Inference on Directionally Differentiable Functions

Zheng Fang
Kansas State
Andres Santos
UC San Diego

November 9, 2016

General Question

For unknown $\theta_{0} \in \mathbb{D}$ and known map $\phi: \mathbb{D} \rightarrow \mathbb{E}$, we consider the parameter

$$
\phi\left(\theta_{0}\right)
$$

Given estimator $\hat{\theta}_{n}$ for θ_{0}, what are the properties of the "plug-in" estimator

$$
\phi\left(\hat{\theta}_{n}\right)
$$

Under Differentiability

- Asymptotic Distribution by Delta Method.
- Bootstrap Validity for $\hat{\theta}_{n} \Rightarrow$ Bootstrap Validity of $\phi\left(\hat{\theta}_{n}\right)$.
- Together: Framework for conducting inference on $\phi\left(\theta_{0}\right)$ through $\phi\left(\hat{\theta}_{n}\right)$.

Question: Is there a similar conceptual framework for nondifferentiable ϕ ?

Example 1

Andrews \& Soares (2010): Let $X=\left(X^{(1)}, X^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$, and consider

$$
\max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\}
$$

Example 1

Andrews \& Soares (2010): Let $X=\left(X^{(1)}, X^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$, and consider

$$
\max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\}
$$

Here $\theta_{0}=E[X]$ and for any $\theta=\left(\theta^{(1)}, \theta^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$ set $\phi: \mathbf{R}^{2} \rightarrow \mathbf{R}$ to equal

$$
\phi(\theta)=\max \left\{\theta^{(1)}, \theta^{(2)}\right\}
$$

Example 1

Andrews \& Soares (2010): Let $X=\left(X^{(1)}, X^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$, and consider

$$
\max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\}
$$

Here $\theta_{0}=E[X]$ and for any $\theta=\left(\theta^{(1)}, \theta^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$ set $\phi: \mathbf{R}^{2} \rightarrow \mathbf{R}$ to equal

$$
\phi(\theta)=\max \left\{\theta^{(1)}, \theta^{(2)}\right\}
$$

Given a sample $\left\{X_{i}\right\}_{i=1}^{n}$ let $\hat{\theta}_{n} \equiv \bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i}$, in which case we have

$$
\phi\left(\hat{\theta}_{n}\right)=\max \left\{\bar{X}^{(1)}, \bar{X}^{(2)}\right\}
$$

Example 2

Andrews \& Shi (2013): For $Y \in \mathbf{R}$ and $Z \in \mathbf{R}^{d_{z}}$ consider testing the null

$$
E[Y \mid Z] \leq 0
$$

For appropriate $\mathcal{F} \subseteq \ell^{\infty}\left(\mathbf{R}^{d_{z}}\right)$ (space of bounded functions), equivalent to

$$
\sup _{f \in \mathcal{F}} E[Y f(Z)] \leq 0
$$

Example 2

Andrews \& Shi (2013): For $Y \in \mathbf{R}$ and $Z \in \mathbf{R}^{d_{z}}$ consider testing the null

$$
E[Y \mid Z] \leq 0
$$

For appropriate $\mathcal{F} \subseteq \ell^{\infty}\left(\mathbf{R}^{d_{z}}\right)$ (space of bounded functions), equivalent to

$$
\sup _{f \in \mathcal{F}} E[Y f(Z)] \leq 0
$$

Here $\theta_{0} \in \ell^{\infty}(\mathcal{F})$ satisfies $\theta_{0}(f)=E[Y f(Z)]$ and $\phi: \ell^{\infty}(\mathcal{F}) \rightarrow \mathbf{R}$ is given by

$$
\phi(\theta)=\sup _{f \in \mathcal{F}} \theta(f)
$$

Given a sample $\left\{Y_{i}, Z_{i}\right\}_{i=1}^{n}$ let $\hat{\theta}_{n}(f) \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i} f\left(Z_{i}\right)$, in which case

$$
\phi\left(\hat{\theta}_{n}\right)=\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} Y_{i} f\left(Z_{i}\right)
$$

Other Examples

- Study of Convex Identified Sets

Beresteanu \& Molinari (2008), Bontemps et al. (2012).

- Tests of Stochastic Dominance

Barret \& Donald (2003), Linton et al. (2010).

- Tests of Likelihood Ratio Ordering

Carolan and Tebbs (2005), Beare and Moon (2013).

Other Examples

- Study of Convex Identified Sets

Beresteanu \& Molinari (2008), Bontemps et al. (2012).

- Tests of Stochastic Dominance

Barret \& Donald (2003), Linton et al. (2010).

- Tests of Likelihood Ratio Ordering

Carolan and Tebbs (2005), Beare and Moon (2013).

Key Observation

In all examples ϕ is directionally differentiable whenever it is not fully differentiable

General Outline

Question: How much structure does directional differentiability provide?

General Outline

Question: How much structure does directional differentiability provide?

General Reults

- Delta Method: Mild extension to Shapiro (1991) and Dumbgen (1993).
- Bootstrap Validity: If and only if characterization under Gaussianity.
- Bootstrap Alternative: Underlying logic behind existing approaches.

General Outline

Question: How much structure does directional differentiability provide?

General Reults

- Delta Method: Mild extension to Shapiro (1991) and Dumbgen (1993).
- Bootstrap Validity: If and only if characterization under Gaussianity.
- Bootstrap Alternative: Underlying logic behind existing approaches.

Inference

- Local Size Control: Guaranteed by subadditivity of derivative.
- Theoretical Illustration: Test of whether θ_{0} belongs to convex set.

Related Literature

Partial Identification

Manski (2003), Imbens \& Manski (2004), Pakes et al. (2006),
Chernozhukov et al. (2007), Romano \& Shaikh (2008, 2010), Bugni (2010), Canay (2010), Chernozhukov et al. (2013).

Bootstrap Validity

Hall (1992), Dumbgen (1993), Andrews (2000), Horowitz (2001).

Directional Differentiability

Hirano \& Porter (2012), Song (2012), Kaido (2013), Kaido \& Santos (2014).

New Applications

- Stochastic Monotonicity: Seo (2015).
- Density Ratio Ordering: Beare and Shi (2015).
- Regression Kink Design: Hansen (2015).
- Transaction Cost Estimation: Jha and Wolak (2015).
- Partially Identified Welfare Changes: Lee and Bhattacharya (2015).
- Derivative Estimation: Hong and Li (2015).

