Recall in this application φ(θ (P)) is the largest value in the identified set of
a coordinate of β0, which Bontemps et al. (2012) show equals

φ(θ (P))=EP[b0(P)′ZYl +max{b0(P)′Z,0}(Yu −Yl)]

with b0(P)≡ (EP[ZZ ′])−1p. It is straightforward to verify that φ′
θ0

, as characterized in (15), is
convex and therefore Corollary 3.2 provides us with a test of (31) that delivers local size control.
In this application, however, it is also interesting to test

H0 :φ(θ (P))≥c0 H1 :φ(θ (P))<c0, (37)

which, through test inversion over c0, enables us to obtain an upper one-sided confidence region
for the largest value in the identified set of a coordinate ofβ0. When P(b0(P)′Z =0) is positive, and
hence φ fails to be (fully) Hadamard differentiable, it is possible to show that a test that rejects
(37) whenever

√
nφ(θ̂n) is smaller than ĉα can fail to provide local size control. Nonetheless,

Theorem 3.3 can be used to show that any c� satisfying

P(Gψ (b0)+G′
bE[Z(Yl +(Yu −Yl)(1{b0(P)′Z>0}+1{Z ∈A}))]<c�)≤α

for all sets A⊂{z :z′b0(P)=0} can be used as a critical value to obtain a test that provides local
size control; see the Supplementary Appendix for additional discussion. ‖

4. CONVEX SET PROJECTIONS

In this section, we demonstrate the usefulness of our results by constructing a test of whether a
Hilbert space valued parameter belongs to a known closed convex set—a setting that encompasses
tests of moment inequalities, shape restrictions, and the validity of random utility models. Despite
the generality of the problem, we show our results enable us to develop a valid test by relying
only on analytical calculations.

4.1. Projection setup

In what follows, we let H be a Hilbert space with inner product 〈·,·〉H and norm ‖·‖H. For a
known closed convex set �⊆H, we consider the hypothesis testing problem

H0 :θ0 ∈� H1 :θ0 /∈�, (38)

where the parameter θ0 ∈H is unknown, but for which we possess an estimator θ̂n. Special cases
of this problem have been widely studied in the setting where H=Rd , and to a lesser extent when
H is infinite dimensional; see Examples 4.1-4.3 below.

11. The cdf of max{G0,0} is continuous and strictly increasing at c1−α if and only if α<0.5 and Var{G0}>0.
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To map this problem into the framework of Section 3.4.2, we define the projection map
�� :H→� which for each θ ∈H returns the unique element ��θ ∈� satisfying

‖θ−��θ‖H = inf
h∈�‖θ−h‖H.

We then let φ :H→R be the function mapping each θ ∈H into its distance to �; i.e.

φ(θ )≡‖θ−��θ‖H. (39)

Employing this notation, it follows that the null hypothesis in (38) is satisfied if and only if
φ(θ0)≤0. Thus, we may view the hypothesis testing problem defined in (38) as a special case of
the general testing problems examined in Section 3.4.2 (see (31)).

As a final piece of notation, we need to introduce the tangent cone of � at a θ ∈H, which
plays a crucial role in our analysis. To this end, for any set A⊆H let A denote its closure under
‖·‖H and define the tangent cone of � at θ ∈H by

Tθ ≡
⋃
α≥0

α{�−��θ}. (40)

Heuristically, Tθ constitutes a local approximation to the set � at the point ��θ . To appreciate
this connection, note that {�−��θ} consists of all vectors h such that a movement from��θ by
h remains in � (i.e. ��θ+h∈�). Up to closure, Tθ then consists of all vectors that point in the
same direction as some h∈{�−��θ} (i.e. αh for some α≥0). Loosely speaking, the boundary
of Tθ is as a result determined solely by the “local” region of the boundary of � that ��θ is in;
see Figure 1.

4.1.1. Examples. In order to aid exposition, we next provide examples of both well
studied and new applications that are a special case of the introduced hypothesis testing problem.

