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General Question

For unknown θ0 ∈ D and known map φ : D→ E, we consider the parameter

φ(θ0)

Given estimator θ̂n for θ0, what are the properties of the “plug-in” estimator

φ(θ̂n)

Under Differentiability
• Asymptotic Distribution by Delta Method.
• Bootstrap Validity for θ̂n ⇒ Bootstrap Validity of φ(θ̂n).

• Together: Framework for conducting inference on φ(θ0) through φ(θ̂n).

Question: Is there a similar conceptual framework for nondifferentiable φ?
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Example 1

Andrews & Soares (2010): Let X = (X(1), X(2))′ ∈ R2, and consider

max{E[X(1)], E[X(2)]}

Here θ0 = E[X] and for any θ = (θ(1), θ(2))′ ∈ R2 set φ : R2 → R to equal

φ(θ) = max{θ(1), θ(2)}

Given a sample {Xi}ni=1 let θ̂n ≡ X̄ ≡ 1
n

∑n
i=1Xi, in which case we have

φ(θ̂n) = max{X̄(1), X̄(2)}
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Example 2

Andrews & Shi (2013): For Y ∈ R and Z ∈ Rdz consider testing the null

E[Y |Z] ≤ 0

For appropriate F ⊆ `∞(Rdz ) (space of bounded functions), equivalent to

sup
f∈F

E[Y f(Z)] ≤ 0

Here θ0 ∈ `∞(F) satisfies θ0(f) = E[Y f(Z)] and φ : `∞(F)→ R is given by

φ(θ) = sup
f∈F

θ(f)

Given a sample {Yi, Zi}ni=1 let θ̂n(f) ≡ 1
n

∑n
i=1 Yif(Zi), in which case

φ(θ̂n) = sup
f∈F

1

n

n∑
i=1

Yif(Zi)
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Other Examples

• Study of Convex Identified Sets
Beresteanu & Molinari (2008), Bontemps et al. (2012).

• Tests of Stochastic Dominance
Barret & Donald (2003), Linton et al. (2010).

• Tests of Likelihood Ratio Ordering
Carolan and Tebbs (2005), Beare and Moon (2013).

Key Observation
In all examples φ is directionally differentiable whenever it is not fully

differentiable
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General Outline

Question: How much structure does directional differentiability provide?

General Reults

• Delta Method: Mild extension to Shapiro (1991) and Dumbgen (1993).
• Bootstrap Validity: If and only if characterization under Gaussianity.
• Bootstrap Alternative: Underlying logic behind existing approaches.

Inference

• Local Size Control: Guaranteed by subadditivity of derivative.
• Theoretical Illustration: Test of whether θ0 belongs to convex set.
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Related Literature

Partial Identification

Manski (2003), Imbens & Manski (2004), Pakes et al. (2006),
Chernozhukov et al. (2007), Romano & Shaikh (2008, 2010), Bugni (2010),
Canay (2010), Chernozhukov et al. (2013).

Bootstrap Validity
Hall (1992), Dumbgen (1993), Andrews (2000), Horowitz (2001).

Directional Differentiability

Hirano & Porter (2012), Song (2012), Kaido (2013), Kaido & Santos (2014).
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New Applications

• Stochastic Monotonicity: Seo (2015).

• Density Ratio Ordering: Beare and Shi (2015).

• Regression Kink Design: Hansen (2015).

• Transaction Cost Estimation: Jha and Wolak (2015).

• Partially Identified Welfare Changes: Lee and Bhattacharya (2015).

• Derivative Estimation: Hong and Li (2015).
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1 The Delta Method

2 The Bootstrap

3 Bootstrap Alternative

4 Inference Implications

5 Convex Set Membership
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Directional Differentiability

Let φ : D→ E with D and E Banach Spaces with norms ‖ · ‖D and ‖ · ‖E.

