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General Question

For unknown 6y € D and known map ¢ : D — E, we consider the parameter
#(6o)
Given estimator 6,, for 6y, what are the properties of the “plug-in” estimator

d(0,)

Under Differentiability
e Asymptotic Distribution by Delta Method.
e Bootstrap Validity for 6,, = Bootstrap Validity of ¢(6,,).
« Together: Framework for conducting inference on ¢(6,) through ¢(6,,).

Question: Is there a similar conceptual framework for nondifferentiable ¢?
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Example 1

Andrews & Soares (2010): Let X = (X1, X(?))' ¢ R?, and consider

max{E[XY], E[X®]}
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Example 1

Andrews & Soares (2010): Let X = (X1, X(?))' ¢ R?, and consider

max{E[XY], E[X®]}

Here 6, = E[X] and for any 6 = (1), 0?)) ¢ R? set ¢ : R? — R to equal

¢(0) = max{6™), 6>}
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Example 1

Andrews & Soares (2010): Let X = (X1, X(?))' ¢ R?, and consider

max{E[XY], E[X®]}

Here 6, = E[X] and for any 6 = (1), 0?)) ¢ R? set ¢ : R? — R to equal

¢(0) = max{6™), 6>}

Given a sample {X;}", letd, = X = LS | X, in which case we have

(b(én) = maX{X(l), X(z)}
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Example 2

Andrews & Shi (2013): For Y € R and Z € R% consider testing the null

E[Y|Z] <0

For appropriate F C ¢ (R) (space of bounded functions), equivalent to

sup E[Y f(Z2)] <0
feFr
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Example 2

Andrews & Shi (2013): For Y € R and Z € R% consider testing the null

E[Y|Z] <0

For appropriate F C ¢ (R) (space of bounded functions), equivalent to

sup E[Y f(Z2)] <0
feFr

Here 0y € (>°(F) satisfies 0y(f) = E[Y f(Z)] and ¢ : £°(F) — R is given by

¢(0) = sup 0(f)

fer
Given a sample {Y;, Z;}7_, let 6,(f) = L S0 | Y f(Z;), in which case
é = su Y;
feg n Z f

Santos. November 9, 2016. ucsD



Other Examples

¢ Study of Convex Identified Sets
Beresteanu & Molinari (2008), Bontemps et al. (2012).

o Tests of Stochastic Dominance
Barret & Donald (2003), Linton et al. (2010).

o Tests of Likelihood Ratio Ordering
Carolan and Tebbs (2005), Beare and Moon (2013).
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Other Examples

¢ Study of Convex Identified Sets
Beresteanu & Molinari (2008), Bontemps et al. (2012).

o Tests of Stochastic Dominance
Barret & Donald (2003), Linton et al. (2010).

o Tests of Likelihood Ratio Ordering
Carolan and Tebbs (2005), Beare and Moon (2013).

Key Observation

In all examples ¢ is directionally differentiable whenever it is not fully
differentiable
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General Outline

Question: How much structure does directional differentiability provide?
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General Outline

Question: How much structure does directional differentiability provide?

General Reults

e Delta Method: Mild extension to Shapiro (1991) and Dumbgen (1993).
e Bootstrap Validity: If and only if characterization under Gaussianity.
e Bootstrap Alternative: Underlying logic behind existing approaches.
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General Outline

Question: How much structure does directional differentiability provide?

General Reults

e Delta Method: Mild extension to Shapiro (1991) and Dumbgen (1993).
e Bootstrap Validity: If and only if characterization under Gaussianity.
e Bootstrap Alternative: Underlying logic behind existing approaches.

Inference

e Local Size Control: Guaranteed by subadditivity of derivative.
e Theoretical lllustration: Test of whether 6y belongs to convex set.
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New Applications

e Stochastic Monotonicity: Seo (2015).

e Density Ratio Ordering: Beare and Shi (2015).

e Regression Kink Design: Hansen (2015).

e Transaction Cost Estimation: Jha and Wolak (2015).

o Partially Identified Welfare Changes: Lee and Bhattacharya (2015).

e Derivative Estimation: Hong and Li (2015).
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@ The Delta Method
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Directional Differentiability