Figure 1

Illustrations of tangent cones. Arrows represent elements of �−��θ , while Tθ is (up to closure) the set of vectors αh

for some α≥0 and h∈�−��θ . Tθ equals {(x,y) :x≥0,y≤0} and {(x,y) :y≤0} in the first and second figures

respectively.
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Example 4.1 Suppose X ∈Rd and that we aim to test the moment inequalities

H0 :E[X]≤0 H1 :E[X]�0,

where the null is meant to hold at all coordinates and the alternative indicates at least one
coordinate of E[X] is strictly positive. In this instance, H=Rd, � is the negative orthant in Rd

(�≡{h∈Rd :h≤0}), and the distance of θ to � is equal to

φ(θ )=‖θ−��θ‖H =
⎧⎨
⎩

d∑
i=1

(E[X(i)])2+

⎫⎬
⎭

1
2

,

where (a)+ =max{a,0} and X(i) denotes the ith coordinate of X. Related special cases of the
hypothesis in (38) include tests of inequalities on regression coefficients (Wolak, 1988) and tests
of random utility models (Kitamura and Stoye, 2013). ‖

The next example is new and concerns quantile models, as employed by Buchinsky (1994)
to characterize the U.S. wage structure conditional on levels of education, or by Abadie et al.
(2002) to estimate the effect of subsidized training on earnings.

Example 4.2 Let (Y ,D,Z)∈R×R×Rdz and consider the quantile regression

(θ0(τ ),β(τ ))≡arg min
θ∈R,β∈Rdz

E[ρτ (Y −Dθ−Z ′β)],

where ρτ (u)= (τ−1{u≤0})u and τ ∈ (0,1). Under appropriate restrictions, the sample analogue
estimator of θ0 converges in distribution in �∞([ε,1−ε]) for any ε∈ (0,1/2) (Angrist et al., 2006).
In this setting, it is often of interest to test for shape restrictions on θ0, which we may accomplish
by setting H to equal the Hilbert space

H≡{θ : [ε,1−ε]→R s.t. 〈θ,θ〉H<∞} 〈θ1,θ2〉H ≡
∫ 1−ε

ε

θ1(τ )θ2(τ )dτ,

and considering appropriate convex sets�⊆H. For instance, in randomized experiments where D
is a dummy for treatment, θ0(τ ) is the quantile treatment effect and we may test for its constancy or
monotonicity; see Muralidharan and Sundararaman (2011) for an examination of these features
in the evaluation of teacher performance pay. ‖

As our final example we introduce a generalization of Example 4.2 that we will apply to study
qualitative features of the trend in residual U.S. wage inequality; see Section 5.

Example 4.3 Let Z ∈Rdz ,�⊆Rdθ , and T ⊆Rdτ . Suppose there exists a function ρ :Rdz ×�×
T →Rdρ such that for each τ ∈T there is a unique θ0(τ )∈� satisfying

E[ρ(Z,θ0(τ ),τ )]=0.

Such a setting arises, for instance, in sensitivity analysis (Chen et al., 2011), and in partially
identified models where the identified set is a curve (Arellano et al., 2012) or can be described
by a functional lower and upper bound (Kline and Santos, 2013; Chandrasekarh et al., 2013).
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Escanciano and Zhu (2013) derive an estimator of θ0 which, for an integrable function w :T →
R+, converges in distribution in the space

H≡{θ :T →Rdθ s.t. 〈θ,θ〉H<∞} 〈θ1,θ2〉H ≡
∫
T
θ1(τ )′θ2(τ )w(τ )dτ.

Appropriate choices of � then enable us to test, for example, whether the model is identified in
Arellano et al. (2012), or whether the identified set in Kline and Santos (2013) is consistent with
increasing returns to education across quantiles. ‖

4.2. Theoretical results

4.2.1. The test statistic. Following the analysis of Section 3.4.2, we test the null
hypothesis that the parameter θ0 belongs to the set � by rejecting for large values of the test
statistic

rnφ(θ̂n);
that is, by rejecting whenever the distance of the estimator θ̂n to � is “too large”.

Our analysis crucially relies on the seminal work of Zarantonello (1971), who establishes the
Hadamard directional differentiability of metric projections onto convex sets in Hilbert spaces.
Specifically, Zarantonello (1971) shows �� :H→� is Hadamard directionally differentiable at
any θ ∈�, and its directional derivative is equal to the projection map onto the tangent cone of
� at θ , which we denote by �Tθ :H→Tθ . Figure 2 illustrates a simple example in which the
derivative approximation

��θ1 −��θ0 ≈�Tθ0
(θ1 −θ0)

actually holds with equality. We note that it is also immediate from Figure 2 that the directional
derivative �Tθ0

is not linear, and hence �� is not fully differentiable.

Since φ(θ0)=0 whenever θ0 ∈�, the asymptotic distribution of rnφ(θ̂n) under the null
hypothesis is an immediate consequence of Theorem 2.1 and Zarantonello (1971).