Then φ is directionally differentiable

in the Hadamard sense tangential to D0

lim
n→∞

‖φ(θ + tnh

n

)− φ(θ)

tn
− φ′θ(h)‖E = 0

for every sequence tn ↓ 0

and hn → h with h ∈ D0 ⊆ D.

Comments

• φ′θ : D0 → D is necessarily continuous and homogenous of degree one.
• But φ′θ does not need to be linear as required in full differentiability.
• In fact, φ is Hadamard differentiable at θ if and only if φ′θ is linear.
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Illustration

φ(θ) = |θ|

Fully Differentiable at θ0 6= 0

• For θ0 > 0: t−1
n {φ(θ0 + tnh)− φ(θ0)} = h⇒ φ′θ0(h) = h

• For θ0 < 0: t−1
n {φ(θ0 + tnh)− φ(θ0)} = −h⇒ φ′θ0(h) = −h

Directionally Differentiable at θ0 = 0

• For h > 0: t−1
n {φ(θ0 + tnh)− φ(θ0)} = t−1

n {0 + tnh− 0} ⇒ φ′θ0(h) = h

• For h < 0: t−1
n {φ(θ0 + tnh)− φ(θ0)} = t−1

n {0− h− 0} ⇒ φ′θ0(h) = −h

Putting them together: At θ0 = 0, φ′θ0(h) = |h| for all h ∈ R
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Example 1 (cont)

Recall θ = (θ(1), θ(2))′ ∈ R2, and φ(θ) = max{θ(1), θ(2)}. Then we have:

φ′θ(h) =

{
h(j∗) if θ(1) 6= θ(2)

max{h(1), h(2)} if θ(1) = θ(2)
.

for every h = (h(1), h(2))′ ∈ R2 and where j∗ = arg maxj∈{1,2} θ
(j).

Comments

• φ′θ is always continuous and homogeneous of degree one.
• φ is fully differentiable except when θ is such that θ(1) = θ(2).
• φ′θ is linear except when θ is such that θ(1) = θ(2).
• Here D = R2, E = R and D0 = R2.
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Example 2 (cont)

Recall θ ∈ `∞(F), (θ(f) = E[Y f(Z)]) and φ(θ) = supf∈F θ(f). Then:

φ′θ(h) = sup
f∈ΨF (θ)

h(f)

for every continuous h : F → R and where ΨF (θ) ≡ arg maxf∈F θ(f).

Comments

• φ is fully differentiable except when ΨF (θ) is not a singleton.
• φ′θ is linear except when ΨF (θ) is not a singleton.
• Here D = `∞(F), E = R, and D0 = C(F).

⇒ Concept of Tangential Directional Hadamard differentiability needed.
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Delta Method

Assumptions (D)

(i) θ̂n : {Xi}ni=1 → D and for some rn ↑ ∞, rn{θ̂n − θ0}
L→ G0.

(ii) φ : D→ E is Hadamard directionally differentiable at θ0 tangential to D0.
(iii) G0 is tight and P (G0 ∈ D0) = 1.

Discussion
• D(i) The underlying data {Xi}ni=1 need not be i.i.d.
• D(ii) As in Example 2, it can be useful to allow D0 6= D.
• D(iii) Limiting law must concentrate on tangential set D0.

Note: Requirements completely analogous to standard Delta method.
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Delta Method

Theorem (Shapiro, Dumbgen) If Assumption (D) holds, then it follows that

rn{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0)

Addendum If in addition φ′θ0 can be continuously extended to D, then

rn{φ(θ̂n)− φ(θ0)} = φ′θ0(rn{θ̂n − θ0}) + op(1)

Comments

• Directional differentiability of φ only assumed at θ0.
• Conditions of addendum required for φ′θ0(rn{θ̂n − θ0}) to make sense.
• Automatically satisfied if D0 is closed under ‖ · ‖D.
• Can be used to recover asymptotic distribution in all examples.
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Proof Intuition

Step 1: Let tn = 1/rn which satisfies tn ↓ 0 since rn ↑ ∞. Then we have

rn{φ(θ̂n)− φ(θ0)} =
1

tn
{φ(θ0 + tn × rn{θ̂n − θ0})− φ(θ0)}

≈ φ′θ0(rn{θ̂n − θ0})

Step 2: Since φ′θ0 : D→ E is continuous, use continuous mapping theorem

φ′θ0(rn{θ̂n − θ0})
L→ φ′θ0(G0)

Key Observation
Linearity of φ′θ0 is irrelevant in the original proof of the Delta method.
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Bootstrap Setup

Problem: How can we estimate the limiting distribution for inference?