Let ¢ : D — E with D and E Banach Spaces with norms || - ||p and || - ||z-

Then ¢ is directionally differentiable

- ||¢(9+tnh ) — o(0)

n— 0o tn

— dp(h)]e =0

for every sequence t,, | 0
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Directional Differentiability

Let ¢ : D — E with D and E Banach Spaces with norms || - ||p and || - ||z-

Then ¢ is directionally differentiable in the Hadamard sense

1. ¢(9 + tnhn) - Cf)(())
im ||

n— oo tn

— dp(h)]e =0

for every sequence t,, | 0 and h,, — h
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Directional Differentiability

Let ¢ : D — E with D and E Banach Spaces with norms || - ||p and || - ||z-

Then ¢ is directionally differentiable in the Hadamard sense tangential to Dg

hm || ¢(9 + tnhn) - Cf)(())

n— oo tn

— dp(h)]e =0

for every sequence t,, | 0 and h,, — h with h € Dy C .
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Directional Differentiability

Let ¢ : D — E with D and E Banach Spaces with norms || - ||p and || - ||z.

Then ¢ is directionally differentiable in the Hadamard sense tangential to Dg

n— oo tn

— dp(h)]e =0

for every sequence t,, | 0 and h,, — h with h € Dy C .
Comments
o ¢, : Dy — D is necessarily continuous and homogenous of degree one.

e But ¢}, does not need to be linear as required in full differentiability.
e In fact, ¢ is Hadamard differentiable at 6 if and only if ¢;, is linear.
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lHlustration

o(6) = |0
Fully Differentiable at 6, # 0

e Forty > 0: t,; {¢(0 + tnh) — ¢(60)} = h = ¢p (h) = h
e For 6, < 0: t;l{(b(eo + tnh> — (b(eo)} =—h= (blgo (h =—h
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lHlustration

¢(60) = |0]

Fully Differentiable at 6, # 0
e Forty > 0: t,; {¢(0 + tnh) — ¢(60)} = h = ¢p (h) = h
e For 6y < 0: t;l{(b(eo + tnh> — (b(eo)} =—h= (blgo (h =—h

Directionally Differentiable at 6, = 0

e For b > 0: ;' {¢(60 + tnh) — ¢(00)} = t;," {0+ t,h — 0} = ¢ (h) = h
e For h < 0:t,;'{¢(00 + tnh) — ¢(00)} = £, {0 — h — 0} = ¢}, (h) = —h
Putting them together: At 6y = 0, ¢y (h) = |h[forall h € R
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Example 1 (cont)

Recall = (), 0)) € R?, and ¢(0) = max{#V),#(>)}. Then we have:

o (h) = hU") if 61 £ ()
ST Y max{hM, h@}  if gD =@

for every h = (h(V), h(?))" € R? and where j* = arg max;c 2y 017).

Comments
e ¢, is always continuous and homogeneous of degree one.
e ¢ is fully differentiable except when 6 is such that (1) = #(2),
e ¢}, is linear except when @ is such that 6() = (2.
e Here D =R? E =R and Dy = R2.
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Example 2 (cont)

Recall 0 € ((F), (0(f) = E[Y f(Z)]) and ¢(0) = sup;c 0(f). Then:

¢y(h) = sup h(f)

fev=(0)

for every continuous h : 7 — R and where U z(6) = argmax e 0(f).

Comments

e ¢ is fully differentiable except when ¥ ~(0) is not a singleton.
e ¢, is linear except when ¥ (0) is not a singleton.
e Here D = (>*(F),E =R, and Dy = C(F).
= Concept of Tangential Directional Hadamard differentiability needed.
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Delta Method

Assumptions (D)

(i) 0, : {X;}"_, — D and for some r,, 1 00, rn{f — 60} = Go.
(i) ¢ : D — E is Hadamard directionally differentiable at 6, tangential to Dy.
(iii) Gy is tight and P(Gq € Dg) = 1.

Discussion
e D(i) The underlying data {X,}7, need not be i.i.d.
e D(ii) As in Example 2, it can be useful to allow Dy # D.
e D(iii) Limiting law must concentrate on tangential set Dy.