(1) The Delta Method

(2) The Bootstrap

(3) Bootstrap Alternative

4) Inference Implications

(5) Convex Set Membership

Directional Differentiability

Let $\phi: \mathbb{D} \rightarrow \mathbb{E}$ with \mathbb{D} and \mathbb{E} Banach Spaces with norms $\|\cdot\|_{\mathbb{D}}$ and $\|\cdot\|_{\mathbb{E}}$.
Then ϕ is directionally differentiable

$$
\lim _{n \rightarrow \infty}\left\|\frac{\phi\left(\theta+t_{n} h\right)-\phi(\theta)}{t_{n}}-\phi_{\theta}^{\prime}(h)\right\|_{\mathbb{E}}=0
$$

for every sequence $t_{n} \downarrow 0$

Directional Differentiability

Let $\phi: \mathbb{D} \rightarrow \mathbb{E}$ with \mathbb{D} and \mathbb{E} Banach Spaces with norms $\|\cdot\|_{\mathbb{D}}$ and $\|\cdot\|_{\mathbb{E}}$.
Then ϕ is directionally differentiable in the Hadamard sense

$$
\lim _{n \rightarrow \infty}\left\|\frac{\phi\left(\theta+t_{n} h_{n}\right)-\phi(\theta)}{t_{n}}-\phi_{\theta}^{\prime}(h)\right\|_{\mathbb{E}}=0
$$

for every sequence $t_{n} \downarrow 0$ and $h_{n} \rightarrow h$

Directional Differentiability

Let $\phi: \mathbb{D} \rightarrow \mathbb{E}$ with \mathbb{D} and \mathbb{E} Banach Spaces with norms $\|\cdot\|_{\mathbb{D}}$ and $\|\cdot\|_{\mathbb{E}}$.
Then ϕ is directionally differentiable in the Hadamard sense tangential to \mathbb{D}_{0}

$$
\lim _{n \rightarrow \infty}\left\|\frac{\phi\left(\theta+t_{n} h_{n}\right)-\phi(\theta)}{t_{n}}-\phi_{\theta}^{\prime}(h)\right\|_{\mathbb{E}}=0
$$

for every sequence $t_{n} \downarrow 0$ and $h_{n} \rightarrow h$ with $h \in \mathbb{D}_{0} \subseteq \mathbb{D}$.

Directional Differentiability

Let $\phi: \mathbb{D} \rightarrow \mathbb{E}$ with \mathbb{D} and \mathbb{E} Banach Spaces with norms $\|\cdot\|_{\mathbb{D}}$ and $\|\cdot\|_{\mathbb{E}}$.
Then ϕ is directionally differentiable in the Hadamard sense tangential to \mathbb{D}_{0}

$$
\lim _{n \rightarrow \infty}\left\|\frac{\phi\left(\theta+t_{n} h_{n}\right)-\phi(\theta)}{t_{n}}-\phi_{\theta}^{\prime}(h)\right\|_{\mathbb{E}}=0
$$

for every sequence $t_{n} \downarrow 0$ and $h_{n} \rightarrow h$ with $h \in \mathbb{D}_{0} \subseteq \mathbb{D}$.

Comments

- $\phi_{\theta}^{\prime}: \mathbb{D}_{0} \rightarrow \mathbb{D}$ is necessarily continuous and homogenous of degree one.
- But ϕ_{θ}^{\prime} does not need to be linear as required in full differentiability.
- In fact, ϕ is Hadamard differentiable at θ if and only if ϕ_{θ}^{\prime} is linear.

Illustration

$$
\phi(\theta)=|\theta|
$$

Fully Differentiable at $\theta_{0} \neq 0$

- For $\theta_{0}>0: t_{n}^{-1}\left\{\phi\left(\theta_{0}+t_{n} h\right)-\phi\left(\theta_{0}\right)\right\}=h \Rightarrow \phi_{\theta_{0}}^{\prime}(h)=h$
- For $\theta_{0}<0: t_{n}^{-1}\left\{\phi\left(\theta_{0}+t_{n} h\right)-\phi\left(\theta_{0}\right)\right\}=-h \Rightarrow \phi_{\theta_{0}}^{\prime}(h)=-h$

Illustration

$$
\phi(\theta)=|\theta|
$$

Fully Differentiable at $\theta_{0} \neq 0$

- For $\theta_{0}>0: t_{n}^{-1}\left\{\phi\left(\theta_{0}+t_{n} h\right)-\phi\left(\theta_{0}\right)\right\}=h \Rightarrow \phi_{\theta_{0}}^{\prime}(h)=h$
- For $\theta_{0}<0: t_{n}^{-1}\left\{\phi\left(\theta_{0}+t_{n} h\right)-\phi\left(\theta_{0}\right)\right\}=-h \Rightarrow \phi_{\theta_{0}}^{\prime}(h)=-h$

Directionally Differentiable at $\theta_{0}=0$

- For $h>0$: $t_{n}^{-1}\left\{\phi\left(\theta_{0}+t_{n} h\right)-\phi\left(\theta_{0}\right)\right\}=t_{n}^{-1}\left\{0+t_{n} h-0\right\} \Rightarrow \phi_{\theta_{0}}^{\prime}(h)=h$
- For $h<0: t_{n}^{-1}\left\{\phi\left(\theta_{0}+t_{n} h\right)-\phi\left(\theta_{0}\right)\right\}=t_{n}^{-1}\{0-h-0\} \Rightarrow \phi_{\theta_{0}}^{\prime}(h)=-h$

Putting them together: At $\theta_{0}=0, \phi_{\theta_{0}}^{\prime}(h)=|h|$ for all $h \in \mathbf{R}$

Example 1 (cont)

Recall $\theta=\left(\theta^{(1)}, \theta^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$, and $\phi(\theta)=\max \left\{\theta^{(1)}, \theta^{(2)}\right\}$. Then we have:

$$
\phi_{\theta}^{\prime}(h)= \begin{cases}h^{\left(j^{*}\right)} & \text { if } \theta^{(1)} \neq \theta^{(2)} \\ \max \left\{h^{(1)}, h^{(2)}\right\} & \text { if } \theta^{(1)}=\theta^{(2)}\end{cases}
$$

for every $h=\left(h^{(1)}, h^{(2)}\right)^{\prime} \in \mathbf{R}^{2}$ and where $j^{*}=\arg \max _{j \in\{1,2\}} \theta^{(j)}$.

Comments

- ϕ_{θ}^{\prime} is always continuous and homogeneous of degree one.
- ϕ is fully differentiable except when θ is such that $\theta^{(1)}=\theta^{(2)}$.
- ϕ_{θ}^{\prime} is linear except when θ is such that $\theta^{(1)}=\theta^{(2)}$.
- Here $\mathbb{D}=\mathbf{R}^{2}, \mathbb{E}=\mathbf{R}$ and $\mathbb{D}_{0}=\mathbf{R}^{2}$.

Example 2 (cont)

Recall $\theta \in \ell^{\infty}(\mathcal{F}),(\theta(f)=E[Y f(Z)])$ and $\phi(\theta)=\sup _{f \in \mathcal{F}} \theta(f)$. Then:

$$
\phi_{\theta}^{\prime}(h)=\sup _{f \in \Psi \mathcal{F}(\theta)} h(f)
$$

for every continuous $h: \mathcal{F} \rightarrow \mathbf{R}$ and where $\Psi_{\mathcal{F}}(\theta) \equiv \arg \max _{f \in \mathcal{F}} \theta(f)$.

Comments

- ϕ is fully differentiable except when $\Psi_{\mathcal{F}}(\theta)$ is not a singleton.
- ϕ_{θ}^{\prime} is linear except when $\Psi_{\mathcal{F}}(\theta)$ is not a singleton.
- Here $\mathbb{D}=\ell^{\infty}(\mathcal{F}), \mathbb{E}=\mathbf{R}$, and $\mathbb{D}_{0}=\mathcal{C}(\mathcal{F})$.
\Rightarrow Concept of Tangential Directional Hadamard differentiability needed.

Delta Method

Assumptions (D)

(i) $\hat{\theta}_{n}:\left\{X_{i}\right\}_{i=1}^{n} \rightarrow \mathbb{D}$ and for some $r_{n} \uparrow \infty, r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\} \xrightarrow{L} \mathbb{G}_{0}$.
(ii) $\phi: \mathbb{D} \rightarrow \mathbb{E}$ is Hadamard directionally differentiable at θ_{0} tangential to \mathbb{D}_{0}.
(iii) \mathbb{G}_{0} is tight and $P\left(\mathbb{G}_{0} \in \mathbb{D}_{0}\right)=1$.

