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Abstract

This paper proposes a consistent bootstrap procedure for the test statistic of Santos (2007).

The derived bootstrap allows for inference in partially identified nonparametric instrumental

variables models. It can be employed to test whether at least one element of the identified set

satisfies a conjectured restriction. Possible applications include testing for shape restrictions

such as economies of scale and scope as well as building confidence regions for functionals

on the identified set, such as the level of the function and its derivative at a point. The

obtained procedure is also applicable to a wider class of models defined by a conditional

moment restriction, as in Newey & Powell (2003) and Ai & Chen (2003).
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1 Introduction

A vast number of estimation problems in economics do not fit the classical regression framework,

but are instead of the form:

Y = θ0(W ) + ε (1)

where E[ε|W ] 6= 0, and hence the regressor W is considered to be endogenous. In both theoretical

and empirical work, the analysis of (1) has proceeded by employing an instrument Z satisfying the

exogeneity condition E[ε|Z] = 0. The unknown structural parameter θ0(w) can then be character-

ized as one of the solutions to the integral equation:

E[Y − θ(W )|Z] = 0 (2)

Therefore, the model is nonparametrically identified if and only if the solution to (2) is unique. As

originally discussed in Newey & Powell (2003), however, said requirement necessitates an instrument

satisfying conditions far stronger than the usual covariance restrictions of the parametric model.

Instead of imposing the strong assumptions required for identification, it is possible to study

nonparametric instrumental variables as a partially identified model; see Manski (1990, 2003).

Hence, rather than requiring a unique solution to equation (2), we examine the set of solutions.

Referred to as the identified set, we denote these solutions by:

ΘIV
0 = {θ(w) ∈ Θ : E[Y − θ(W )|Z] = 0} (3)

Santos (2007) develops a family of test statistics for the null hypothesis that a conjectured restriction

is satisfied by at least one of the elements in ΘIV
0 . These tests can be employed to build confidence

regions for functionals of identifiable parameters, as proposed in Romano & Shaikh (2006) elaborat-

ing on Imbens & Manski (2004). Such confidence regions Cn(1−α) for functionals f(θ) : ΘIV
0 → <m

satisfy the coverage requirement:

inf
θ(w)∈ΘIV

0

lim
n→∞

P (f(θ) ∈ Cn(1− α)) = 1− α (4)

This procedure is applicable to a wide range of functionals including the level of a function and its

derivatives at a point. We emphasize that if the model is actually identified, then the hypothesis

test reduces to whether the true model satisfies the conjectured restriction. Confidence intervals

such as (4) are then for the functional applied to θ0(w).

The contribution of the present paper is to establish the almost sure consistency of a bootstrap

procedure for the family of test statistics proposed in Santos (2007). When identification is not
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attained, the limiting distribution of said statistics is nonstandard and thus the bootstrap provides

a valuable tool for performing inference. The bootstrap method derived in this paper actually allows

for inference in a larger class of models than (1). In particular, it permits inference on the set of

solutions to models of the form:

E[m(X, θ)|Z] = 0 (5)

where m(x, θ) : <dx × Θ → < is known and θ(x) belongs to some nonparametric set Θ. Under

identification, these models have been studied by Newey & Powell (2003) who establish consistency

of a nonparametric estimator, and Ai & Chen (2003) who construct efficient asymptotically normal

estimators for semiparametric specifications.

In related work, Bugni (2008) and Canay (2008) establish the consistency of bootstrap proce-

dures for parametric partially identified models defined by moment inequalities. To the best of our

knowledge, the present bootstrap results are the first to be applicable to inference in nonparametric

partially identified models. Additional work on nonparametric instrumental variables under the

assumption of identification includes Newey, Powell & Vella (1999), Darolles, Florens & Renault

(2003), Blundell, Chen & Kristensen (2004), Hall & Horowitz (2005), Horowitz (2006, 2007) and

Gagliardini & Scaillet (2007a, 2007b). These models have also been studied without requiring iden-

tification in Imbens & Newey (2006), Severini & Tripathi (2006, 2007) Schennach, Chalak & White

(2007) and Santos (2008).

The remainder of the paper is organized as follows. Section 2 reviews the test statistic in Santos

(2007), as the design of the bootstrap procedure is particular to that setting. Section 3 develops

the bootstrap methodology and establishes its almost sure consistency. Section 4 briefly concludes.

All proofs are contained in the appendix.

2 The Test Statistic

This section introduces the general testing framework and briefly reviews the principal result in

Santos (2007), which will be necessary for the development of the bootstrap procedure.

2.1 General Setup

In order to establish the consistency of the bootstrap, it will be important to ensure certain statis-

tics behave uniformly over the parameter space Θ. For this reason we require Θ to be compact.
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Compactness can be attained by imposing bounds on the higher order derivatives of the func-

tions under consideration, see for example Gallant & Nychka (1987). Let X ∈ <dx and define

λ to be a dx dimensional vector of nonnegative integers. In addition, define |λ| =
∑dx

i=1 λi and

let Dλθ(x) = ∂|λ|θ(x)/∂xλ1
1 . . . ∂x

λdx
dx

. For m, m0 and δ0 positive integers satisfying m > dx/2,

δ0 > dx/2, (dx/m0 + dx/δ0) < 1/2 and dx/2 < δ < δ0 define the norms:

||θ||s =

 ∑
|λ|≤m+m0

∫ [
Dλθ(x)

]2
(1 + x′x)δ0dx


1
2

||θ||cδ = max
|λ|≤m0

sup
x
|Dλθ(x)|(1 + x′x)δ (6)

We will restrict the parameter space to be the set of functions that are bounded in the norm || · ||s,

Θ = {θ(x) : ||θ||s ≤ B} (7)

As noted by Gallant & Nychka (1987), all θ(x) ∈ Θ are also uniformly bounded under || · ||cδ. Hence,

all such functions have derivatives up to order m0 uniformly bounded. In our analysis we will not

consider all solutions to model (5), but instead only those solutions that are sufficiently smooth.

Accordingly, we define the identified set to be:

Θ0 = {θ(x) ∈ Θ : E[m(X, θ)|Z] = 0} (8)

The type of hypothesis test we will focus on, is of whether at least one element of Θ0 satisfies a

conjectured restriction. Formally, for any set of functions R that is closed under || · ||cδ we will be

able to test:

H0 : Θ0 ∩R 6= ∅ H1 : Θ0 ∩R = ∅ (9)

Because the norm || · ||cδ is very strong, R being closed under it is a weak requirement. For example,

R can be the set of weak monotonic or concave functions, as well as the set of production functions

reflecting economies of scale or scope. Through test inversion, hypotheses like (9) can also be used

to construct confidence regions for functionals that are continuous under || · ||cδ, such as the value

of a function and its derivative at a point. See Santos (2007) for a detailed discussion.

2.2 Testing Strategy and Assumptions

Under the definition of Θ and the requirement that R be closed under || · ||cδ, it is possible to show

that Θ0 ∩R 6= ∅ if and only if:

min
θ(x)∈Θ∩R

E [m(X, θ)E[m(X, θ)|Z]fZ(Z)] = 0 (10)
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Employing the characterization in (10) is considerably easier than utilizing (9), because the former

does not depend on Θ0, which is of course unknown. The construction of the test statistic for (9)

then proceeds in two steps.

I. Fix θ(x) ∈ Θ and derive a test statistic Tn(θ) for the null hypothesis H0 : E[m(X, θ)|Z] = 0,

or equivalently, for the null hypothesis H0 : E [m(X, θ)E[m(X, θ)|Z]fZ(Z)] = 0.

II. Let Θj be a sieve approximating Θ. Then, following (10), test H0 : Θ0 ∩ R 6= ∅ by using the

statistic In(R) = minθ(x)∈Θj∩R Tn(θ).

The intuition behind this procedure is straightforward. Once θ(x) ∈ Θ has been fixed, testing

whether θ(x) ∈ Θ0 is equivalent to the nonparametric specification test H0 : E[m(X, θ)|Z] = 0.