Note: Requirements completely analogous to standard Delta method.
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Delta Method

Theorem (Shapiro, Dumbgen) If Assumption (D) holds, then it follows that

ra{¢(6) — 9(60)} ¢, (Go)
Addendum If in addition ¢, can be continuously extended to I, then

r7z{¢(én) - ¢(90)} = (rb/«% (rn{é” - 90}) + OP(l)

Comments
¢ Directional differentiability of ¢ only assumed at 6.
Conditions of addendum required for ¢ (rn{f, — 6o}) to make sense.
Automatically satisfied if Dy is closed under || - ||p.
Can be used to recover asymptotic distribution in all examples.
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Proof Intuition

Step 1: Let ¢,, = 1/r,, which satisfies ¢,, | 0 since r,, T co. Then we have

Tn{(b( n) — ¢(0o)} = —{QS(QO +itp X 7"n{én —00}) — ¢(6o)}
~ (15?90 (Tn{én —to})

Step 2: Since ¢; : D — E is continuous, use continuous mapping theorem

B (ralfn — 00}) 2 b, (Go)
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Proof Intuition

Step 1: Let ¢,, = 1/r,, which satisfies ¢,, | 0 since r,, T co. Then we have

Tn{(b( n) — ¢(0o)} = j{qb(eo +itp X 7"n{én —00}) — ¢(6o)}
~ (15?90 (Tn{én —to})

Step 2: Since ¢; : D — E is continuous, use continuous mapping theorem

B (ralfn — 00}) 2 b, (Go)

Key Observation
Linearity of ¢j,  is irrelevant in the original proof of the Delta method.
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@® The Bootstrap
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Bootstrap Setup

Problem: How can we estimate the limiting distribution for inference?

What we know
o If bootstrap “works” for 6,, and ¢ is differentiable = it “works” for ¢(6,,).
e Examples where it fails when ¢ is not differentiable.
e Takeaway: Delta method generalizes, but not bootstrap consistency.
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Bootstrap Setup

Problem: How can we estimate the limiting distribution for inference?

What we know
o If bootstrap “works” for 6,, and ¢ is differentiable = it “works” for ¢(6,,).
e Examples where it fails when ¢ is not differentiable.
e Takeaway: Delta method generalizes, but not bootstrap consistency.

Questions
e Does the bootstrap always fail when ¢ is not differentiable?
o When is bootstrap consistency for 6,, inherited by ¢(6,,)?

Next: Formalize the general setup in order to answer these questions.
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Bootstrap Setup

For Banach space A with norm || - || a, denote bounded Lipschitz functions
BLi(A)={f: A = R:sup|f(a)l <1and |f(a) = flaz)| < [lor — asfla}
ac

For laws L, and L, we measure distance by the bounded Lipschitz metric

dBL(Ll,LQ = sup |/f dL1 /f dL2

feEBL1(A)

Comments
e Largest discrepancy in expectations assigned to functions in BL;(A).
e Metrizes weak convergence. Key in showing validity of critical values.
¢ Bootstrap consistency < distance measured by dg, is 0,(1).
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Bootstrap Setup

Informally: Assume the “bootstrapped” version §: “works” for original 6,,.

Assumptions (B)
@iy 67 : {X;, Wi}, — D with {W;}7~_, independent of {X;}7_,.
(1) supsepr o) [ELf (rad0; — 02 1) {Xi}1] = E[f(Go)l| = 0p(1).

Discussion
¢ B(i) Includes nonparametric, Bayesian, block, and weighted bootstrap.
e B(ii) Law of r,, {6 — 6,,} conditional on data is consistent for G.
e Also need mild (asymptotic) measurability requirements.
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Necessary and Sufficient

Theorem Suppose Gy is a Gaussian measure and Assumptions (D), (B),
and regularity conditions hold. Then, ¢ : D, — E is (fully) Hadamard
differentiable at 6, € D, tangential to the support of Gy if and only if

sup |E[f(ra{0(8;) — () DX} o] — ELf(¢5,(Go))]| = 0,(1)

fEBL;(E)
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Necessary and Sufficient

Theorem Suppose Gy is a Gaussian measure and Assumptions (D), (B),
and regularity conditions hold. Then, ¢ : D, — E is (fully) Hadamard
differentiable at 6, € D, tangential to the support of Gy if and only if

sup |E[f(ra{0(8;) — () DX} o] — ELf(¢5,(Go))]| = 0,(1)

fEBL1(E)