Discussion

- D (i) The underlying data $\left\{X_{i}\right\}_{i=1}^{n}$ need not be i.i.d.
- D(ii) As in Example 2, it can be useful to allow $\mathbb{D}_{0} \neq \mathbb{D}$.
- D (iii) Limiting law must concentrate on tangential set \mathbb{D}_{0}.

Note: Requirements completely analogous to standard Delta method.

Delta Method

Theorem (Shapiro, Dumbgen) If Assumption (D) holds, then it follows that

$$
r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \xrightarrow{L} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Addendum If in addition $\phi_{\theta_{0}}^{\prime}$ can be continuously extended to \mathbb{D}, then

$$
r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\}=\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1)
$$

Comments

- Directional differentiability of ϕ only assumed at θ_{0}.
- Conditions of addendum required for $\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)$ to make sense.
- Automatically satisfied if \mathbb{D}_{0} is closed under $\|\cdot\|_{\mathbb{D}}$.
- Can be used to recover asymptotic distribution in all examples.

Proof Intuition

Step 1: Let $t_{n}=1 / r_{n}$ which satisfies $t_{n} \downarrow 0$ since $r_{n} \uparrow \infty$. Then we have

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} & =\frac{1}{t_{n}}\left\{\phi\left(\theta_{0}+t_{n} \times r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)-\phi\left(\theta_{0}\right)\right\} \\
& \approx \phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)
\end{aligned}
$$

Step 2: Since $\phi_{\theta_{0}}^{\prime}: \mathbb{D} \rightarrow \mathbb{E}$ is continuous, use continuous mapping theorem

$$
\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right) \xrightarrow{L} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Proof Intuition

Step 1: Let $t_{n}=1 / r_{n}$ which satisfies $t_{n} \downarrow 0$ since $r_{n} \uparrow \infty$. Then we have

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} & =\frac{1}{t_{n}}\left\{\phi\left(\theta_{0}+t_{n} \times r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)-\phi\left(\theta_{0}\right)\right\} \\
& \approx \phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)
\end{aligned}
$$

Step 2: Since $\phi_{\theta_{0}}^{\prime}: \mathbb{D} \rightarrow \mathbb{E}$ is continuous, use continuous mapping theorem

$$
\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right) \xrightarrow{L} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Key Observation

Linearity of $\phi_{\theta_{0}}^{\prime}$ is irrelevant in the original proof of the Delta method.

(1) The Delta Method

(2) The Bootstrap

(3) Bootstrap Alternative

4) Inference Implications
(5) Convex Set Membership

Bootstrap Setup

Problem: How can we estimate the limiting distribution for inference?

What we know

- If bootstrap "works" for $\hat{\theta}_{n}$ and ϕ is differentiable \Rightarrow it "works" for $\phi\left(\hat{\theta}_{n}\right)$.
- Examples where it fails when ϕ is not differentiable.
- Takeaway: Delta method generalizes, but not bootstrap consistency.

Bootstrap Setup

Problem: How can we estimate the limiting distribution for inference?

What we know

- If bootstrap "works" for $\hat{\theta}_{n}$ and ϕ is differentiable \Rightarrow it "works" for $\phi\left(\hat{\theta}_{n}\right)$.
- Examples where it fails when ϕ is not differentiable.
- Takeaway: Delta method generalizes, but not bootstrap consistency.

Questions

- Does the bootstrap always fail when ϕ is not differentiable?
- When is bootstrap consistency for $\hat{\theta}_{n}$ inherited by $\phi\left(\hat{\theta}_{n}\right)$?

Next: Formalize the general setup in order to answer these questions.

Bootstrap Setup

For Banach space A with norm $\|\cdot\|_{\mathbf{A}}$, denote bounded Lipschitz functions

$$
B L_{1}(\mathbf{A}) \equiv\left\{f: \mathbf{A} \rightarrow \mathbf{R}: \sup _{a \in \mathbf{A}}|f(a)| \leq 1 \text { and }\left|f\left(a_{1}\right)-f\left(a_{2}\right)\right| \leq\left\|a_{1}-a_{2}\right\|_{\mathbf{A}}\right\}
$$

For laws L_{1} and L_{2} we measure distance by the bounded Lipschitz metric

$$
d_{B L}\left(L_{1}, L_{2}\right) \equiv \sup _{f \in B L_{1}(\mathbf{A})}\left|\int f(a) d L_{1}(a)-\int f(a) d L_{2}(a)\right|
$$

Comments

- Largest discrepancy in expectations assigned to functions in $B L_{1}(\mathbf{A})$.
- Metrizes weak convergence. Key in showing validity of critical values.
- Bootstrap consistency \Leftrightarrow distance measured by $d_{B L}$ is $o_{p}(1)$.

Bootstrap Setup

Informally: Assume the "bootstrapped" version $\hat{\theta}_{n}^{*}$ "works" for original $\hat{\theta}_{n}$.

Assumptions (B)

(i) $\hat{\theta}_{n}^{*}:\left\{X_{i}, W_{i}\right\}_{i=1}^{n} \rightarrow \mathbb{D}$ with $\left\{W_{i}\right\}_{i=1}^{n}$ independent of $\left\{X_{i}\right\}_{i=1}^{n}$.
(ii) $\sup _{f \in B L_{1}(\mathbb{D})}\left|E\left[f\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right) \mid\left\{X_{i}\right\}_{i=1}^{n}\right]-E\left[f\left(\mathbb{G}_{0}\right)\right]\right|=o_{p}(1)$.

Discussion

- $B(i)$ Includes nonparametric, Bayesian, block, and weighted bootstrap.
- B(ii) Law of $r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}$ conditional on data is consistent for \mathbb{G}_{0}.
- Also need mild (asymptotic) measurability requirements.

Necessary and Sufficient

Theorem Suppose \mathbb{G}_{0} is a Gaussian measure and Assumptions (D), (B), and regularity conditions hold. Then, $\phi: \mathbb{D}_{\phi} \rightarrow \mathbb{E}$ is (fully) Hadamard differentiable at $\theta_{0} \in \mathbb{D}_{\phi}$ tangential to the support of \mathbb{G}_{0} if and only if

$$
\sup _{f \in B L_{1}(\mathbb{E})}\left|E\left[f\left(r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\hat{\theta}_{n}\right)\right\}\right) \mid\left\{X_{i}\right\}_{i=1}^{n}\right]-E\left[f\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]\right|=o_{p}(1)
$$

Necessary and Sufficient

Theorem Suppose \mathbb{G}_{0} is a Gaussian measure and Assumptions (D), (B), and regularity conditions hold. Then, $\phi: \mathbb{D}_{\phi} \rightarrow \mathbb{E}$ is (fully) Hadamard differentiable at $\theta_{0} \in \mathbb{D}_{\phi}$ tangential to the support of \mathbb{G}_{0} if and only if

$$
\sup _{f \in B L_{1}(\mathbb{E})}\left|E\left[f\left(r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\hat{\theta}_{n}\right)\right\}\right) \mid\left\{X_{i}\right\}_{i=1}^{n}\right]-E\left[f\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]\right|=o_{p}(1)
$$

