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This Supplemental Appendix to “Inference on Directionally Differentiable Func-

tions” is organized as follows. Section S.1 derives a generalization of the local analysis in

Section 3.4 in the main text that allows the data to be dependent. In turn, Section S.2

contains the proofs of the main results in the text, while Section S.3 collects auxiliary

results that are employed in the proofs of Section S.2. Finally, Section S.4 illustrates how

to verify our assumptions in Examples 2.1 and 2.2, as well as two additional Examples

based on Andrews and Shi (2013) and Linton et al. (2010).

S.1 Local Analysis Under Contiguity

In this Section, we present a set of results that generalize the analysis in Section 3.4 to

allow for certain forms of dependence. To this end, we let P∞ denote the set of possible

distributions for {Xi}∞i=1 and for any P∞ ∈ P∞ we set Pn to equal the distribution of

{Xi}ni=1 induced by P∞. As in the main text, we make the dependence of the parameter

estimated by θ̂n on the unknown distribution of {Xi}∞i=1 explicit by introducing a map

θ : P∞ → Dφ and letting θ(P∞) denote the value said estimand takes when {Xi}∞i=1 is

distributed according to P∞. Given the introduced notation, we impose an Assumption

that may be viewed as a generalization of Assumption 5 in the main text.

Assumption S.1. There is a vector space Λ and P∞n,· : Λ→ P∞, so that for any λ ∈ Λ

(i) There is a θ′(λ) ∈ D0 such that ‖rn{θ(P∞n,λ)− θ(P∞n,0)} − θ′(λ)‖D → 0.
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(ii) θ(P∞n,λ) ∈ Dφ and rn{θ̂n − θ(P∞n,λ)} Lλ→ G0, where
Lλ→ denotes convergence in distri-

bution under {Xi}ni=1 distributed according to Pnn,λ.

(iii) G0 is tight and its support is included in D0.

(iv) The measures {P∞n,0}∞n=1 are constant in n, and for any sequence of sets {An}∞n=1

satisfying Pnn,0({Xi}ni=1 ∈ An)→ 0 it follows that Pnn,λ({Xi}ni=1 ∈ An)→ 0.

Intuitively, Assumption S.1 introduces sequences of distributions {P∞n,λ}∞n=1, indexed

by a parameter λ, that are “local” to a common fixed distribution. The value λ = 0

corresponds to the distribution to which all {P∞n,λ}∞n=1 are local to – notice that by

Assumption S.1(iv) P∞n,0 is constant in n. We note the construction in Section 3.4 maps

into this setting with P∞n,λ =
⊗∞

i=1 Pλ/
√
n and P∞n,0 =

⊗∞
i=1 P0. In parallel to Assumption

5, Assumption S.1(i) then demands that the parameter θ(P∞n,λ) be suitably differentiable

(compare to Assumption 5(ii)), while Assumption S.1(ii) requires that the estimator θ̂n

be regular (compare to Assumption 5(ii)). In turn, Assumption S.1(iii) is identical to

Assumption 5(iii). Finally, Assumption S.1(iv) formalizes the sense in which P∞n,λ is local

to P∞n,0. Such a requirement is known as {Pnn,λ}∞n=1 being contiguous to {Pnn,0}∞n=1 and it

may be understood as an asymptotic analogue to absolute continuity of a measure with

respect to another; see Strasser (1985) for additional discussion. Assumption S.1(iv)

is satisfied by multiple standard constructions, including the i.i.d. setting in the main

text. However, we note that Assumption S.1 can also accommodate certain time series

applications; see Bickel et al. (1998) and Garel and Hallin (1995).

The following result is a generalization of Lemma 3.1 in the main text.

Lemma S.1.1. If Assumptions 1 and S.1 hold, then it follows that for any λ ∈ Λ

rn{φ(θ̂n)− φ(θ(P∞n,λ))} Lλ→ φ′θ0(G0 + θ′(λ))− φ′θ0(θ′(λ)), (S.1)

where θ0 = θ(P∞n,0) and Lλ denotes convergence in distribution under {Xi}ni=1 ∼ Pnn,λ.

It is worth noting that the conclusion of Lemma S.1.1 implies that φ(θ̂n) is a regular

estimator of the parameters φ(θ0) if and only if the distribution of

φ′θ0(G0 + θ′(λ))− φ′θ0(θ′(λ)) (S.2)

is constant in λ ∈ Λ. This “invariance” requirement is closely related to a necessary and

sufficient condition for the consistency of the standard bootstrap that can be derived

from results in Dümbgen (1993) (see (21)). In particular, if the closure of {θ′(λ) : λ ∈ Λ}
in D equals the support of G0, then it can be shown that φ(θ̂n) is a regular estimator

if and only if the standard bootstrap is consistent. Such conclusion complements Beran

(1997), who shows that in finite dimensional likelihood models the parametric bootstrap

is consistent if and only if the estimator is regular. Thus, we can conclude that the failure

of the standard bootstrap is an innate characteristic of irregular models.
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We conclude this Section of the Supplemental Appendix by generalizing Theorem

3.3, Corollary 3.2, and providing the proofs for the stated results.

Theorem S.1.1. Let {Xi}ni=1 be distributed according to Pnn,λ and set θ0 = θ(P∞n,0). If

Assumptions 1, 3, 4, and S.1 hold, φ(θ0) = 0, and the cdf of φ′θ0(G0) is continuous and

increasing at its 1− α quantile, denoted c1−α, then it follows that

lim sup
n→∞

Pnn,λ(rnφ(θ̂n) > ĉ1−α) ≥ P (φ′θ0(G0 + θ′(λ)) > c1−α). (S.3)

Moreover: (i) Result (S.3) holds with equality whenever c1−α is a continuity point of the

cdf of φ′θ0(G0 + θ′(λ)), and (ii) The limiting rejection probability equals α when λ = 0.

Corollary S.1.1. Let the conditions of Theorem S.1.1 hold, G0 be Gaussian, D0 be a

convex set, and φ′θ0 : D0 → R be a convex map. If φ(θ(P∞n,λ)) ≤ 0 for all n, then

lim sup
n→∞

Pnn,λ(rnφ(θ̂n) > ĉ1−α) = P (φ′θ0(G0 + θ′(λ)) > c1−α) ≤ α. (S.4)

Proof of Lemma S.1.1: First note that θ0 = θ(P∞n,0) and Assumption S.1(i) imply

lim
n→∞

‖rn{θ(P∞n,λ)− θ0} − θ′(λ)‖D = 0. (S.5)

Hence, letting tn ≡ r−1
n , hn ≡ rn{θ(P∞n,λ) − θ0} we note θ0 + tnhn = θ(P∞n,λ) ∈ Dφ, and

by (S.5) that ‖hn − h‖D = o(1) for h ≡ θ′(λ). Therefore, Assumption 1(ii) yields

lim
n→∞

‖rn{φ(θ(P∞n,λ))− φ(θ0)} − φ′θ0(θ′(λ))‖E

= lim
n→∞

‖φ(θ0 + tnhn)− φ(θ0)

tn
− φ′θ0(h)‖E = 0. (S.6)

Next, note that Theorem 2.1 and Assumption S.1(ii) applied with λ = 0 implies

rn{φ(θ̂n)− φ(θ0)} = φ′θ0(rn{θ̂n − θ0}) + op(1) (S.7)

under Pnn,0. However, by Assumption S.1(iv) the sequence {Pnn,λ}∞n=1 is contiguous to

{Pnn,0}∞n=1 and therefore results (S.6) and (S.7) allow us to conclude

rn{φ(θ̂n)− φ(θ(Pnn,λ)} = rn{φ(θ̂n)− φ(θ0)} − rn{φ(θ(P∞n,λ))− φ(θ0)}

= φ′θ0(rn{θ̂n − θ0})− φ′θ0(θ′(λ)) + op(1) (S.8)

under Pnn,λ as well. Furthermore, Assumption S.1(ii) and result (S.5) together imply

rn{θ̂n − θ0} = rn{θ̂n − θ(P∞n,λ)}+ rn{θ(P∞n,λ)− θ0}
Lλ→ G0 + θ′(λ). (S.9)

Finally, note that since (S.9) and {Pnn,λ}∞n=1 being contiguous to {Pnn,0}∞n=1 imply the
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support of G0 + θ′(λ) is a (weak) subset of the support of G0, Assumption S.1(iii) yields

P (G0 + θ′(λ) ∈ D0) = 1. (S.10)

Thus, the Lemma follows from (S.8)-(S.10) and the continuous mapping theorem.

Proof of Theorem S.1.1: We begin by establishing that ĉ1−α is consistent for c1−α.

To this end, let F denote the cdf of φ′θ0(G0) an similarly define F̂n to equal

F̂n(c) ≡ P (φ̂′n(rn{θ̂∗n − θ̂n}) ≤ c|{Xi}ni=1). (S.11)

Next, observe that Theorem 3.2 and Lemma 10.11 in Kosorok (2008) imply that

F̂n(c) = F (c) + op(1), (S.12)

for all c ∈ R that are continuity points of F . Fix ε > 0, and note that since F is

increasing at c1−α and the set of continuity of points of F is dense in R, it follows that

there exist points c1, c2 ∈ R such that: (i) c1 < c1−α < c2, (ii) |c1 − c1−α| < ε and

|c2 − c1−α| < ε, (iii) c1 and c2 are continuity points of F , and (iv) F (c1) + δ < 1− α <
F (c2)− δ for some δ > 0. Given these properties, we can then conclude that

lim sup
n→∞

Pnn,λ(|ĉ1−α − c1−α| > ε)

≤ lim sup
n→∞

{Pnn,λ(|F̂n(c1)− F (c1)| > δ) + Pnn,λ(|F̂n(c2)− F (c2)| > δ)} = 0, (S.13)

due to (S.12). In particular, since ε > 0 was arbitrary, it follows that ĉ1−α
p→ c1−α.

Recall
Lλ→ denotes convergence in distribution under the law induced by {Xi}ni=1 ∼

Pnn,λ. From Lemma S.1.1 we are then able to conclude that

rn{φ(θ̂n)− φ(θ(P∞n,λ))} Lλ→ φ′θ0(G0 + θ′(λ))− φ′θ0(θ′(λ)). (S.14)

Moreover, letting tn ≡ r−1
n and hn ≡ rn{θ(P∞n,λ)−θ0} we note θ0 + tnhn = θ(P∞n,λ) ∈ Dφ,

and by Assumption S.1(i) that ‖hn − θ′(λ)‖D = o(1). Hence, Assumption 1(ii) yields

lim
n→∞

rn{φ(θ(P∞n,λ))− φ(θ0)} = lim
n→∞

φ(θ0 + tnhn)− φ(θ0)

tn
= φ′θ0(θ′(λ)). (S.15)

Thus, since φ(θ0) = 0, we may combine results (S.14) and (S.15) together with Slutksy’s

theorem and the continuous mapping theorem to obtain that

rnφ(θ̂n)
Lλ→ φ′θ0(G0 + θ′(λ)). (S.16)

Employing that ĉ1−α
p→ c1−α, Theorem 1.3.4(ii) in van der Vaart and Wellner (1996),
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and result (S.16) together with Slutsky’s theorem then yields that

lim inf
n→∞

Pnn,λ(rnφ(θ̂n) > ĉ1−α) ≥ P (φ′θ0(G0 + θ′(λ)) > c1−α), (S.17)

which implies result (S.3). Further notice that if c1−α is a continuity point of the cdf

of φ′θ0(G0 + θ′(λ)), then we may apply Theorem 1.3.4(vi) in van der Vaart and Wellner

(1996) to obtain equality in (S.17). In particular, if λ = 0, then θ′(0) = 0 by Assumption

S.1(i) and the cdf of φ′θ0(G0) is continuous at c1−α by assumption. Thus, we obtain

lim
n→∞

Pnn,0(rnφ(θ̂n) > ĉ1−α) = P (φ′θ0(G0) > c1−α) = α, (S.18)

where the final equality follows by definition of c1−α.

Proof of Corollary S.1.1: First note that φ(θ0) = 0 and φ(θ(P∞n,λ)) ≤ 0 implies

0 ≥ lim
n→∞

rn{φ(θ(P∞n,λ))− φ(θ0)} = φ′θ0(θ(λ)), (S.19)

where the equality was established in the proof of Theorem S.1.1 (see (S.15)). Further

note that by Assumption 1(i) and Theorem 7.1.7 in Bogachev (2007), G0 is regular. Since

in addition G0 is tight by Assumption S.1(iii), it follows G0 is Radon. In particular,

G0 + θ′(λ) is also Radon, and since φ′θ0 is continuous and convex, Theorem 11.1(i) in

Davydov et al. (1998) implies that the cdf of φ′θ0(G0 + θ′(λ)) is everywhere continuous

except possibly at the point

r0 ≡ inf{r : P (φ′θ0(G0 + θ′(λ)) ≤ r) > 0}. (S.20)

However, we also note that since φ′θ0 is convex and homogenous of degree one, we have

φ′θ0(h1 + h2) = 2φ′θ0(
h1

2
+
h2

2
) ≤ φ′θ0(h1) + φ′θ0(h2) (S.21)

for any h1, h2 ∈ D0. Therefore, employing results (S.19) and (S.21) we can conclude

r0 ≤ inf{r : P (φ′θ0(G0) + φ′θ0(θ′(λ)) ≤ r) > 0}

≤ inf{r : P (φ′θ0(G0) ≤ r) > 0} < c1−α, (S.22)

where the final inequality follows from the cdf of φ′θ0(G0) being increasing at c1−α. In

particular, we conclude from the above discussion that the cdf of φ′θ0(G0 + θ′(λ)) is

continuous at c1−α. Hence, from Theorem S.1.1 we obtain that

lim sup
n→∞

Pnn,λ(rnφ(θ̂n) > ĉ1−α) = P (φ′θ0(G0 + θ′(λ)) > c1−α)

≤ P (φ′θ0(G0) + φ′θ0(θ′(λ)) > c1−α) ≤ α, (S.23)
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where the second inequality is implied by (S.21), and the final inequality follows from

(S.19) and the definition of c1−α.

S.2 Main Results

Below, we include the proofs for the main results in the text.

Proof of Proposition 2.1: One direction is clear since, by definition, φ being

Hadamard differentiable implies that its Hadamard directional derivative exists, equals

the Hadamard derivative of φ, and hence must be linear.

Conversely suppose the Hadamard directional derivative φ′θ : D0 → E exists and is

linear. Let {hn} and {tn} be sequences such that hn → h ∈ D0, tn → 0 and θ + tnhn ∈
Dφ for all n. Then note that from any subsequence {tnk} we can extract a further

subsequence {tnkj }, such that either: (i) tnkj > 0 for all j or (ii) tnkj < 0 for all j. When

(i) holds, φ being Hadamard directional differentiable, then immediately yields

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj
= φ′θ(h). (S.24)

On the other hand, if (ii) holds, then h ∈ D0 and D0 being a subspace implies −h ∈ D0.

Therefore, Hadamard directional differentiability of φ and −tnkj > 0 for all j imply

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj

= − lim
j→∞

φ(θ + (−tnkj )(−hnkj ))− φ(θ)

−tnkj
= −φ′θ(−h) = φ′θ(h), (S.25)

where the final equality holds by the assumed linearity of φ′θ. Thus, results (S.24) and

(S.25) imply that every subsequence {tnk , hnk} has a further subsequence along which

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj
= φ′θ(h). (S.26)

Since the subsequence {tnk , hnk} is arbitrary, it follows that (S.26) must hold along the

original sequence {tn, hn} and hence φ is Hadamard differentiable tangentially to D0.