This is a well studied testing problem with a variety of available test statistics that have a known

asymptotic distribution if θ(x) ∈ Θ0, but diverge to infinity if θ(x) /∈ Θ0. If Θ0 ∩R = ∅, then when

computing In(R) we will minimize Tn(θ) over values for which it diverges to infinity. Hence, In(R)

will diverge to infinity as well. On the other hand, if Θ0 ∩R 6= ∅, then the minimum value of Tn(θ)

over Θ ∩R will be attained in a neighborhood of Θ0 ∩R, as Tn(θ) diverges to infinity for all other

values. Utilizing the limiting distribution of Tn(θ) when θ(x) ∈ Θ0, it is then possible to find the

asymptotic distribution of In(R).

For Step I, testing H0 : E[m(X, θ)|Z] = 0 for a fixed θ(x) ∈ Θ, we employ the following

test-statistic studied in Zheng (1996):

Tn(θ) =
2

(n− 1)h
dz
2

n∑
i=2

∑
j<i

K

(
zi − zj
h

)
m(xi, θ)m(xj, θ) (11)

where Z ∈ <dz , K(·) is a kernel with properties to be specified in the assumptions, and h is the

bandwidth. Accordingly, for Step II we define the test statistic:

In(R) = min
θ(x)∈Θj∩R

Tn(θ) (12)

When computing In(R) we employ a parametric sieve Θj because minimizing over the nonparametric

set of functions Θ ∩R might prove unfeasible.

The following assumptions are sufficient for obtaining the asymptotic distribution of In(R).

Assumption 1: (i) {xi, zi}ni=1 are i.i.d. with X ∈ <dx and Z ∈ <dz ; (ii) Z is continuously

distributed with density fZ(z); (iii) fZ(z) is continuous and bounded; (iv) R is closed under || · ||cδ.

Assumption 2: (i) All derivatives up to order k of (E[m(X, θ)|z])jfZ(z) are bounded uniformly in

θ(x) ∈ Θ and 1 ≤ j ≤ 2; (ii) The functions m(x, θ) have envelope F (x) with E[F j(X)|z] bounded
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and continuous for 1 ≤ j ≤ ū; (iii) For every θ1(x), θ2(x) ∈ Θ, |m(x, θ1)−m(x, θ2)| ≤ G(x)||θ1−θ2||∞
with E[Gj(X)|z] bounded and continuous for 1 ≤ j ≤ ū; (iv) ū ≥ 4.

Assumption 3: (i) The kernel function K(·) : <dz → < is symmetric of order bkc − 1; (ii) The

bandwidth satisfies h → 0 and nhdz → ∞ and nh
dz
2

+bkc → 0; (iii) For some l ≤ bkc,
√
nhl → ∞

and nh
dz+l

(
1− (m0+δ0)dx

2m0δ0

)
→ 0; (iv) The sieve {Θj} ⊆ Θ are closed under the norm || · ||∞ and

supΘ∩R infΘj∩R ||θ − θj||∞ = o((nh
dz
2 )−1).

Assumptions 1(i)-(iii) describe the sampling process, while Assumption 1(iv) is necessary to

ensure that (10) holds if and only if Θ0 ∩ R 6= ∅. Assumptions 2(ii)-(iv) specify the regularity

conditions for m(x, θ). Assumption 2(ii) and 2(iv) implies moments up to ū of supΘ |m(X, θ)| exist,

while the Lipschitz requirement in Assumption 2(iii) enables us to control the uniform behavior of

the empirical process over the class of functions F = {m(x, θ) : θ ∈ Θ}. Assumptions 2(i) and

3(i)-(iii) in turn guarantee that the biases present in nonparametric estimation vanish at the correct

rates. Assumption 3(iv) requires the sieve {Θj ∩ R} to be able to approximate Θ ∩ R uniformly

well under || · ||∞. For testing global restrictions such as monotonicity or concavity, particular sieves

such as shape preserving splines need to be employed. See Chen (2006) for examples.

2.3 Asymptotic Distribution

We now describe the asymptotic distribution of the statistics Tn(θ) and In(R), defined in (11) and

(12) respectively. Zheng (1996) proposes a consistent test of functional form in nonlinear regression

models. Once θ(x) ∈ Θ is fixed, testing the null hypothesis H0 : E[m(X, θ)|Z] = 0 is then a special

case of the testing problem in Zheng (1996). The proof of Lemma 2.1, therefore follows readily from

his results.

Lemma 2.1. If Assumptions 1(i)-(ii), 2(ii) and 3(i)-(ii) hold and θ(x) ∈ Θ0, then

Tn(θ)
L−→ N(0, σ2(θ))

where σ2(θ) = 2
[∫
K2(u)du

]
E
[
(E[m2(X, θ)|Z])

2
fZ(Z)

]
. Furthermore, if θ(x) /∈ Θ0, then

Tn(θ)
p−→ +∞

The assumptions used to establish Lemma 2.1 are stronger than those in Zheng (1996). They are,

however, necessary to study the uniform behavior of Tn(θ) on Θ rather than at just one particular

function θ(x) ∈ Θ. These assumptions allow us to establish Theorem 2.1, which is the main result

in Santos (2007).
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Theorem 2.1. If Assumptions 1(i)-(iv), 2(i)-(iv) and 3(i)-(iv) hold and Θ0 ∩R 6= ∅, then

In(R)
L−→ min

θ(x)∈Θ0∩R
G(θ)

where G(θ) is a Gaussian process in L∞(Θ0). Under the same assumptions, if Θ0 ∩R = ∅, then

In(R)
p−→∞

The space L∞(Θ0) consists of all bounded functionals f(θ) : Θ0 → <. See Chapter 1.5 in van der

Vaart and Wellner (1996) for a detailed discussion of stochastic processes defined on these spaces.

If the model is identified, then Θ0 is a singleton. The Gaussian process G(θ) from Theorem 2.1 is

consequently defined at a single point and hence it is just a univariate normally distributed random

variable. On the other hand, when the model is not identified and Θ0∩R is not a singleton, Theorem

2.1 implies the asymptotic distribution is nonstandard. For this reason the bootstrap results of the

present paper are very useful for inference.

3 Bootstrap Consistency

Li & Wang (1998) derive the consistency in probability of a bootstrap procedure for the test-statistic

of Zheng (1996). We build off their results to show the almost sure consistency of a wild bootstrap

for the statistic Tn(θ) that works uniformly in Θ. This result can then be employed to obtain an

almost sure consistent bootstrap for the statistic In(R).

Throughout this section we will denote wi = (zi, xi) and let Wn be the σ−field generated by

{wi}ni=1. We also define L∗ to be the law of a random variable conditional on Wn and denote for

any random variable V , E∗[V ] = E[V |Wn]. All bootstrap consistency results obtained in this paper

are almost surely in the possible sample realizations {wi}ni=1.

3.1 Bootstrap Procedure for Tn(θ)

If θ(x) ∈ Θ0, then E[m(X, θ)|Z] = 0 implies that the U-Statistic Tn(θ) is degenerate of order one.

In contrast, when θ(x) /∈ Θ0, Tn(θ) is no longer degenerate for the bandwidth h sufficiently small.

Regular bootstrap procedures are often inconsistent for degenerate U-Statistics. Arcones & Gine

(1992) show that the key to restoring bootstrap consistency is to ensure the degeneracy of the

bootstrap statistic conditional on the sample.
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Li & Wang (1998) impose degeneracy through the wild bootstrap. In particular, define a random

variable U with the following distribution:

P

(
U = −

√
5− 1

2

)
=

√
5 + 1

2
√

5
P

(
U =

√
5 + 1

2

)
=

√
5− 1

2
√

5
(13)

To implement the wild bootstrap, we generate a sample {ui}ni=1 distributed according to (13) and

independent of Wn. Employing the sample {ui}ni=1 we then examine the bootstrap statistic:

T ∗n(θ) =
2h

dz
2

n− 1

n∑
i=2

∑
j<i

K

(
zi − zj
h

)
m∗(xi, θ)m

∗(xj, θ) m∗(xi, θ) = m(xi, θ)ui (14)

Under Assumptions stronger than Li & Wang (1998) we modify their result to show the almost

surely consistency of the bootstrap instead of in probability.