Proposition 4.1 Let D=H for H a Hilbert space with norm ‖·‖H, and �⊆H be a closed
convex set. If θ0 ∈�, then φ :H→R as in (39) satisfies Assumption 1 with

φ′
θ0

(h)=‖h−�Tθ0
h‖H (41)

and D0 =H. Therefore, for any estimator θ̂n satisfying Assumption 2 it follows that

rnφ(θ̂n)=rn‖θ̂n −��θ̂n‖H

L→‖G0 −�Tθ0
G0‖H =φ′

θ0
(G0). (42)

The asymptotic distribution obtained in Proposition 4.1 can depend discontinuously in θ0 when
θ0 is on the boundary of�. This discontinuity is cause for concern that the asymptotic distribution
in Proposition 4.1 may be a poor approximation to the finite sample distribution of rnφ(θ̂n)
whenever θ0 is “near” the boundary of �. For instance, in the moment inequalities application
of Example 4.1, θ0 is “near” the boundary of � precisely when the moments inequalities are
“close” to binding. Fortunately, for the purposes of testing the null hypothesis in (38), Corollary
3.2 reassures us that said discontinuity in the asymptotic distribution may be immaterial. In
particular, Corollary 3.2 implies that employing the quantiles of the asymptotic distribution in
Proposition 4.1 as critical values will result in a test with local size control provided φ′

θ0
is convex.

Our next result verifies this important convexity requirement on φ′
θ0

.
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Figure 2

Illustration of directional differentiability. Here, ��θ1 −��θ0 is approximated without error by the derivative

�Tθ0
(θ1 −θ0). Note ��θ0 =θ0 since θ0 ∈�.

Proposition 4.2 Let D=H for H a Hilbert space with norm ‖·‖H, and �⊆H be a closed
convex set. Then it follows that φ′

θ0
:H→R (as in (41)) is convex.

Together, Propositions 4.1 and 4.2 and Corollary 3.2 imply employing the quantiles ofφ′
θ0

(G0)
as critical values will deliver size control even if θ0 is “near” the boundary of�; see also Remark
4.2 below. Alternatively, it is interesting to note that �⊆Tθ0 whenever � is a cone, and hence
‖h−�Tθ0

h‖H ≤‖h−��h‖H for all h∈H. Therefore, the asymptotic distribution of Proposition
4.1 is first order stochastically dominated by the distribution of ‖G0 −��G0‖H and thus the
quantiles of the latter may be employed for potentially conservative inference—an approach that
may be viewed as analogous to assuming all moments are binding in the moment inequalities
literature.

4.2.2. The critical value. In order to construct critical values for the test statistic rnφ(θ̂n)
we next aim to employ Theorem 3.2 to devise a consistent estimator of the quantiles of φ′

θ0
(G0).

To this end, we employ the analytical characterization of φ′
θ0

obtained in Proposition 4.1 to obtain

an estimator φ̂′
n that satisfies Assumption 4 under no additional requirements.

Specifically, for an appropriate κn ↑∞, we define φ̂′
n :H→R pointwise in h∈H by

φ̂′
n(h)≡ sup

θ∈�:rn‖θ−��θ̂n‖H≤κn

‖h−�Tθ h‖H (43)

(compare to (41)). Heuristically, we estimate φ′
θ0

(h) by the distance between h and the “least
favorable” tangent cone Tθ that can be generated by the θ ∈� that are in a κn/rn neighbourhood
of ��θ̂n. It is evident from this construction that provided κn ↑∞ at an appropriate rate, the
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shrinking neighbourhood of��θ̂n will include θ0 with probability tending to one and as a result
φ̂′

n(h) will provide an upper bound for φ′
θ0

(h). As the following Proposition shows, however,

φ̂′
n is not only an upper bound but is in fact also consistent for φ′

θ0
in the sense required by

Theorem 3.2.

Proposition 4.3 If the conditions of Proposition 4.1 are satisfied, and κn ↑∞ satisfies κn/
√

n↓
0, then it follows that φ̂′

n as defined in (43) satisfies Assumption 4.

Theorem 3.2 therefore implies that, provided the bootstrap is consistent for the asymptotic
distribution of rn{θ̂n −θ0}, we may employ the 1−α quantile of

φ̂′
n(rn{θ̂∗

n − θ̂n})= sup
θ∈�:rn‖θ−��θ̂n‖H≤κn

‖rn{θ̂∗
n − θ̂n}−�Tθ {rn{θ̂∗

n − θ̂n}}‖H

(conditional on {Xi}n
i=1) as a critical value for the test statistic rnφ(θ̂n). While the proposed

estimator φ̂′
n is appealing due to its general applicability, we note that in specific applications

computationally simpler approaches may be available; see Remark 4.2. Alternatively, critical
values may also be obtained by employing numerical estimators of φ′

θ0
as in Hong and Li (2017).