Key Implication: If the bootstrap works for $\phi\left(\hat{\theta}_{n}\right)$ and \mathbb{G}_{0} is Gaussian

$$
\Rightarrow \phi_{\theta_{0}}^{\prime} \text { must be linear } \Rightarrow \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right) \text { must be Gaussian }
$$

Corollary Suppose \mathbb{G}_{0} is Gaussian and previous assumptions hold. Then:
If the limiting distribution of $\phi\left(\hat{\theta}_{n}\right)$ is not Gaussian, then the bootstrap fails

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\hat{\theta}_{n}\right)\right\}
$$

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)\right. & \left.-\phi\left(\hat{\theta}_{n}\right)\right\} \\
& =r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\theta_{0}\right)\right\}-r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\}
\end{aligned}
$$

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)\right. & \left.-\phi\left(\hat{\theta}_{n}\right)\right\} \\
& =r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\theta_{0}\right)\right\}-r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1)
\end{aligned}
$$

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)\right. & \left.-\phi\left(\hat{\theta}_{n}\right)\right\} \\
& =r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\theta_{0}\right)\right\}-r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1) \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}+r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1)
\end{aligned}
$$

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)\right. & \left.-\phi\left(\hat{\theta}_{n}\right)\right\} \\
& =r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\theta_{0}\right)\right\}-r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1) \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}+r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1)
\end{aligned}
$$

Step 2: Study the last expression conditional on $\left\{X_{i}\right\}_{i=1}^{n}$ to conclude that

$$
\phi_{\theta_{0}}^{\prime}(\underbrace{r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}}+\underbrace{r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}})-\phi_{\theta_{0}}^{\prime}(\underbrace{r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}})
$$

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)\right. & \left.-\phi\left(\hat{\theta}_{n}\right)\right\} \\
& =r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\theta_{0}\right)\right\}-r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1) \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}+r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1)
\end{aligned}
$$

Step 2: Study the last expression conditional on $\left\{X_{i}\right\}_{i=1}^{n}$ to conclude that

$$
\phi_{\theta_{0}}^{\prime}(\underbrace{r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}}_{\rightarrow \mathbb{G}_{0}}+\underbrace{r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}}_{\rightarrow h})-\phi_{\theta_{0}}^{\prime}(\underbrace{r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}}_{\rightarrow h})
$$

Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\begin{aligned}
r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)\right. & \left.-\phi\left(\hat{\theta}_{n}\right)\right\} \\
& =r_{n}\left\{\phi\left(\hat{\theta}_{n}^{*}\right)-\phi\left(\theta_{0}\right)\right\}-r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1) \\
& =\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}+r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)-\phi_{\theta_{0}}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}\right)+o_{p}(1)
\end{aligned}
$$

Step 2: Study the last expression conditional on $\left\{X_{i}\right\}_{i=1}^{n}$ to conclude that

$$
\phi_{\theta_{0}}^{\prime}(\underbrace{r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}}_{\rightarrow \mathbb{G}_{0}}+\underbrace{r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}}_{\rightarrow h})-\phi_{\theta_{0}}^{\prime}(\underbrace{r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}}_{\rightarrow h})
$$

\Rightarrow Bootstrap works iff $\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h)$ is equal in distribution to $\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)$.

Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of \mathbb{G}_{0})

$$
\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h) \stackrel{d}{=} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of \mathbb{G}_{0})

$$
\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h) \stackrel{d}{=} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose $\mathbb{G}_{0} \sim N(0,1)$, then for any $r>0$ and $t \in \mathbf{R}$

$$
E\left[\exp \left\{i t\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)-\phi_{\theta_{0}}^{\prime}(r h)\right)\right\}\right]=C(t)
$$

Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of \mathbb{G}_{0})

$$
\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h) \stackrel{d}{=} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).
Step 3: (Scalar Case) Suppose $\mathbb{G}_{0} \sim N(0,1)$, then for any $r>0$ and $t \in \mathbf{R}$

$$
\begin{aligned}
& E\left[\exp \left\{i t\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)-\phi_{\theta_{0}}^{\prime}(r h)\right)\right\}\right]=C(t) \\
& \quad \Rightarrow E\left[\exp \left\{i t \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)\right\}\right]=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t)
\end{aligned}
$$

Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of \mathbb{G}_{0})

$$
\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h) \stackrel{d}{=} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).
Step 3: (Scalar Case) Suppose $\mathbb{G}_{0} \sim N(0,1)$, then for any $r>0$ and $t \in \mathbf{R}$

$$
\begin{aligned}
& E\left[\exp \left\{i t\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)-\phi_{\theta_{0}}^{\prime}(r h)\right)\right\}\right]=C(t) \\
& \quad \Rightarrow E\left[\exp \left\{i t \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)\right\}\right]=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t) \\
& \quad \Rightarrow \frac{1}{\sqrt{2 \pi}} \int \exp \left\{i t \phi_{\theta_{0}}^{\prime}(u)\right\} \exp \left\{-\frac{1}{2}(u-r h)^{2}\right\} d u=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t)
\end{aligned}
$$

Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of \mathbb{G}_{0})

$$
\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h) \stackrel{d}{=} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).
Step 3: (Scalar Case) Suppose $\mathbb{G}_{0} \sim N(0,1)$, then for any $r>0$ and $t \in \mathbf{R}$

$$
\begin{aligned}
& E\left[\exp \left\{i t\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)-\phi_{\theta_{0}}^{\prime}(r h)\right)\right\}\right]=C(t) \\
& \quad \Rightarrow E\left[\exp \left\{i t \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)\right\}\right]=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t) \\
& \quad \Rightarrow \frac{1}{\sqrt{2 \pi}} \int \exp \left\{i t \phi_{\theta_{0}}^{\prime}(u)\right\} \exp \left\{-\frac{1}{2}(u-r h)^{2}\right\} d u=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t)
\end{aligned}
$$

\Rightarrow Differentiate both sides w.r.t r to conclude $\phi_{\theta_{0}}^{\prime}(h)$ is linear in h.

Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any h in support of \mathbb{G}_{0})

$$
\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+h\right)-\phi_{\theta_{0}}^{\prime}(h) \stackrel{d}{=} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).
Step 3: (Scalar Case) Suppose $\mathbb{G}_{0} \sim N(0,1)$, then for any $r>0$ and $t \in \mathbf{R}$

$$
\begin{aligned}
& E\left[\exp \left\{i t\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)-\phi_{\theta_{0}}^{\prime}(r h)\right)\right\}\right]=C(t) \\
& \quad \Rightarrow E\left[\exp \left\{i t \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+r h\right)\right\}\right]=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t) \\
& \quad \Rightarrow \frac{1}{\sqrt{2 \pi}} \int \exp \left\{i t \phi_{\theta_{0}}^{\prime}(u)\right\} \exp \left\{-\frac{1}{2}(u-r h)^{2}\right\} d u=\exp \left\{i \operatorname{tr} \phi_{\theta_{0}}^{\prime}(h)\right\} C(t)
\end{aligned}
$$

\Rightarrow Differentiate both sides w.r.t r to conclude $\phi_{\theta_{0}}^{\prime}(h)$ is linear in h.
Step 4: Generalize scalar case by arguing as above through dual space \mathbb{E}^{*}.