Lemma 3.1. If Assumptions 1(i)-(iii), 2(ii)-(iii) and 3(i)-(ii) hold with ū ≥ 10, then it follows

that for every θ(x) ∈ Θ,

T ∗n(θ)
L∗−→ N(0, σ2(θ)) a.s.

where σ2(θ) = 2
[∫
K2(u)du

]
E
[
(E[m2(X, θ)|Z])

2
fZ(Z)

]
.

Lemma 3.1 is an inmediate consequence of the properties of the multiplier random variable U .

Since E[U ] = 0 and the sample {ui}ni=1 is i.i.d. and independent of Wn, it follows that T ∗n(θ) is a

degenerate U-Statistic of order one under L∗. A martingale central limit theorem, as in Hall (1984),

enables us to establish the asymptotic normality of T ∗n(θ) under L∗. Furthermore, since E[U2] = 1,

the asymptotic variance of T ∗n(θ) is the same as that of Tn(θ) when θ(x) ∈ Θ0. Thus, as both Tn(θ)

and T ∗n(θ) are asymptotically normally distributed with the same variance under their respective

laws, the consistency of the bootstrap is implied. This result is analogous to the multiplier central

limit theorem, see Chapter 2.9 in van der Vaart & Wellner (1996).

3.2 Bootstrap Procedure for In(R)

The test statistic Tn(θ) is degenerate of order one if θ(x) ∈ Θ0 and is non-degenerate otherwise. As

a result, Tn(θ) diverges to infinity when θ(x) /∈ Θ0 because in this case Tn(θ) is not only improperly

centered but its variance diverges to infinity as well. In contrast, the wild bootstrap procedure

imposes degeneracy on T ∗n(θ). Therefore, the bootstrap statistic T ∗n(θ) is degenerate of order one

under L∗ for all θ(x) ∈ Θ. As a result, Lemma 3.1 establishes T ∗n(θ) is conditionally asymptotically

normally distributed for all θ(x) ∈ Θ instead of only for θ(x) ∈ Θ0.
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In Lemma 3.2 we refine the result of Lemma 3.1. The bootstrap statistic T ∗n(θ) not only converges

in law to a normal distribution, but it does so uniformly in θ(x) ∈ Θ. Considered as a process on

L∞(Θ), the bootstrap statistic T ∗n(θ) converges in law to a Gaussian process. Furthermore, the

limiting Gaussian process has the same covariance structure on L∞(Θ0) as G(θ) from Theorem 2.1.

Lemma 3.2. If Assumptions 1(i)-(iii), 2(ii)-(iii) and 3(i)-(ii) hold with ū ≥ 10, then

T ∗n(θ)
L∗−→ Gb(θ) a.s.

where Gb(θ) is a Gaussian process on L∞(Θ) that agrees with G(θ) from Theorem 2.1 on L∞(Θ0).

While T ∗n(θ) converges in law to the correct process on L∞(Θ0), the fact that it also converges

in law for all θ(x) /∈ Θ0 presents a problem. The asymptotic distribution of the original test

statistic In(R) depends crucially on the fact that Tn(θ) diverges to infinity for all θ(x) /∈ Θ0.

When calculating In(R), the minimum has to be attained in a shrinking neighborhood of Θ0 since

Tn(θ) is only well behaved for θ(x) ∈ Θ0. Unfortunately, because T ∗n(θ) is asymptotically normally

distributed for all θ(x) ∈ Θ, the above argument no longer applies. It is possible to show through

the continuous mapping theorem that the direct analogue to In(R) has the following asymptotic

distribution:

min
θ(x)∈Θj∩R

T ∗n(θ)
L∗−→ min

θ(x)∈Θ∩R
Gb(θ) a.s. (15)

where Gb(θ) is the Gaussian process in Lemma 3.2. Because Θ0 ⊆ Θ and Gb(θ) agrees with G(θ)

on L∞(Θ0), calculating critical values from the bootstrap distribution of minθ(x)∈Θj∩R T
∗
n(θ) would

yield a potentially severely conservative procedure.

In order to remedy this problem, we require an indicator for whether θ(x) ∈ Θ0 or not. Asymp-

totically we can then examine the minimum of the process T ∗n(θ) over Θ0∩R only instead of Θ∩R.

A natural candidate for such indicator is Tn(θ) itself. In particular we will employ

n−rTn(θ)

for 0 < r < 1/2. When θ(x) ∈ Θ0, Tn(θ) is asymptotically normally distributed. Hence, under

the appropriate moment conditions, setting r > 0 implies n−rTn(θ)
as−→ 0. On the other hand,

if θ(x) /∈ Θ0, then Tn(θ) is no longer degenerate and its standard deviation is of order O(
√
n).

Therefore, if r < 1/2, then under the right moment conditions n−rTn(θ)
as−→ ∞. Given these

properties of n−rTn(θ), we define the relevant bootstrap statistic for In(R) to be:

I∗n(R) = min
θ(x)∈Θj∩R

(
n−rTn(θ) + T ∗n(θ)

)
(16)
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Intuitively, since n−rTn(θ) diverges to infinity for all θ(x) /∈ Θ0, the minimum in (16) must be

attained in a shrinking neighborhood of Θ0∩R. In turn, since the limiting law of the process T ∗n(θ)

agrees with that of Tn(θ) on L∞(Θ0), the law of I∗n(R) is almost sure consistent for that of In(R).

Assumption 4 is sufficient for formalizing this argument.

Assumption 4: (i) (ū, r) satisfy ū ≥ 10, 2rb ū
2
c > 1 and nγ+(1−2r) ū

2 h

(
dz+l− l(m0+δ0)dx

2m0δ0

)
ū
2 → 0 for

some γ > 1 and l ≤ bkc such that n
1
2
−rhl → ∞; (ii) {Θj} ⊆ Θ are closed under || · ||∞ and

supΘ∩R infΘj∩R ||θ − θj||∞ = o((n1−rh
dz
2 )−1).

The parameter ū, defined in Assumption 2(ii), allows us to control the tails of the process Tn(θ)

and thus influences what values of r are permissible in (16). Given these Assumptions we establish

the main result of this paper.

Theorem 3.1. If Assumptions 1(i)-(iv), 2(i)-(iii), 3(i)-(iii), 4(i)-(ii) hold and Θ0 ∩R 6= ∅, then

I∗n(R)
L∗−→ inf

θ(x)∈Θ0∩R
G(θ) a.s.

where G(θ) is a Gaussian process on L∞(Θ0) with the same marginals as in Theorem 2.1. Further-

more, under the same assumptions, if Θ0 ∩R = ∅, then

I∗n(R)
p∗−→∞ a.s.

In Section 3.3 we conclude the theoretical derivations by showing how to use Theorem 3.1 to

obtain the appropriate critical values necessary for inference.

3.3 Implementation of Bootstrap Inference

Theorem 2.1 establishes that under the null hypothesis H0 : Θ0∩R 6= ∅, the asymptotic distribution

of our test statistic In(R) is given by:

In(R)
L−→ min

θ(x)∈Θ0∩R
G(θ) (17)

On the other hand, if Θ0∩R = ∅, then In(R)
p−→∞. Therefore, if the quantiles of (17) were known

it would be straightforward to construct a consistent test for H0 : Θ0 ∩ R with a desired size. In

particular, define:

c1−α = inf

{
x : P

(
min

θ(x)∈Θ0∩R
G(θ) ≤ x

)
≥ 1− α

}
(18)

It is then immediate from Theorem 2.1, that a test that rejects whenever In(R) > c1−α is both

consistent and has size α. While c1−α is unknown, we can estimate it by employing the analogous
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quantile from the bootstrap statistic I∗n(R). Hence, let:

ĉ1−α = inf {x : P ∗ (I∗n(R) ≤ x) ≥ 1− α} (19)

The bootstrap quantile can be obtained analytically since the probability law L∗ is, conditional

on the sample, generated according to (13). Alternatively, ĉ1−α can be easily obtained through

simulation, as outlined in Steps 1-3.