Proof of Theorem 2.1: The proof closely follows the proof of Theorem 3.9.4 in

van der Vaart and Wellner (1996), and we include it here only for completeness. First,

note that by Assumption 2(ii) we may assume without loss of generality that D0 is

equal to the support of G0. Since the support of a random variable is closed and φ′θ0 is

continuous, Theorem 4.1 in Dugundji (1951) implies φ′θ0 can be continuously extended
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to all of D. Next, let Dn ≡ {h ∈ D : θ0 + h/rn ∈ Dφ} and define gn : Dn → E by

gn(h) ≡ rn{φ(θ0 +
h

rn
)− φ(θ0)} (S.27)

for any h ∈ Dn. Similarly, for any (h1, h2) ∈ Dn × D, define fn : Dn × D→ E× E by

fn(h1, h2) ≡ (gn(h1), φ′θ0(h2)). (S.28)

Then note that for any sequence (h1n, h2n) ∈ Dn × D satisfying (h1n, h2n) → (h1, h2)

for some (h1, h2) ∈ D0 × D0, it follows from Assumption 1(ii) and the continuity of φ′θ0
that fn(h1n, h2n)→ (φ′θ0(h1), φ′θ0(h2)). Therefore, Theorem 1.11.1 in van der Vaart and

Wellner (1996) implies that as processes in E× E we have that[
rn{φ(θ̂n)− φ(θ0)}
φ′θ0(rn{θ̂n − θ0})

]
L→

[
φ′θ0(G0)

φ′θ0(G0)

]
. (S.29)

In particular, result (S.29) and the continuous mapping theorem allow us to conclude

rn{φ(θ̂n)− φ(θ0)} − φ′θ0(rn(θ̂n − θ0))
L→ 0. (S.30)

Result (S.30) and Lemma 1.10.2(iii) in van der Vaart and Wellner (1996) then establishes

claim (10), while rn{φ(θ̂n) − φ(θ0)} L→ φ′θ0(G0) follows directly from (S.29) and the

continuous mapping theorem (or (10) and the continuous mapping theorem).

Proof of Theorem 3.1: Let P , DL ⊆ D, and µ0 respectively denote the distribution,

support, and mean of G0. Since DL is a vector space, it follows that 0 ∈ DL and

DL = DL + DL, and hence Theorem S.3.1 implies that result (20) holds if and only if

E[f(φ′θ0(Ḡ0 + µ0))] = E[f(φ′θ0(Ḡ0 + µ0 + a0)− φ′θ0(a0))] (S.31)

for Ḡ0 = G0−µ0, and all a0 ∈ DL and f ∈ BL1(E). On the other hand, DL is a subspace

of D, and therefore Proposition 2.1 implies that φ is Hadamard differentiable at θ0 ∈ Dφ
tangentially to DL if and only if φ′θ0 : DL → E is linear. Thus, the claim of the Theorem

will follow from establishing that (S.31) holds if and only if φ′θ0 : DL → E is linear. To

this end, we note that one direction is trivial, since linearity of φ′θ0 implies

φ′θ0(Ḡ0 + µ0 + a0)− φ′θ0(a0) = φ′θ0(Ḡ0 + µ0) (S.32)

P almost surely for all a0 ∈ DL, and thus (S.31) must hold for any f ∈ BL1(E).

The opposite direction is more challenging and requires us to introduce additional

notation which closely follows Chapter 7 in Davydov et al. (1998). First, we note that

by Lemma S.3.7 DL is a separable Banach space under ‖ · ‖D. Next, let D∗L denote the

dual space of DL, and 〈d∗, d〉D = d∗(d) for any d ∈ DL and d∗ ∈ D∗L. Similarly denote
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the dual space of E by E∗ and corresponding bilinear form by 〈·, ·〉E. In addition, we let

P̄ denote the distribution of Ḡ0, and note that P̄ is a centered Gaussian measure whose

support also equals DL since µ0 ∈ DL by Lemma S.3.7. We further let

D′P̄ ≡
{
d′ : DL → R : d′ is linear, Borel-measurable, and

∫
D

(d′(d))2dP̄ (d) <∞
}
,

(S.33)

and with some abuse of notation also write d′(d) = 〈d′, d〉D for any d′ ∈ D′
P̄

and d ∈ DL.

Finally, for each h ∈ DL we let P̄ h denote the law of Ḡ0 + h, write P̄ h � P̄ whenever

P̄ h is absolutely continuous with respect to P̄ , and define the set

HP̄ ≡ {h ∈ DL : P̄ rh � P̄ for all r ∈ R}. (S.34)

To proceed, note that since DL is separable, the Borel σ-algebra, the σ-algebra generated

by the weak topology, and the cylindrical σ-algebra all coincide (Ledoux and Talagrand,

1991, p. 38). Furthermore, by Theorem 7.1.7 in Bogachev (2007), P̄ is Radon and

thus by Theorem 7.1 in Davydov et al. (1998), it follows that there exists a linear map

I : HP̄ → D′
P̄

such that for every h ∈ HP̄ we have

dP̄ h

dP̄
(d) = exp

{
〈d, Ih〉D −

1

2
σ2(h)

}
σ2(h) ≡

∫
D
〈d, Ih〉2DdP̄ (d). (S.35)

Next, fix an arbitrary e∗ ∈ E∗ and h ∈ HP̄ . Then note that if (S.31) holds, then

Lemma 1.3.12 in van der Vaart and Wellner (1996) implies 〈e∗, φ′θ0(Ḡ0 + µ0 + rh) −
φ′θ0(rh)〉E and 〈e∗, φ′θ0(Ḡ0 + µ0)〉E must be equal in distribution for all r ∈ R. Thus,

their characteristic functions must be equal, and hence for all r ≥ 0 and t ∈ R

E[exp{it〈e∗, φ′θ0(Ḡ0 + µ0)〉E}] = E[exp{it{〈e∗, φ′θ0(Ḡ0 + µ0 + rh)− φ′θ0(rh)〉E}}]

= exp{−itr〈e∗, φ′θ0(h)〉E}E[exp{it〈e∗, φ′θ0(Ḡ0 + µ0 + rh)〉E}], (S.36)

where in the second equality we have exploited that φ′θ0(rh) = rφ′θ0(h) due to φ′θ0 being

positively homogenous of degree one. Setting C(t) ≡ E[exp{it〈e∗, φ′θ0(Ḡ0 + µ0)〉E}] and

exploiting result (S.36) we can then obtain by direct calculation that for all t ∈ R

itC(t)× 〈e∗, φ′θ0(h)〉E = lim
r↓0

1

r
{E[exp{it〈e∗, φ′θ0(Ḡ0 + µ0 + rh)〉E}]− C(t)}

= lim
r↓0

1

r

∫
D

{
exp

{
it〈e∗, φ′θ0(d+ µ0)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
− C(t)

}
dP̄ (d) (S.37)

where in the second equality we exploited result (S.35), linearity of I : HP̄ → D′
P̄

and
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that h ∈ HP̄ implies rh ∈ HP̄ for all r ∈ R. Furthermore, by the mean value theorem

sup
r∈(0,1]

1

r

∣∣∣ exp
{
it〈e∗, φ′θ0(d+ µ0)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
− exp{it〈e∗, φ′θ0(d+ µ0)〉E}

∣∣∣
≤ sup

r∈(0,1]

∣∣∣ exp
{
it〈e∗, φ′θ0(d+ µ0)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
× {〈d, Ih〉D − rσ2(h)}

∣∣∣
≤ exp{|〈d, Ih〉D|} × {|〈d, Ih〉D|+ σ2(h)}, (S.38)

where the final inequality follows from σ2(h) ≥ 0 and | exp{it〈e∗, φ′θ0(d + µ0)〉E}| ≤
1. Moreover, by Proposition 2.10.3 in Bogachev (1998) and Ih ∈ D′

P̄
, it follows that

〈Ḡ0, Ih〉D ∼ N(0, σ2(h)). Thus, we can obtain by direct calculation:∫
D

exp{|〈d, Ih〉D|} × {|〈d, Ih〉D|+ σ2(h)}dP̄ (d)

=

∫
R

{|u|+ σ2(h)}
σ(h)
√

2π
× exp

{
|u| − u2

2σ2(h)

}
du <∞. (S.39)

Hence, results (S.38) and (S.39) justify the use of the dominated convergence theorem in

(S.37). Also note that t 7→ C(t) is the characteristic function of 〈e∗, φ′θ0(Ḡ0 + µ0)〉E and

hence it is continuous. Thus, since C(0) = 1 there exists a t0 > 0 such that C(t0)t0 6= 0.

For such t0 we then finally obtain from the above results that

〈e∗, φ′θ0(h)〉E = −
iE[exp{it0〈e∗, φ′θ0(Ḡ0 + µ0)〉E}〈Ḡ0, Ih〉D]

t0C(t0)
. (S.40)

To conclude note that HP̄ being a vector space (Davydov et al., 1998, p. 38) and

I : HP̄ → D′
P̄

being linear imply together with result (S.39) that h 7→ 〈e∗, φ′θ0(h)〉E is

linear on HP . Moreover, note that h 7→ 〈e∗, φ′θ0(h)〉E is also continuous on DL due to

continuity of φ′θ0 and having e∗ ∈ E∗. Hence, since HP̄ is dense in DL by Proposition

7.4(ii) in Davydov et al. (1998) we can conclude that 〈e∗, φ′θ0(·)〉E : DL → R is linear and

continuous. Since this result holds for all e∗ ∈ E∗, Lemma A.2 in van der Vaart (1991)

implies φ′θ0 : DL → E must be linear and continuous, which establishes the Theorem.

Proof of Corollary 3.1: By Theorem 3.1 and Proposition 2.1 the bootstrap is

consistent if and only if φ′θ0 is linear. However, since G0 is Gaussian and φ′θ0 : D0 → E
is continuous, Lemma 2.2.2 in Bogachev (1998) implies φ′θ0(G0) must be Gaussian (on

E) whenever φ′θ0 is linear, and hence the claim of the Corollary follows.

Proof of Theorem 3.2: Fix arbitrary ε > 0, η > 0, and for notational convenience

let G∗n ≡ rn{θ̂∗n − θ̂n}. By Assumption 2(ii) there is a compact set K0 ⊆ D0 such that

P (G0 /∈ K0) <
εη

2
. (S.41)
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Thus, by Lemma S.3.1 and the Portmanteau Theorem, we conclude that for any δ > 0

lim sup
n→∞

P (G∗n /∈ Kδ
0) ≤ P (G0 /∈ Kδ

0) ≤ P (G0 /∈ K0) <
εη

2
. (S.42)

On the other hand, since K0 is compact, Assumption 4 yields that for some δ0 > 0

lim sup
n→∞

P ( sup
h∈Kδ0

0

‖φ̂′n(h)− φ′θ0(h)‖E > ε) < η. (S.43)

Next, note that Lemma 1.2.2(iii) in van der Vaart and Wellner (1996), h ∈ BL1(E) being

bounded by one and satisfying |h(e1)− h(e2)| ≤ ‖e1 − e2‖E for all e1, e2 ∈ E, imply

sup
f∈BL1(E)

|E[f(φ̂′n(G∗n))|{Xi}]− E[f(φ′θ0(G∗n))|{Xi}]|

≤ sup
f∈BL1(E)

E[|f(φ̂′n(G∗n))− f(φ′θ0(G∗n))||{Xi}]

≤ E[2× 1{G∗n /∈ K
δ0
0 }+ sup

h∈Kδ0
0

‖φ̂′n(h)− φ′θ0(h)‖E|{Xi}]

≤ 2P (G∗n /∈ K
δ0
0 |{Xi}ni=1) + sup

h∈Kδ0
0

‖φ̂′n(h)− φ′θ0(h)‖E, (S.44)

where in the final inequality we exploited Lemma 1.2.2(i) in van der Vaart and Wellner

(1996) and φ̂′n : D → E depending only on {Xi}ni=1. Furthermore, Markov’s inequality,

Lemma 1.2.7 in van der Vaart and Wellner (1996), and result (S.42) yield

lim sup
n→∞

P (P (G∗n /∈ K
δ0
0 |{Xi}ni=1) > ε) ≤ lim sup

n→∞

1

ε
P (G∗n /∈ K

δ0
0 ) < η. (S.45)

Next, also note that Assumption 3 and Theorem 10.8 in Kosorok (2008) imply that

sup
f∈BL1(E)

|E[f(φ′θ0(G∗n))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1). (S.46)

Thus, by combining results (S.43), (S.44), (S.45) and (S.46) we can finally conclude:

lim sup
n→∞

P ( sup
f∈BL1(E)

|E[f(φ̂′n(G∗n))|{Xi}ni=1]− E[f(φ′θ0(G0))]| > 3ε) < 3η. (S.47)

Since ε and η were arbitrary, the claim of the Theorem then follows from (S.47).

Proofs of Lemma 3.1, Theorem 3.3, and Corollary 3.2: Lemma 3.1, Theorem

3.3, and Corollary 3.2 are respectively special cases of Lemma S.1.1, Theorem S.1.1,

and Corollary S.1.1 established in the Supplemental Appendix. To see this, set Λ = R,

Pnn,λ ≡
⊗n

i=1 Pλ/
√
n, and note Assumptions S.1(i), S.1(ii), and S.1(iii) are implied by

Assumptions 5(i), 5(ii), and 5(iii) respectively. In turn, we note Assumption S.1(iv)

is satisfied due to t 7→ Pt being a path and Theorem 12.2.3 and Corollary 12.3.1 in
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Lehmann and Romano (2005).

Proof of Proposition 4.1: We proceed by verifying Assumptions 1 and 2, and then

employing Theorem 2.1 to obtain (42). To this end, define the maps φ1 : H→ H to be

given by φ1(θ) = θ − ΠΛθ, and φ2 : H → R by φ2(θ) ≡ ‖θ‖H. Letting φ ≡ φ2 ◦ φ1 and

noting φ1(θ0) = 0 due to θ0 ∈ Λ, we then obtain the equality

rn‖θ̂n −ΠΛθ̂n‖H = rn{φ(θ̂n)− φ(θ0)}. (S.48)

By Lemma 4.6 in Zarantonello (1971), φ1 is then Hadamard directionally differentiable

at θ0 with derivative φ′1,θ0 : H → H given by φ′1,θ0(h) = h − ΠTθ0
h; see also (Shapiro,

1994, p. 135). Moreover, since φ2 is Hadamard directionally differentiable at 0 ∈ H
with derivative φ′2,0(h) = ‖h‖H, Proposition 3.6 in Shapiro (1990) implies φ is Hadamard

directionally differentiable at θ0 with φ′θ0 = φ′2,0 ◦ φ′1,θ0 . In particular, we have

φ′θ0(h) = ‖h−ΠTθ0
h‖H, (S.49)

for any h ∈ H. Thus, (S.49) verifies Assumption 1. Since Assumption 2 was directly

imposed, the Proposition then follows form Theorem 2.1.