Key Implication: If the bootstrap works for ¢(én) and Gy is Gaussian

= ¢, must be linear = ¢ (Go) must be Gaussian

Corollary Suppose Gy is Gaussian and previous assumptions hold. Then:

If the limiting distribution of ¢(6,,) is not Gaussian, then the bootstrap fails
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

rad{#(0,) — #(6n)}
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

ra{6(05) — 6(0,)}
=1 {0(0}) — ¢(00)} — ru{d(0n) — $(00)}
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

ra{6(05) — 6(0,)}
=1, {0(0%) — ¢(60)} — rn{d(0,) — ¢(60)}
= ¢, (rnf{0 — 00}) — B, (ra{fn — 00}) + 0p(1)
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

rn{(0}) — 6(0n)}
=rn{0(0;) — ¢(00)} — rn{d(0n) — 6(60)}
= G, (r {05 — 00}) — &, (rn{0n — 00}) + 0p(1)
= @, (ru {0 — 00} + 100 — 00}) — D, (ra{fn — 00}) + 0,(1)
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

rn{(0}) — 6(0n)}
=rn{0(0;) — ¢(00)} — rn{d(0n) — 6(60)}
= G, (r {05 — 00}) — &, (rn{0n — 00}) + 0p(1)
= @, (ru {0 — 00} + 100 — 00}) — D, (ra{fn — 00}) + 0,(1)

Step 2: Study the last expression conditional on {X;}!" ; to conclude that

G (10 — 0} + 1 {0n — 00}) — B, (rn{0n — 60})
N————
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

rn{(0}) — 6(0n)}
=rn{0(0;) — ¢(00)} — rn{d(0n) — 6(60)}
= G, (r {05 — 00}) — &, (rn{0n — 00}) + 0p(1)
= @, (ru {0 — 00} + 100 — 00}) — D, (ra{fn — 00}) + 0,(1)

Step 2: Study the last expression conditional on {X;}!" ; to conclude that

G (10 — 0} + 1 {0n — 00}) — B, (rn{0n — 60})
N————

= Gy —h —h
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Proof Intuition

Step 1: Use the Delta method to conclude that unconditionally on { X} ;:

rn{(0}) — 6(0n)}
=rn{0(0;) — ¢(00)} — rn{d(0n) — 6(60)}
= G, (r {05 — 00}) — &, (rn{0n — 00}) + 0p(1)
= @, (ru {0 — 00} + 100 — 00}) — D, (ra{fn — 00}) + 0,(1)

Step 2: Study the last expression conditional on {X;}!" ; to conclude that

(Z%JO (Tn{é: - én} +rn{én —6o}) — ¢§70 (Tn{én —0o})
—_——
£> Go —h —h

= Bootstrap works iff ¢ (Go +h) — ¢ (h) is equal in distribution to ¢} (Go).
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Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any & in support of Gg)

&9 (Go + h) — ¢, (h) < ¢, (Go)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).
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Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any 4 in support of Gg)

&9 (Go + h) — ¢, (h) < ¢, (Go)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose Gy ~ N(0,1), thenforany r >0andt € R

Elexp{it(¢y,(Go + rh) — ¢y, (rh))}] = C(t)
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Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any 4 in support of Gg)
S5 (Go + ) — 6, (h) £ 6, (Go)
Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose Gy ~ N(0,1), thenforany r >0andt € R

Elexp{it(¢p,(Go +rh) — ¢p, (rh))}] = C(t)
= Elexp{itoy, (Go + rh)}] = exp{itrey, (h)}C(t)
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Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any 4 in support of Gg)
69, (Go + h) = 0}, (h) £ 6, (Go)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose Gy ~ N(0,1), thenforany r >0andt € R

Elexp{it(¢p,(Go +rh) — ¢p, (rh))}] = C(t)
= Elexp{itoy, (Go + rh)}] = exp{itrey, (h)}C(t)

~ \/% /exp{ité’oo(U)} eXP{_%(U —rh)*}du = exp{itrég, (h)}C(t)
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Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any 4 in support of Gg)

&9 (Go + h) — ¢, (h) < ¢, (Go)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose Gy ~ N(0,1), thenforany r >0andt € R

Elexp{it(¢p,(Go +rh) — ¢p, (rh))}] = C(t)
= Elexp{itoy, (Go + rh)}] = exp{itrey, (h)}C(t)

~ \/% /exp{ité’oo(U)} eXP{_%(U —rh)*}du = exp{itrég, (h)}C(t)

= Differentiate both sides w.r.t r to conclude ¢;, () is linear in h.