What we know
• If bootstrap “works” for θ̂n and φ is differentiable⇒ it “works” for φ(θ̂n).
• Examples where it fails when φ is not differentiable.
• Takeaway: Delta method generalizes, but not bootstrap consistency.

Questions
• Does the bootstrap always fail when φ is not differentiable?
• When is bootstrap consistency for θ̂n inherited by φ(θ̂n)?

Next: Formalize the general setup in order to answer these questions.
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Bootstrap Setup

For Banach space A with norm ‖ · ‖A, denote bounded Lipschitz functions

BL1(A) ≡ {f : A→ R : sup
a∈A
|f(a)| ≤ 1 and |f(a1)− f(a2)| ≤ ‖a1 − a2‖A}

For laws L1 and L2 we measure distance by the bounded Lipschitz metric

dBL(L1, L2) ≡ sup
f∈BL1(A)

|
∫
f(a)dL1(a)−

∫
f(a)dL2(a)|

Comments
• Largest discrepancy in expectations assigned to functions in BL1(A).
• Metrizes weak convergence. Key in showing validity of critical values.
• Bootstrap consistency⇔ distance measured by dBL is op(1).
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Bootstrap Setup

Informally: Assume the “bootstrapped” version θ̂∗n “works” for original θ̂n.

Assumptions (B)
(i) θ̂∗n : {Xi,Wi}ni=1 → D with {Wi}ni=1 independent of {Xi}ni=1.

(ii) supf∈BL1(D) |E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1]− E[f(G0)]| = op(1).

Discussion
• B(i) Includes nonparametric, Bayesian, block, and weighted bootstrap.
• B(ii) Law of rn{θ̂∗n − θ̂n} conditional on data is consistent for G0.
• Also need mild (asymptotic) measurability requirements.
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Necessary and Sufficient

Theorem Suppose G0 is a Gaussian measure and Assumptions (D), (B),
and regularity conditions hold. Then, φ : Dφ → E is (fully) Hadamard
differentiable at θ0 ∈ Dφ tangential to the support of G0 if and only if

sup
f∈BL1(E)

|E[f(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1)

Key Implication: If the bootstrap works for φ(θ̂n) and G0 is Gaussian

⇒ φ′θ0 must be linear⇒ φ′θ0(G0) must be Gaussian

Corollary Suppose G0 is Gaussian and previous assumptions hold. Then:

If the limiting distribution of φ(θ̂n) is not Gaussian, then the bootstrap fails
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on {Xi}ni=1:

rn{φ(θ̂∗n)− φ(θ̂n)}

= rn{φ(θ̂∗n)− φ(θ0)} − rn{φ(θ̂n)− φ(θ0)}

= φ′θ0(rn{θ̂∗n − θ0})− φ′θ0(rn{θ̂n − θ0}) + op(1)

= φ′θ0(rn{θ̂∗n − θ̂n}+ rn{θ̂n − θ0})− φ′θ0(rn{θ̂n − θ0}) + op(1)

Step 2: Study the last expression conditional on {Xi}ni=1 to conclude that

φ′θ0(rn{θ̂∗n − θ̂n}︸ ︷︷ ︸+ rn{θ̂n − θ0}︸ ︷︷ ︸)− φ′θ0(rn{θ̂n − θ0}︸ ︷︷ ︸)
L→ G0 → h → h

⇒ Bootstrap works iff φ′θ0(G0 +h)−φ′θ0(h) is equal in distribution to φ′θ0(G0).
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Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of G0)