Proof of Proposition 4.2: We first observe that Λ being convex implies Tθ0 is a

closed convex cone. Hence, by Proposition 46.5(4) in Zeidler (1984), it follows that

‖ΠTθ0
h‖2H = 〈h,ΠTθ0

h〉H for any h ∈ H. In particular, for any h1, h2 ∈ H we must have

‖h1 + h2 −ΠTθ0
(h1 + h2)‖2H = 〈h1 + h2, h1 + h2 −ΠTθ0

(h1 + h2)〉H. (S.50)

However, Proposition 46.5(4) in Zeidler (1984) further implies that 〈c, h1+h2−ΠTθ0
(h1+

h2)〉 ≤ 0 for any h1, h2 ∈ H and c ∈ Tθ0 . Therefore, since ΠTθ0
h1,ΠTθ0

h2 ∈ Tθ0 , we can

conclude from result (S.50) and the Cauchy Schwarz inequality

‖h1 + h2 −ΠTθ0
(h1 + h2)‖2H ≤ 〈h1 −ΠTθ0

h1 + h2 −ΠTθ0
h2, h1 + h2 −ΠTθ0

(h1 + h2)〉H
≤ ‖h1 + h2 −ΠTθ0

(h1 + h2)‖H × ‖(h1 −ΠTθ0
h1) + (h2 −ΠTθ0

h2)‖H . (S.51)

Thus, employing result (S.51), the triangle inequality, and the definition of φ′θ0 yield

φ′θ0(λh1 + (1− λ)h2) ≤ φ′θ0(λh1) + φ′θ0((1− λ)h2) = λφ′θ0(h1) + (1− λ)φ′θ0(h2) (S.52)

for any h1, h2 ∈ H, 0 ≤ λ ≤ 1, and where in the final equality we employed that φ′θ0 is

positively homogenous of degree one.
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Proof of Proposition 4.3: We first observe that for any h1, h2 ∈ H we must have

φ̂′n(h1)− φ̂′n(h2) ≤ sup
θ∈Λ:rn‖θ−ΠΛθ̂n‖H≤κn

{‖h1 −ΠTθh1‖H − ‖h2 −ΠTθh2‖H}

≤ sup
θ∈Λ:rn‖θ−ΠΛθ̂n‖H≤κn

{‖h1 −ΠTθh2‖H − ‖h2 −ΠTθh2‖H} ≤ ‖h1 − h2‖H, (S.53)

where the first inequality follows from the definition of φ̂′n(h), the second inequality is

implied by ‖h1−ΠTθh1‖H ≤ ‖h1−ΠTθh2‖H for all θ ∈ Λ, and the third inequality holds

by the triangle inequality. Result (S.53) further implies φ̂′n(h2)− φ̂′n(h1) ≤ ‖h1 − h2‖H,

and hence we can conclude φ̂′n : H→ R is Lipschitz – i.e. for any h1, h2 ∈ H

|φ̂′n(h1)− φ̂′n(h2)| ≤ ‖h1 − h2‖H. (S.54)

Thus, by Lemma S.3.6, in verifying φ̂′n satisfies Assumption 4 it suffices to show

|φ̂′n(h)− φ′θ0(h)| = op(1) (S.55)

for all h ∈ H. To this end, note that convexity of Λ and Proposition 46.5(2) in Zeidler

(1984) imply ‖ΠΛθ0 − ΠΛθ‖H ≤ ‖θ0 − θ‖H for any θ ∈ H. Thus, since rn{θ̂n − θ0} is

asymptotically tight by Assumption 2 and κn ↑ ∞ by hypothesis, we conclude

lim inf
n→∞

P (rn‖ΠΛθ0 −ΠΛθ̂n‖H ≤ κn) ≥ lim inf
n→∞

P (rn‖θ0 − θ̂n‖H ≤ κn) = 1. (S.56)

Moreover, the same arguments as in (S.56) and the triangle inequality further yield

lim inf
n→∞

P (rn‖θ −ΠΛθ0‖H ≤ 2κn for all θ ∈ Λ s.t. rn‖θ −ΠΛθ̂n‖H ≤ κn)

≥ lim inf
n→∞

P (rn‖ΠΛθ0 −ΠΛθ̂n‖H ≤ κn) = 1. (S.57)

Hence, from the definition of φ̂′n and results (S.56) and (S.57) we obtain for any h ∈ H

lim inf
n→∞

P (‖h−ΠTθ0
h‖H ≤ φ̂′n(h) ≤ sup

θ∈Λ:rn‖θ−ΠΛθ0‖H≤2κn

‖h−ΠTθh‖H) = 1. (S.58)

Next, select a sequence {θn}∞n=1 ⊆ Λ such that rn‖θn −ΠΛθ0‖H ≤ 2κn for all n and

lim sup
n→∞

{ sup
θ∈Λ:rn‖θ−ΠΛθ0‖H≤2κn

‖h−ΠTθh‖H} = lim
n→∞

‖h−ΠTθn
h‖H. (S.59)

By Theorem 4.2.2 in Aubin and Frankowska (1990), the cone valued map θ 7→ Tθ is

lower semicontinuous on Λ and hence since ‖θn − ΠΛθ0‖H ≤ 2κn/rn = o(1), there is a
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sequence {h̃n}∞n=1 such that h̃n ∈ Tθn for all n and ‖ΠTθ0
h− h̃n‖H = o(1). Thus,

lim sup
n→∞

{ sup
θ∈Λ:rn‖θ−ΠΛθ0‖H≤2κn

‖h−ΠTθh‖H}

= lim
n→∞

‖h−ΠTθn
h‖H ≤ lim

n→∞
‖h− h̃n‖H = ‖h−ΠTθ0

h‖H, (S.60)

where the first equality follows from (S.59), the inequality by h̃n ∈ Tθn , and the second

equality by ‖h̃n−ΠTθ0
h‖H = o(1). Hence, combining (S.58) and (S.60) we conclude that

(S.55) holds, and by Lemma S.3.6 and (S.54) that φ̂′n satisfies Assumption 4.

S.3 Auxiliary Results

This Section contains auxiliary results employed in the Appendix to the main text.

Theorem S.3.1. Let Assumptions 1, 2, and 3 hold, DL denote the support of G0,

0 ∈ DL, and D0 = D0 + D0. Then, the following statements are equivalent

(i) E[f(φ′θ0(G0))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] for all a0 ∈ DL and f ∈ BL1(E).

(ii) supf∈BL1(E) |E[f(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1).

Proof: In these arguments we need to distinguish between outer and inner expecta-

tions, and we therefore employ the notation E∗ and E∗ respectively. In addition, for

notational convenience we let Gn ≡ rn{θ̂n − θ0} and G∗n ≡ rn{θ̂∗n − θ̂n}. To begin, note

that Lemma S.3.2 and the continuous mapping theorem imply that

(rn{θ̂∗n − θ0}, rn{θ̂n − θ0})

= (rn{θ̂∗n − θ̂n}+ rn{θ̂n − θ0}, rn{θ̂n − θ0})
L→ (G1 +G2,G2) (S.61)

on D×D, where G1 and G2 are independent copies of G0. Further let Φ : Dφ×Dφ → E
be given by Φ(θ1, θ2) = φ(θ1) − φ(θ2) for any θ1, θ2 ∈ Dφ × Dφ. Then observe that As-

sumption 1(ii) implies Φ is Hadamard directionally differentiable at (θ0, θ0) tangentially

to D0 × D0 with derivative Φ′θ0 : D0 × D0 → E given by

Φ′θ0(h1, h2) = φ′θ0(h1)− φ′θ0(h2) (S.62)

for any (h1, h2) ∈ D0 × D0. Thus, by Assumptions 2(ii) and D0 = D0 + D0, Theorem

2.1, result (S.61), and rn{θ̂∗n − θ0} = G∗n +Gn we can conclude that

rn{φ(θ̂∗n)− φ(θ̂n)} = rn{Φ(θ̂∗n, θ̂n)− Φ(θ0, θ0)}

= Φ′θ0(G∗n +Gn,Gn) + op(1) = φ′θ0(G∗n +Gn)− φ′θ0(Gn) + op(1). (S.63)
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Further observe that for any ε > 0, it follows from the definition of BL1(E) that

sup
h∈BL1(E)

|E∗[h(rn{φ(θ̂∗n)− φ(θ̂n)})− h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]|

≤ ε+ 2P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε|{Xi}ni=1) (S.64)

Moreover, Lemma 1.2.6 in van der Vaart and Wellner (1996) and result (S.63) also yield

E∗[P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε|{Xi}ni=1)]

≤ P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε) = o(1). (S.65)

Therefore, since ε > 0 was arbitrary, we obtain from results (S.64) and (S.65) that

sup
h∈BL1(E)

|E∗[h(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[h(φ′θ0(G0))]|

= sup
h∈BL1(E)

|E∗[h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[h(φ′θ0(G0))]|+ op(1). (S.66)

Thus, in establishing the Theorem, it suffices to study the right hand side of (S.66).

First Claim: We aim to show that (ii) implies (i). To this end, note by Lemma S.3.2

(φ′θ0(G∗n +Gn)− φ′θ0(Gn),Gn)
L→ (φ′θ0(G1 +G2)− φ′θ0(G2),G2) (S.67)

on E× D by the continuous mapping theorem. Let f ∈ BL1(E) and g ∈ BL1(D) satisfy

f(h1) ≥ 0 and g(h2) ≥ 0 for any h1 ∈ E and h2 ∈ D. By (S.67) we then have

lim
n→∞

E∗[f(φ′θ0(G∗n+Gn)−φ′θ0(Gn))g(Gn)] = E[f(φ′θ0(G1+G2)−φ′θ0(G2))g(G2)]. (S.68)

On the other hand, also note that if the bootstrap is consistent, then result (S.66) yields

sup
h∈BL1(E)

|E∗[h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[h(φ′θ0(G0))]| = op(1). (S.69)

Moreover, since ‖g‖∞ ≤ 1 and ‖f‖∞ ≤ 1, it also follows that for any ε > 0 we have

lim
n→∞

E∗[|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]|g(Gn)]

≤ lim
n→∞

E∗[|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]|]

≤ lim
n→∞

2P ∗(|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]| > ε) + ε.

(S.70)

Thus, result (S.69), ε being arbitrary in (S.70), Lemma S.3.5(v), g(h) ≥ 0 for all h ∈ D,
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and Gn
L→ G2 by result (S.67) allow us to conclude that

lim
n→∞

E∗[E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]g(Gn)]

= lim
n→∞

E∗[E[f(φ′θ0(G0))]g(Gn)] = E[f(φ′θ0(G0))]E[g(G2)]. (S.71)

In addition, we also note that by Lemma 1.2.6 in van der Vaart and Wellner (1996)

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)]

≤ lim
n→∞

E∗[E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]g(Gn)]

≤ lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] (S.72)

since Gn is a function of {Xi}ni=1 only and g(Gn) ≥ 0. However, by (S.67) and Lemma

1.3.8 in van der Vaart and Wellner (1996), (φ′θ0(G∗n+Gn)−φ′θ0(Gn),Gn) is asymptotically

measurable, and thus combining results (S.71) and (S.72) we can conclude:

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] = E[f(φ′θ0(G0))]E[g(G2)]. (S.73)

Hence, comparing (S.68) and (S.73) with g ∈ BL1(D) given by g(a) = 1 for all a ∈ D,

E[f(φ′θ0(G0))]E[g(G2)] = E[f(φ′θ0(G1 +G2)− φ′θ0(G2))]E[g(G2)]

= E[f(φ′θ0(G1 +G2)− φ′θ0(G2))g(G2)], (S.74)

where the second equality follows again by (S.68) and (S.73). Since (S.74) must hold

for any f ∈ BL1(E) and g ∈ BL1(D) with f(h1) ≥ 0 and g(h2) ≥ 0 for any h1 ∈ E and

h2 ∈ D, Lemma 1.4.2 in van der Vaart and Wellner (1996) implies φ′θ0(G1+G2)−φ′θ0(G2)

must be independent of G2, and hence (i) must hold by Lemma S.3.3.

Second Claim: To conclude, we show (i) implies (ii). Fix ε > 0 and note that by

Assumption 2, Lemma S.3.1, and Lemma 1.3.8 in van der Vaart and Wellner (1996), Gn
and G∗n are asymptotically tight. Hence, there is a compact set K ⊂ D such that

lim inf
n→∞

P∗(G∗n ∈ Kδ) ≥ 1− ε lim inf
n→∞

P∗(Gn ∈ Kδ) ≥ 1− ε, (S.75)

for any δ > 0 and Kδ ≡ {a ∈ D : infb∈K ‖a−b‖D < δ}. Furthermore, by the Portmanteau

Theorem we may assume without loss of generality that K is a subset of the support of

G0 and that 0 ∈ K. Next, let K +K ≡ {a ∈ D : a = b+ c for some b, c ∈ K} and note

that the compactness of K implies K +K is also compact. Thus, by Lemma S.3.4 and

continuity of φ′θ0 : D→ E, there exist scalars δ0 > 0 and η0 > 0 such that:

sup
a,b∈(K+K)δ0 :‖a−b‖D<η0

‖φ′θ0(a)− φ′θ0(b)‖E < ε. (S.76)
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Next, for each a ∈ K, let Bη0/2(a) ≡ {b ∈ D : ‖a − b‖D < η0/2}. Since {Bη0/2(a)}a∈K
is an open cover of K, there exists a finite collection {Bη0/2(aj)}Jj=1 also covering K.

Therefore, since for any b ∈ K
η0
2 there is a Πb ∈ K such that ‖b − Πb‖D < η0/2, it

follows that for every b ∈ K
η0
2 there is a 1 ≤ j ≤ J such that ‖b − aj‖D < η0. Setting

δ1 ≡ min{δ0, η0}/2, we obtain that if a ∈ Kδ1 and b ∈ Kδ1 , then: (i) a+ b ∈ (K +K)δ0

since K
δ0
2 +K

δ0
2 ⊆ (K +K)δ0 , (ii) there is a 1 ≤ j ≤ J such that ‖b− aj‖D < η0, and

(iii) (a + aj) ∈ (K + K)δ0 since aj ∈ K and a ∈ K
δ0
2 . Therefore, since 0 ∈ K, we can

conclude from (S.76) that for every b ∈ Kδ1 there exists a 1 ≤ j(b) ≤ J such that

sup
a∈Kδ1

‖{φ′θ0(a+ b)− φ′θ0(b)} − {φ′θ0(a+ aj(b))− φ′θ0(aj(b))}‖E

≤ sup
a,b∈(K+K)δ0 :‖a−b‖D<η0

2‖φ′θ0(a)− φ′θ0(b)‖E < 2ε. (S.77)

In particular, if we define the set ∆n ≡ {G∗n ∈ Kδ1 ,Gn ∈ Kδ1}, then (S.77) implies that

for every realization of Gn there is an aj independent of G∗n such that

sup
f∈BL1(E)

|(f(φ′θ0(G∗n +Gn)−φ′θ0(Gn))− f(φ′θ0(G∗n + aj)−φ′θ0(aj)))1{∆n}| < 2ε. (S.78)

Letting ∆c
n denote the complement of ∆n, result (S.78) then allows us to conclude

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n+Gn)−φ′θ0(Gn))|{Xi}ni=1]−E[f(φ′θ0(G0))]| ≤ 2P ∗(∆c
n|{Xi}ni=1)

+ max
1≤j≤J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n + aj)− φ′θ0(aj))|{Xi}ni=1]− E[f(φ′θ0(G0))]|+ 2ε (S.79)

since ‖f‖∞ ≤ 1 for all f ∈ BL1(E). However, by Assumptions 3(i)-(ii) and 3(iv), and

Theorem 10.8 in Kosorok (2008) it follows that for any 1 ≤ j ≤ J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n +aj)−φ′θ0(aj))|{Xi}ni=1]−E[f(φ′θ0(G0 +aj)−φ′θ0(aj))]| = op(1).

(S.80)

Thus, since K is a subset of the support of G0 and property (i) holds by hypothesis,

result (S.80), the continuous mapping theorem, and J <∞ allow us to conclude that

max
1≤j≤J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n+aj)−φ′θ0(aj))|{Xi}ni=1]−E[f(φ′θ0(G0))]| = op(1). (S.81)

Moreover, for any ε ∈ (0, 1) we also have by Markov’s inequality, Lemma 1.2.6 in van der

Vaart and Wellner (1996), 1{∆c
n} ≤ 1{G∗n /∈ Kδ1}+ 1{Gn /∈ Kδ1}, and (S.75) that

lim sup
n→∞

P ∗(2P ∗(∆c
n|{Xi}ni=1) + 2ε > 6

√
ε) ≤ lim sup

n→∞
P ∗(P ∗(∆c

n|{Xi}ni=1) > 2
√
ε)

≤ 1

2
√
ε
× lim sup

n→∞
{P ∗(Gn /∈ Kδ1) + P ∗(G∗n /∈ Kδ1)} ≤

√
ε. (S.82)
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Since ε > 0 was arbitrary, combining (S.66), (S.79), (S.81), and (S.82) imply (ii) holds,

thus establishing the claim of the Theorem.

Lemma S.3.1. If Assumptions 1(i), 2(ii), and 3(i)-(iii) hold, then rn{θ̂∗n − θ̂n}
L→ G0.