Santos. November 9, 2016. ucsD



Proof Intuition

So Far: Bootstrap consistency is equivalent to (for any 4 in support of Gg)

&9 (Go + h) — ¢, (h) < ¢, (Go)

Note: Have not used Gaussianity. Similar implication to Dumbgen (1993).

Step 3: (Scalar Case) Suppose Gy ~ N(0,1), thenforany r >0andt € R

Elexp{it(¢p,(Go +rh) — ¢p, (rh))}] = C(t)
= Elexp{itoy, (Go + rh)}] = exp{itrey, (h)}C(t)

1 v _1 _ 2 _ - /
= —m /exp{zt%0 (u)} exp{ 2(u rh)}du = exp{itrep (h)}C(1)
= Differentiate both sides w.r.t r to conclude ¢’90(h) is linear in h.
Step 4: Generalize scalar case by arguing as above through dual space E*.
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® Bootstrap Alternative
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Bootstrap Alternative

ra{(82) — 6(00)} 5 ¥, (Go)

Intuition
e We need to estimate ¢, and the law of Gy.

e By assumption r,,{0* — 6,,} provides an estimate of the law of Gy.
e Bootstrap fails for ¢(6,,) because it does not estimate by, appropriately.

Fix: For an estimator ¢/, of g, use the law conditional on {X;}7, of
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Bootstrap Alternative

Assumption (E) For every compact K C Dy and € > 0, ¢/, : D — E satisfies

. . i Y _
timlimsup P sup [|6/,(h) 6, (h) s > ¢) =0

n— oo heK?d

Discussion
e J-enlargement needed because r,, {6 — 6,,} may not belong to .
e & can sometimes be dropped — i.e. sup; ¢ || ¢/, (k) — bp, (R)||le = 0p(1).
o If ¢/, is “smooth”, then ¢/, (h) = ¢} (h) + 0,(1) for all h € Dy suffices.

Takeaway: In all examples additional structure makes (E) easy to verify.
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Bootstrap Alternative

Theorem If Assumptions (B), (D), (E), and regularity conditions hold, then

sup |E[f (¢, (rud0; — 6u})){Xi}ioa] = E[f (05, (Go)]l = 0,(1)

feBL1(E)

Comments

e The law of ¢/, ({6 — 6,,}) conditional {X;}"_, consistent for ?9,(Go).
e Implies consistency of critical values under standard conditions.
e The fact that ¢, is a directional derivative is never exploited ...

= More generally, a method for estimating distributions of the form

T(Go)
where Gy is tight and 7 : D — E is an unknown continuous map.
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Example 1 (cont)

Recall 6 = (E[X V], E[X?)])" and for j* = arg max;c(y 2, E[X )] we had:

o [h if E[X(1] # E[X®)
b, (h) = maX{h(l),h(Q)} if E[X(l)] =E[X®] "

Let j* = argmax;c(; o3 X ) and letting x,, 1 oo satisfy «,,/y/n | 0 define

P B [ G s
" max{hM AP} if XD - X@)| < g, °

Comments
e ¢/, trivially satisfies Assumption (E).
e ¢/ (vn{X* — X}) reduces to generalized moment selection.
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Example 2 (cont)

Recall 0y(f) = E[Y f(Z)] and for ¥ z(0) = arg max e 6(f) we had that:

¢y(h) = sup h(f)

fev=(0)

Suppose ¥ x(6,) satisfies dz (V5 (00), ¥ (00), | - |12(z)) = 0p(1), and let

Op(h) = sup h(f)

f€¥F(6o)

Comments
e Easy to show ¢/, satisfies Assumption (E).

o ¢ (/n{67 —0,}) becomes special case of Andrews & Shi (2013).
e Also: Linton et al. (2010), Kaido (2013), Beare & Shi (2013).
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@ Inference Implications
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Testing Implications