Step 1: Generate a sample {ui}ni=1 with U distributed according to (13).

Step 2: Use the sample {ui}ni=1 to compute I∗n(R).

Step 3: Repeat Steps 1-2 S times to obtain S statistics I∗n(R). The S sample 1 − α quantile is

then consistent for ĉ1−α as the number of simulations S goes to infinity.

In Theorem 3.2 we establish that conducting the test using the critical value ĉ1−α instead of

c1−α still allows us to control the size and remain consistent.

Theorem 3.2. If Assumptions 1(i)-(iv), 2(i)-(iii), 3(i)-(iii), 4(i)-(ii) hold and Θ0 ∩R 6= ∅, then

lim
n→∞

P (In(R) ≤ ĉ1−α) = 1− α

Furthermore, under the same assumptions, if Θ0 ∩R = ∅, then it follows that

lim
n→∞

P (In(R) > ĉ1−α) = 1

The ability to control the size by employing ĉ1−α follows readily from the almost sure consistency

of the bootstrap, see for example Beran (1984). The consistency of a test based on the bootstrap is

due to the different rates at which I∗n(R) and In(R) diverge to infinity. When Θ0∩R = ∅, it follows

from Theorems 2.1 and 3.1 that:

I∗n(R) ≡ inf
Θj∩R

(
n−rTn(θ) + T ∗n(θ)

) p∗−→∞ a.s. In(R) ≡ inf
Θj∩R

Tn(θ)
p−→∞ (20)

By Lemma 3.2, however, T ∗n(θ) converges in law to a tight Gaussian process almost surely. Therefore,

the divergence of I∗n(R) is exclusively caused by n−rTn(θ) diverging to infinity uniformly on Θ∩R.

Because In(R) diverges to infinity due to Tn(θ) as well, r > 0 implies I∗n(R) eventually falls behind

In(R). In particular, we show in the appendix that:

P ∗(I∗n(R) < In(R))
as−→ 1 , (21)

which establishes the consistency of the test based on the bootstrap critical value ĉ1−α.
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4 Conclusion

Nonparametric identification of instrumental variables models can be hard to attain. In this cases

it is still possible to perform inference on the identified set. In Santos (2007) we derive a test

statistic for the null hypothesis that at least one element of the identified set satisfies a conjectured

restriction. Without identification, however, the asymptotic distribution of the test statistic is

nonstandard. The present paper addresses this problem by proposing a bootstrap procedure and

establishing its almost sure consistency. This procedure is also applicable to a wider class of models

including Newey & Powell (2003) and Ai & Chen (2003). Even if the model is identified, the

bootstrap may provide a higher order refinement than an asymptotic approximation. This question

is beyond the scope of this paper, as its demonstration requires obtaining an Edgeworth expansion

for our test statistic. We plan to address this problem in future work.
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APPENDIX A - Notation and Definitions

The proofs of Lemma 2.1 and Theorem 2.1 are omitted from the Appendix and can be found in Santos (2007).

Throughout the Appendix we will let wi = (xi, zi) and define the kernels

Hn(wi, wj , θ) = h−dzK

(
zi − zj
h

)
m(xi, θ)m(xj , θ) H∗n(wi, wj , θ) = h−dzK

(
zi − zj
h

)
m∗(xi, θ)m∗(xj , θ)

Notice that with these definitions, we have

Tn(θ) =
2h

dz
2

(n− 1)

n∑
i=2

∑
j<i

Hn(wi, wj , θ) T ∗n(θ) =
2h

dz
2

(n− 1)

n∑
i=2

∑
j<i

H∗n(wi, wj , θ)

In the following table we include additional notation and definitions that will be introduced and used throughout

the appendix, including many that go beyond the ones already introduced in the main text.

a . b a ≤Mb for some constant M which is universal in the context of the proof

||θ||∞ The sup-norm supx |θ(x)|

||θ||s The norm
{∑
|λ|≤m+m0

∫ [
Dλθ(x)

]2
(1 + x′x)δ0dx

} 1
2

with m > k/2, δ0 > k/2 and (k/m0 + k/δ0) < 1/2

||θ||cδ The norm max|λ|≤m0 supx |Dλθ(x)|(1 + x′x)δ for k/2 < δ < δ0

||θ||L2(X) The norm
(
E[θ2(X)]

) 1
2

ρmn(f, g) The random semimetric
[
n−m

∑
INm

(f(xi1 , . . . , xim )− g(xi1 , . . . , xim ))2
] 1

2

||f ||mn The random norm
[
n−m

∑
Inm

f2(xi1 , . . . , xim )
] 1

2

Hn(wi, wj , θ) The U-Statistic Kernel h−dzK
(
zi−zj
h

)
m(xi, θ)m(xj , θ).

H∗n(wi, wj , θ) The U-Statistic Kernel h−dzK
(
zi−zj
h

)
m∗(xi, θ)m∗(xj , θ).

Inm Set of distinct m-tuples from N observations

m∗(xi, θ) The function m(xi, θ)ui where ui is distributed according to (13).

L∞(Θ) The metric space of bounded functionals on Θ with norm supΘ |F1(θ)− F2(θ)|

N(F , || · ||, ε) Covering numbers of size ε for F under the norm || · ||

N[ ](F , || · ||, ε) Bracketing numbers of size ε for F under the norm || · ||

P-Canonical function A function f(Xm) satisfying E[f(Xm)|Xn] = 0 for all n < m

Tn(θ) The U-Statistic 2h
dz
2

n−1

∑n
i=2

∑
j<iHn(wi, wj , θ).

T ∗n(θ) The U-Statistic 2h
dz
2

n−1

∑n
i=2

∑
j<iH

∗
n(wi, wj , θ).

Xm The random variable consisting of m independent copies of the random variable X

wn The random variables (xn, zn)

APPENDIX B - Proof of Lemma 3.1 and Auxiliary Lemmas .1 and .2

Proof of Lemma 3.1: The proof follows a martingale argument as in Hall (1984). First we define,

Wij ≡ K
(
zi − zj
h

)
Y ∗i ≡ m∗(xi, θ)

i−1∑
j=1

Wijm
∗(xj , θ) (22)

Next, notice that with these definitions, the equality in (23) immediately follows.

T ∗n(θ) =
2h−

dz
2

(n− 1)

n∑
i=2

Y ∗i (23)
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Let Fi denote the σ-field generated by {m∗(X1, θ), . . . ,m∗(Xi, θ)}, conditional on the sample, for 0 ≤ i ≤ n. Then

note that, E∗[Y ∗i |Fi−1] = 0 for all i. Therefore, {Sn =
∑n
i=1 Y

∗
i ,Fi} is a martingale conditional on the sample.

We aim to apply a central limit theorem for martingales. In (24) we derive the conditional variance of Sn, using

E∗[(m∗(xi, θ))2] = m2(xi, θ).

V ∗n ≡
n∑
i=2

E∗[(Y ∗i )2|Fi] =
n∑
i=2

m2(xi, θ)

i−1∑
j=1

Wijm
∗(xj , θ)

2

=
n∑
i=2

m2(xi, θ)
i−1∑
j=1

(m∗(xj , θ))
2
W 2
ij + 2

n∑
i=3

m2(xi, θ)
i−1∑
j=2

∑
k<j

WijWikm
∗(xj , θ)m∗(xk, θ)

≡ V ∗n1 + V ∗n2 (24)

Next, notice that by Lemma .1 result (25) immediately follows.

n−2h−dzV ∗n
p∗−→ σ2(θ)/2 a.s. (25)

In addition, Lemma .2 verifies a Lindenberg-Feller type condition for the martingale {Sn =
∑n
i=1 Y

∗
i ,Fi}, and

therefore Theorem VIII.1.1 in Pollard (1984) establishes (26).