Proof: In these arguments we need to distinguish between outer and inner expecta-

tions, and we therefore employ the notation E∗ and E∗ respectively. For notational

simplicity also let G∗n ≡ rn{θ̂∗n − θ̂n}. First, let f ∈ BL1(D), and then note that by

Lemma S.3.5(i) and Lemma 1.2.6 in van der Vaart and Wellner (1996) we have that

E∗[f(G∗n)]− E[f(G0)] ≥ E∗[E∗[f(G∗n)|{Xi}ni=1]]− E[f(G0)]

≥ −E∗[|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≥ −E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]. (S.83)

Similarly, applying Lemma 1.2.6 in van der Vaart and Wellner (1996) once again together

with Lemma S.3.5(ii), and exploiting that f ∈ BL1(D) we can conclude that

E∗[f(G∗n)]− E[f(G0)] ≤ E∗[E∗[f(G∗n)|{Xi}ni=1]]− E[f(G0)]

≤ E∗[|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≤ E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]. (S.84)

However, since ‖f‖∞ ≤ 1 for all f ∈ BL1(D), it also follows that for any η > 0 we have

E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≤ 2P ∗( sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]| > η) + η. (S.85)

Moreover, by Assumption 3(iii), E∗[f(G∗n)] = E∗[f(G∗n)]+o(1). Thus, Assumption 3(ii),

η being arbitrary, and results (S.83) and (S.84) together imply that

lim
n→∞

E∗[f(G∗n)] = E[f(G0)] (S.86)

for any f ∈ BL1(D). Further note that since G0 is tight by Assumption 2(ii) and D is

a Banach space by Assumption 1(i), Lemma 1.3.2 in van der Vaart and Wellner (1996)

implies G0 is separable. Therefore, the claim of the Lemma follows from (S.86), Theorem

1.12.2 and Addendum 1.12.3 in van der Vaart and Wellner (1996).

Lemma S.3.2. Let Assumptions 1(i), 2, 3(i)-(iii) hold, and G1,G2 ∈ D be independent

random variables with the same law as G0. Then, it follows that on D× D

(rn{θ̂n − θ0}, rn{θ̂∗n − θ̂n})
L→ (G1,G2). (S.87)
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Proof: In these arguments we need to distinguish between outer and inner expecta-

tions, and we therefore employ the notation E∗ and E∗ respectively. For notational

convenience we also let Gn ≡ rn{θ̂n − θ0} and G∗n ≡ rn{θ̂∗n − θ̂n}. Then, note that

Assumptions 2(i)-(ii), Lemma S.3.1, and Lemma 1.3.8 in van der Vaart and Wellner

(1996) imply that both Gn and G∗n are asymptotically measurable, and asymptotically

tight in D. Therefore, by Lemma 1.4.3 in van der Vaart and Wellner (1996) (Gn,G∗n)

is asymptotically tight in D× D and asymptotically measurable as well. Thus, by Pro-

horov’s theorem (Theorem 1.3.9 in van der Vaart and Wellner (1996)), each subsequence

{(Gnk ,G∗nk)} has an additional subsequence {(Gnkj ,G
∗
nkj

)} such that

(Gnkj ,G
∗
nkj

)
L→ (Z1,Z2) (S.88)

for a tight Borel random variable Z ≡ (Z1,Z2) ∈ D×D. Since the sequence {(Gnk ,G∗nk)}
was arbitrary, the Lemma follows if we show the law of Z equals that of (G1,G2).

Towards this end, let f1, f2 ∈ BL1(D) satisfy f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D.

Then note that by result (S.88) it follows that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )] = E[f1(Z1)f2(Z2)]. (S.89)

However, f1, f2 ∈ BL1(D) satisfying f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D, Lemma 1.2.6

in van der Vaart and Wellner (1996), and Lemma S.3.5(iii) imply that

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )]− E
∗[f1(Gnkj )E[f2(G0)]]

≥ lim
j→∞

E∗[f1(Gnkj )E
∗[f2(G∗nkj )|{Xi}ni=1]]− E∗[f1(Gnkj )E[f2(G0)]]

≥ − lim
j→∞

E∗[f1(Gnkj )|E
∗[f2(G∗nkj )|{Xi}ni=1]− E[f2(G0)]|]

≥ − lim
j→∞

E∗[ sup
f∈BL1(D)

|E∗[f(G∗nkj )|{Xi}ni=1]− E[f(G0)]|], (S.90)

where in the final inequality we exploited that f1 ∈ BL1(D). Similarly, Lemma 1.2.6 in

van der Vaart and Wellner (1996), Lemma S.3.5(iv), and f1, f2 ∈ BL1(D) also imply

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )]− E∗[f1(Gnkj )E[f2(G0)]]

≤ lim
j→∞

E∗[f1(Gnkj )E
∗[f2(G∗nkj )|{Xi}ni=1]]− E∗[f1(Gnkj )E[f2(G0)]]

≤ lim
j→∞

E∗[f1(Gnkj )|E
∗[f2(G∗nkj )|{Xi}ni=1]− E[f2(G0)]|]

≤ lim
j→∞

E∗[ sup
f∈BL1(D)

|E∗[f(G∗nkj )|{Xi}ni=1]− E[f(G0)]|]. (S.91)

Thus, combining result (S.85) together with (S.90) and (S.91), and the fact that (Gn,G∗n)

18



and Gn are asymptotically measurable, we can conclude that

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )] = lim
j→∞

E∗[f1(Gnkj )E[f2(G0)]]

= E[f1(G0)]E[f2(G0)], (S.92)

where the final result follows from Gn
L→ G0 in D. Hence, (S.89) and (S.92) imply

E[f1(Z1)f2(Z2)] = E[f1(G0)]E[f2(G0)] (S.93)

for all f1, f2 ∈ BL1(D) satisfying f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D. Since Z is tight

on D× D it is also separable by Lemma 1.3.2 in van der Vaart and Wellner (1996) and

Assumption 1(i), and hence result (S.93) and Lemma 1.4.2 in van der Vaart and Wellner

(1996) imply the law of Z equals that of (G1,G2). In view of (S.88), the claim of the

Lemma then follows.

Lemma S.3.3. Let Assumptions 1, 2(ii) hold, DL denote the support of G0, 0 ∈ DL,

D0 = D0 + D0, and G1 be an independent copy of G0. If φ′θ0(G0 + G1) − φ′θ0(G1) is

independent of G1, then for any a0 ∈ DL and bounded continuous f : E→ R

E[f(φ′θ0(G0))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))]. (S.94)

Proof: We first note that since DL ⊆ D0 by Assumption 2(ii) and G1 is independent

of G0, it follows that the support of G0 + G1 is included in D0 + D0 = D0, and hence

φ′θ0(G0 + G1) is well defined. Next, for any a0 ∈ D and sequence {an} ∈ D with

‖a0 − an‖D = o(1), we observe that continuity of φ′θ0 and f , f being bounded, and the

dominated convergence theorem allow us to conclude that

lim
n→∞

E[f(φ′θ0(G0 + an)− φ′θ0(an))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))]. (S.95)

Hence, letting Bε(a0) ≡ {a ∈ D : ‖a0 − a‖D < ε}, we note that result (S.95) implies

E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] = lim inf
ε↓0

inf
a∈Bε(a0)

E[f(φ′θ0(G0 + a)− φ′θ0(a))]

≤ lim sup
ε↓0

sup
a∈Bε(a0)

E[f(φ′θ0(G0 + a)− φ′θ0(a))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))]. (S.96)

Letting L denote the law of G0, and for G1 and G2 independent copies of G0, we have

inf
a∈Bε(a0)

E[f(φ′θ0(G1 + a)− φ′θ0(a))]P (G2 ∈ Bε(a0))

≤
∫
Bε(a0)

∫
DL
f(φ′θ0(z1 + z2)− φ′θ0(z2))dL(z1)dL(z2)

≤ sup
a∈Bε(a0)

E[f(φ′θ0(G1 + a)− φ′θ0(a))]P (G2 ∈ Bε(a0)). (S.97)
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In particular, if a0 ∈ DL, then P (G2 ∈ Bε(a0)) > 0 for all ε > 0, and thus we conclude

E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] = lim
ε↓0

E[f(φ′θ0(G1 +G2)− φ′θ0(G2))|G2 ∈ Bε(a0)]

= lim
ε↓0

E[f(φ′θ0(G1 +G2)− φ′θ0(G2))|G2 ∈ Bε(0)] = E[f(φ′θ0(G0))], (S.98)

where the first equality follows from (S.96) and (S.97), the second by φ′θ0(G1 + G2) −
φ′θ0(G2) being independent of G2 by hypothesis, and the final equality follows by results

(S.96), (S.97), and φ′θ0(0) = 0 due to φ′θ0 being homogenous of degree one.

Lemma S.3.4. Let Assumption 1(i) hold, ψ : D → E be continuous, and K ⊂ D be

compact. It then follows that for every ε > 0 there exist δ > 0, η > 0 such that

sup
(a,b)∈Kδ×Kδ:‖a−b‖D<η

‖ψ(a)− ψ(b)‖E < ε. (S.99)

Proof: Fix ε > 0 and note that since ψ : D→ E is continuous, it follows that for every

a ∈ D there exists a ζa such that ‖ψ(a)−ψ(b)‖E < ε/2 for all b ∈ D with ‖a− b‖D < ζa.

Letting Bζa/4(a) ≡ {b ∈ D : ‖a − b‖D < ζa/4}, then observe that {Bζa/4(a)}a∈K forms

an open cover of K and hence, by compactness of K, there exists a finite subcover

{Bζaj /4(aj)}Jj=1 for some J <∞. To establish the Lemma, we then let

η ≡ min
1≤j≤J

ζaj
4

δ ≡ min
1≤j≤J

ζaj
4
. (S.100)

For any a ∈ Kδ, there then exists a Πa ∈ K such that ‖a − Πa‖D < δ, and since

{Bζaj /4(aj)}Jj=1 covers K, there also is a j̄ such that Πa ∈ Bζaj̄/4(aj̄). Thus, we have

‖a− aj̄‖D ≤ ‖a−Πa‖D + ‖Πa− aj̄‖D < δ +
ζaj̄
4
≤
ζaj̄
2
, (S.101)

due to the choice of δ in (S.100). Moreover, if b ∈ D satisfies ‖a− b‖D < η, then

‖b− aj̄‖D ≤ ‖a− b‖D + ‖a− aj̄‖D < η +
ζaj̄
2
≤ ζaj̄ , (S.102)

by the choice of η in (S.100). We conclude from (S.101), (S.102) that a, b ∈ Bζaj̄ (aj̄),
and

‖ψ(a)− ψ(b)‖E ≤ ‖ψ(a)− ψ(aj̄)‖E + ‖ψ(b)− ψ(aj̄)‖E <
ε

2
+
ε

2
= ε (S.103)

by our choice of ζaj̄ . Thus, the Lemma follows from result (S.103).

Lemma S.3.5. Let (Ω,F , P ) be a probability space, c ∈ R+, and U : Ω → R and

V : Ω → R be arbitrary maps satisfying U(ω) ≥ 0 and V (ω) ≥ 0 for all ω ∈ Ω. If E∗

and E∗ denote outer and inner expectations respectively, then it follows that:
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(i) E∗[U ]− c ≥ −E∗[|U − c|].
(ii) E∗[U ]− c ≤ E∗[|U − c|].

(iii) E∗[UV ]− E∗[Uc] ≥ −E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

(iv) E∗[UV ]− E∗[Uc] ≤ E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

(v) |E∗[UV ]− E∗[Uc]| ≤ E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

Proof: The arguments are simple and tedious, but unfortunately necessary to address

the possible nonlinearity of inner and outer expectations. Throughout, for a map T :

Ω → R, we let T ∗ and T∗ denote the minimal measurable majorant and the maximal

measurable minorant of T respectively. We will also exploit the fact that:

E∗[T ] = −E∗[−T ], (S.104)

and that E∗[T ] = E[T ∗] whenever E[T ∗] exists, which in the context of this Lemma is

always satisfied since all variables are positive.

To establish the first claim of the Lemma, note that Lemma 1.2.2(i) in van der Vaart

and Wellner (1996) implies U∗ − c = (U − c)∗. Therefore, (S.104) and E∗ ≤ E∗ yield

E∗[U ]− c = E[U∗ − c] = E[(U − c)∗] = E∗[U − c]

≥ E∗[−|U − c|] = −E∗[|U − c|] ≥ −E∗[|U − c|]. (S.105)

Similarly, for the second claim of the Lemma, exploit that E∗ ≤ E∗, and once again

employ Lemma 1.2.2(i) in van der Vaart and Wellner (1996) to conclude that

E∗[U ]− c ≤ E∗[U ]− c = E[U∗ − c] = E[(U − c)∗] ≤ E∗[|U − c|]. (S.106)

For the third claim, note that Lemma 1.2.2(iii) in van der Vaart and Wellner (1996)

implies |(UV )∗− (Uc)∗| ≤ |UV −Uc|∗. Thus, since |U(V − c)| = U |V − c| as a result of

U(ω) ≥ 0 for all ω ∈ Ω, we obtain from relationship (S.104) and E∗ ≤ E∗ that

E∗[UV ]− E∗[Uc] = E[(UV )∗ − (Uc)∗] ≥ E[−|(UV )∗ − (Uc)∗|]

≥ E[−|UV − Uc|∗] = −E∗[U |V − c|] ≥ −E∗[U |V − c|]. (S.107)

Similarly, for the fourth claim of the Lemma, employ (S.104), that |(−Uc)∗−(−UV )∗| ≤
|(−Uc) − (−UV )|∗ by Lemma 1.2.2(iii) in van der Vaart and Wellner (1996), and that

|UV − Uc| = U |V − c| due to U(ω) ≥ 0 for all ω ∈ Ω to obtain that

E∗[UV ]− E∗[Uc] = E[(−Uc)∗ − (−UV )∗] ≤ E[|(−Uc)∗ − (−UV )∗|]

≤ E[|(−Uc)− (−UV )|∗] = E∗[U |V − c|]. (S.108)
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Finally, for the fifth claim of the Lemma, note the same arguments as in (S.108) yield

E∗[UV ]− E∗[Uc] = E[(Uc)∗ − (UV )∗] ≤ E[|(Uc)∗ − (UV )∗|]

≤ E[|(Uc)− (UV )|∗] = E∗[U |V − c|]. (S.109)

Thus, part (v) of the Lemma follows from part (iii) and (S.109).

Lemma S.3.6. Let Assumption 1 hold, and suppose that for some κ > 0 and potentially

random Cn ∈ R we have ‖φ̂′n(h1) − φ̂′n(h2)‖E ≤ Cn‖h1 − h2‖κD for all h1, h2 ∈ D. If

Cn = Op(1), then Assumption 4 holds provided that for all h ∈ D0 we have

‖φ̂′n(h)− φ′θ0(h)‖E = op(1). (S.110)

Proof: Fix ε > 0 and note that since Cn = Op(1) by assumption, there exists some

constant 0 < M <∞ such that for all n sufficiently large

P (Cn > M) < ε. (S.111)

Next, let K0 ⊆ D0 be compact, and for any h ∈ D let Π : D→ K0 satisfy ‖h− Πh‖D =

infa∈K0 ‖h− a‖D – here attainment is guaranteed by compactness. Since φ′θ0 : D→ E is

continuous, Lemma S.3.4 then implies there exists a δ1 > 0 such that

sup
h∈Kδ1

0

‖φ′θ0(h)− φ′θ0(Πh)‖E < ε. (S.112)

Next, set δ2 < (ε/M)1/κ and note that by hypothesis we have outer almost surely that

sup
h∈Kδ2

0

‖φ̂′n(h)− φ̂′n(Πh)‖E ≤ sup
h∈Kδ2

0

Cn‖h−Πh‖κE ≤ Cnδκ2 . (S.113)

Defining δ3 ≡ min{δ1, δ2}, exploiting (S.112), (S.113), and Πh ∈ K0 we then conclude

sup
h∈Kδ3

0

‖φ̂′n(h)− φ′θ0(h)‖E

≤ sup
h∈Kδ3

0

{‖φ̂′n(h)− φ̂′n(Πh)‖E + ‖φ′θ0(h)− φ′θ0(Πh)‖E + ‖φ̂′n(Πh)− φ′θ0(Πh)‖E}

≤ sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E + ε+ Cnδ
κ
2 (S.114)

outer almost surely. Thus, since Kδ
0 ⊆ K

δ3
0 for all δ ≤ δ3 we obtain from (S.114) that

P ( sup
h∈Kδ

0

‖φ̂′n(h)− φ′θ0(h)‖E > 5ε) ≤ P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε) + P (Cnδ
κ
2 > ε)

≤ P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε) + ε, (S.115)
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where the second inequality is due to result (S.111) and the fact that δ2 < (ε/M)1/κ.