Hy : ¢(90) <0 Hy (25(90) >0

Proposed Test

o Employ /n¢(6,,) as a test statistic.
e Unfeasible: c;_, the 1 — a quantile of ¢ (Go) (pointwise in P).

e Use ¢_,: the 1 — a quantile of ¢/, (v/n{0 — 0, }) conditional {X;}"_,.
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Testing Implications

Hy : (]5(90) <0 Hy (25(90) >0

Proposed Test

e Employ \/n¢(6,,) as a test statistic.
e Unfeasible: c;_, the 1 — a quantile of ¢ (Go) (pointwise in P).

e Use ¢_,: the 1 — a quantile of ¢/, (v/n{0 — 0, }) conditional {X;}"_,.

Problem: So far analysis is pointwise in underlying distribution of {X;}I ;.

Goal: Examine when pointwise in P justified test can control size locally.
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Local Setup

Assumption (L)
(i) {X;}~,isiid. and X; ~ P € P.
(i) 6o = 0(P) for some known function 6 : P — D.
(iii) 6, is a regular estimator for 6(P).
(iv) P,x € Pand @._, P, is contiguous to @, _, P.
For ¢’ : A — D linear, ||7,{0(P,.x) — 0(P)} — 0'(N)|lp = o(1).

—_—_ =

(v

Discussion
e L(i) Imposed for notational simplicity.

o L(iii) Allows us to focus on irregularity generated by ¢.
e L(v) Closely related to L(iii) - van der Vaart (1991).
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Example 1 Intuition

Hp : max{E[XM], E[Xx®]} <0 Hy : max{E[XY], E[X®]} >0
But local to P with 0 (P) = ) (P) = 0, set 0(P,,.\) = 0(P) + \/\/n to get

V() 2 max{GL" + A P + A2
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Example 1 Intuition

Hp : max{E[XM], E[Xx®]} <0 Hy : max{E[XY], E[X®]} >0
But local to P with 0 (P) = ) (P) = 0, set 0(P,,.\) = 0(P) + \/\/n to get

Vig(9,) B3 max{G§"” + AV, G +A®)}
<max{G{"”,G{?} (whenever X < 0)
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Example 1 Intuition

Hp : max{E[XM], E[Xx®]} <0 Hy : max{E[XY], E[X®]} >0
But local to P with 0 (P) = ) (P) = 0, set 0(P,,.\) = 0(P) + \/\/n to get

Vné(0,) 3 max{G{" + A0 G{P + A3
<max{G{"”,G{?} (whenever X < 0)

Key Properties
e Local paths in null first order stochastically dominated by pointwise limit.
e G(P) is regular at P = no need to worry about it.
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Subadditivity

max{G{"” + A\, G{¥ + A@} < max{G", G} + max{AM), A®}
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Subadditivity

max{G(l) + AW G(Q) +2@} < max{((}(l) 82)} +max{ A\ A\?}

Dy (Go + ) < ¢, (Go) + (V)
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Subadditivity

max{G(l) + AW G(Q) +2@} < max{((}(l) 82)} +max{ A\ A\?}

Dy (Go + ) < ¢, (Go) + (V)

< 9 (Go)
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Subadditivity

max{G(l) + AW G(Q) +2@} < max{((}(l) (()2)} +max{ A\ A\?}

P9, (Go + A) < ¢y, (Go) + b, (N)
< g, (Go)
Comments
e Key Condition: ¢j (h1 + ha) < ¢y, (h1) + ¢, (he) (subadditivity).

e Andrews & Soares (2010), Andrews & Shi (2013), Linton et. al (2010).
e Equivalent to ¢ being convex due to homogeneity of degree one.
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Size Control

Theorem If Assumptions (D), (B), (E), (L) hold, and P, = ®"_, P, », then
nlgrolo Pn(\/ﬁﬁb(én) > 1) = P((j)lgo (Go +0'(N) > c1-a)
If in addition ¢, : Dy — R is subadditive and ¢(6(F,,»)) < 0 for all n, then

lim sup Pn(\/ﬁ(b(én) > él—a) <a

n— oo

Comments

e Key condition: subadditivity (of ¢;_) and regularity (of 0,,)
e However, size control result is only local to P € P.
e But reassuring if subadditivity and regularity satisfied at all P € P.
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@® Convex Set Membership
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Hypothesis