In accord with our discussion in Section 3.3, however, we find that the choice of tuning parameter
is simpler to motivate when employing estimators φ̂′

n that leverage the analytical computation
of φ′

θ0
.

Remark 4.1 In selecting κn in (43), it is helpful to view {θ ∈� :rn‖θ−��θ̂n‖H ≤κn} as a
confidence region for θ0 whose confidence level tends to one. Moreover, since

rn‖θ0 −��θ̂n‖H ≤rn‖θ0 − θ̂n‖H

L→‖G0‖H,

due to θ0 ∈�, it follows that setting κn to equal the 1−αn quantile of ‖G0‖H results in a confidence
level of 1−αn. This observation suggests selecting κn to equal the 1−αn conditional quantile of
‖rn{θ̂∗

n − θ̂n}‖H given {Xi}n
i=1 for some sequence αn ↓0. ‖

Remark 4.2 In certain applications, the tangent cone Tθ0 can be easily estimated and as a
result so can φ′

θ0
. For instance, suppose � is a polyhedron so that it satisfies

�={h∈H : 〈h,aj〉H ≤bj for all 1≤ j≤J},
where aj ∈H, bj ∈R, and J<∞. For any θ0 ∈�, the tangent cone Tθ0 then equals

Tθ0 ={h∈H : 〈h,aj〉H ≤0 for all j s.t. 〈θ0,aj〉H =bj};
that is Tθ0 is determined by the inequality constraints that “bind” at θ0. This characterization
suggests the following simple estimator for the tangent cone:

T̂n ≡
{

h∈H : 〈h,aj〉H ≤0 for all j s.t.
rn{〈aj,θ̂n〉H−bj}

σ̂j
≥−κn

}
(44)

for κn ↑∞ satisfying κn/rn ↓0 and σ̂ 2
j any estimator of the asymptotic variance of rn〈aj,θ̂n −θ0〉H.

It is then straightforward to verify that φ̂′
n(h)=‖h−�T̂n

h‖H satisfies Assumption 4 (compare to
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(41)). Moreover, following Remark 4.1, we may set

κn = inf

{
c :P

(
max

1≤j≤J

rn〈aj,θ̂n − θ̂∗
n 〉H

σ̂j
≤c|{Xi}n

i=1

)
≥1−αn

}
(45)

for some sequence αn ↓0 – such a choice allows us to interpret T̂n as a confidence region for the
set of binding constraints at θ0 with confidence level 1−αn. ‖

4.3. Simulation evidence

In order to examine the finite sample performance of the proposed test and illustrate its
implementation, we next conduct a limited Monte Carlo study based on Example 4.2. Specifically,
we consider a quantile treatment effect model in which the treatment dummy D∈{0,1} satisfies
P(D=1)=1/2, the covariates Z = (1,Z (1),Z (2))′ ∈R3 satisfy (Z (1),Z (2))′ ∼N(0,I) for I the
identity matrix, and Y is related by

Y = �√
n

D×U +Z ′β+U, (46)

whereβ= (0,1/
√

2,1/
√

2)′ and U is unobserved, uniformly distributed on [0,1], and independent
of (D,Z). It is then straightforward to verify that (Y ,D,Z) satisfies

P(Y ≤Dθ0(τ )+Z ′β(τ )|D,Z)=τ, (47)

for θ0(τ )≡τ�/√n and β(τ )≡ (τ,1/
√

2,1/
√

2)′. Hence, in this context the quantile treatment
effect has been set local to zero at all τ , which enables us to evaluate the local power and local
size control of the proposed test.

We test whether the quantile treatment effect θ0(τ ) is monotonically increasing in τ , which
corresponds to the special case of (38) in which � equals the set of monotonically increasing
functions. For ease of computation, we obtain quantile regression estimates θ̂n(τ ) on a grid
{0.2,0.225,...,0.775,0.8} and compute the distance of θ̂n to the set of monotone functions on
this grid as our test statistic. Critical values are obtained by computing two hundred bootstrapped
quantile regression coefficients θ̂∗

n (τ ) at all τ ∈{0.2,0.225,...,0.775,0.8}, and using the 1−α
quantile across bootstrap replications of the statistic φ̂′

n(
√

n{θ̂∗
n − θ̂n}). Since in this problem �

is a polyhedron, we set φ̂′
n(h)=‖h−�T̂n

h‖H for T̂n as in (44) and σ̂ 2
j the bootstrap estimate of

the asymptotic variance of rn〈aj,θ0 − θ̂n〉H. In order to explore the sensitivity of our results to the
choice of κn we additionally select κn according to (45) for different values of αn. All reported
results are based on five thousand Monte Carlo replications. Computational costs are modest,
with a single replication of sample size five hundred being completed in 12.47 seconds when
running MATLAB on a single Intel i7-7700K 4.2 Ghz core.