Next, note that since K0 is compact, φ′θ0 is uniformly continuous on K0. Thus, we

can find a finite collection {hj}Jj=1 with J <∞ such that hj ∈ K0 for all j and

sup
h∈K0

min
1≤j≤J

max{‖h− hj‖D, ‖φ′θ0(h)− φ′θ0(hj)‖E} < min{δ2, ε}. (S.116)

In particular, since ‖φ̂′n(h)− φ̂′n(hj)‖E ≤ Cn‖h− hj‖κD, we obtain from (S.116) that

sup
h∈K0

‖φ̂′θ0(h)− φ′θ0(h)‖E ≤ max
1≤j≤J

‖φ̂′θ0(hj)− φ′θ0(hj)‖E + Cnδ
κ
2 + ε. (S.117)

Thus, we can conclude from (S.117) and φ̂′n satisfying (S.110) for any h ∈ D0 that

P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε) ≤ P ( max
1≤j≤J

‖φ̂′n(hj)− φ′θ0(hj)‖E > ε) + P (Cnδ
κ
2 > ε)

≤ P ( max
1≤j≤J

‖φ̂′n(hj)− φ′θ0(hj)‖E > ε) + ε, (S.118)

where in the final inequality we exploited (S.111) and δ2 < (ε/M)1/κ. The claim of the

Lemma then follows from condition (S.110) and results (S.115) and (S.118).

Lemma S.3.7. Let Assumptions 1(i), 2(ii) hold, and G0 be a Gaussian measure. If the

support of G0 is a vector subspace of D, then it is also a separable Banach space under

‖ · ‖D and it includes the mean of G0.

Proof: By Assumption 1 and Theorem 7.1.7 in Bogachev (2007) it follows that G0

is regular. Hence, since in addition G0 is tight by Assumption 2(ii), we can further

conclude that G0 is Radon. Letting DL and µ0 respectively denote the support and the

mean of G0, we then obtain by Theorem 3.6.1 in Bogachev (1998) that

DL = µ0 + DA, (S.119)

where DA is a closed separable subspace of D. However, since DL is also a vector

subspace of D by hypothesis, it follows that µ0 ∈ DA and hence DL = DA and µ0 ∈ DL.

Moreover, since DA is a closed separable subspace of D, we further conclude DA is a

separable Banach space under ‖ · ‖D and the Lemma follows from DL = DA.

Lemma S.3.8. Let Assumptions 1 and 2 hold and for some sequence sn ↓ 0 set

φ̂′n(h) ≡ 1

sn
{φ(θ̂n + snh)− φ(θ̂n)} (S.120)

for any h ∈ D. It then follows that Assumption 4 holds provided that rnsn →∞.
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Proof: Let K ⊂ D0 be compact and ε > 0 be arbitrary. First, we note that

φ̂′n(h) =
1

sn
{φ(θ0 + sn{h+

rn{θ̂n − θ0}
rnsn

})− φ(θ0)}+
rn{φ(θ̂n)− φ(θ0)}

rnsn
(S.121)

for any h ∈ D. Moreover, we note that since G0 is tight by Assumption 2(ii) it follows

that φ′θ0(G0) is tight by continuity of φ′θ0 . Thus, Lemma 1.3.8 in van der Vaart and

Wellner (1996) together with Assumption 2(i) and Theorem 2.1 imply that rn{θ̂n − θ0}
and rn{φ(θ̂n)−φ(θ0)} are asymptotically tight in D and E respectively. Since in addition

snrn →∞ by hypothesis, we obtain from result (S.121) that

lim
δ↓0

lim sup
n→∞

P ( sup
h∈Kδ

‖φ̂′n(h)− φ′θ0(h)‖E > ε)

≤ lim
δ↓0

lim sup
n→∞

P ( sup
h∈Kδ

‖ 1

sn
{φ(θ0 + sn{h+

rn{θ̂n − θ0}
rnsn

})− φ(θ0)} − φ′θ0(h)‖E >
ε

2
)

≤ 2

ε
lim
δ↓0

lim sup
n→∞

sup
h∈K2δ

‖ 1

sn
{φ(θ0 + snh)− φ(θ0)} − φ′θ0(h)‖E (S.122)

where in the final inequality we employed Markov’s inequality, Lemma S.3.4, and that

{θ̂n − θ0}/sn = op(1). Next, fix an arbitrary sequence δn ↓ 0 and note there then exists

a subsequence {nk}∞k=1 such that for some hnk ∈ K2δnk we have

lim sup
n→∞

sup
h∈K2δn

‖ 1

sn
{φ(θ0 + snh)− φ(θ0)} − φ′θ0(h)‖E

= lim
k→∞

‖ 1

snk
{φ(θ0 + snkhnk)− φ(θ0)} − φ′θ0(hnk)‖E. (S.123)

However, since K is compact and δnk ↓ 0, there must be a further subsequence {nkj}∞j=1

such that hnkj → h∗ for some h∗ ∈ K ⊆ D0. In particular, since φ is Hadamard

directionally differentiable at θ0 tangentially to D0 by Assumption 1(ii) we conclude

lim
k→∞

‖ 1

snk
{φ(θ0 + snkhnk)− φ(θ0)} − φ′θ0(hnk)‖E

= lim
j→∞

‖ 1

snkj
{φ(θ0 + snkjhnkj )− φ(θ0)} − φ′θ0(hnkj )‖E = 0, (S.124)

where we exploited that φ′θ0(hnkj )→ φ′θ0(h∗) by continuity of φ′θ0 . We thus obtain

lim sup
n→∞

sup
h∈K2δn

‖ 1

sn
{φ(θ0 + snh)− φ(θ0)} − φ′θ0(h)‖E = 0 (S.125)

from results (S.123) and (S.124). Since δn ↓ 0 was arbitrary in (S.125), we can conclude

lim
δ↓0

lim sup
n→∞

sup
h∈K2δ

‖ 1

sn
{φ(θ0 + snh)− φ(θ0)} − φ′θ0(h)‖E = 0, (S.126)
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which together with result (S.122) establishes the claim of the Lemma.

Lemma S.3.9. Let Assumption 2(ii), 3(i)-(ii), and 3(iv) hold and suppose that

E[h(rn{θ̂∗n − θ̂n})∗|{Xi}ni=1]− E[h(rn{θ̂∗n − θ̂n})∗|{Xi}ni=1]
p→ 0 (S.127)

for any h ∈ BL1(D) and h(rn{θ̂∗n − θ̂n})∗ and h(rn{θ̂∗n − θ̂n})∗ respectively the minimal

measurable majorant and maximal measurable minorant of h(rn{θ̂∗n − θ̂n}). It then

follows that Assumption 3(iii) holds.

Proof: Let h ∈ BL1(D), fix an arbitrary ε > 0, and define the set An to be given by

An ≡ {{Xi}ni=1 : E[h(rn{θ̂∗n−θ̂n})∗|{Xi}ni=1]−E[h(rn{θ̂∗n−θ̂n})∗|{Xi}ni=1] > ε}. (S.128)

Note that since h ∈ BL1(D) implies ‖h‖∞ ≤ 1, we obtain from h(rn{θ̂∗n − θ̂n})∗ and

h(rn{θ̂∗n − θ̂n})∗ being measurable, Fubini’s theorem, and (S.127) that

lim
n→∞

E[h(rn{θ̂∗n − θ̂n})∗]− E[h(rn{θ̂∗n − θ̂n})∗]

≤ lim
n→∞

2P ({Xi}ni=1 ∈ An) + εP ({Xi}ni=1 /∈ An) = ε. (S.129)

In particular, since ε > 0 and h ∈ BL1(D) were arbitrary, Lemma 1.2.1 in van der Vaart

and Wellner (1996) and result (S.129) allows us to conclude for any h ∈ BL1(D) that

lim
n→∞

E∗[h(rn{θ̂∗n − θ̂n})]− E∗[h(rn{θ̂∗n − θ̂n})] = 0, (S.130)

where E∗ and E∗ respectively denote outer an inner expectations.

We next aim to show that rn{θ̂∗n − θ̂n} is asymptotically tight. To this end, note

that since G0 is tight by Assumption 2(ii), for any ε > 0 we may find a compact K with

P (G0 ∈ K) ≥ 1− ε. (S.131)

Further let hK,m(d) ≡ {1−mind̃∈K m‖d−d̃‖D}∨0, and note that: (i) hK,m/m ∈ BL1(D),

(ii) hK,m(d) → 1{d ∈ K} as m → ∞, (iii) 1{d ∈ Kδ} ≥ hK, 1
δ
(d) for any δ > 0. Hence,

(S.130), Assumption 3(iv), and Lemma 1.2.6 van der Vaart and Wellner (1996) imply

lim inf
n→∞

E∗[1{rn{θ̂∗n − θ̂n} ∈ Kδ}] ≥ lim inf
n→∞

E∗[hK, 1
δ
(rn{θ̂∗n − θ̂n})]

≥ lim inf
n→∞

{E[hK, 1
δ
(G0)]− E∗[|E[hK, 1

δ
(rn{θ̂∗n − θ̂n})|{Xi}ni=1]− hK, 1

δ
(G0)|]}. (S.132)

In particular, since hK, 1
δ
(d) ≥ 1{d ∈ K} for all δ > 0 and hK,m/m ∈ BL1(D), we can

obtain from Assumption 3(ii) and arguing as in (S.129) that

lim inf
n→∞

E∗[1{rn{θ̂∗n − θ̂n} ∈ Kδ}] ≥ P (G0 ∈ K) ≥ 1− ε, (S.133)
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where the final inequality is due to (S.131). Thus, rn{θ̂∗n − θ̂n} is asymptotically tight,

and since h/M ∈ BL1(D) for any h ∈ BLM (D) implies (S.129) holds for any bounded

Lipschitz function h : D → R, we can conclude from Lemma 1.3.13 in van der Vaart

and Wellner (1996) that rn{θ̂∗n − θ̂n} is asymptotically measurable.

S.4 Analysis of Examples

We next include a more detailed analysis of Examples 2.1 and 2.2, as well as two ad-

ditional applications based on Andrews and Shi (2013) and Linton et al. (2010). For

illustrative purposes, we confine our discussion to i.i.d. settings. We stress, however,

that our general results allow for dependent data as well. Extending our discussion to

such settings solely requires applying central limit theorems and resampling methods

that allow for dependence; see, e.g., Dehling and Philipp (2002), Bühlmann (1995),

Radulović (1996), and Politis et al. (1999) among others.

S.4.1 Revisiting Example 2.1

Recall that for some random variable X ∈ R, the parameter of interest is given by

max{E[X], 0}.

We assume the availability of an i.i.d. sample {Xi}ni=1, and employ the sample analogue

max{X̄n, 0}

as an estimator (here X̄n denotes the sample mean of {Xi}ni=1). To map this problem

into our general framework simply let θ0 = E[X], θ̂n = X̄n, Dφ = D = E = R, and

φ : R → R be given by φ(θ) = max{θ, 0} for any θ ∈ R. Under these choices, the

requirements for the Delta method of Theorem 2.1 are easily verified.

Lemma S.4.1. Let {Xi}ni=1 be an i.i.d. sample with E[X2] <∞. Then Assumptions 1

and 2 hold with rn =
√
n, G0 ∼ N(0,Var{X}), D0 = R, and φ′θ0 : R→ R given by

φ′θ0(h) =


h if θ0 > 0

max{h, 0} if θ0 = 0

0 if θ0 < 0

.

Turning to the analysis in Section 3, we focus for concreteness on the nonparametric

bootstrap of Efron (1979). Specifically, for {Wni}ni=1 independent of {Xi}ni=1 and jointly

distributed according to a multinomial distribution over {1, . . . , n} with each element
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having probability 1/n, we let θ̂∗n be given by

θ̂∗n =
1

n

n∑
i=1

XiWni. (S.134)

Notice that conditional on {Xi}ni=1, the distribution of θ̂∗n equals the law of X̄∗n ≡∑n
i=1X

∗
i /n, where {X∗i }ni=1 are drawn with replacement from {Xi}ni=1. Thus, the “non-

parametric” bootstrap maps into our setting through the representation in (S.134).

Our next result verifies θ̂∗n satisfies Assumption 3, and proposes an estimator φ̂′n :

R→ R for φ′θ0 : R→ R that meets the requirements of Assumption 4.

Lemma S.4.2. Let {Xi}ni=1 be an i.i.d. sample with 0 < E[X2] <∞, and {Wni}ni=1 be

independent of {Xi}ni=1 and jointly distributed according to a multinomial distribution

over {1, . . . , n} with each element having probability 1/n. Then Assumption 3 is satisfied.

Moreover, Assumption 4 holds with φ̂′n : R→ R given by

φ̂′n(h) =


h if

√
nX̄n/σ̂n > κn

max{h, 0} if |
√
nX̄n/σ̂n| ≤ κn

0 if
√
nX̄n/σ̂n < −κn

,

where σ̂2
n =

∑n
i=1(Xi − X̄n)2/n and κn is a sequence satisfying κn ↑ ∞ and κn/

√
n ↓ 0.

Lemmas S.4.1 and S.4.2 together with Proposition 2.1 and Corollary 3.1 therefore

imply that the “standard” bootstrap is consistent for the asymptotic distribution of

max{X̄n, 0} if and only if E[X] 6= 0. On the other hand, Theorem 3.2 and Lemma S.4.2

further establish that said limiting distribution may be consistently estimated by the

conditional law of φ̂′n(
√
n{X̄∗n−X̄n}) given the data. Finally, we note that φ′θ0 is convex,

as required for the tests discussed in Section 3.4 to provide local size control.

Below we include the proofs for the results stated in this subsection.

Proof of Lemma S.4.1: Since {Xi}ni=1 is i.i.d. with E[X2] <∞, Assumption 2 holds

trivially with D0 = R by the central limit theorem. To verify Assumption 1, fix a

sequence of scalars tn ↓ 0 and {hn}∞n=1 ⊂ R satisfying hn → h for some h ∈ R. If

θ0 > 0, then θ0 + tnhn > 0 for n sufficiently large, and we obtain that

lim
n→∞

‖φ(θ0 + tnhn)− φ(θ0)

tn
− φ′θ0(h)‖E

= lim
n→∞

|(θ0 + tnhn)− θ0

tn
− h| = lim

n→∞
|hn − h| = 0. (S.135)

By identical arguments, it follows that if θ0 < 0, then φ′θ0(h) = 0 for all h ∈ R. Finally,
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for the case θ0 = 0, simply note that hn → 0 and continuity of u 7→ max{u, 0} implies

lim
n→∞

|max{θ0 + tnhn, 0} −max{θ0, 0}
tn

−max{h, 0}|

= lim
n→∞

|max{hn, 0} −max{h, 0}| = 0. (S.136)

Thus, φ′θ0(h) = max{h, 0} when θ0 = 0 and the Lemma follows.

Proof of Lemma S.4.2: We note Assumption 3(i) is satisfied by definition of θ̂∗n, while

Assumption 3(ii) holds by Theorem 3.6.13 and Example 3.6.10 in van der Vaart and

Wellner (1996). In turn, Assumptions 3(iii)-(iv) hold since rn{θ̂∗n − θ̂n} is a measurable

function of {Xi,Win}ni=1. Further note that for any h1, h2 ∈ R we have

|φ̂′n(h1)− φ̂′n(h2)| ≤ |h1 − h2| (S.137)

almost surely. Moreover, since σ̂2
n

p→ σ2 ≡ Var{X} > 0, we additionally obtain for Z0

a standard normal random variable that
√
n{X̄n − E[X]}/σ̂n

L→ Z0. In particular, if

E[X] = 0, then for any h ∈ R we are able to conclude that

lim
n→∞

P (φ̂′n(h) = φ′θ0(h)) ≥ lim
n→∞

P (|
√
n{X̄n − E[X]}

σ̂n
| ≤ κn) = 1, (S.138)

since κn ↑ ∞. Alternatively, if E[X] 6= 0, then X̄n/σ̂n
p→ E[X]/σ 6= 0 and therefore

lim
n→∞

P (φ̂′n(h) = φθ0(h)) = 1 (S.139)

due to the definition of φ̂′n and κn/
√
n ↓ 0. The fact that φ̂′n satisfies Assumption 4 then

follows from Lemma S.3.6 and results (S.138) and (S.139).