(1) The Delta Method

(2) The Bootstrap
(3) Bootstrap Alternative
(4) Inference Implications
(5) Convex Set Membership

Bootstrap Alternative

$$
r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\} \xrightarrow{L} \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Intuition

- We need to estimate $\phi_{\theta_{0}}^{\prime}$ and the law of \mathbb{G}_{0}.
- By assumption $r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}$ provides an estimate of the law of \mathbb{G}_{0}.
- Bootstrap fails for $\phi\left(\hat{\theta}_{n}\right)$ because it does not estimate $\phi_{\theta_{0}}^{\prime}$ appropriately.

Fix: For an estimator $\hat{\phi}_{n}^{\prime}$ of $\phi_{\theta_{0}}^{\prime}$, use the law conditional on $\left\{X_{i}\right\}_{i=1}^{n}$ of

$$
\hat{\phi}_{n}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)
$$

Bootstrap Alternative

Assumption (E) For every compact $K \subseteq \mathbb{D}_{0}$ and $\epsilon>0, \hat{\phi}_{n}^{\prime}: \mathbb{D} \rightarrow \mathbb{E}$ satisfies

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\sup _{h \in K^{\delta}}\left\|\hat{\phi}_{n}^{\prime}(h)-\phi_{\theta_{0}}^{\prime}(h)\right\|_{\mathbb{E}}>\epsilon\right)=0
$$

Discussion

- δ-enlargement needed because $r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}$ may not belong to \mathbb{D}_{0}.
- δ can sometimes be dropped - i.e. $\sup _{h \in K}\left\|\hat{\phi}_{n}^{\prime}(h)-\phi_{\theta_{0}}^{\prime}(h)\right\|_{\mathbb{E}}=o_{p}(1)$.
- If $\hat{\phi}_{n}^{\prime}$ is "smooth", then $\hat{\phi}_{n}^{\prime}(h)=\phi_{\theta_{0}}^{\prime}(h)+o_{p}(1)$ for all $h \in \mathbb{D}_{0}$ suffices.

Takeaway: In all examples additional structure makes (E) easy to verify.

Bootstrap Alternative

Theorem If Assumptions (B), (D), (E), and regularity conditions hold, then

$$
\sup _{f \in B L_{1}(\mathbb{E})}\left|E\left[f\left(\hat{\phi}_{n}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)\right) \mid\left\{X_{i}\right\}_{i=1}^{n}\right]-E\left[f\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]\right|=o_{p}(1)
$$

Comments

- The law of $\hat{\phi}_{n}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)$ conditional $\left\{X_{i}\right\}_{i=1}^{n}$ consistent for $\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)$.
- Implies consistency of critical values under standard conditions.
- The fact that $\phi_{\theta_{0}}^{\prime}$ is a directional derivative is never exploited ...
\Rightarrow More generally, a method for estimating distributions of the form

$$
\tau\left(\mathbb{G}_{0}\right)
$$

where \mathbb{G}_{0} is tight and $\tau: \mathbb{D} \rightarrow \mathbb{E}$ is an unknown continuous map.

Example 1 (cont)

Recall $\theta_{0}=\left(E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right)^{\prime}$ and for $j^{*}=\arg \max _{j \in\{1,2\}} E\left[X^{(j)}\right]$ we had:

$$
\phi_{\theta_{0}}^{\prime}(h)=\left\{\begin{array}{ll}
h^{\left(j^{*}\right)} & \text { if } E\left[X^{(1)}\right] \neq E\left[X^{(2)}\right] \\
\max \left\{h^{(1)}, h^{(2)}\right\} & \text { if } E\left[X^{(1)}\right]=E\left[X^{(2)}\right]
\end{array} .\right.
$$

Let $\hat{j}^{*}=\arg \max _{j \in\{1,2\}} \bar{X}^{(j)}$ and letting $\kappa_{n} \uparrow \infty$ satisfy $\kappa_{n} / \sqrt{n} \downarrow 0$ define

$$
\hat{\phi}_{n}^{\prime}(h)=\left\{\begin{array}{ll}
h^{\left(j^{*}\right)} & \text { if }\left|\bar{X}^{(1)}-\bar{X}^{(2)}\right|>\kappa_{n} \\
\max \left\{h^{(1)}, h^{(2)}\right\} & \text { if }\left|\bar{X}^{(1)}-\bar{X}^{(2)}\right| \leq \kappa_{n}
\end{array} .\right.
$$

Comments

- $\hat{\phi}_{n}^{\prime}$ trivially satisfies Assumption (E).
- $\hat{\phi}_{n}^{\prime}\left(\sqrt{n}\left\{\bar{X}^{*}-\bar{X}\right\}\right)$ reduces to generalized moment selection.

Example 2 (cont)

Recall $\theta_{0}(f)=E[Y f(Z)]$ and for $\Psi_{\mathcal{F}}(\theta) \equiv \arg \max _{f \in \mathcal{F}} \theta(f)$ we had that:

$$
\phi_{\theta}^{\prime}(h)=\sup _{f \in \Psi \mathcal{F}(\theta)} h(f)
$$

Suppose $\hat{\Psi}_{\mathcal{F}}\left(\theta_{0}\right)$ satisfies $d_{H}\left(\Psi_{\mathcal{F}}\left(\theta_{0}\right), \hat{\Psi}_{\mathcal{F}}\left(\theta_{0}\right),\|\cdot\|_{L^{2}(Z)}\right)=o_{p}(1)$, and let

$$
\hat{\phi}_{n}^{\prime}(h)=\sup _{f \in \hat{\Psi}_{\mathcal{F}}\left(\theta_{0}\right)} h(f)
$$

Comments

- Easy to show $\hat{\phi}_{n}^{\prime}$ satisfies Assumption (E).
- $\hat{\phi}_{n}^{\prime}\left(\sqrt{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)$ becomes special case of Andrews \& Shi (2013).
- Also: Linton et al. (2010), Kaido (2013), Beare \& Shi (2013).

(1) The Delta Method

(2) The Bootstrap

(3) Bootstrap Alternative

(4) Inference Implications

(5) Convex Set Membership

Testing Implications

$$
H_{0}: \phi\left(\theta_{0}\right) \leq 0 \quad H_{1}: \phi\left(\theta_{0}\right)>0
$$

Proposed Test

- Employ $\sqrt{n} \phi\left(\hat{\theta}_{n}\right)$ as a test statistic.
- Unfeasible: $c_{1-\alpha}$ the $1-\alpha$ quantile of $\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)$ (pointwise in P).
- Use $\hat{c}_{1-\alpha}$: the $1-\alpha$ quantile of $\hat{\phi}_{n}^{\prime}\left(\sqrt{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)$ conditional $\left\{X_{i}\right\}_{i=1}^{n}$.

Testing Implications

$$
H_{0}: \phi\left(\theta_{0}\right) \leq 0 \quad H_{1}: \phi\left(\theta_{0}\right)>0
$$

Proposed Test

- Employ $\sqrt{n} \phi\left(\hat{\theta}_{n}\right)$ as a test statistic.
- Unfeasible: $c_{1-\alpha}$ the $1-\alpha$ quantile of $\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)$ (pointwise in P).
- Use $\hat{c}_{1-\alpha}$: the $1-\alpha$ quantile of $\hat{\phi}_{n}^{\prime}\left(\sqrt{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)$ conditional $\left\{X_{i}\right\}_{i=1}^{n}$.

Problem: So far analysis is pointwise in underlying distribution of $\left\{X_{i}\right\}_{i=1}^{n}$.
Goal: Examine when pointwise in P justified test can control size locally.