T ∗n(θ) L
∗

−→ N(0, σ2(θ)) a.s. (26)

Which concludes the proof of the Lemma. �

Lemma .1. If Assumptions 1(i)-(iii), 2(ii)-(iii), 3(i)-(ii) with ū ≥ 8, then V ∗n1 and V ∗n2 as in (24), satisfy

n−2h−dzV ∗n1
p∗−→ σ2(θ)/2 a.s. n−2h−dzV ∗n2

p∗−→ 0 a.s.

where σ2(θ) = 2
[∫
K2(u)du

]
E
[(
E[m2(X, θ)|Z]

)2
fZ(Z)

]
.

Proof of Lemma .1: We first study n−2h−dzV ∗n1. Define,

H1
n(wi, wj) = W 2

ijm
2(xi, θ)m2(xj , θ) (27)

Because E∗[(m∗(xi, θ))2] = m2(xi, θ), the equality in (28) then follows.

E∗[V ∗n1] =
n∑
i=2

i−1∑
j=1

H1
n(wi, wj) ≡ Vn1 (28)

Using Vn1 as defined in (28), the first equality in (29) then follows by inspection, while the second equality is implied

by the change of variables u = (zi − zj)/h. For the final equality notice the dominated convergence theorem can be

applied due to Assumption 2(ii).

n−2h−dzE[Vn1] =
(n− 1)h−dz

2n

∫
E[m2(Xi, θ)|zi]K2

(
zi − zj
h

)
E[m2(Xj , θ)|zj ]fZ(zi)fZ(zj)dzidzj

=
(n− 1)

2n

∫
E[m2(Xi, θ)|zi]K2(u)E[m2(Xi, θ)|zi − hu]fZ(zi − hu)fz(zi)dudzi

=
1
2

[∫
K2(u)du

]
E
[(
E[m2(X, θ)|Z]

)2
fZ(Z)

]
+ o(1) (29)

14



Let P in(V1) denote the ith term in the Hoeffding decomposition of 2n−1(n− 1)−1h−dzVn1:

P 0
n(V1) = h−dzE[H1

n] (30)

P 1
n(V1) =

h−dz

n

n∑
i=1

E[H1
n|wi]− E[H1

n] (31)

P 2
n(V1) =

2h−dz

n(n− 1)

n∑
i=2

∑
j<i

H1
n(wi, wj)− E[H1

n|wi]− E[H1
n|wj ] + E[H1

n] (32)

The first equality in (33) then follows by direct calculation. The inequality in (33) is in turn implied by the Cauchy-

Schwarz inequality.

E
[(
P 1
n(V1)

)4]
=

1
n3h4dz

E
[(
E[H1

n|Wi]− E[H1
n]
)4]

+
(n− 1)
2n3h4dz

E
[(
E[H1

n|Wi]− E[H1
n]
)2 (

E[H1
n|Wj ]− E[H1

n]
)2]

≤ 1
n3h4dz

E
[(
E[H1

n|Wi]− E[H1
n]
)4]

+
1

2n2h4dz
E
[(
E[H1

n|Wi]− E[H1
n]
)4]

(33)

In (34) we examine E[(E[H1
n|Wi])j ] for 2j ≤ ū. The first equality in (34) is implied from (27), and the second equality

can be obtained from the change of variables u = (zi − zj)/h. For the final result use the dominated convergence

theorem, which can be applied thanks to Assumption 2(ii).

h−jdzE
[(
E[H1

n|Wi]
)j]

= h−jdz
∫
E[m2j(Xi, θ)|zi]

(∫
K

(
zi − zj
h

)
E[m2(Xj , θ)|zj ]fZ(zj)dzj

)j
fZ(zi)dzi

=
∫
E[m2j(Xi, θ)|zi]

(∫
K(u)E[m2(Xi, θ)|zi − hu]fZ(zi − hu)du

)j
fZ(zi)dzi

= E
[
m2j(X, θ)

(
E[m2(X, θ)|Z]

)j
f jZ

]
+ o(1) (34)

Therefore, combining (33) and (34), we conclude (35).

E
[(
P 1
n(V1)

)4]
= O(n−2) (35)

Hence, using (35) and Chebychev’s inequality we obtain (36).

∞∑
n=1

P (|P 1
n(V1)| > ε) ≤

∞∑
n=1

1
ε4
E
[(
P 1
n(V1)

)4]
<∞ (36)

In turn, (37) then follows by the Borel-Cantelli Lemma.

P 1
n(V1) a.s.−→ 0 (37)

Similarly, in (38), we examine P 2
n(V1). Notice that the degeneracy of P 2

n(V1) implies the first equality in (38). The

first inequality is standard for Hoeffding decompositions and follows from the kernel of the terms in the Hoeffding

decomposition being projections under || · ||L2 of H1
n(wi, wj).

E
[(
P 2
n(V1)

)2]
=

4h−2dz

(n− 1)2n2

n∑
i=2

i−1∑
j=1

E
[(
H1
n(Wi,Wj)− E[H1

n|Wi]− E[H1
n|Wj ] + E[H1

n]
)2]

≤ 2h−2dz

n(n− 1)
E
[(
H1
n(Wi,Wj)

)2]
(38)

Hence, combining (38) with arguments as in (29) we obtain (39). For the second equality, notice that Assumptions

3(ii)-(iii) imply nδ = o(nhdz ) for some δ > 0.

E
[(
P 2
n(V1)

)2]
= O(n2hdz ) = O(n1+δ) (39)
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Hence, arguing as in (36) and (37) it follows that P 2
n(V1) a.s.−→ 0. Combine this result with (28), (29), (37) and

2n−1(n− 1)−1h−dzVn1 =
∑2
i=0 P

i
n(V1) to establish (40).

E∗[V ∗n1] a.s.−→ σ2(θ)/2 (40)

Next, we study E∗[(V ∗n1 − E∗[V ∗n1])2]. In (41), the first equality follows from (28), the second equality from

E∗[(m∗(xi, θ))4] = 2m4(xi, θ) and the third equality by calculation. Denote the resulting terms by V (1)
n1 and V

(2)
n1 .

E∗
[
(V ∗n1 − E∗[V ∗n1])2

]
= E∗


n−1∑
j=1

[
(m∗(xj , θ))2 −m2(xj , θ)

] n∑
i=j+1

m2(xi, θ)W 2
ji

2


=
n−1∑
j=1

m4(xj , θ)

 n∑
i=j+1

m2(xi, θ)W 2
ji

2

=
n−1∑
j=1

m4(xj , θ)
n∑

i=j+1

m4(xi, θ)W 4
ji + 2

n−2∑
j=1

m4(xj , θ)
n−1∑
i=j+1

∑
k>i

m2(xi, θ)m2(xk, θ)W 2
jiW

2
jk

≡ V (1)
n1 + V

(2)
n1 (41)

Next, in (42) the first equality follows from direct calculation, while the second is implied by the change of variables

u = (zi − zj)/h. The final equality is then implied by Assumption 2(ii) which permits the use of the dominated

convergence theorem.

n(n− 1)
hdz

E[V (1)
n1 ] =

h−dz

2

∫
E[m4(Xi, θ)|zi]E[m4(Xj , θ)|zj ]K4

(
zi − zj
h

)
fZ(zi)fZ(zj)dzidzj

=
1
2

∫
E[m4(Xi, θ)|zi]E[m4(Xi, θ)|zi − hu]K4(u)fZ(zi − hu)fZ(zj)dudzi

=
1
2
E
[(
E[m4(Xi, θ)|Zi]

)2
fZ(Z)

] [∫
K4(u)du

]
+ o(1) (42)

Therefore, arguing as in (36), (37) and (39) we conclude (43).

n−4h−2dzV
(1)
n1

a.s.−→ 0 (43)

To examine V (2)
n1 , define the non-symmetric kernel

H̃1
n(wj , wi, wk) = m4(xj , θ)m2(xi, θ)m2(xk, θ)W 2

jiW
2
jk (44)

Hence, by definition the first equality in (45) is implied. Next, notice that since every term in the summation is

positive, V (2)
n1 is smaller than the symmetric U-Statistic obtained in the first inequality in (45). We denote the

resulting expression as Ṽ (2)
n1 .