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose G0 ∼ N(0, 1), then for any r > 0 and t ∈ R

E[exp{it(φ′θ0(G0 + rh)− φ′θ0(rh))}] = C(t)

⇒ E[exp{itφ′θ0(G0 + rh)}] = exp{itrφ′θ0(h)}C(t)

⇒ 1√
2π

∫
exp{itφ′θ0(u)} exp{−1

2
(u− rh)2}du = exp{itrφ′θ0(h)}C(t)

⇒ Differentiate both sides w.r.t r to conclude φ′θ0(h) is linear in h.

Step 4: Generalize scalar case by arguing as above through dual space E∗.

Santos. November 9, 2016. UCSD



Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of G0)

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose G0 ∼ N(0, 1), then for any r > 0 and t ∈ R

E[exp{it(φ′θ0(G0 + rh)− φ′θ0(rh))}] = C(t)

⇒ E[exp{itφ′θ0(G0 + rh)}] = exp{itrφ′θ0(h)}C(t)

⇒ 1√
2π

∫
exp{itφ′θ0(u)} exp{−1

2
(u− rh)2}du = exp{itrφ′θ0(h)}C(t)

⇒ Differentiate both sides w.r.t r to conclude φ′θ0(h) is linear in h.

Step 4: Generalize scalar case by arguing as above through dual space E∗.

Santos. November 9, 2016. UCSD



Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of G0)

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose G0 ∼ N(0, 1), then for any r > 0 and t ∈ R

E[exp{it(φ′θ0(G0 + rh)− φ′θ0(rh))}] = C(t)

⇒ E[exp{itφ′θ0(G0 + rh)}] = exp{itrφ′θ0(h)}C(t)

⇒ 1√
2π

∫
exp{itφ′θ0(u)} exp{−1

2
(u− rh)2}du = exp{itrφ′θ0(h)}C(t)

⇒ Differentiate both sides w.r.t r to conclude φ′θ0(h) is linear in h.

Step 4: Generalize scalar case by arguing as above through dual space E∗.

Santos. November 9, 2016. UCSD



Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of G0)

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose G0 ∼ N(0, 1), then for any r > 0 and t ∈ R

E[exp{it(φ′θ0(G0 + rh)− φ′θ0(rh))}] = C(t)

⇒ E[exp{itφ′θ0(G0 + rh)}] = exp{itrφ′θ0(h)}C(t)

⇒ 1√
2π

∫
exp{itφ′θ0(u)} exp{−1

2
(u− rh)2}du = exp{itrφ′θ0(h)}C(t)

⇒ Differentiate both sides w.r.t r to conclude φ′θ0(h) is linear in h.

Step 4: Generalize scalar case by arguing as above through dual space E∗.

Santos. November 9, 2016. UCSD



Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of G0)

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose G0 ∼ N(0, 1), then for any r > 0 and t ∈ R

E[exp{it(φ′θ0(G0 + rh)− φ′θ0(rh))}] = C(t)

⇒ E[exp{itφ′θ0(G0 + rh)}] = exp{itrφ′θ0(h)}C(t)

⇒ 1√
2π

∫
exp{itφ′θ0(u)} exp{−1

2
(u− rh)2}du = exp{itrφ′θ0(h)}C(t)

⇒ Differentiate both sides w.r.t r to conclude φ′θ0(h) is linear in h.

Step 4: Generalize scalar case by arguing as above through dual space E∗.

Santos. November 9, 2016. UCSD



Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of G0)

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose G0 ∼ N(0, 1), then for any r > 0 and t ∈ R

E[exp{it(φ′θ0(G0 + rh)− φ′θ0(rh))}] = C(t)

⇒ E[exp{itφ′θ0(G0 + rh)}] = exp{itrφ′θ0(h)}C(t)

⇒ 1√
2π

∫
exp{itφ′θ0(u)} exp{−1

2
(u− rh)2}du = exp{itrφ′θ0(h)}C(t)

⇒ Differentiate both sides w.r.t r to conclude φ′θ0(h) is linear in h.