Local Setup

Assumption (L)

(i) $\left\{X_{i}\right\}_{i=1}^{n}$ is i.i.d. and $X_{i} \sim P \in \mathbf{P}$.
(ii) $\theta_{0} \equiv \theta(P)$ for some known function $\theta: \mathbf{P} \rightarrow \mathbb{D}$.
(iii) $\hat{\theta}_{n}$ is a regular estimator for $\theta(P)$.
(iv) $P_{n, \lambda} \in \mathbf{P}$ and $\bigotimes_{i=1}^{n} P_{n, \lambda}$ is contiguous to $\bigotimes_{i=1}^{n} P$.
(v) For $\theta^{\prime}: \Lambda \rightarrow \mathbb{D}$ linear, $\left\|r_{n}\left\{\theta\left(P_{n, \lambda}\right)-\theta(P)\right\}-\theta^{\prime}(\lambda)\right\|_{\mathbb{D}}=o(1)$.

Discussion

- L(i) Imposed for notational simplicity.
- L(iii) Allows us to focus on irregularity generated by ϕ.
- L(v) Closely related to L(iii) - van der Vaart (1991).

Example 1 Intuition

$$
H_{0}: \max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\} \leq 0 \quad H_{1}: \max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\}>0
$$

But local to P with $\theta^{(1)}(P)=\theta^{(2)}(P)=0$, set $\theta\left(P_{n, \lambda}\right)=\theta(P)+\lambda / \sqrt{n}$ to get

$$
\sqrt{n} \phi\left(\hat{\theta}_{n}\right) \xrightarrow{L_{n}} \max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\}
$$

Example 1 Intuition

$$
H_{0}: \max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\} \leq 0 \quad H_{1}: \max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\}>0
$$

But local to P with $\theta^{(1)}(P)=\theta^{(2)}(P)=0$, set $\theta\left(P_{n, \lambda}\right)=\theta(P)+\lambda / \sqrt{n}$ to get

$$
\begin{aligned}
\sqrt{n} \phi\left(\hat{\theta}_{n}\right) & \xrightarrow[\rightarrow]{L_{n}} \max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\} \\
& \leq \max \left\{\mathbb{G}_{0}^{(1)}, \mathbb{G}_{0}^{(2)}\right\} \quad(\text { whenever } \lambda \leq 0)
\end{aligned}
$$

Example 1 Intuition

$H_{0}: \max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\} \leq 0 \quad H_{1}: \max \left\{E\left[X^{(1)}\right], E\left[X^{(2)}\right]\right\}>0$

But local to P with $\theta^{(1)}(P)=\theta^{(2)}(P)=0$, set $\theta\left(P_{n, \lambda}\right)=\theta(P)+\lambda / \sqrt{n}$ to get

$$
\begin{aligned}
\sqrt{n} \phi\left(\hat{\theta}_{n}\right) & \xrightarrow{L_{n}} \max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\} \\
& \leq \max \left\{\mathbb{G}_{0}^{(1)}, \mathbb{G}_{0}^{(2)}\right\} \quad(\text { whenever } \lambda \leq 0)
\end{aligned}
$$

Key Properties

- Local paths in null first order stochastically dominated by pointwise limit.
- $\theta(P)$ is regular at $P \Rightarrow$ no need to worry about it.

Subadditivity

$$
\underbrace{\max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\}} \leq \underbrace{\max \left\{\mathbb{G}_{0}^{(1)}, \mathbb{G}_{0}^{(2)}\right\}}+\underbrace{\max \left\{\lambda^{(1)}, \lambda^{(2)}\right\}}
$$

Subadditivity

$$
\begin{aligned}
\underbrace{\max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\}} & \leq \underbrace{\max \left\{\mathbb{G}_{0}^{(1)}, \mathbb{G}_{0}^{(2)}\right\}}+\underbrace{\max \left\{\lambda^{(1)}, \lambda^{(2)}\right\}} \\
& \leq \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+\lambda\right)
\end{aligned}
$$

Subadditivity

$$
\begin{aligned}
\underbrace{\max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\}} & \leq \underbrace{\max \left\{\mathbb{G}_{0}^{(1)}, \mathbb{G}_{0}^{(2)}\right\}}+\underbrace{\max \left\{\lambda^{(1)}, \lambda^{(2)}\right\}} \\
& \left.\leq \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)+\mathbb{G}_{0}+\lambda\right)+\phi_{\theta_{0}}^{\prime}(\lambda) \\
& \leq \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
\end{aligned}
$$

Subadditivity

$$
\begin{aligned}
\underbrace{\max \left\{\mathbb{G}_{0}^{(1)}+\lambda^{(1)}, \mathbb{G}_{0}^{(2)}+\lambda^{(2)}\right\}}_{\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+\lambda\right)} & \leq \underbrace{\max \left\{\mathbb{G}_{0}^{(1)}, \mathbb{G}_{0}^{(2)}\right\}}_{\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)}+\underbrace{\max \left\{\lambda^{(1)}, \lambda^{(2)}\right\}}_{\phi_{\theta_{0}}^{\prime}(\lambda)} \\
& \leq \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)
\end{aligned}
$$

Comments

- Key Condition: $\phi_{\theta_{0}}^{\prime}\left(h_{1}+h_{2}\right) \leq \phi_{\theta_{0}}^{\prime}\left(h_{1}\right)+\phi_{\theta_{0}}^{\prime}\left(h_{2}\right)$ (subadditivity).
- Andrews \& Soares (2010), Andrews \& Shi (2013), Linton et. al (2010).
- Equivalent to $\phi_{\theta_{0}}^{\prime}$ being convex due to homogeneity of degree one.

Size Control

Theorem If Assumptions (D), (B), (E), (L) hold, and $P_{n} \equiv \bigotimes_{i=1}^{n} P_{n, \lambda}$, then

$$
\lim _{n \rightarrow \infty} P_{n}\left(\sqrt{n} \phi\left(\hat{\theta}_{n}\right)>\hat{c}_{1-\alpha}\right)=P\left(\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}+\theta^{\prime}(\lambda)\right)>c_{1-\alpha}\right)
$$

If in addition $\phi_{\theta_{0}}^{\prime}: \mathbb{D}_{0} \rightarrow \mathbf{R}$ is subadditive and $\phi\left(\theta\left(P_{n, \lambda}\right)\right) \leq 0$ for all n, then

$$
\limsup _{n \rightarrow \infty} P_{n}\left(\sqrt{n} \phi\left(\hat{\theta}_{n}\right)>\hat{c}_{1-\alpha}\right) \leq \alpha
$$

Comments

- Key condition: subadditivity (of $\phi_{\theta_{0}}^{\prime}$) and regularity (of $\hat{\theta}_{n}$)
- However, size control result is only local to $P \in \mathbf{P}$.
- But reassuring if subadditivity and regularity satisfied at all $P \in \mathbf{P}$.