V
(2)
n1 = 2

n−2∑
j=1

n−1∑
i=j+1

∑
k>i

H̃1
n(wj , wi, wk)

≤ 2
n−2∑
j=1

n−1∑
i=j+1

∑
k>i

H̃1
n(wj , wi, wk) + H̃1

n(wi, wj , wk) + H̃1
n(wk, wj , wi)

≡ Ṽ (2)
n1 (45)

Let P in(Ṽ (2)
1 ) denote the ith term in the Hoeffding decomposition of Ṽ (2)

n1 . Through calculations analogous to (33)

and (38), which we omit for the sake of brevity, it is possible to establish (46).

n−4h−2dzP 0
n(Ṽ (2)

1 ) = O(n−1) n−8h−4dzE[(P 1
n(Ṽ (2)

1 ))2] = O(n−3)

n−8h−4dzE[(P 2
n(Ṽ (2)

1 ))2] = O(n−4h−dz ) n−8h−4dzE[(P 3
n(Ṽ (2)

1 ))2] = O(n−5h−2dz ) (46)
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Hence, arguing as in (36), (37) and (39) we conclude n−4h−2dz Ṽ
(2)
n1

a.s.−→ 0. Therefore, together with (45), (43) and

(41) this result implies (47).

n−4h−2dzE∗
[
(V ∗n1 − E∗[V ∗n1])2

]
a.s.−→ 0 (47)

To conclude, note that (40) and (47) imply n−2h−dzVn1
p∗−→ 0 a.s. as desired.

We now establish the second claim of the Lemma. First note that since the m∗(xi, θ) i.i.d. and E∗[m∗(xi, θ)] = 0

result (48) is implied.

E∗[V ∗n2] = 0 (48)

In (49), we exchange the order of summation in order to obtain the first equality. In turn, the second equality is

implied by E∗[(m∗(xi, θ))2] = m2(xi, θ), while the third equality follows from direct calculation. We denote the

terms in the resulting decomposition as V (1)
n2 and V

(2)
n2 .

E∗
[
(V ∗n2)2

]
= 4E∗


n−1∑
j=2

∑
k<j

m∗(xj , θ)m∗(xk, θ)
n∑

i=j+1

m2(xi, θ)WijWik

2


= 4
n−1∑
j=2

∑
k<j

m2(xj , θ)m2(xk, θ)

 n∑
i=j+1

m2(xi, θ)WijWik

2

= 4
n−1∑
j=2

∑
k<j

m2(xj , θ)m2(xk, θ)

 n∑
i=j+1

m4(xi, θ)W 2
ijW

2
ik + 2

n−1∑
i=j+1

∑
l>i

m2(xi, θ)m2(xl, θ)WijWikWljWlk


≡ V (1)

n2 + V
(2)
n2 (49)

Notice, that V (1)
n2 = 2V (2)

n1 , as defined in (41). As already shown, however, n−4h−2dzV
(2)
n1

a.s.−→ 0, and therefore we

conclude (50).

n−4h−2dzV
(1)
n2

a.s.−→ 0 (50)

To examine, V (2)
n2 , define the non-symmetric kernel

H̃2
n(wj , wk, wi, wl) = m2(xj , θ)m2(xk, θ)m2(xi, θ)m2(xl, θ)|WijWikWljWlk| (51)

Thus, by definition, the first inequality in (52) follows. The second inequality in (52) then follows by H̃2
n(wj , wk, wi, wl) ≥

0. To conclude, notice that the resulting U-Statistic is symmetric in its arguments, and denote it Ṽ (2)
n2 .

|V (2)
n2 | ≤ 8

n−2∑
j=2

∑
k<j

n−1∑
i=j+1

∑
l>i

H̃2
n(wj , wk, wi, wl)

≤ 8
n−2∑
j=2

∑
k<j

n−1∑
i=j+1

∑
l>i

H̃2
n(wj , wk, wi, wl) + H̃2

n(wi, wk, wj , wl) + H̃2
n(wl, wk, wi, wj)

≡ Ṽ (2)
n2 (52)

Let P in(Ṽ (2)
2 ) denote the ith term in the Hoeffding decomposition of Ṽ (2)

n2 . Through calculations analogous to (33)

and (38), which we omit for the sake of brevity, it is possible to establish (53).

n−4h−2dzP 0
n(Ṽ (2)

2 ) = O(hdz ) n−8h−4dzE[(P 1
n(Ṽ (2)

2 ))2] = O(n−1h2dz )

n−8h−4dzE[(P 2
n(Ṽ (2)

2 ))2] = O(n−2hdz ) n−8h−4dzE[(P 3
n(Ṽ (2)

2 ))2] = O(n−3)

n−8h−4dzE[(P 4
n(Ṽ (2)

2 ))2] = O(n−4h−dz ) (53)
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Therefore, arguing as in (36), (37) and (39) we conclude n−4h−2dz Ṽ
(2)
n2

a.s.−→ 0. Together with (52), (50) and (49),

this implies (54).

n−4h−2dzE∗[(V ∗n2)2] a.s.−→ 0 (54)

To conclude, note that (48) and (54) imply n−2h−dzV ∗n2
p∗−→ 0 a.s., which concludes the proof of the Lemma. �

Lemma .2. Let Fi denote the σ−field generated by {m∗(X1, θ), . . . ,m∗(Xi, θ)} conditional on the sample. If As-

sumptions 1(i)-(iii), 2(ii)-(iii) and 3(i)-(ii) hold with ū ≥ 10, then for any ε > 0, Y ∗i as defined in (22) satisfies

n−2h−dz
n∑
i=2

E∗
[
(Y ∗i )21{|Y ∗i | > εnh

dz
2 }|Fi−1

]
p∗−→ 0 a.s.

Proof of Lemma .2: Let S∗i =
∑i−1
j=1Wijm

∗(xj , θ), and note that Y ∗i = m∗(xi, θ)S∗i . Therefore, for any k > 0, the

event |Y ∗i | > εnh
dz
2 implies either |m∗(xi, θ)| > k or k|S∗i | > εnh

dz
2 . Use E∗[(m∗(xi, θ))2] = m2(xi, θ) and S∗i being

independent of m∗(xi, θ) to derive the first inequality in (55). For the second inequality, apply the Cauchy-Schwarz

and Chebychev’s inequalities and notice that E∗[(m∗(xi, θ))4] = 2m4(xi, θ) and E∗[|m∗(xi, θ)|] ≤ |m(xi, θ)|.

1
n2hdz

n∑
i=2

E∗
[
(Y ∗i )21{|Y ∗i | > εnh

dz
2 }
]

≤ 1
n2hdz

n∑
i=2

E∗
[
(S∗i )2(m∗(xi, θ))21{|m∗(xi, θ)| > k}

]
+

1
n2hdz

n∑
i=2

m2(xi, θ)E∗
[
(S∗i )21{k|S∗i | > εnh

dz
2 }
]

≤ 2
n2hdz

√
k

n∑
i=2

|m(xi, θ)|
5
2E∗[(S∗i )2] +

k2

ε2n4h2dz

n∑
i=2

m2(xi, θ)E∗
[
(S∗i )4

]
(55)

We will establish the Lemma by studying the two resulting terms in (55). First note that since E∗[m∗(xi, θ)] = 0 and

E∗[(m∗(xi, θ))2] = m2(xi, θ), after expanding the square the first equality in (56) immediately follows. We denote

the resulting statistic by Ln1.