Step 4: Generalize scalar case by arguing as above through dual space E∗.

Santos. November 9, 2016. UCSD



1 The Delta Method

2 The Bootstrap

3 Bootstrap Alternative

4 Inference Implications

5 Convex Set Membership

Santos. November 9, 2016. UCSD



Bootstrap Alternative

rn{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0)

Intuition
• We need to estimate φ′θ0 and the law of G0.

• By assumption rn{θ̂∗n − θ̂n} provides an estimate of the law of G0.

• Bootstrap fails for φ(θ̂n) because it does not estimate φ′θ0 appropriately.

Fix: For an estimator φ̂′n of φ′θ0 , use the law conditional on {Xi}ni=1 of

φ̂′n(rn{θ̂∗n − θ̂n})
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Bootstrap Alternative

Assumption (E) For every compact K ⊆ D0 and ε > 0, φ̂′n : D→ E satisfies

lim
δ↓0

lim sup
n→∞

P
(

sup
h∈Kδ

‖φ̂′n(h)− φ′θ0(h)‖E > ε
)

= 0

Discussion
• δ-enlargement needed because rn{θ̂∗n − θ̂n} may not belong to D0.

• δ can sometimes be dropped – i.e. suph∈K ‖φ̂′n(h)− φ′θ0(h)‖E = op(1).

• If φ̂′n is “smooth”, then φ̂′n(h) = φ′θ0(h) + op(1) for all h ∈ D0 suffices.

Takeaway: In all examples additional structure makes (E) easy to verify.
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Bootstrap Alternative

Theorem If Assumptions (B), (D), (E), and regularity conditions hold, then

sup
f∈BL1(E)

|E[f(φ̂′n(rn{θ̂∗n − θ̂n}))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1)

Comments

• The law of φ̂′n(rn{θ̂∗n − θ̂n}) conditional {Xi}ni=1 consistent for φ′θ0(G0).
• Implies consistency of critical values under standard conditions.
• The fact that φ′θ0 is a directional derivative is never exploited ...

⇒ More generally, a method for estimating distributions of the form

τ(G0)

where G0 is tight and τ : D→ E is an unknown continuous map.
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Example 1 (cont)

Recall θ0 = (E[X(1)], E[X(2)])′ and for j∗ = arg maxj∈{1,2}E[X(j)] we had:

φ′θ0(h) =

{
h(j∗) if E[X(1)] 6= E[X(2)]

max{h(1), h(2)} if E[X(1)] = E[X(2)]
.

Let ĵ∗ = arg maxj∈{1,2} X̄
(j) and letting κn ↑ ∞ satisfy κn/

√
n ↓ 0 define

φ̂′n(h) =

{
h(ĵ∗) if |X̄(1) − X̄(2)| > κn

max{h(1), h(2)} if |X̄(1) − X̄(2)| ≤ κn
.

Comments
• φ̂′n trivially satisfies Assumption (E).

• φ̂′n(
√
n{X̄∗ − X̄}) reduces to generalized moment selection.
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Example 2 (cont)

Recall θ0(f) = E[Y f(Z)] and for ΨF (θ) ≡ arg maxf∈F θ(f) we had that:

φ′θ(h) = sup
f∈ΨF (θ)

h(f)

Suppose Ψ̂F (θ0) satisfies dH(ΨF (θ0), Ψ̂F (θ0), ‖ · ‖L2(Z)) = op(1), and let

φ̂′n(h) = sup
f∈Ψ̂F (θ0)

h(f)

Comments

• Easy to show φ̂′n satisfies Assumption (E).

• φ̂′n(
√
n{θ̂∗n − θ̂n}) becomes special case of Andrews & Shi (2013).