S.4.2 Revisiting Example 2.2

We next return to Example 2.2 and illustrate how to apply our general results. Recall

that in this application the parameter of interest is given by

E[p′(E[ZZ ′])−1ZYl + max{p′(E[ZZ ′])−1Z, 0}(Yu − Yl)], (S.140)

where Z ∈ Rdz , Yl, Yu ∈ R, and Yl ≤ Yu almost surely. To map (S.140) into our

framework, we define b0 ≡ (E[ZZ ′])−1p and set ψ0 : Rdz → R to be given by

ψ0(b) ≡ E[b′ZYl + max{b′Z, 0}(Yu − Yl)]. (S.141)
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For any compact set B ⊂ Rdz containing b0 in its interior, we in turn let D ≡ Rdz×`∞(B)

and define the map φ : D→ R to satisfy for any θ = (b, ψ) ∈ Rdz × `∞(B) the relation

φ(θ) ≡

{
ψ(b) if b ∈ B

0 if b /∈ B
. (S.142)

For our analysis, the value of φ(θ) when b /∈ B is not relevant. Here, the introduction of

B is just a technical device to simplify our arguments; see also Bontemps et al. (2012)

who instead restrict the estimator for (E[ZZ ′])−1 to be norm bounded.

The following assumption imposes the conditions we require for our analysis.

Assumption S.2 (For Example 2.2).

(i) {Yl,i, Yu,i, Zi}ni=1 is an i.i.d. sample with E[(Y 2
u + Y 2

l )(1 + ‖Z‖2)] ∨E[‖Z‖4] <∞.

(ii) The matrix E[ZZ ′] is invertible.

(iii) B ⊂ Rdz is compact and b0 ≡ (E[ZZ ′])−1p belongs to its interior.

We obtain estimators for θ0 ≡ (b0, ψ0) by employing suitable sample analogues. In

particular, we set θ̂n = (b̂n, ψ̂n) for b̂n ≡ (
∑n

i=1 ZiZ
′
i/n)−1p and ψ̂n ∈ `∞(B) satisfying

ψ̂n(b) ≡ 1

n

n∑
i=1

{b′ZiYl,i + max{b′Zi, 0}(Yu,i − Yl,i)}.

The estimator φ(θ̂n) is then a direct sample analogue to the parameter of interest as

defined in (S.140). Our next Lemma shows that Assumption S.2 implies Assumptions

1 and 2 are satisfied. Hence, the asymptotic distribution of
√
n{φ(θ̂n) − φ(θ0)} can be

easily derived by the Delta method as stated in Theorem 2.1.

Lemma S.4.3. If Assumption S.2 holds, then Assumptions 1 and 2 are satisfied with

Dφ = D = Rdz × `∞(B), E = R, rn =
√
n, D0 = Rdz × C(B), G0 = (Gb,Gψ) centered

Gaussian, and for any h = (hb, hψ) ∈ Rdz × C(B), the map φ′θ0 : D0 → R satisfies

φ′θ0(h) = hψ(b0)+E[h′bZ(Yl+(Yu−Yl)1{b′0Z > 0})]+E[max{h′bZ, 0}(Yu−Yl)1{b′0Z = 0}].

Since the limiting distribution of
√
n{θ̂n − θ0} is centered Gaussian, Lemma S.4.3

together with Proposition 2.1 and Corollary 3.1 imply the “standard” bootstrap is con-

sistent for the asymptotic distribution of
√
n{φ(θ̂n)− φ(θ0)} if and only if

P (b′0Z = 0) = 0. (S.143)

In previous work, Beresteanu and Molinari (2008) and Bontemps et al. (2012) show

the consistency of the standard bootstrap under condition (S.143). Through a simple

analytical calculation, our results enable to build on their analysis and show (S.143) is
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in fact necessary for the standard bootstrap to be consistent. In addition, Theorem 3.2

provides us with a framework for consistently estimating the asymptotic distribution of
√
n{φ(θ̂n) − φ(θ0)} when condition (S.143) fails to hold. To this end, we employ the

analytic formula for φ′θ0 derived in Lemma S.4.3 and define φ̂′n to be given by

φ̂′n(h) = hψ(b̂n) +
1

n

n∑
i=1

h′bZi(Yl,i + (Yu,i − Yl,i)1{
b̂′nZi
‖Zi‖

>
κn√
n
})

+
1

n

n∑
i=1

max{h′bZi, 0}(Yu,i − Yl,i)1{|
b̂′nZi
‖Zi‖

| ≤ κn√
n
},

where we understand z/‖z‖ to equal zero whenever ‖z‖ = 0, and κn is a sequence

satisfying κn ↑ ∞. In turn, we employ the nonparametric bootstrap to estimate the

asymptotic distribution of
√
n{θ̂n − θ0}. For {Wni}ni=1 independent of {Xi}ni=1 and

distributed according to a multinomial distribution over {1, . . . , n} with each element

having probability 1/n, we let b̂∗n ≡ (
∑n

i=1WniZiZ
′
i/n)−1p and define ψ̂∗n ∈ `∞(B) by

ψ̂∗n(b) ≡ 1

n

n∑
i=1

Wni{b′ZiYl,i + max{b′Zi, 0}(Yu,i − Yl,i)}.

Our next result shows θ̂∗n = (b̂∗n, ψ̂
∗
n) and φ̂′n satisfy Assumptions 3 and 4.

Lemma S.4.4. If Assumption S.3 holds and {Wni}ni=1 is independent of {Xi}ni=1 and

jointly distributed according to a multinomial distribution over {1, . . . , n} with each el-

ement having probability 1/n, then Assumption 3 holds and φ̂′n satisfies Assumption 4

provided κn ↑ ∞ and κn/
√
n→ 0.

Theorem 3.2 and Lemma S.4.4 justify employing the conditional distribution of

φ̂′n(
√
n{θ̂∗n − θ̂n}) given the data {Xi}ni=1 to estimate the asymptotic distribution of

the estimator φ(θ̂n). With regards to the analysis of Section 3.4, we note that φ′θ0 is

convex and φ′θ0(G0) is continuously distributed on R. Therefore, Corollary 3.2 implies

the corresponding tests of the hypothesis that φ(θ0) is (weakly) negative are able to

locally control size. With regards to the hypothesis testing problem

H0 : φ(θ(P )) ≥ 0 H1 : φ(θ(P )) < 0, (S.144)

we note that by Theorem 3.3 the limiting rejection probability of a test that rejects

whenever rnφ(θ̂n) < c? for some critical value c? is given by

lim
n→∞

Pλ/
√
n(rnφ(θ̂n) < c?) = P (φ′θ0(G0 + θ′(λ)) < c?)

≤ P (φ′θ0(G0 + θ′(λ))− φ′θ0(θ′(λ)) < c?), (S.145)

where the inequality holds whenever φ(θ(Pλ/
√
n)) ≥ 0 for all n, since in such a case
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φ′θ0(θ′(λ)) ≥ 0. Letting b(P ) ≡ {EP [ZZ ′]}−1p and defining ∆(λ) to be given by

∆(λ) ≡ lim
n→∞

√
n{b(Pλ/√n)− b(P0)},

we may then obtain by direct calculation and Lemma S.4.3 the following lower bound

φ′θ0(G0 + θ′(λ))− φ′θ0(θ′(λ)) ≥ Gψ(b0) + E[G′bZ(Yl + (Yu − Yl)1{b′0Z > 0})]

+ E[G′bZ(Yu − Yl)1{b′0Z = 0}1{∆(λ)′Z > 0}]. (S.146)

Combining results (S.145) and (S.146) we can then conclude that a test that rejects

(S.144) whenever rnφ(θ̂n) is smaller than c? will deliver local size control provided

sup
A⊆{z:b′0z=0}

P (Gψ(b0) +G′bE[Z(Yl + (Yu − Yl)(1{b′0Z > 0}+ 1{Z ∈ A}))] < c?) ≤ α.

A consistent estimator for c? may be obtained by appropriately modifying φ̂′n. Moreover,

we note that in most applications, the sets A ⊆ {z : b′0z = 0} satisfying P (Z ∈ A) > 0

consist only of points at which Z assigns positive probability. In such cases, when

maximizing over sets A we need only examine sets consisting of points at which Z

assigns positive probability. Finally, we also observe that since

φ′θ0(G0 + θ′(λ))− φ′θ0(θ′(λ)) ≥ Gψ(b0) + E[G′bZ(Yl + (Yu − Yl)1{b′0Z > 0})]

+ E[min{G′bZ, 0}(Yu − Yl)1{b′0Z = 0}], (S.147)

we may alternatively obtain (more conservative) critical values by employing the appro-

priate quantiles of the right hand side of (S.147).

Below, we include the proofs for Lemmas S.4.3 and S.4.4.

Proof of Lemma S.4.3: For notational simplicity we first define Ω0 ≡ E[ZZ ′] and

Ω̂n ≡
∑n

i=1 ZiZ
′
i/n. Since E[‖Z‖4] <∞, it follows

√
n{Ω̂n−Ω0} = Op(1) and therefore

b̂−b0 = {Ω̂−1
n −Ω−1

0 }p = Ω−1
0 {Ω0−Ω̂n}Ω̂−1

n p = Ω−1
0 {Ω0−Ω̂n}Ω−1

0 p+op(n
−1/2). (S.148)

Further defining F ≡ {f : f(yl, yu, z) = b′zyl + max{b′z(yu− yl), 0} for some b ∈ B}, we

note that Example 19.7 in van der Vaart (1998) and B being compact by Assumption

S.2(iii) imply that the class F is Donsker. Thus, result (S.148) yields

(
√
n{b̂n − b0},

√
n{ψ̂n − ψ0})

L→ (Gb,Gψ) (S.149)

in Rdz × `∞(B). Moreover, by Example 1.5.10 in van der Vaart and Wellner (1996),

there is a version of Gψ that is almost surely continuous with respect to

ρ2
2(b1, b2) ≡ V ar{(b1 − b2)′ZYl + (max{b′1Z, 0} −max{b′2Z, 0})(Yu − Yl)}. (S.150)
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Since ρ2(b1, b2) ≤ ‖b1 − b2‖{E[‖Z‖2(Y 2
l + (Yu − Yl)2)]}1/2 for any b1, b2 ∈ Rdz by the

Cauchy-Schwarz inequality, and E[‖Z‖2(Y 2
l +Y 2

u )] <∞ by Assumption S.2(i) it follows

that Gψ is continuous with respect to the Euclidean norm, and hence Gψ ∈ C(B). We

thus conclude Assumption 2 is satisfied with D0 = Rdz × C(B).

In order to verify Assumption 1, we let tn ↓ 0 and hn = (hbn, hψn) ∈ Rdz × `∞(B)

form an arbitrary sequence satisfying ‖hbn − hb‖ ∨ ‖hψn − hψ‖∞ = o(1) for some h =

(hb, hψ) ∈ Rdz × C(B). Since b0 belongs to the interior of B by Assumption S.2(iii), it

follows that b0 + tnhbn ∈ B for n sufficiently large. Hence, definition (S.142) implies

1

tn
{φ(θ0 + tnhn)− φ(θ0)} = hψn(b0 + tnhbn) +

1

tn
{ψ0(b0 + tnhbn)− ψ0(b0)} (S.151)

for n sufficiently large. Further note that hψ ∈ C(B) and ‖hψn − hψ‖∞ = o(1) imply

lim
n→∞

|hψn(b0 + tnhbn)− hψ(b0)|

≤ lim
n→∞

{‖hψn − hψ‖∞ + |hψ(b0 + tnhbn)− hψ(b0)|} = 0. (S.152)

In addition, Assumption S.2(i) and the dominated convergence theorem yield that

lim
n→∞

1

tn
{ψ0(b0 + tnhbn)− ψ0(b0)}

= lim
n→∞

{E[h′bnZYl] +
1

tn
E[(max{(b0 + tnhbn)′Z, 0} −max{b′0Z, 0})(Yu − Yl)]}

= E[h′bZ(Yl + (Yu − Yl)1{b′0Z > 0})] + E[max{h′bZ, 0}(Yu − Yl)1{b′0Z = 0}] (S.153)

since ‖hbn − hb‖ = o(1) by hypothesis. Thus, results (S.151) and (S.153) verify φ is

indeed Hadamard directionally differentiable at θ0 tangentially to Rdz ×C(B), which in

turn implies Assumption 1 is satisfied.

Proof of Lemma S.4.4: We first let Mdz denote the space of dz × dz matrices, and

define ν : Mdz →Mdz to be given by ν(Ω) = Ω− where Ω− denotes the Moore-Penrose

pseudoinverse of Ω. Equipping Mdz with the Frobenius norm ‖·‖F , then note result (22)

in Henderson and Searle (1981) implies ν is Hadamard differentiable at any invertible

Ω ∈Mdz . Hence, setting π : Mdz × `∞(B)→ Rdz × `∞(B) to be given by

π((Ω, ψ)) = (ν(Ω)p, ψ) (S.154)

for any (Ω, ψ) ∈Mdz×`∞(B), we can conclude that π is Hadamard differentiable at any

(Ω, ψ) with Ω invertible. Moreover, we note that for Ω0 ≡ E[ZZ ′], Ω̂n ≡
∑n

i=1 ZiZ
′
i/n,

and Ω̂∗n ≡
∑n

i=1WniZiZ
′
i/n we obtain that θ0 = π((Ω0, ψ0)), θ̂n = π((Ω̂n, ψ̂n)), and

θ̂∗n = π((Ω̂∗n, ψ̂
∗
n)). In particular, since F ≡ {f : f(yl, yu, z) = b′zyl + max{b′z(yu −

yl), 0} for some b ∈ B} is Donsker by Example 19.7 in van der Vaart (1998), we can

conclude from Example 2.10.8 and Theorems 3.6.13 and 3.9.11 in van der Vaart and
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Wellner (1996) that Assumption 3(ii) is satisfied and in addition

E[h(
√
n{θ̂∗n − θ̂n})∗|{Xi}ni=1]− E[h(

√
n{θ̂∗n − θ̂n})∗|{Xi}ni=1]

p→ 0 (S.155)

for any h ∈ BL1(Rdz × `∞(B)). Here, h(
√
n{θ̂∗n − θ̂n})∗ and h(

√
n{θ̂∗n − θ̂n})∗ denote

the minimal measurable majorant and maximal measurable minorant of h(
√
n{θ̂∗n −

θ̂n}) jointly in {Xi,Wni}ni=1 respectively. We also note that Assumption 3(i) holds by

construction, while Assumption 3(iv) is satisfied due to f(
√
n{θ̂∗n−θ̂n}) being continuous

in {Wni}ni=1 for any continuous f : Rdz×`∞(B)→ R. Therefore, Lemma S.4.3 implying

Assumption 2(ii) holds together with (S.155) and Lemma S.3.9 establish Assumption

3(iii) is satisfied, which verifies Assumption 3.

In order to verify Assumption 4 holds, first fix an arbitrary h = (hb, hψ) ∈ Rdz×C(B).