2
n2hdz

√
k

n∑
i=2

|m(xi, θ)|
5
2E∗[(S∗i )2] =

2
n2hdz

√
k

n∑
i=2

i−1∑
j=1

|m(xi, θ)|
5
2m2(xj , θ)W 2

ij ≡ Ln1 (56)

Similarly, expand the fourth power to obtain the equality in (57) and denote the resulting statistics by L(1)
n2 and L(2)

n2 .

k2

ε2n4h2dz

n∑
i=2

m2(xi, θ)E∗
[
(S∗i )4

]
=

2k2

ε2n4h2dz

n∑
i=2

m2(xi, θ)
i−1∑
j=1

m4(xj , θ)W 4
ij +

2k2

ε2n4h2dz

n∑
i=3

m2(xi, θ)
i−1∑
j=2

∑
k<j

m2(xj , θ)m2(xk, θ)W 2
ijW

2
ik

≡ L(1)
n2 + L

(2)
n2 (57)

Next, proceed as in (45) to see Ln1 is dominated by a symmetric U-Statistic. Then argue as in (29), (33), (37) and

(39) to establish (58).

Ln1
a.s.−→ 1√

k
E
[
E[m2(X, θ)|Z]E[|m(Xi, θ)|

5
2 |Z]fZ(Z)

] [∫
K2(u)du

]
(58)

Next, notice the similarity of L(1)
n2 and L(2)

n2 to V (1)
n1 and V (2)

n1 as defined in (41). By the same arguments that lead to

(47), it is straightforward to establish (59).

L
(1)
n2 + L

(2)
n2

a.s.−→ 0 (59)
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Therefore, since k can be chosen arbitrarily, combining (55), (58) and (59) establishes (60).

1
n2hdz

n∑
i=2

E∗
[
(Y ∗i )21{|Y ∗i | > εnh

dz
2 }
]
a.s.−→ 0 (60)

To conclude, note that (60) and Markov’s inequality imply the desired result. �

APPENDIX C - Proof of Lemma 3.2, Auxiliary Theorems .1, .2 and Auxiliary Lemma .3

Proof of Lemma 3.2: We omit the proof of a multidimensional analogue to Lemma 3.1, which implies convergence

of the finite dimensional distributions of the bootstrap. Also note that as implied by Lemma 2.1 and Lemma 3.1,

the Gaussian processes G(θ) and Gb(θ) have the same marginals on L∞(Θ0). Hence, due to Theorem 1.5.4 and 1.5.7

in van der Vaart & Wellener (1997), it only remains to show a.s. uniform asymptotic equicontinuity in probability

of T ∗n(θ) with respect to the norm || · ||∞. That is, we wish to show that for every ε, η > 0, there exists a δ > 0 such

that (61) holds.

lim sup
n→∞

P ∗

(
sup

||θ1−θ2||∞<δ
|T ∗n(θ1)− T ∗n(θ2)| > ε

)
< η a.s. (61)

To establish this result, we first derive a maximal inequality for the process T ∗n(θ). Define,

aij(θ1, θ2) = h−
dz
2 K

(
zi − zj
h

)
(m(xi, θ1)m(xj , θ1)−m(xi, θ2)m(xj , θ2)) (62)

The first equality in (63) then follows by definition. Next note that the U-Statistics are P∗-canonical and apply

the decoupling inequalities from de la Pena (1992), also Proposition 2.1 in Arcones & Gine (1993), to obtain the

inequality in (63) for {εi}ni=1 i.i.d. rademacher random variables.

E∗

[
sup

||θ1−θ2||∞<δ
|T ∗n(θ1)− T ∗n(θ2)|

]
= E∗

 sup
||θ1−θ2||∞<δ

∣∣∣∣∣∣ 2
n− 1

n∑
i=2

∑
j<i

aij(θ1, θ2)uiuj

∣∣∣∣∣∣


. E∗

 sup
||θ1−θ2||∞<δ

∣∣∣∣∣∣ 1
n− 1

n∑
i=2

∑
j<i

aij(θ1, θ2)uiujεiεj

∣∣∣∣∣∣
 (63)

Define the random semimetrics:

(ρ̃∗2n(θ1, θ2))2 =
2

n(n− 1)

n∑
i=2

∑
j<i

a2
ij(θ1, θ2)u2

iu
2
j (ρ̃2n(θ1, θ2))2 =

2
n(n− 1)

n∑
i=2

∑
j<i

a2
ij(θ1, θ2) (64)

Let Eε[·] denote the expectation over the rademacher random variables. In addition, define the class of functions

Θδ = {θ1(x)− θ2(x) : ||θ1 − θ2||∞ < δ}. The inequality in (65) then follows by applying Propositions 2.2 and 2.6 in

Arcones & Gine (1993), where D∗n is the diameter of Θδ under ρ̃∗2n(θ1, θ2).

Eε

 sup
||θ1−θ2||∞<δ

∣∣∣∣∣∣ 1
n− 1

n∑
i=2

∑
j<i

aij(θ1, θ2)uiujεiεj

∣∣∣∣∣∣
 . ∫ D∗n

0

logN(Θδ, ρ̃
∗
2n, ε)dε (65)

Combining (63) and (65) yields the first inequality in (66). Furthermore, since U2 ≤ 3, the definitions in (64) imply

ρ̃∗(θ1, θ2) ≤ 3ρ̃(θ1, θ2). Hence, the second inequality in (66) follows for Dn the diameter of Θδ under ρ̃2n(θ1, θ2).

E∗

[
sup

||θ1−θ2||∞<δ
|T ∗n(θ1)− T ∗n(θ2)|

]
. E∗

[∫ D∗n

0

logN(Θδ, ρ̃
∗
2n, ε)dε

]

≤
∫ 3Dn

0

logN(Θδ, 3ρ̃2n, ε)dε (66)
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In addition, notice that Lemma .3 implies the inequality in (67) for any θ1, θ2 ∈ Θδ.

ρ̃2n(θ1, θ2) ≤ h
dz
2 ||Jn||2n||θ1 − θ2||∞ (67)

Furthermore, if θ1 ∈ Θδ, then it is of the form θ1(x) = θ11(x) − θ12(x) with ||θ11 − θ12||∞ < δ. Hence, since

Dn = supθ1,θ2∈Θδ
ρ̃(θ1, θ2), (67) implies Dn ≤ 2δh

dz
2 ||Jn||2n. Thus, the first inequality in (68) follows by (67). For

the second inequality in (68) observe that for any norm || · ||, it follows that N(Θδ, || · ||, ε) ≤ N2(Θ, || · ||, ε/2). In

turn the third inequality is implied by the change of variables u = ε/6h
dz
2 ||Jn||2n.

∫ 3Dn

0

logN(Θδ, 3ρ̃2n, ε)dε ≤
∫ 6δh

dz
2 ||Jn||2n

0

logN(Θδ, || · ||∞, ε/3h
dz
2 ||Jn||2n)dε

≤ 2
∫ 6δh

dz
2 ||Jn||2n

0

logN(Θ, || · ||∞, ε/6h
dz
2 ||Jn||2n)dε

≤ 6h
dz
2 ||Jn||2n

∫ δ

0

logN(Θ, || · ||∞, u)du (68)

Let P in(J2) denote the ith term in the Hoeffding decomposition of the U-Statistic ||Jn||22nhdz . The first equality

in (69) then follows by direct calculation. Furthermore, the arguments in (80) imply that if 0 ≤ j ≤ ū/2, then

E[(E[J2
n|Wi])j ]hjdz = O(1). Together with Lemma .3 this implies the second equality in (69).

E
[(
P 1
n(J2)

)4]
=
h4dz

n3
E
[(
E[J2

n|Wi]− E[J2
n]
)4]

+
h4dz (n− 1)

2n3

(
E
[(
E[J2

n|Wi]− E[J2
n]
)2])2

= O(n3) +O(n2) (69)

Therefore, utilizing the Borel-Cantelli Lemma as in (36) and (37) and employing result (69) establishes (70).

P 1
n(J2) a.s.−→ 0 (70)

We now examine P 2
n(J2). The first equality and inequality in (71) follow by direct calculation. In turn, the second

equality in (71) follows by Lemma .3 and the same arguments as in (69).