• Also: Linton et al. (2010), Kaido (2013), Beare & Shi (2013).
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Testing Implications

H0 : φ(θ0) ≤ 0 H1 : φ(θ0) > 0

Proposed Test

• Employ
√
nφ(θ̂n) as a test statistic.

• Unfeasible: c1−α the 1− α quantile of φ′θ0(G0) (pointwise in P ).

• Use ĉ1−α: the 1− α quantile of φ̂′n(
√
n{θ̂∗n − θ̂n}) conditional {Xi}ni=1.

Problem: So far analysis is pointwise in underlying distribution of {Xi}ni=1.

Goal: Examine when pointwise in P justified test can control size locally.
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Local Setup

Assumption (L)
(i) {Xi}ni=1 is i.i.d. and Xi ∼ P ∈ P.
(ii) θ0 ≡ θ(P ) for some known function θ : P→ D.

(iii) θ̂n is a regular estimator for θ(P ).
(iv) Pn,λ ∈ P and

⊗n
i=1 Pn,λ is contiguous to

⊗n
i=1 P .

(v) For θ′ : Λ→ D linear, ‖rn{θ(Pn,λ)− θ(P )} − θ′(λ)‖D = o(1).

Discussion
• L(i) Imposed for notational simplicity.
• L(iii) Allows us to focus on irregularity generated by φ.
• L(v) Closely related to L(iii) - van der Vaart (1991).
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Example 1 Intuition

H0 : max{E[X(1)], E[X(2)]} ≤ 0 H1 : max{E[X(1)], E[X(2)]} > 0

But local to P with θ(1)(P ) = θ(2)(P ) = 0, set θ(Pn,λ) = θ(P ) + λ/
√
n to get

√
nφ(θ̂n)

Ln→ max{G(1)
0 + λ(1),G(2)

0 + λ(2)}

≤ max{G(1)
0 ,G(2)

0 } (whenever λ ≤ 0)

Key Properties
• Local paths in null first order stochastically dominated by pointwise limit.
• θ(P ) is regular at P ⇒ no need to worry about it.
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Subadditivity

max{G(1)
0 + λ(1),G(2)

0 + λ(2)}︸ ︷︷ ︸ ≤ max{G(1)
0 ,G(2)

0 }︸ ︷︷ ︸+ max{λ(1), λ(2)}︸ ︷︷ ︸

φ′θ0(G0 + λ) ≤ φ′θ0(G0) + φ′θ0(λ)

≤ φ′θ0(G0)

Comments
• Key Condition: φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) (subadditivity).
• Andrews & Soares (2010), Andrews & Shi (2013), Linton et. al (2010).
• Equivalent to φ′θ0 being convex due to homogeneity of degree one.
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Size Control

Theorem If Assumptions (D), (B), (E), (L) hold, and Pn ≡
⊗n

i=1 Pn,λ, then

lim
n→∞

Pn(
√
nφ(θ̂n) > ĉ1−α) = P (φ′θ0(G0 + θ′(λ)) > c1−α)

If in addition φ′θ0 : D0 → R is subadditive and φ(θ(Pn,λ)) ≤ 0 for all n, then

lim sup
n→∞

Pn(
√
nφ(θ̂n) > ĉ1−α) ≤ α

Comments

• Key condition: subadditivity (of φ′θ0 ) and regularity (of θ̂n)
• However, size control result is only local to P ∈ P.
• But reassuring if subadditivity and regularity satisfied at all P ∈ P.
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Hypothesis

Let H be Hilbert space with norm ‖ · ‖H. For Λ ⊆ H closed and convex, test

H0 : θ0 ∈ Λ H1 : θ0 /∈ Λ

Define the projection operator ΠΛ : H→ Λ which for each θ ∈ H satisfies

‖θ −ΠΛθ‖H = inf
h∈Λ
‖θ − h‖H

⇒ Express original hypothesis in terms of the distance between θ0 and Λ

H0 : ‖θ0 −ΠΛθ0‖H = 0 H1 : ‖θ0 −ΠΛθ0‖H > 0
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Test Statistic

As a test statistic employ the (scaled) distance between θ̂n and the set Λ

rn‖θ̂n −ΠΛθ̂n‖H

Map To Our Framework
• Let φ : H→ R be given by φ(θ) = ‖θ −ΠΛθ‖H.
• Hypotheses are then H0 : φ(θ0) = 0 and H1 : φ(θ0) > 0.