Then note that since b0 belongs to the interior of B by Assumption S.2(iii), it follows

that b̂n belongs to B with probability tending to one. As a result, we obtain that

hψ(b̂n)
p→ hψ(b0) (S.156)

due to hψ ∈ C(B), the continuous mapping theorem, and b̂n
p→ b0 because Assumption

2(i) is satisfied by Lemma S.4.3. Next, we define the set of functions

G1 ≡ {g : g(z) = 1{ z
′β

‖z‖
> γ} for some (β, γ) ∈ Rdz+1}

G2 ≡ {g : g(z) = 1{|z
′β|
‖z‖

≤ γ} for some (β, γ) ∈ Rdz+1}, (S.157)

where z/‖z‖ is understood to equal zero whenever ‖z‖ = 0. Since the class G0 ≡ {g :

g(z) = 1{z′β ≤ γ} for some (β, γ) ∈ Rdz+1} is a VC subgraph class by Theorem B in

Dudley (1979), Lemma 2.6.18(vii) and Theorem 2.10.6 in van der Vaart and Wellner

(1996) establish G1 and G2 to be VC subgraph classes as well. Defining the classes

F1 ≡ {f : f(yl, yu, z) = h′bz(yl + (yu − yl)g(z)) for some g ∈ G1}

F2 ≡ {f : f(yl, yu, z) = max{h′bz, 0}(yu − yl)g(z) for some g ∈ G2}, (S.158)

it then follows from Theorem 2.10.20 in van der Vaart and Wellner (1996) that F1 and

F2 are Donsker as well. In particular, F1 being Donsker implies that

1

n

n∑
i=1

h′bZi(Yl,i + (Yu,i − Yl,i)1{
b̂′nZi
‖Zi‖

>
κn√
n
})

= E[h′bZ(Yl + (Yu − Yl)1{
b̂′nZ

‖Z‖
>

κn√
n
})] + op(1), (S.159)

where the expectation is taken over X = (Yl, Yu, Z) but not b̂n. We further note that

33



since Lemma S.4.3 implies
√
n{b̂n − b0} = Op(1) and κn ↑ ∞ by assumption, we obtain

E[1{ b̂
′
nZ

‖Z‖
>

κn√
n
}1{ b

′
0Z

‖Z‖
≤ 0}]

≤ E[1{
√
n{b̂n − b0}′Z
‖Z‖

> κn}] ≤ 1{
√
n‖b̂n − b0‖ > κn} = op(1). (S.160)

Hence, results (S.159) and (S.160) together with the Cauchy-Schwarz inequality yield

1

n

n∑
i=1

h′bZi(Yl,i + (Yu,i − Yl,i)1{
b̂′nZi
‖Zi‖

>
κn√
n
})

= E[h′bZ(Yl + (Yu − Yl)1{
b̂′nZ

‖Z‖
>

κn√
n
})1{b′0Z > 0}] + op(1)

= E[h′bZ(Yl + (Yu − Yl)1{b′0Z > 0})] + op(1), (S.161)

where we employed the continuous mapping theorem applied to (b̂n, κn/
√
n)

p→ (b0, 0)

and the function (β, γ) 7→ E[h′bZ(Yl + (Yu − Yl)1{β′Z/‖Z‖ > γ})1{b′0Z > 0}], which is

continuous at (β, γ) = (b0, 0) by the dominated convergence theorem. Similarly, we may

employ that F2 is Donsker and argue analogously to (S.160) and (S.161) to obtain

1

n

n∑
i=1

max{h′bZi, 0}(Yu,i − Yl,i)1{
|Z ′ib̂n|
‖Zi‖

≤ κn√
n
}

= E[max{h′bZ, 0}(Yu − Yl)1{
|Z ′b̂n|
‖Z‖

≤ κn√
n
}] + op(1)

= E[max{h′bZ, 0}(Yu − Yl)1{Z ′b0 = 0}] + op(1). (S.162)

In particular, since h = (hb, hψ) ∈ Rdz × C(B) was arbitrary, results (S.156), (S.161),

and (S.162) establish φ̂′n(h) = φ′θ0(h) + op(1) for any h ∈ D0. Furthermore, if we equip

Rdz × `∞(B) with the norm ‖h‖D = ‖hb‖+ ‖hψ‖∞ for any h = (hb, hψ), then we obtain

|φ̂′n(h1)− φ̂′n(h2)| ≤ (‖hψ1 − hψ2‖∞ + ‖hb1 − hb2‖){1 +
1

n

n∑
i=1

‖Zi‖(|Yl,i|+ (Yu,i − Yl,i))}

= {‖hψ1 − hψ2‖∞ + ‖hb1 − hb2‖} ×Op(1), (S.163)

for any h1, h2 ∈ Rdz×`∞(B) with hj = (hbj , hψj), and where E[‖Z‖(|Yl|+|Yu−Yl|)] <∞
by Assumption S.2(i). Since we have shown φ̂′n(h) = φ′θ0(h) + op(1) for any h ∈ D0,

result (S.163) and Lemma S.3.6 imply φ̂′n satisfies Assumption 4.

S.4.3 Example: Stochastic Dominance

As a further example, we consider a test of first order stochastic dominance originally

studied by Linton et al. (2010). Specifically, supposeX = (X(1), X(2)) ∈ R2 is a bivariate
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random variable and let Fj denote the marginal distribution of X(j). For w : R→ R+

a positive integrable weighting function, Linton et al. (2010) propose a test of first order

stochastic dominance based on the observation that F1 ≤ F2 if and only if∫
R

max{F1(u)− F2(u), 0}w(u)du

is equal to zero. In particular, for F̂jn the empirical cdf of {X(j)
i }ni=1, the preceding

observation suggests constructing a test by employing the statistic

√
n

∫
R

max{F̂1n(u)− F̂2n(u), 0}w(u)du.

In order to map this problem into our framework we let θ0 = (F1, F2) ∈ `∞(R) ×
`∞(R), set θ̂n = (F̂1n, F̂2n) ∈ `∞(R)× `∞(R), and define φ : `∞(R)× `∞(R)→ R by

φ(θ) =

∫
R

max{θ(1)(u)− θ(2)(u), 0}w(u)du

for any θ = (θ(1), θ(2)) ∈ `∞(R) × `∞(R). The following Assumption imposes mild

regularity conditions that we will employ to verify the requirements in the main text.

Assumption S.3 (Stochastic Dominance Example).

(i) {Xi}ni=1 is an i.i.d. sample with Xi = (X
(1)
i , X

(2)
i ) ∈ R2.

(ii) The weight function w : R→ R+ satisfies
∫
Rw(u)du <∞.

Our first Lemma shows Assumption S.3 implies Assumptions 1 and 2 hold.

Lemma S.4.5. If Assumption S.3 holds, then Assumptions 1 and 2 are satisfied with

Dφ = D0 = D = `∞(R)× `∞(R), E = R, rn =
√
n, G0 centered Gaussian, and

φ′θ0(h) =

∫
B+(θ0)

(h(1)(u)− h(2)(u))w(u)du+

∫
B0(θ0)

max{h(1)(u)− h(2)(u), 0}w(u)du

for any h = (h(1), h(2)) ∈ `∞(R) × `∞(R), and where the sets B0(θ0) and B+(θ0) are

given by B0(θ0) ≡ {u ∈ R : θ
(1)
0 (u) = θ

(2)
0 (u)} and B+(θ0) ≡ {u ∈ R : θ

(1)
0 (u) > θ

(2)
0 (u)}.

The formula for the directional derivative φ′θ0 obtained by Lemma S.4.5 implies that

φ′θ0 is linear if and only if
∫
B0(θ0)w(u)du = 0. Hence, since G0 is Gaussian, Proposition

2.1 and Corollary 3.1 imply the “standard” bootstrap is consistent for the asymptotic dis-

tribution of
√
n{φ(θ̂n)−φ(θ0)} if and only if

∫
B0(θ0)w(u)du = 0. Nonetheless, Theorem

3.2 still provides us with a valid resampling procedure provided that we can construct a

suitable estimator φ̂′n for φ′θ0 . To this end, we note any θ0 = (θ
(1)
0 , θ

(2)
0 ) ∈ `∞(R)×`∞(R)

satisfying the null hypothesis will be such that B+(θ0) = ∅. Thus, for the purposes of
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testing, it is without loss of generality to assume φ′θ0 satisfies

φ′θ0(h) =

∫
B0(θ0)

max{h(1)(u)− h(2)(u), 0}w(u)du

for any h = (h(1), h(2)) ∈ `∞(R)× `∞(R). A natural estimator for φ′θ0 is then given by

φ̂′n(h) =

∫
B̂0(θ0)

max{h(1)(u)− h(2)(u), 0}w(u)du,

where B̂0(θ0) is a suitable estimator for B0(θ0). For concreteness, we follow Linton et al.

(2010) and for some sequence κn ↑ ∞ define B̂0(θ0) to equal

B̂0(θ0) ≡ {u ∈ R :
√
n|F̂1n(u)− F̂2n(u)| ≤ κn}.

As a final ingredient for inference, we also require a consistent estimator of the law

of G0 ∈ `∞(R) × `∞(R). Fortunately, the nonparametric bootstrap is valid. There-

fore, for {Wni}ni=1 independent of {Xi}ni=1 and following a multinomial distribution

over {1, . . . , n} with each element having probability 1/n, we set θ̂∗n = (θ̂
(1)∗
n , θ̂

(2)∗
n ) ∈

`∞(R)× `∞(R) where for j ∈ {1, 2} the function θ̂
(j)∗
n ∈ `∞(R) is given by

θ̂(j)∗
n (u) =

1

n

n∑
i=1

Wni1{X(j)
i ≤ u}. (S.164)

Our next result verifies these choices for θ̂∗n and φ̂′n satisfy Assumptions 3 and 4.

Lemma S.4.6. If Assumption S.3 holds and {Wni}ni=1 is independent of {Xi}ni=1 and

jointly distributed according to a multinomial distribution over {1, . . . , n} with each el-

ement having probability 1/n, then Assumption 3 is satisfied. Moreover, if in addition

θ0 = (θ
(1)
0 , θ

(2)
0 ) ∈ `∞(R)× `∞(R) is such that θ

(1)
0 ≤ θ(2)

0 , then φ̂′n satisfies Assumption

4 provided κn ↑ ∞ and κn/
√
n→ 0.

Thus, Lemma S.4.6, together with Theorem 3.2, implies that the asymptotic distri-

bution of the test statistic
√
nφ(θ̂n) may be consistently estimated by the conditional

law of φ̂′n(
√
n{θ̂∗n − θ̂n}) given the data. With regards to inference, we notice that φ′θ0

is convex, as required for the resulting test to provide local size control. However, a

complication arises in that the cdf of φ′θ0(G0) may fail to be continuous at its 1 − α
quantile. In particular, continuity of the cdf fails when

∫
B0(θ0)w(u)du = 0, in which

case φ′θ0(G0) = 0 almost surely. To obtain a test that controls size in such settings the

critical values must be slightly adjusted; see the discussion in Linton et al. (2010).

Below we include the proofs for Lemmas S.4.5 and S.4.6.

Proof of Lemma S.4.5: First let tn ↓ 0 and {hn}∞n=1 = {(h(1)
n , h

(2)
n )}∞n=1 be any
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sequence in `∞(R)× `∞(R) such that ‖h(1)
n − h(1)‖∞ ∨ ‖h(2)

n − h(2)‖∞ = o(1) for some

h = (h(1), h(2)) ∈ `∞(R)× `∞(R). We further define the set B−(θ0) to equal

B−(θ0) ≡ {u ∈ R : θ
(1)
0 (u) < θ

(2)
0 (u)}. (S.165)

Since ‖h(1)
n − h(2)

n ‖∞ → ‖h(1) − h(2)‖∞ < ∞, it then follows from θ
(1)
0 (u) − θ(2)

0 (u) < 0

for all u ∈ B−(θ0) and the dominated convergence theorem that∫
B−(θ0)

max{θ(1)
0 (u)− θ(2)

0 (u) + tn(h(1)
n (u)− h(2)

n (u)), 0}w(u)du

. tn

∫
B−(θ0)

1{tn(h(1)
n (u)− h(2)

n (u)) ≥ −(θ(1)(u)− θ(2)(u))}w(u)du = o(tn). (S.166)

Hence, since R \B−(θ0) = B+(θ0) ∪B0(θ0), result (S.166) allows us to conclude that

1

tn
{φ(θ + tnhn)− φ(θ)}

=

∫
R\B−(θ)

max{h(1)
n (u)− h(2)

n (u),−θ
(1)(u)− θ(2)(u)

tn
}w(u)du+ o(1) = φ′θ(h) + o(1),

where the final equality follows from the dominated convergence theorem. Thus, we

conclude that Assumption 1 holds with D0 = `∞(R)× `∞(R).

In order to verify Assumption 2, define the class of sets C = {C ⊆ R2 : C =

(−∞, c]×R or C = R× (−∞, c] for some c ∈ R} and note C has VC index less than or

equal to two; see, e.g., Example 2.6.1 in van der Vaart and Wellner (1996). Hence, the

empirical process converges in `∞(C) by Theorem 2.5.2 in van der Vaart and Wellner

(1996), which in turn implies by the continuous mapping theorem that Assumption 2

holds with rn =
√
n and G0 a centered Gaussian process.

Proof of Lemma S.4.6: First note that Assumption 3(i) is satisfied by construction.

Further letting C = {C ⊆ R2 : C = (−∞, c]×R or C = R× (−∞, c] for some c ∈ R},
observe that Lemma S.4.5 implying Assumption 2 holds with D = `∞(R)×`∞(R) allows

us to conclude that C is a Donsker class. Hence, Theorem 3.6.13 in van der Vaart and

Wellner (1996) establishes that Assumption 3(ii) holds and that

E[h(
√
n{θ̂∗n − θ̂n})∗|{Xi}ni=1]− E[h(

√
n{θ̂∗n − θ̂n})∗|{Xi}ni=1] = op(1) (S.167)

for any h ∈ BL1(D), and where h(
√
n{θ̂∗n−θ̂n})∗ and h(

√
n{θ̂∗n−θ̂n})∗ respectively denote

the minimal measurable majorant and maximal measurable minorant of h(
√
n{θ̂n−θ̂∗n}).

Further note that Assumption 3(iv) is satisfied since θ̂∗n is continuous in {Win}ni=1 by

equation (S.164). Thus, since Assumption 2 is satisfied by Lemma S.4.5, we may apply

result (S.167) and Lemma S.3.9 to conclude Assumption 3(iii) is satisfied as well.

In order to verify Assumption 4, next notice that for any h1 = (h
(1)
1 , h

(2)
1 ) and
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h2 = (h
(1)
2 , h

(2)
2 ) with h1, h2 ∈ `∞(R)× `∞(R) we have that

|φ̂′n(h1)− φ̂′n(h2)| ≤
∫
R
w(u)du× {‖h(1)

1 − h
(1)
2 ‖∞ + ‖h(2)

1 − h
(2)
2 ‖∞}, (S.168)

which implies φ̂′n : `∞(R) × `∞(R) → R is Lipschitz with Lipschitz constant one.

Moreover, note that since Assumption 2(ii) holds, it follows that for j ∈ {1, 2} we can

conclude
√
n‖F̂jn − Fjn‖∞ = Op(1). Therefore, we obtain from κn ↑ ∞ that

lim
n→∞

P (B0(θ0) ⊆ B̂0(θ0))

≥ lim
n→∞

P (sup
u∈R

√
n|{F̂1n(u)− F̂2n(u)} − {F1(u)− F2(u)}| ≤ κn) = 1. (S.169)

Next define Bδ(θ0) ≡ {u ∈ R : |F1(u) − F2(u)| ≤ δ} for any δ > 0, and select δn ↓ 0 to

satisfy
√
nδn − κn ↑ ∞ (which is possible since κn/

√
n ↓ 0). We thus obtain

lim
n→∞

P (B̂0(θ0) ⊆ Bδn(θ0))

≥ lim
n→∞

P (sup
u∈R

√
n|{F̂1n(u)− F̂2n(u)} − {F1(u)− F2(u)}| ≤

√
nδn − κn) = 1. (S.170)

For any h = (h1, h2) ∈ `∞(R)× `∞(R), we then obtain from (S.169) and (S.170) that

|φ̂′n(h)− φ′θ0(h)| ≤
∫
Bδn (θ0)\B0(θ0)

max{h1(u)− h2(u), 0}w(u)du+ op(1)

≤ {‖h1‖∞ + ‖h2‖∞}
∫
R

1{0 < |F1(u)− F2(u)| ≤ δn}w(u)du+ op(1). (S.171)

Hence, the dominated convergence theorem implies φ̂′n(h) = φ′θ0(h) + op(1) for any

h ∈ `∞(R)× `∞(R). Result (S.168) and Lemma S.3.6 then verify Assumption 4.