Let H be Hilbert space with norm || - ||g. For A C H closed and convex, test

Hy:0p €A Hy:0p¢ A
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Hypothesis

Let H be Hilbert space with norm || - ||g. For A C H closed and convex, test

Hy:0p €A Hy:0p¢ A

Define the projection operator IT, : H — A which for each 6 € H satisfies

0 — A0l = ﬁlelf\ 10 — hllm

= Express original hypothesis in terms of the distance between 6, and A

HO : ||090 — HA90||H =0 H1 : ||90 — HAQQHH >0
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Test Statistic

As a test statistic employ the (scaled) distance between 6,, and the set A
rnHén - HAén”H
Map To Our Framework
e Let ¢ : H — R be given by ¢(0) = [|0 — TTA0||5.

e Hypotheses are then Hy : ¢(0y) = 0 and H; : ¢(6p) > 0.
o Test statistic is 7, ¢(6,,).

Key Steps
¢ Directional Differentiability of ¢ — Zaranotello (1971)
o Geometry enables easy construction of ¢/,

Takeaway: Very different problems can easily be handled in a unified way.
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Examples

Suppose X € R? and consider the moment inequalities testing problem

Here H = RY, A is the negative orthant (A = {h € R% : h < 0}), and

Nl

d
6(0) = 170 — 0 = {

K2

(Blx )2}
1

Comments

e Trivial extension to include weighting in projection.
e Applies to other # and A— Wolak (1988), Kitamura & Stoye (2013).
e Also: First order stochastic dominance, conditional moment inequalites.
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Examples

Let (Y, D, X) € R x R x R% and consider the quantile regression model

(bo(r), B(r)) =arg_min  Elp, (Y — Db~ Z'B)]

Standard result to get convergence of \/n{f,, — 6y} for any ¢ > 0 in space

1—e¢
H={0:[1—d > R:(0.00x <00} (61, 00)s = / 0, (r)0s () dr

Comments
e Test for monotonicity of quantile treatment effects, correct specification.
Other shape restrictions: concavity, convexity, homogeneity ...
Similar: pricing kernel puzzle finds lack of predicted monotonicity.
Also Related: Arellano et. al (2012), Escanciano & Zhu (2013).

Santos. November 9, 2016. ucsD



Directional Differentiability

Definition For any 6 € H, the tangent cone of A at 4 is given by:

Ty = | ofA — 1016}

a>0

3 _ 3

2.5 ¢t 2.5

~
N

2 r 2

1.5 ¢ 1.5

1f 1
0.5t 0.5
OfF--=-=======-~~ 0
—05 | —0.5

—2.5 =2 -1.5 =1 -0.5 -15-1-05 0 05 1 1.5 2 25
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Directional Differentiability

Zaranotello (1971) The directional derivative of I at any 6 € A equals I,
HA91 — HAao ~ HT90 (61 - 90)

3

2.5 F 011

2+ 6o

1.5

1F

01 — 6o
0.5

OF--=-=-=-=-—=—=——=—=——- - -

—0.5

—-2.5 -2 —-1.5 -1 -0.5

Santos. November 9, 2016. ucsD



Asymptotic Distribution

Proposition Let A C H be convex, and rn{én — 0o} L Go. If 6y € A, then

A 5 I
nll0n — Habn |z = |Go — Iz, Gollu
—_— T ———

Tn{(b( n) — (00)} ¢«/90 (Go)

Comments

e Quantiles of |Gy ||m always provide valid (conservative?) critical values.
e If A is a cone, then quantiles of |Gy — II\Gy ||y also valid.
e Possible to study projection I, 6y, and allow nonconvex A and 6y ¢ A.

Next: For inference, still need to construct suitable estimator ¢/, for Do, -

Santos. November 9, 2016. ucsD



Bootstrap Alternative

o (h) = sup |h — 7, hlln
OCA:||0—TIA0, ||l<en

Intuition: Use the approximation by local “least favorable” tangent cone.
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Bootstrap Alternative

O (h) = sup 1P — Iz, bl
BEA:0—T1rd, [l <cn

Intuition: Use the approximation by local “least favorable” tangent cone.