(1) The Delta Method

(2) The Bootstrap

(3) Bootstrap Alternative

4) Inference Implications
(5) Convex Set Membership

Hypothesis

Let \mathbb{H} be Hilbert space with norm $\|\cdot\|_{\mathbb{H}}$. For $\Lambda \subseteq \mathbb{H}$ closed and convex, test

$$
H_{0}: \theta_{0} \in \Lambda \quad H_{1}: \theta_{0} \notin \Lambda
$$

Hypothesis

Let \mathbb{H} be Hilbert space with norm $\|\cdot\|_{\mathbb{H}}$. For $\Lambda \subseteq \mathbb{H}$ closed and convex, test

$$
H_{0}: \theta_{0} \in \Lambda \quad H_{1}: \theta_{0} \notin \Lambda
$$

Define the projection operator $\Pi_{\Lambda}: \mathbb{H} \rightarrow \Lambda$ which for each $\theta \in \mathbb{H}$ satisfies

$$
\left\|\theta-\Pi_{\Lambda} \theta\right\|_{\mathbb{H}}=\inf _{h \in \Lambda}\|\theta-h\|_{\mathbb{H}}
$$

\Rightarrow Express original hypothesis in terms of the distance between θ_{0} and Λ

$$
H_{0}:\left\|\theta_{0}-\Pi_{\Lambda} \theta_{0}\right\|_{\mathbb{H}}=0 \quad H_{1}:\left\|\theta_{0}-\Pi_{\Lambda} \theta_{0}\right\|_{\mathbb{H}}>0
$$

Test Statistic

As a test statistic employ the (scaled) distance between $\hat{\theta}_{n}$ and the set Λ

$$
r_{n}\left\|\hat{\theta}_{n}-\Pi_{\Lambda} \hat{\theta}_{n}\right\|_{\mathbb{H}}
$$

Map To Our Framework

- Let $\phi: \mathbb{H} \rightarrow \mathbf{R}$ be given by $\phi(\theta)=\left\|\theta-\Pi_{\Lambda} \theta\right\|_{\mathbb{H}}$.
- Hypotheses are then $H_{0}: \phi\left(\theta_{0}\right)=0$ and $H_{1}: \phi\left(\theta_{0}\right)>0$.
- Test statistic is $r_{n} \phi\left(\hat{\theta}_{n}\right)$.

Key Steps

- Directional Differentiability of ϕ - Zaranotello (1971)
- Geometry enables easy construction of $\hat{\phi}_{n}^{\prime}$

Takeaway: Very different problems can easily be handled in a unified way.

Examples

Suppose $X \in \mathbf{R}^{d}$ and consider the moment inequalities testing problem

$$
H_{0}: E[X] \leq 0 \quad H_{1}: E[X] \not \approx 0
$$

Here $\mathbb{H}=\mathbf{R}^{d}, \Lambda$ is the negative orthant $\left(\Lambda \equiv\left\{h \in \mathbf{R}^{d}: h \leq 0\right\}\right.$), and

$$
\phi(\theta) \equiv\left\|\Pi_{\Lambda} \theta-\theta\right\|_{\mathbb{H}}=\left\{\sum_{i=1}^{d}\left(E\left[X^{(i)}\right]\right)_{+}^{2}\right\}^{\frac{1}{2}}
$$

Comments

- Trivial extension to include weighting in projection.
- Applies to other θ and Λ - Wolak (1988), Kitamura \& Stoye (2013).
- Also: First order stochastic dominance, conditional moment inequalites.

Examples

Let $(Y, D, X) \in \mathbf{R} \times \mathbf{R} \times \mathbf{R}^{d_{z}}$ and consider the quantile regression model

$$
\left(\theta_{0}(\tau), \beta(\tau)\right) \equiv \arg \min _{\theta \in \mathbf{R}, \beta \in \mathbf{R}^{d_{z}}} E\left[\rho_{\tau}\left(Y-D \theta-Z^{\prime} \beta\right)\right]
$$

Standard result to get convergence of $\sqrt{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\}$ for any $\epsilon>0$ in space

$$
\mathbb{H} \equiv\left\{\theta:[\epsilon, 1-\epsilon] \rightarrow \mathbf{R}:\langle\theta, \theta\rangle_{\mathbb{H}}<\infty\right\} \quad\left\langle\theta_{1}, \theta_{2}\right\rangle_{\mathbb{H}} \equiv \int_{\epsilon}^{1-\epsilon} \theta_{1}(\tau) \theta_{2}(\tau) d \tau
$$

Comments

- Test for monotonicity of quantile treatment effects, correct specification.
- Other shape restrictions: concavity, convexity, homogeneity ...
- Similar: pricing kernel puzzle finds lack of predicted monotonicity.
- Also Related: Arellano et. al (2012), Escanciano \& Zhu (2013).

Directional Differentiability

Definition For any $\theta \in \mathbb{H}$, the tangent cone of Λ at θ is given by:

$$
T_{\theta} \equiv \overline{\bigcup_{\alpha \geq 0} \alpha\left\{\Lambda-\Pi_{\Lambda} \theta\right\}}
$$

Directional Differentiability

Zaranotello (1971) The directional derivative of Π_{Λ} at any $\theta \in \Lambda$ equals $\Pi_{T_{\theta}}$

$$
\Pi_{\Lambda} \theta_{1}-\Pi_{\Lambda} \theta_{0} \approx \Pi_{T_{\theta_{0}}}\left(\theta_{1}-\theta_{0}\right)
$$

Asymptotic Distribution

Proposition Let $\Lambda \subseteq \mathbb{H}$ be convex, and $r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\} \xrightarrow{L} \mathbb{G}_{0}$. If $\theta_{0} \in \Lambda$, then

$$
\underbrace{r_{n}\left\|\hat{\theta}_{n}-\Pi_{\Lambda} \hat{\theta}_{n}\right\|_{\mathbb{H}}}_{r_{n}\left\{\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right\}} \stackrel{L}{\phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right)} \underbrace{\left\|\mathbb{G}_{0}-\Pi_{T_{\theta_{0}}} \mathbb{G}_{0}\right\|_{\mathbb{H}}}
$$

Comments

- Quantiles of $\left\|\mathbb{G}_{0}\right\|_{H}$ always provide valid (conservative?) critical values.
- If Λ is a cone, then quantiles of $\left\|\mathbb{G}_{0}-\Pi_{\Lambda} \mathbb{G}_{0}\right\|_{\mathbb{H}}$ also valid.
- Possible to study projection $\Pi_{\Lambda} \theta_{0}$, and allow nonconvex Λ and $\theta_{0} \notin \Lambda$.

Next: For inference, still need to construct suitable estimator $\hat{\phi}_{n}^{\prime}$ for $\phi_{\theta_{0}}^{\prime}$.

Bootstrap Alternative

$$
\hat{\phi}_{n}^{\prime}(h) \equiv \sup _{\hat{\rho}}\left\|h-\Pi_{T_{\theta}} h\right\|_{\mathbb{H}}
$$

Intuition: Use the approximation by local "least favorable" tangent cone.

Bootstrap Alternative

$$
\hat{\phi}_{n}^{\prime}(h) \equiv \sup _{\theta \in \Lambda:\left\|\theta-\Pi_{\Lambda} \hat{\theta}_{n}\right\|_{\mathbb{H}} \leq \epsilon_{n}}\left\|h-\Pi_{T_{\theta}} h\right\|_{\mathbb{H}}
$$

Intuition: Use the approximation by local "least favorable" tangent cone.