S.4.4 Example: Moment Inequalities

As our final example, we examine models defined by conditional moment inequality

restrictions. In such models, tests of whether a parameter belongs to the identified set

often correspond to testing, for some Y ∈ R and Z ∈ Rdz , the null hypothesis

E[Y |Z] ≤ 0 (S.172)

almost surely. Andrews and Shi (2013) propose testing whether (S.172) holds based on

the observations that (S.173) is equivalent to the restriction

sup
f∈F

E[Y f(Z)] ≤ 0, (S.173)
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where F is a suitably chosen collection of functions f : Rdz → R+. Relation (S.173)

suggests testing the null hypothesis that E[Y |Z] ≤ 0 by employing the test statistic

sup
f∈F

1√
n

n∑
i=1

Yif(Zi). (S.174)

In order to map this problem into our framework we let Dφ = D = `∞(F) and set

θ0, θ̂n ∈ `∞(F) to be the functions satisfying for any f ∈ F the relations

θ0(f) ≡ E[Y f(Z)] θ̂n(f) ≡ 1

n

n∑
i=1

Yif(Zi).

Defining φ : `∞(F)→ R to be given by φ(θ) = supf∈F θ(f), we then note that (S.174)

is equal to
√
nφ(θ̂n). As a final piece of notation we introduce the intrinsic (semi)metric

ρ2(f1, f2) ≡ (Var{Y (f1(Z)− f2(Z))})1/2. (S.175)

Endowing F with ρ2, we then let C(F) ≡ {ψ : F → R s.t. ψ is continuous}, where here

continuity is understood with respect to the (semi)metric ρ2.

We next introduce the Assumptions we require for this application.

Assumption S.4 (Moments Inequalities Example).

(i) {Yi, Zi}ni=1 is an i.i.d. sample with E[Y 2] <∞.

(ii) F is a uniformly bounded P -measurable VC class that is closed under ρ2.

(iii) There is an ε > 0 such that Var{Y |Z} > ε almost surely.

Assumption S.4(ii) imposes a mild measurability requirement on F by demanding

that it be P -measurable; see pg. 110 in van der Vaart and Wellner (1996) for a definition

and discussion. In turn, the condition that F be a VC class requires that F not be “too

big” so that a functional central limit theorem applies. Such a requirement is usually

satisfied, for example, when the class F is defined by a finite dimensional index; e.g.

when F consists of cell indicators in Rdz . Assumption S.4(ii) additionally imposes that

F be closed under ρ2 for ease of exposition, though it is possible to adapt our arguments

to work with the closure of F if F fails to be closed. Finally, Assumption S.4(iii) imposes

a lower bound on the variance of Y conditional on Z.

Our first Lemma shows Assumption S.4 implies Assumptions 1 and 2 hold.

Lemma S.4.7. If Assumptions S.4 hold, then Assumptions 1 and 2 are satisfied with

Dφ = D = `∞(F), D0 = C(F), E = R, rn =
√
n, G0 centered Gaussian, and

φ′θ0(h) = sup
f∈ΨF (θ0)

h(f) ΨF (θ0) = arg max
f∈F

θ0(f).
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Note that Lemma S.4.7 implies that φ′θ0 : `∞(F)→ R is linear if and only if ΨF (θ0) is

a singleton. Therefore, Proposition 2.1 and Corollary 3.1 imply the “standard” bootstrap

is consistent for the asymptotic distribution of
√
n{φ(θ̂n)−φ(θ0)} if and only if ΨF (θ0) is

a singleton. Theorem 3.2, however, enables us to construct an estimator for the desired

asymptotic distribution that is consistent even if ΨF (θ0) fails to be a singleton. To this

end, we first introduce as an estimator for the asymptotic distribution of
√
n{θ̂n − θ0}

the process
√
n{θ̂∗n − θ̂n} ∈ `∞(F) to be given by

√
n{θ̂∗n − θ̂n}(f) =

1√
n

n∑
i=1

Wi{Yif(Zi)−
1

n

n∑
i=1

Yif(Zi)},

where {Wi}ni=1 is an i.i.d. sample of standard normal random variables. Here, we em-

ploy a multiplier bootstrap for the sake of variety in exposition, though we note the

nonparametric bootstrap is also consistent. As an estimator for φ′θ0 , we then let

Ψ̂F (θ0) ≡ {f ∈ F : sup
f̃∈F

θ̂n(f̃) ≤ θ̂n(f) +
κn√
n
},

and following the analytical expression for φ′θ0 in Lemma S.4.7 we set φ̂′n to be given by

φ̂′n(h) ≡ sup
f∈Ψ̂F (θ0)

h(f).

The estimator φ̂′n may be viewed as a generalized moment selection procedure as in

Andrews and Soares (2010) and Andrews and Shi (2013).

Our second Lemma verifies Assumption 3 and 4.

Lemma S.4.8. If Assumption S.4 holds and {Wi}ni=1 is an i.i.d. sequence of standard

normal random variables independent of {Xi}ni=1, then Assumption 3 is satisfied. More-

over, if in addition κn ↑ ∞ and κn/
√
n→ 0, then φ̂′n satisfies Assumption 4.

Lemma S.4.6 verifies the conditions of Theorem 3.2, which justifies estimating the

asymptotic distribution of
√
n{φ(θ̂n) − φ(θ0)} by employing the conditional law of

φ̂′n(
√
n{θ̂∗n − θ̂n}) given the data. Moreover, since φ′θ0 is convex, Corollary 3.2 implies

the resulting test is able to locally control size at any θ0 such that φ(θ0) = 0 – here

the requirement that the cdf of φ′θ0(G0) be continuous and increasing is satisfied at any

α < 0.5 since G0 is non-degenerate and ΨF (θ0) is not empty.

Below we include the proofs for Lemmas S.4.7 and S.4.8.

Proof of Lemma S.4.7: Define the class G ≡ {g : g(y, z) = yf(z) for some f ∈ F}.
Then note that since F is uniformly bounded, E[Y 2] < ∞, and F is a VC class by

Assumptions S.4(i)-(ii), Theorem 2.10.20 in van der Vaart and Wellner (1996) implies

G is a Donsker class and therefore Assumption 2(i) holds with G0 tight. Moreover, by
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Example 1.5.10 in van der Vaart and Wellner (1996), there exists a version of G0 that

has continuous paths with respect to the intrinsic (semi)metric ρ2 defined in (S.175),

and hence Assumption 2(ii) holds with D0 = C(F) as well.

In order to verify Assumption 1, we note Example 1.5.10 in van der Vaart and Wellner

(1996) additionally implies F is totally bounded under ρ2. Since F is also closed under

ρ2 by Assumption S.4(ii), Corollary 3.29 in Aliprantis and Border (2006) implies F is

compact under ρ2. Next fix any sequence {fn}∞n=1 ⊆ F satisfying ρ2(fn, f)→ 0 for some

f ∈ F . By Assumption S.4(iii) there then exists an ε > 0 such that

E[(fn(Z)− f(Z))2] ≤ 1

ε
E[Var{Y |Z}(fn(Z)− f(Z))2] ≤ 1

ε
ρ2

2(fn, f). (S.176)

Hence, we obtain from the Cauchy-Schwarz inequality and result (S.176) that

lim
n→∞

|E[Y (fn(Z)− f(Z))]| ≤ lim
n→∞

{E[Y 2]}1/2{E[(fn(Z)− f(Z))2]}1/2 = 0, (S.177)

which implies θ0 ∈ C(F). Applying Lemma S.4.9 we may then conclude that Assumption

1 is satisfied, which concludes the proof of the Lemma.

Proof of Lemma S.4.8: For notational simplicity, set G∗n ≡
√
n{θ̂∗n − θ̂n}. Then note

that Assumption 3(i) is satisfied by construction, while Assumption 3(iv) holds since

f(G∗n) is continuous in {Wi}ni=1. Further define G′n ∈ `∞(F) to be given by

G′n(f) ≡ 1√
n

n∑
i=1

Wi{Yif(Zi)− E[Yif(Zi)]}, (S.178)

and note that since
√
n{θ̂n− θ0} satisfies Assumption 2 by Lemma S.4.7, it follows that

‖θ̂n − θ0‖∞ = op(1). Therefore, by direct manipulation we can conclude that

sup
h∈BL1(`∞(F))

|E[h(G′n)|{Xi}ni=1]− E[h(G∗n)|{Xi}ni=1]|

≤ E[| 1√
n

n∑
i=1

Wi|]× ‖θ̂n − θ0‖∞ = op(1), (S.179)

where we exploited that {Wi}ni=1 is independent of {Xi}ni=1 and that
∑n

i=1Wi/
√
n fol-

lows a standard normal distribution. Hence, Lemma S.4.7 implying Assumption 2 holds

together with Theorem 2.9.6 in van der Vaart and Wellner (1996) yields

sup
h∈BL1(`∞(F))

|E[h(G∗n)|{Xi}ni=1]− E[h(G0)]|

≤ sup
h∈BL1(`∞(F))

|E[h(G′n)|{Xi}ni=1]− E[h(G0)]|+ op(1) = op(1), (S.180)

which verifies Assumption 3(ii). Next, for any h ∈ BL1(`∞(F)) let h(G′n)∗ and h(G∗n)∗
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denote the minimal measurable majorants with respect to {Xi,Wi}ni=1 of h(G′n) and

h(G∗n) respectively. Lemma 1.2.2(iii) in van der Vaart and Wellner (1996) then yields

|E[h(G′n)∗|{Xi}ni=1]− E[h(G∗n)∗|{Xi}]|

≤ E[|h(G′n)− h(G∗n)|∗|{Xi}ni=1] ≤ E[| 1√
n

n∑
i=1

Wi|]× ‖θ̂n − θ0‖∗∞ = op(1) (S.181)

because ‖θ̂n − θ0‖∞ = op(1). Similarly, let h(G′n)∗ and h(G∗n)∗ denote the maximal

measurable minorants of h(G′n) and h(G∗n). Since for any T : {Xi,Wi}ni=1 → `∞(F) we

have T∗ = −(−T ∗), Lemma 1.2.2(iii) in van der Vaart and Wellner (1996) yields

|E[h(G′n)∗|{Xi}ni=1]− E[h(G∗n)∗|{Xi}]| = |E[−(−h(G′n))∗ + (−h(G∗n))∗|{Xi}ni=1]|

≤ E[|h(G′n)− h(G∗n)|∗|{Xi}i=1] = op(1), (S.182)

where the final equality follows from (S.181). Hence, for any h ∈ BL1(`∞(F)) we obtain

E[h(G∗n)∗|{Xi}ni=1]− E[h(G∗n)∗|{Xi}ni=1]

= E[h(G′n)∗|{Xi}ni=1]− E[h(G′n)∗|{Xi}ni=1] + op(1) = op(1), (S.183)

where the first equality follows from (S.181) and (S.182), while the second is implied by

Theorem 2.9.7 in van der Vaart and Wellner (1996). Since Assumptions 3(i)-(ii), and

3(iv) have been shown to hold, Lemma S.3.9 implies Assumption 3(iii) holds as well.

In order to verify Assumption 4, we first observe that since Assumption 1 holds by

Lemma S.4.7 it follows
√
n‖θ̂n − θ0‖∞ = Op(1). Therefore, κn ↑ ∞ yields

lim
n→∞

P (ΨF (θ0) ⊆ Ψ̂F (θ0)) ≥ lim
n→∞

P (2
√
n‖θ̂n − θ0‖∞ ≤ κn) = 1. (S.184)

Next, fix an arbitrary δ > 0 and let (ΨF (θ0))δ denote a δ enlargement of ΨF (θ0) under

ρ2. Since F is compact and θ0 is continuous under ρ2 (see (S.177)), we obtain that

η ≡ {sup
f∈F

θ0(f)− sup
f∈F\(ΨF (θ0))δ

θ0(f)} > 0. (S.185)

Therefore, the definition of Ψ̂F (θ0) together with result (S.185) allows us to conclude

P (Ψ̂F (θ0) * (ΨF (θ0))δ) = P (sup
f̃∈F

θ̂n(f̃) ≤ θ̂n(f) +
κn√
n

for some f ∈ F \ (ΨF (θ0))δ)

≤ P (η ≤ 2‖θ̂n − θ0‖∞ +
κn√
n

) = o(1), (S.186)

where in the final result we employed that η > 0, κn/
√
n→ 0, and ‖θ̂n − θ0‖∞ = op(1)

since Assumption 2 holds by Lemma S.4.7. Next, fix an arbitrary h ∈ C(F) and note
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that by results (S.184) and (S.186), there exists a sequence δn ↓ 0 such that

|φ̂′n(h)− φ′θ0(h)| ≤ sup
f∈(ΨF (θ0))δn∩F

h(f)− sup
f∈ΨF (θ0)

h(f) + op(1)

≤ sup
f1,f2∈F :ρ2(f1,f2)≤δn

{h(f1)− h(f2)}+ op(1) = op(1), (S.187)

where in the final equality we employed that h ∈ C(F) and F being compact imply h

must in fact be uniformly continuous. Finally, we note that since φ̂′n is Lipschitz con-

tinuous with Lipschitz constant equal to one, Lemma S.3.6 and result (S.187) establish

that Assumption 4 holds, and the Lemma therefore follows.

Lemma S.4.9. Let A be compact under a metric dA, φ : `∞(A) → R be given by

φ(θ) = supa∈A θ(a), and set ΨA(θ) ≡ arg maxa∈A θ(a) for any θ ∈ C(A). Then, φ is

Hadamard directionally differentiable tangentially to C(A) at any θ ∈ C(A), and

φ′θ(h) = sup
a∈ΨA(θ)

h(a) h ∈ C(A).

Proof: Let {tn}∞n=1 and {hn}∞n=1 be sequence with tn ∈ R, hn ∈ `∞(A) for all n, tn ↓ 0

and ‖hn − h‖∞ = o(1) for some h ∈ C(A). Then note that for any θ ∈ C(A) we have

| sup
a∈A
{θ(a) + tnhn(a)} − sup

a∈A
{θ(a) + tnh(a)}| ≤ tn‖hn − h‖∞ = o(tn). (S.188)

Further note that since A is compact, ΨA(θ) is well defined for any θ ∈ C(A). Setting

Γθ : C(A)→ C(A) to be given by Γθ(g) = θ+g, then note that Γθ is trivially continuous.

Therefore, Theorem 17.31 in Aliprantis and Border (2006) and the relation

ΨA(θ + g) = arg max
a∈A

Γθ(g)(a) (S.189)

imply that ΨA(θ + g) is upper hemicontinuous in g. In particular, for ΨA(θ)ε ≡ {a ∈
A : inf ã∈ΨA(θ) dA(a, ã) ≤ ε}, it follows from ‖tnh‖∞ = o(1) that ΨA(θ+ tnh) ⊆ ΨA(θ)δn

for some sequence δn ↓ 0. Thus, since ΨA(θ) ⊆ ΨA(θ)δn we can conclude that

| sup
a∈A
{θ(a) + tnh(a)}− sup

a∈ΨA(θ)
{θ(a) + tnh(a)}|

= sup
a∈ΨA(θ)δn

{θ(a) + tnh(a)} − sup
a∈ΨA(θ)

{θ(a) + tnh(a)}

≤ sup
a0,a1∈A:dA(a0,a1)≤δn

tn|h(a0)− h(a1)|

= o(tn), (S.190)

where the final result follows from h being uniformly continuous by compactness of A.
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Therefore, exploiting (S.188), (S.190) and θ being constant on ΨA(θ) yields

| sup
a∈A
{θ(a) + tnhn(a)} − sup

a∈A
θ(a)− tn sup

a∈ΨA(θ)
h(a)|

≤ | sup
a∈ΨA(θ)

{θ(a) + tnh(a)} − sup
a∈ΨA(θ)

θ(a)− tn sup
a∈ΨA(θ)

h(a)|+ o(tn) = o(tn), (S.191)

which verifies the claim of the Lemma.
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