Table 1 reports the empirical rejection rates for different values of the local parameter �∈
{0,1,2} – recall that since θ0(τ )=τ�/√n, the null hypothesis that θ0 is monotonically increasing
is satisfied for all such�. For the explored sample sizes of two and five hundred observations, we
observe little sensitivity to the value of the bandwidth αn defining the estimator φ̂′

n (as in (45)).
In addition, the row labelled “Theoretical” reports the rejection rates we should expect according
to the local asymptotic approximation of Theorem 3.3. Throughout the specifications, we see
that the test effectively controls size even for the “aggressive” choice of αn =0.9 (theory requires
αn ↓0). In addition, the theoretical predictions of Theorem 3.3 provide an adequate approximation
to the empirical rejection probabilities across the different values of the local parameter.
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TABLE 1
Empirical rejection probabilities for the null hypothesis that θ0 is monotonically increasing

n=200

Bandwidth Level =0.1 Level =0.05 Level =0.01

αn �=0 �=1 �=2 �=0 �=1 �=2 �=0 �=1 �=2

0.9 0.071 0.033 0.015 0.039 0.018 0.006 0.010 0.003 0.001
0.5 0.046 0.019 0.006 0.025 0.010 0.003 0.005 0.001 0.001
0.1 0.042 0.016 0.005 0.023 0.009 0.002 0.005 0.001 0.000

Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

n=500

Bandwidth Level =0.1 Level =0.05 Level =0.01

αn �=0 �=1 �=2 �=0 �=1 �=2 �=0 �=1 �=2

0.9 0.076 0.036 0.017 0.042 0.019 0.009 0.011 0.005 0.003
0.5 0.053 0.021 0.009 0.028 0.010 0.004 0.006 0.002 0.000
0.1 0.051 0.019 0.008 0.026 0.009 0.003 0.006 0.002 0.000

Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

Notes: � represents the local parameter (as in (46)) and αn the bandwidth employed in computing φ̂′
n(h)=‖h−�T̂n

h‖H

(as in (44) and (45)). The row labelled “Theoretical” displays the rejection probabilities implied by Theorem 3.3

TABLE 2
Empirical local power for a level 5% test of the null hypothesis that θ0 is weakly increasing

Bandwidth n=200

αn �=−1 �=−2 �=−3 �=−4 �=−5 �=−6 �=−7 �=−8

0.9 0.089 0.190 0.362 0.590 0.801 0.938 0.991 1.000
0.5 0.062 0.156 0.326 0.559 0.783 0.933 0.991 1.000
0.1 0.060 0.152 0.322 0.557 0.780 0.933 0.991 1.000

Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

Bandwidth n=500

αn �=−1 �=−2 �=−3 �=−4 �=−5 �=−6 �=−7 �=−8

0.9 0.098 0.209 0.387 0.610 0.807 0.931 0.983 0.997
0.5 0.075 0.180 0.354 0.582 0.792 0.926 0.982 0.997
0.1 0.072 0.178 0.352 0.580 0.790 0.925 0.982 0.997

Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

Notes: � represents the local parameter (as in (46)) and αn the bandwidth employed in computing φ̂′
n(h)=‖h−�T̂n

h‖H

(as in (44) and (45)). The row labelled “Theoretical” displays the rejection probabilities implied by Theorem 3.3.

In Table 2, we examine the local power of a 5% level test by considering values of �∈
{−1,...,−8}. For these choices of the local parameter, the null hypothesis is violated since
θ0(τ )=τ�/√n is in fact monotonically decreasing in τ (rather than increasing). In this context,
we find the theoretical local power to align more closely with the empirical rejection rates for
larger values of the local parameter�. Overall, we find the simulation results encouraging, though
certainly limited in their scope.

5. RESIDUAL WAGE INEQUALITY

A large literature examines trends in residual wage inequality using the Current Population
Survey (CPS); see, among others, Katz and Murphy (1992), Juhn et al. (1993), and Autor et al.
(2008). Existing work has largely focused on the qualitative features of the estimates of these
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trends—e.g., by examining whether these estimates are decreasing or increasing, or determining
the year at which residual wage inequality is the largest. These qualitative features are often
directionally differentiable functions of the trends, and as a result statistical inference suffers
from the challenges addressed in Sections 3 and 4. We thus next complement the existing
literature by going beyond point estimates and employing our results to conduct formal statistical
inference.