• Test statistic is rnφ(θ̂n).

Key Steps
• Directional Differentiability of φ – Zaranotello (1971)
• Geometry enables easy construction of φ̂′n

Takeaway: Very different problems can easily be handled in a unified way.
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Examples

Suppose X ∈ Rd and consider the moment inequalities testing problem

H0 : E[X] ≤ 0 H1 : E[X] � 0

Here H = Rd, Λ is the negative orthant (Λ ≡ {h ∈ Rd : h ≤ 0}), and

φ(θ) ≡ ‖ΠΛθ − θ‖H =
{ d∑
i=1

(E[X(i)])2
+

} 1
2

Comments

• Trivial extension to include weighting in projection.
• Applies to other θ and Λ– Wolak (1988), Kitamura & Stoye (2013).
• Also: First order stochastic dominance, conditional moment inequalites.
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Examples

Let (Y,D,X) ∈ R×R×Rdz and consider the quantile regression model

(θ0(τ), β(τ)) ≡ arg min
θ∈R,β∈Rdz

E[ρτ (Y −Dθ − Z ′β)]

Standard result to get convergence of
√
n{θ̂n − θ0} for any ε > 0 in space

H ≡ {θ : [ε, 1− ε]→ R : 〈θ, θ〉H <∞} 〈θ1, θ2〉H ≡
∫ 1−ε

ε

θ1(τ)θ2(τ)dτ

Comments
• Test for monotonicity of quantile treatment effects, correct specification.
• Other shape restrictions: concavity, convexity, homogeneity ...
• Similar: pricing kernel puzzle finds lack of predicted monotonicity.
• Also Related: Arellano et. al (2012), Escanciano & Zhu (2013).
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Directional Differentiability

Definition For any θ ∈ H, the tangent cone of Λ at θ is given by:

Tθ ≡
⋃
α≥0

α{Λ−ΠΛθ}

Λ

θ
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Directional Differentiability

Zaranotello (1971) The directional derivative of ΠΛ at any θ ∈ Λ equals ΠTθ

ΠΛθ1 −ΠΛθ0 ≈ ΠTθ0
(θ1 − θ0)

Λ

θ0

θ1

ΠΛθ1

θ1 − θ0

Tθ0

ΠΛθ1 − θ0 = ΠTθ0
(θ1 − θ0)
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Asymptotic Distribution

Proposition Let Λ ⊆ H be convex, and rn{θ̂n − θ0}
L→ G0. If θ0 ∈ Λ, then

rn‖θ̂n −ΠΛθ̂n‖H︸ ︷︷ ︸ L→ ‖G0 −ΠTθ0
G0‖H︸ ︷︷ ︸

rn{φ(θ̂n)− φ(θ0)} φ′θ0(G0)

Comments

• Quantiles of ‖G0‖H always provide valid (conservative?) critical values.
• If Λ is a cone, then quantiles of ‖G0 −ΠΛG0‖H also valid.
• Possible to study projection ΠΛθ0, and allow nonconvex Λ and θ0 /∈ Λ.

Next: For inference, still need to construct suitable estimator φ̂′n for φ′θ0 .
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Bootstrap Alternative

φ̂′n(h) ≡ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

‖h−ΠTθh‖H

Intuition: Use the approximation by local “least favorable” tangent cone.

Proposition Let Λ be convex, rn{θ̂n − θ0}
L→ G0, φ′θ0(h) ≡ ‖h−ΠTθ0

h‖H.