Proposition Let Λ be convex, $r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\} \xrightarrow{L} \mathbb{G}_{0}, \phi_{\theta_{0}}^{\prime}(h) \equiv\left\|h-\Pi_{T_{\theta_{0}}} h\right\|_{\mathbb{H}}$.
(A) If $\epsilon_{n} \downarrow 0$ an $\epsilon_{n} r_{n} \uparrow \infty$, then $\hat{\phi}_{n}^{\prime}$ satisfies Assumption (E).
(B) $\phi_{\theta_{0}}^{\prime}: \mathbb{H} \rightarrow \mathbf{R}$ satisfies $\phi_{\theta_{0}}^{\prime}\left(h_{1}+h_{2}\right) \leq \phi_{\theta_{0}}^{\prime}\left(h_{1}\right)+\phi_{\theta_{0}}^{\prime}\left(h_{2}\right)$ (subadditive)

Comments

- Part (A) allows us to employ $\hat{\phi}_{n}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)$ if bootstrap works for $\hat{\theta}_{n}$.
- Part (B) implies local size control whenever $\hat{\theta}_{n}$ is regular at P.

Simulation Evidence

$$
Y=\frac{\Delta}{\sqrt{n}} D \times U+Z^{\prime} \beta+U
$$

Where

- $D \in\{0,1\}$ with $P(D=1)=\frac{1}{2}$.
- $Z=\left(1, Z^{(1)}, Z^{(2)}\right)^{\prime}$ with $\left(Z^{(1)}, Z^{(2)}\right) \sim N\left(0, I_{2}\right)$.
- $U \sim U[0,1]$ is unobserved, and $\beta=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\prime}$.
- D, Z, and U are all mutually independent.

Simulation Evidence

$$
Y=\frac{\Delta}{\sqrt{n}} D \times U+Z^{\prime} \beta+U
$$

Where

- $D \in\{0,1\}$ with $P(D=1)=\frac{1}{2}$.
- $Z=\left(1, Z^{(1)}, Z^{(2)}\right)^{\prime}$ with $\left(Z^{(1)}, Z^{(2)}\right) \sim N\left(0, I_{2}\right)$.
- $U \sim U[0,1]$ is unobserved, and $\beta=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\prime}$.
- D, Z, and U are all mutually independent.

It is then immediate that for $\theta_{0}(\tau)=\tau \frac{\Delta}{\sqrt{n}}$ and $\beta(\tau) \equiv\left(\tau, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\prime}$ we have

$$
P\left(Y \leq D \theta_{0}(\tau)+Z^{\prime} \beta(\tau) \mid D, Z\right)=\tau
$$

Simulation Evidence

Goal Test whether $\theta_{0}(\tau)(\approx$ QTE) is weakly increasing in τ.

Steps Using five thousand replications

- Compute quantile regression coefficient $\hat{\theta}_{n}$ on grid $\{0.2,0.225, \ldots, 0.8\}$.
- Obtain $\Pi_{\Lambda} \hat{\theta}_{n}$ - projection onto monotone functions Λ.
- Compute two hundred bootstrap estimators of $\hat{\theta}_{n}^{*}$ on same grid.
- For each $\hat{\theta}_{n}^{*}$ obtain $\hat{\phi}_{n}^{\prime}\left(r_{n}\left\{\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right\}\right)$ (needs $\Pi_{\Lambda} \hat{\theta}_{n}$ and ϵ_{n}).

Evaluate

- Sensitivity to choice of $\epsilon_{n}=C n^{\kappa}$ with $C \in\{0.01,1\}$ and $\kappa \in\left\{\frac{1}{3}, \frac{1}{4}\right\}$.
- Accuracy of local approximation for different $\Delta\left(\theta_{0}(\tau)=\Delta \frac{\tau}{\sqrt{n}}\right)$.

Table: Empirical Size

Bandwidth	$n=200$								
	$\alpha=0.1$			$\alpha=0.05$			$\alpha=0.01$		
$C \quad \kappa$	$\Delta=0$	$\Delta=1$	$\Delta=2$	$\Delta=0$	$\Delta=1$	$\Delta=2$	$\Delta=0$	$\Delta=1$	$\Delta=2$
1 1/4	0.042	0.017	0.006	0.020	0.008	0.002	0.005	0.001	0.000
1 1/3	0.042	0.017	0.006	0.020	0.008	0.002	0.005	0.001	0.000
0.01 1/4	0.082	0.053	0.035	0.035	0.023	0.013	0.007	0.002	0.001
0.01 1/3	0.087	0.059	0.042	0.038	0.025	0.015	0.007	0.002	0.001
Theoretical	0.100	0.042	0.015	0.050	0.018	0.006	0.010	0.003	0.001
	$n=500$								
Bandwidth	$\alpha=0.1$			$\alpha=0.05$			$\alpha=0.01$		
$C \quad \kappa$	$\Delta=0$	$\Delta=1$	$\Delta=2$	$\Delta=0$	$\Delta=1$	$\Delta=2$	$\Delta=0$	$\Delta=1$	$\Delta=2$
1 1/4	0.051	0.020	0.007	0.026	0.011	0.002	0.005	0.001	0.000
1 1/3	0.051	0.020	0.007	0.026	0.011	0.002	0.005	0.001	0.000
0.01 1/4	0.096	0.058	0.038	0.047	0.025	0.015	0.009	0.005	0.001
0.01 1/3	0.103	0.065	0.045	0.049	0.030	0.017	0.009	0.005	0.001
Theoretical	0.100	0.042	0.015	0.050	0.018	0.006	0.010	0.003	0.001

Table: Local Power of 0.05 Level Test

Bandwidth		$n=200$							
C	κ	$\Delta=-1$	$\Delta=-2$	$\Delta=-3$	$\Delta=-4$	$\Delta=-5$	$\Delta=-6$	$\Delta=-7$	$\Delta=-8$
1	1/4	0.061	0.155	0.321	0.555	0.782	0.934	0.989	1.000
1	1/3	0.061	0.155	0.321	0.555	0.782	0.934	0.989	1.000
0.01	1/4	0.078	0.172	0.330	0.558	0.783	0.934	0.989	1.000
0.01	1/3	0.081	0.174	0.331	0.559	0.783	0.934	0.989	1.000
Theor	ical	0.120	0.245	0.423	0.623	0.796	0.911	0.970	0.992
Bandwidth		$n=500$							
C	κ	$\Delta=-1$	$\Delta=-2$	$\Delta=-3$	$\Delta=-4$	$\Delta=-5$	$\Delta=-6$	$\Delta=-7$	$\Delta=-8$
1	1/4	0.071	0.181	0.355	0.576	0.789	0.925	0.981	0.997
1	1/3	0.071	0.181	0.355	0.576	0.789	0.925	0.981	0.997
0.01	1/4	0.094	0.201	0.370	0.583	0.791	0.925	0.981	0.997
0.01	1/3	0.098	0.204	0.371	0.585	0.791	0.925	0.981	0.997
Theoretical		0.120	0.245	0.423	0.623	0.796	0.911	0.970	0.992

Conclusion

Delta method

- Preserved under directional derivative (Shapiro 1991, Dumbgen 1993).
- Small extension to show it holds in probability.

Bootstrap

- Differentiability necessary and sufficient when \mathbb{G}_{0} is Gaussian.
- Argued popular approaches implicitly estimate $\phi_{\theta_{0}}^{\prime}$.

Inference

- Local size control guaranteed by subadditivity and regularity.
- Application to testing if θ_{0} belongs to convex set.
\Rightarrow Problems can be analyzed by studying \mathbb{G}_{0} and $\phi_{\theta_{0}}^{\prime}$ (as in Delta method).