5.1. Data and background

We follow the analysis of Lemieux (2006) and Autor et al. (2008) in examining inequality
measures based on the residuals from a Mincer (1974) regression. Specifically, we employ the
Merged Outgoing Rotation Groups (ORG) supplements to the 1979 to 2016 CPS to estimate,
separately by year and gender, the regression

Yi =X ′
iβ0 +εi E[Xiεi]=0, (48)

where Yi denotes log hourly wages and Xi includes a constant, dummy variables for twenty
three age categories and eight education categories, and the interaction of the Z-score for age
and its square with the education dummy variables.12 Dispersion measures for the distribution
of ε are then understood as capturing wage dispersion among workers with similar age and
education profiles. Following the literature, we refer to these dispersion measures as residual
wage inequality and study their evolution through time. As noted by Juhn et al. (1993), the
growth in residual wage inequality accounts for the majority of the growth in overall wage
inequality.

A challenge in examining trends in residual wage inequality is that compositional changes
in the labour force can mechanically generate increased dispersion in the distribution of ε. For
instance, the variance of wages among uneducated older workers is considerably larger than
among uneducated younger workers. Thus, an increase in the share of uneducated older workers
can mechanically generate an increment in residual wage variance. To address this concern,
we follow Lemieux (2006) in controlling for these compositional changes by employing the
reweighting methodology developed by DiNardo et al. (1996) to keep labour force composition
constant at its 1979 level.13

For our sample, we restrict attention to currently employed workers who are between sixteen
and sixty-four years old. Wages are price deflated, and observations with hourly earnings below
one or above one hundred in 1979 dollars are dropped. All observations with imputed wage
observations are dropped from the sample. Between January 1994 and August 1995, flags for
imputed wages are missing, and thus we follow Lemieux (2006) and Autor et al. (2008) in
dropping these observations as well; see Hirsch and Schumacher (2004) for additional discussion.
All calculations employ weights equal to the product of the CPS sampling weights and hours
worked in the previous week.

12. Employing the Z-score of age makes the design matrix easier to invert due to higher powers of Z-score age
being better scaled than higher powers of age. Employing Z-scores of age instead of age itself does not otherwise impact
our analysis, since all statistics depend on the residuals in (48) and replacing age with its Z-score does not change the
column span of the regressors.

13. The reweighting function is estimated by a linear probability model that includes the same covariates employed
in (48). Predicted probabilities are truncated to lie between 0.01 and 0.99. For men, this truncation binds in 0% of the
observations in the full sample and 0.000002% of the observations in the bootstrap samples. For women, the corresponding
numbers are 0.0000014% and 0.000002%.
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5.2. Empirical results

Figure 3 depicts the point estimates for residual wage variance (i.e. the variance of ε in (48))
between 1979 and 2016 for both men and women. In agreement with Lemieux (2006) we find
that adjusting for changes in labour force composition is important. In particular, the composition
adjusted estimates appear to be stable since 1990, while the composition unadjusted estimates
have steadily increased during the same time period.

We next go beyond the point estimates and examine a series of hypothesis tests that fit
the framework of Sections 3 and 4. To this end, we think of the functions in Figure 3 as the
point estimates θ̂n of their population counterparts θ0—e.g. θ0(t) is the population value of the
composition adjusted residual wage variance at time t and θ0 is the corresponding set of population
values between 1979 and 2016. The randomness in the estimator θ̂n is then the result of the random
sampling conducted by the CPS. On average, each year approximately 28,000 households are
introduced into our sample. Due to the sampling structure, however, each household appears in

(a)

(b)

Figure 3

Composition adjusted series keep labour force composition constant at its 1979 level employing the reweighing scheme

of DiNardo et al. (1996), while the composition unadjusted series omits such reweighing. Dots indicate year belongs to

a 95% confidence region for the point in time at which composition residual variance was the largest (obtained through

test inversion of (49)). Dotted lines form 95% uniform confidence bands for composition adjusted residual variance. (a)

Residual variance for men; (b) Residual variance for women.
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two consecutive years. For inference, we employ a block bootstrap that clusters at the household
level to compute the bootstrapped version θ̂∗

n of θ̂n. Many of the hypotheses tests we examine
fit the framework of Remark 4.2. For such applications, we conduct inference by employing
the results in Section 3 with φ̂′

n as specified in Remark 4.2 employing αn =0.01 (see (45)). We
view such a choice for αn as “conservative” in that the corresponding estimator φ̂′

n can then be
interpreted as based on a 99%-confidence region for the set of binding constraints; see Remark
4.2. As in the simulations of Section 4.3, our conclusions are not overly sensitive to the choice
of αn.