(A) If εn ↓ 0 an εnrn ↑ ∞, then φ̂′n satisfies Assumption (E).
(B) φ′θ0 : H→ R satisfies φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) (subadditive)

Comments
• Part (A) allows us to employ φ̂′n(rn{θ̂∗n − θ̂n}) if bootstrap works for θ̂n.

• Part (B) implies local size control whenever θ̂n is regular at P .
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• Part (B) implies local size control whenever θ̂n is regular at P .
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Simulation Evidence

Y =
∆√
n
D × U + Z ′β + U

Where
• D ∈ {0, 1} with P (D = 1) = 1

2 .

• Z = (1, Z(1), Z(2))′ with (Z(1), Z(2)) ∼ N(0, I2).
• U ∼ U [0, 1] is unobserved, and β = (0, 1√

2
, 1√

2
)′.

• D, Z, and U are all mutually independent.

It is then immediate that for θ0(τ) = τ ∆√
n

and β(τ) ≡ (τ, 1√
2
, 1√

2
)′ we have

P (Y ≤ Dθ0(τ) + Z ′β(τ)|D,Z) = τ
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Simulation Evidence

Goal Test whether θ0(τ) (≈ QTE) is weakly increasing in τ .

Steps Using five thousand replications

• Compute quantile regression coefficient θ̂n on grid {0.2, 0.225, . . . , 0.8}.
• Obtain ΠΛθ̂n – projection onto monotone functions Λ.
• Compute two hundred bootstrap estimators of θ̂∗n on same grid.

• For each θ̂∗n obtain φ̂′n(rn{θ̂∗n − θ̂n}) (needs ΠΛθ̂n and εn).

Evaluate

• Sensitivity to choice of εn = Cnκ with C ∈ {0.01, 1} and κ ∈ { 1
3 ,

1
4}.

• Accuracy of local approximation for different ∆ (θ0(τ) = ∆ τ√
n

).
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Table: Empirical Size

n = 200
Bandwidth α = 0.1 α = 0.05 α = 0.01
C κ ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2

1 1/4 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000
1 1/3 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000

0.01 1/4 0.082 0.053 0.035 0.035 0.023 0.013 0.007 0.002 0.001
0.01 1/3 0.087 0.059 0.042 0.038 0.025 0.015 0.007 0.002 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

n = 500
Bandwidth α = 0.1 α = 0.05 α = 0.01
C κ ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2

1 1/4 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000
1 1/3 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000

0.01 1/4 0.096 0.058 0.038 0.047 0.025 0.015 0.009 0.005 0.001
0.01 1/3 0.103 0.065 0.045 0.049 0.030 0.017 0.009 0.005 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001
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Table: Local Power of 0.05 Level Test

Bandwidth n = 200
C κ ∆ = −1 ∆ = −2 ∆ = −3 ∆ = −4 ∆ = −5 ∆ = −6 ∆ = −7 ∆ = −8

1 1/4 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000
1 1/3 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000

0.01 1/4 0.078 0.172 0.330 0.558 0.783 0.934 0.989 1.000
0.01 1/3 0.081 0.174 0.331 0.559 0.783 0.934 0.989 1.000
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

Bandwidth n = 500
C κ ∆ = −1 ∆ = −2 ∆ = −3 ∆ = −4 ∆ = −5 ∆ = −6 ∆ = −7 ∆ = −8

1 1/4 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997
1 1/3 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997

0.01 1/4 0.094 0.201 0.370 0.583 0.791 0.925 0.981 0.997
0.01 1/3 0.098 0.204 0.371 0.585 0.791 0.925 0.981 0.997
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992
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Conclusion

Delta method
• Preserved under directional derivative (Shapiro 1991, Dumbgen 1993).
• Small extension to show it holds in probability.

Bootstrap
• Differentiability necessary and sufficient when G0 is Gaussian.
• Argued popular approaches implicitly estimate φ′θ0 .

Inference
• Local size control guaranteed by subadditivity and regularity.
• Application to testing if θ0 belongs to convex set.

⇒ Problems can be analyzed by studying G0 and φ′θ0 (as in Delta method).
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