Proposition Let A be convex, r, {6, — 6o} L G, ¢, (h) = |h — Tz, hllm-
(A) Ife, L 0ane,r, T oo, then <Z>;l satisfies Assumption (E).
(B) #p, : H — R satisfies ¢j (h1 + ha) < ¢y, (h1) + ¢p, (he) (subadditive)

Comments

e Part (A) allows us to employ ¢/, (r,, {6 — 6,,}) if bootstrap works for 4,,.
e Part (B) implies local size control whenever 6, is regular at P.
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Simulation Evidence

A
Y =—D A
NG xU+Z2'8+U

Where

D € {0,1} with P(D =1) = 1.

o Z=(1,Z0, 2@ with (zM, Z2)) ~ N(0, I
U ~ UJ0,1] is unobserved, and 3 = (0, %7 %)’.
D, Z,and U are all mutually independent.

~
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Simulation Evidence

A
Y=—D A
NG xU+Z'p+U

Where

e De{0,1} with P(D=1) = 3.

o 7=(1,Z0,Z@) with (Zz1M), Z2)) ~ N(0, I).
U ~ UJ0,1] is unobserved, and 5 = (0, L, L)
D, Z,and U are all mutually independent.

It is then immediate that for 6y (7) = r% and 5(r) = (7, 75, %)’ we have

P(Y < Dby(1)+ Z'8(1)|D, Z) =1
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Simulation Evidence

Goal Test whether 6y(7) (=~ QTE) is weakly increasing in .

Steps Using five thousand replications

Compute quantile regression coefficient 6,, on grid {0.2,0.225, ..., 0.8}.
Obtain 1,6, — projection onto monotone functions A.

Compute two hundred bootstrap estimators of 6% on same grid.

For each 6% obtain ¢/, (r,{6% — 0,,}) (needs 11,0, and e,).

Evaluate
e Sensitivity to choice of ¢, = Cn" with C' € {0.01,1} and € {3, 1}.
e Accuracy of local approximation for different A (6y(7) = Aﬁ).

Santos. November 9, 2016. ucsD



Table: Empirical Size

n = 200
Bandwidth o = 0.1 o = 0.05 .
C K A= A=1 A=2 A =0 1 A =2 A =0 A=1 A =2
1 1/4 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000
1 113 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000
0.01 1/4 0.082 0.053 0.035 0.035 0.023 0.013 0.007 0.002 0.001
0.01 13 0.087 0.059 0.042 0.038 0.025 0.015 0.007 0.002 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001
n = 500
Bandwidth a =0.1 a = 0.05 a = 0.01
C K A =0 A=1 A =2 A =10 A=1 A =2 A =10 A=1 A =72
1 1/4 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000
1 13 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000
0.01 1/4 0.096 0.058 0.038 0.047 0.025 0.015 0.009 0.005 0.001
0.01 13 0.103 0.065 0.045 0.049 0.030 0.017 0.009 0.005 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001
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Table: Local Power of 0.05 Level Test

Bandwidth n = 200

C K A= —1 A= -2 A= -3 A= —4 A = —5 A= —6 A= -7 A= —8
1 1/4 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000

1 1/3 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000
0.01 1/4 0.078 0.172 0.330 0.558 0.783 0.934 0.989 1.000
0.01 1/3 0.081 0.174 0.331 0.559 0.783 0.934 0.989 1.000
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992
Bandwidth n = 500

C I A= —1 A= -2 A= —3 A= —4 A= —5 A= —6 A= —7 A= -8
1 1/4 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997

1 1/3 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997
0.01 1/4 0.094 0.201 0.370 0.583 0.791 0.925 0.981 0.997
0.01 1/3 0.098 0.204 0.371 0.585 0.791 0.925 0.981 0.997
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992
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Conclusion

Delta method
e Preserved under directional derivative (Shapiro 1991, Dumbgen 1993).
e Small extension to show it holds in probability.

Bootstrap
¢ Differentiability necessary and sufficient when G, is Gaussian.
e Argued popular approaches implicitly estimate ¢, .

Inference
e Local size control guaranteed by subadditivity and regularity.
e Application to testing if 8y belongs to convex set.

= Problems can be analyzed by studying G, and ¢;_ (as in Delta method).
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