Through test inversion, we first build a 95% confidence region for the years at which the
composition adjusted residual wage variances of men and women attained their largest values.
Specifically, for each t0 ∈{1979,...,2016} we test the null hypothesis

H0 :θ0(t0)−θ0(t)≥0 for all t �= t0 H1 :θ0(t0)−θ0(t)<0 for some t �= t0. (49)

Of course, even if t0 is indeed the point at which residual wage inequality was the largest, the
point estimate θ̂n may not exhibit its largest value at t0 due to sampling uncertainty. We therefore
formally test the null hypothesis in (49) by employing the test statistic

inf
θ

√
n‖θ̂n −θ‖ s.t. θ (t0)≥θ (t) for all t �= t0;

that is, we measure the (Euclidean) distance between the estimate θ̂n and the set of functions
satisfying the null hypothesis. Our analysis in Section 3.4 implies “standard” bootstrap methods
fail when the value of θ0(t) is “close” to θ (t0) at some t �= t0 (here, “close” is meant relative to
sampling uncertainty). We therefore obtain critical values by applying the bootstrap methodology
of Section 4 instead. Specifically, since the null hypothesis in (49) can be expressed as θ0 belonging
to a set defined by linear constraints, we follow Remark 4.2 by employing as critical values the
quantiles (conditional on the data) of

inf
θ

‖√n{θ̂∗
n − θ̂n}−θ‖ s.t. θ (t)≤θ (t0) for all t satisfying

√
n{θ̂n(t)− θ̂n(t0)}

σ̂t
≥−κn,

where θ̂∗
n is the bootstrapped version of θ̂n and σ̂ 2

t is a bootstrap estimate of the asymptotic
variance of

√
n{(θ̂n(t0)− θ̂n(t))−(θ0(t0)−θ0(t))}. As previously stated, the bandwidth κn was

chosen by setting αn to equal 0.01 in (45), which in this application translates into setting κn to
equal the 0.99 quantile (conditional on the data) of

max
t �=t0

√
n{(θ̂∗

n (t)− θ̂∗
n (t0))−(θ̂n(t)− θ̂n(t0))}

σ̂t
.

In Figure 3 we mark with a dot the members of the described confidence region for the
year at which the composition adjusted residual wage variance attained its largest value. Both
confidence regions support the analysis of Card and Dinardo (2002), who argue that a significant
and permanent increment in the residual wage variance took place in the 1980s. To examine this
claim, we further test the null hypothesis that the residual wage variance was larger than its 1979
level at all years since 1990. We find the p-values for this hypothesis to equal 0.95 and 0.99 for
men and women, respectively. However, residual wage variance has not been constant since 1990.
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The p-values for the null hypothesis that it has been constant since 1990 equal zero for both men
and women.

As emphasized by Autor et al. (2008), the relative stability in the estimates of residual wage
variance after the 1980s hides important changes in other aspects of the residual wage distribution.
Figure 4 depicts the difference between the 90th and 50th quantiles (known as the 90-50 Gap) and
the difference between the 50th and 10th quantiles (known as the 50-10 Gap) of the residual
wage distribution for men and women. Given the importance of the changes in the labour
force composition, all point estimates in Figure 4 keep labour force composition constant at
its 1979 level. The point estimates reaffirm the analysis in Autor et al. (2008), who find that
the relatively stable behaviour of the residual wage variance estimates after the 1980s masks
important differences in the estimates of dispersion within the upper tail (90-50 Gap) and the
lower tail (50-10 Gap) of the residual wage distribution.

In order to quantify the statistical uncertainty in the qualitative features of our point estimates,
we next conduct a series of hypothesis tests. Starting with the 50-10 Gap, we build a 95%
confidence region for the year at which the 50-10 Gap was the largest. Members of the confidence
regions for men and for women are marked by a dot in Figure 4. We further examine whether there
is a clear downward trend by testing whether the 50-10 Gap has been monotonically decreasing
since attaining its largest value. To this end, we employ the results of Section 4 which enable us
to test whether a trend has been monotonically decreasing since time period t0 by using the test
statistic

inf
θ

√
n‖θ̂n −θ‖ s.t. θ (t+1)≤θ (t) for all t ≥ t0; (50)

that is, we measure the distance between θ̂n and the set of functions that are monotonically
decreasing since t0 (see Figure 4 for the plot of the function minimizing (50)). The results
of Section 3 imply “standard” bootstrap methods fail when θ0(t) and θ0(t+1) are “close” for
some t ≥ t0. Hence, we instead rely on the critical value of Section 4, which in this application
corresponds to the quantiles (conditional on the data) of

inf
θ

‖√n{θ̂∗
n − θ̂n}−θ‖

s.t. θ (t+1)≤θ (t) for all t ≥ t0 satisfying

√
n{θ̂n(t+1)− θ̂n(t)}

σ̂t
≥−κn,

where σ̂ 2
t is a bootstrap estimate of the asymptotic variance of

√
n{(θ̂n(t+1)− θ̂n(t))−(θ0(t+

1)−θ0(t))}. We again select κn by setting αn =0.01 in (45), which here corresponds to letting κn
equal the 0.99 quantile (conditional on the data) of

max
t≥t0

√
n{(θ̂∗

n (t+1)− θ̂∗
n (t))−(θ̂n(t+1)− θ̂n(t))}
σ̂t

.

Employing the described test, we find evidence in favour of the 50-10 Gaps for both men and
women exhibiting a downward trend since attaining their largest values. In particular, we find
a p-value of 0.806 for the null hypothesis that the 50-10 Gap for men has been monotonically
decreasing since 198914 —by way of comparison, we find a p-value of zero for the null hypothesis

14. This test employs the test statistic in (50) with t0 =1989. We chose t0 =1989 since 1989 is the largest year in
the confidence region for the year at which the 50-10 Gap for men was the largest. Similarly, in evaluating the 50-10 Gap
for women we set t0 =1990.
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Figure 4

Differences between the 90th and 50th quantiles (90-50 Gap) and between the 50th and 10th quantiles (50-10 Gap) of

residual wage inequality. Series are adjusted to keep the labour force composition at its 1979 level. Dots indicate year

belongs to a 95% confidence interval for the point in time at which Gap series was the largest. Dotted lines represent

95% uniform confidence bands. (a) Men 90-50 Gap; (b) women 90-50 Gap; (c) Men 50-10 Gap; (d) women 50-10 Gap.
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that the 50-10 Gap for men has been monotonically increasing during the same time period. The
50-10 Gap for women exhibits similar behaviour: The p-value for the null hypothesis that the 50-
10 Gap for women has been monotonically decreasing since 1990 equals 0.19, while the p-value
for the null hypothesis that it has been monotonically increasing is equal to zero.

The similarities in the 50-10 Gap series for men and women stand in stark contrast to the
differences in the 90-50 Gap series. In particular, the point estimate for the 90-50 Gap for
men exhibits an upward trend while the 90-50 Gap for women has remained relatively more
stable. These differences were not as evident in previous studies employing ORG files up to only
2005, such as, for example, Lemieux (2006) and Autor et al. (2008). In order to quantify this
contrast in the 90-50 Gap series, we test the null hypothesis that the 90-50 Gap for men has
been monotonically increasing over the entire sample period and find a p-value of 0.772. In sharp
contrast, the p-value for the null hypothesis that the 90-50 Gap for women has been monotonically
increasing is equal to zero. It is worth noting that we reject the null hypothesis that the 90-50 Gap
for women is increasing despite a monotonically increasing function fitting between the uniform
confidence bands for the 90-50 Gap (Figure 4). This observation simply reflects that a test of
monotonicity that is based on examining whether a monotonic function fits between the uniform
confidence bands can have low power.

In summary, our analysis supports previous conclusions that the variance of residual wage
inequality increased dramatically in the 1980s for both men and women. The residual wage
dispersion in the lower tail (as measured by the 50-10 Gap) also behaves similarly for men and
women: Both show a clear downward trends since attaining their largest values in the late 1980s.
In contrast, the 90-50 Gaps for men and women exhibit significantly different qualitative features.

6. CONCLUSION

In this article, we have developed a general asymptotic framework for conducting inference in
an important class of applications. In analogy with the Delta method, we have shown crucial
features of these problems can be understood simply in terms of the asymptotic distribution
G0 and the directional derivative φ′

θ0
. Our results thus facilitate an understanding of potentially

challenging statistical problems, such as bootstrap consistency or the local behavior of tests,
through simple analytical calculations. We hope our results are therefore of use to theorists
and empirical researchers alike in easily diagnosing and addressing “non-standard” inference
problems.
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