E
[(
P 2
n(J2)

)2]
=

2
n(n− 1)

h2dzE
[(
J2
n(Wi,Wj)− E[J2

n|Wi]− E[J2
n|Wj ] + E[J2

n]
)2]

≤ 32h2dz

n(n− 1)

[
E[J4

n(Wi,Wj)] + 2E
[(
E[J2

n|Wi]
)2]

+
(
E[J2

n]
)2]

= O(hdzn2) +O(n2) +O(n2) (71)

Next notice that Assumptions 3(ii)-(iii) imply nδ = o(nhdz ) for some δ > 0. Hence, by (69) E
[(
P 2
n(J2)

)2] = O(n1+δ)

for some δ > 0. Applying the Borel Cantelli Lemma as in as in (36) and (37) therefore establishes (72).

P 2
n(J2) a.s.−→ 0 (72)

Using the Hoeffding decomposition of ||J2
n||22nhdz in turn implies the first equality in (73). The inequality in (73) the

holds almost surely for n sufficiently large as a result of (70), (71) and (81).

hdz ||Jn||22n = hdzE[J2
n] +

2∑
i=1

P in(J2) ≤ 2
[∫

K2(u)du
] [
E[F 2(X)E[G2(X)|Z]fZ(Z)]

]
a.s. (73)

To conclude, use Markov’s inequality, (66) and (68) to establish the first inequality in (74). The second inequality

then holds almost surely for some M > 0 due to result (73). In turn, the first equality is implied by Theorem .4 in
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Santos (2007), while the final result is due to (m0 + δ0)dx/(m0δ0) < 1.

lim
δ↓0

lim sup
n→∞

P ∗

(
sup

||θ1−θ2||∞<δ
|T ∗n(θ1)− T ∗n(θ2)| > ε

)
. lim

δ↓0
lim sup

n→∞

h
dz
2

ε
||Jn||2n

∫ δ

0

logN(Θ, || · ||∞, u)du

≤ lim
δ↓0

M

∫ δ

0

logN(Θ, || · ||∞, u)du a.s.

= lim
δ↓0

M

∫ δ

0

u−
(m0+δ0)dx

m0δ0 du

= 0 (74)

Result (74) implies T ∗n(θ) is a.s. uniformly asymptotic equicontinuous which establishes the Lemma. �

Theorem .1. Let F be a set of P canonical symmetric functions with envelope F and ||F ||Lp(Xm) < ∞. Define

Inm to be the set of distinct m-tuples from a sample of size n, Umn (f) = n−m
∑
Inm
f(xi1 , . . . , xim) and Dn to be the

diameter of F under ρmn. Then there exists a constant K depending only on m and p such that:

E

[(
sup
f,g∈F

n
m
2 |Umn (f)− Umn (g)|

)p]
≤ KE

[(∫ Dn

0

[logN(F , ρmn, ε)]
m
2 dε

)p]

Proof of Theorem .1: This result follows arguments similar to Theorem 3.2 in Arcones & Gine (1994). The

constants C, C ′ may change from line to line throughout the proof, but they always denote constants dependent only

on m and p. The case p = 1 is shown in Arcones & Gine (1993), so we assume p > 1. First we use a results from

de la Pena (1992), Proposition 2.1 in Arcones & Gine (1993), to derive that for F a class of P-canonical, symmetric

functions with envelope F satisfying ||F ||Lp(Xm) <∞ we have:

E

[
sup
f,g∈F

(
n
m
2 |Umn (f)− Umn (g)|

)p]
= E

 sup
f,g∈F

n−m2
∣∣∣∣∣∣
∑
Inm

f(xi1 , . . . , xim)− g(xi1 , . . . , xim)

∣∣∣∣∣∣
p

≤ CE

 sup
f,g∈F

n−m2
∣∣∣∣∣∣
∑
Inm

εi1 . . . εim(f(xi1 , . . . , xim)− g(xi1 , . . . , xim))

∣∣∣∣∣∣
p (75)

where {εi}ni=1 are i.i.d. Rademacher random variables independent of {Xi}ni=1. Condition on {Xi}ni=1 and let Eε[·]

denote the expectation over {εi}ni=1. Let Ũmn (f) = n−
m
2
∑
Inm
εi1 . . . εimf(xi1 , . . . , xim). By Proposition 2.2 in Arcones

& Gine (1993), originally in Borell (1979), we have for any 1 < q < p <∞:(
Eε[|Ũmn (f)|p]

) 1
p ≤

(
p− 1
q − 1

)m
2 (

Eε[|Ũmn (f)|q]
) 1
q

(76)

Hence, using Holder’s inequality and (76) for the first and second inequalities in (77) respectively, we conclude:

Eε[|Ũmn (f)|p] = Eε

[
|Ũmn (f)| 12 |Ũmn (f)|

2p−1
2

]
≤
(
Eε

[
|Ũmn (f)|

]) 1
2
(
Eε

[
|Ũmn (f)|2p−1

]) 1
2

≤ C
(
Eε

[
|Ũmn (f)|

]) 1
2
(
Eε

[
|Ũmn (f)|p

]) 2p−1
2p

(77)

Applying (77), we obtain the first inequality in (78). The second inequality is derived in Theorem .2 in Santos (2007)

following Arcones & Gine (1993).

Eε

[
sup
f,g∈F

∣∣∣Ũmn (f − g)
∣∣∣p] ≤ C (Eε [ sup

f,g∈F

∣∣∣Ũmn (f − g)
∣∣∣])p ≤ C ′(∫ Dn

0

[logN(F , ρmn(f, g), ε)]
m
2 dε

)p
(78)

To conclude the proof, take the expectation of (78) over {Xi}ni=1 and use (75). �
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Theorem .2. Let F = {ft : t ∈ T} be a class of functions such that |fs(x)− ft(x)| ≤ d(s, t)F (x) for every s and t

and some fixed function F . Then for any norm || · ||,

N[ ](F , || · ||, 2ε||F ||) ≤ N(T, d, ε)

Proof of Theorem .2: Refer to Theorem 2.7.11 in van der Vaart & Wellner. �

Lemma .3. If Assumptions 2(ii)-(iii) and 3(i)-(ii) hold, then there are Jn(wi, wj) such that

|Hn(wi, wj , θ1)−Hn(wi, wj , θ2)| ≤ Jn(wi, wj)||θ1 − θ2||∞

In addition, the expectations E[(E[Jn|Wi])j ] and hdz(j−1)E[Jjn] are all uniformly bounded in n for 1 ≤ j ≤ ū.

Proof of Lemma .3: For the first claim of the Lemma, we use Assumptions 2(ii)-(iii) to obtain the first inequality

in (79) and define the resulting function to be Jn(wi, wj).

|Hn(wi, wj , θ1)−Hn(wi, wj , θ2)| ≤ h−dz
∣∣∣∣K (zi − zjh

)∣∣∣∣ (F (xi)G(xj) + F (xj)G(xi)) ||θ1 − θ2||∞

≡ Jn(wi, wj)||θ1 − θ2||∞ (79)

In (80) we verify E[(E[Jn|Wi])j ] is uniformly bounded in n for 1 ≤ j ≤ ū. The first inequality follows by convexity,

since j ≥ 1, while the second inequality is implied by E[G(Xj)|zj ] and E[F (Xj)|zj ] being bounded. For the first

equality do the change of variables u = (zi − zj)/h, and for the second equality notice we can apply the dominated

convergence theorem due to Assumptions 2(ii)-(iii).

E[(E[Jn|Wi])j ] ≤ 2jE

[(
h−dzE

[∣∣∣∣K (Zi − Zjh

)∣∣∣∣F (Xi)G(Xj)|Wi

])j
+
(
h−dzE

[∣∣∣∣K (Zi − Zjh

)∣∣∣∣F (Xj)G(Xi)|Wi

])j]

. E

[(
h−dzE

[∣∣∣∣K (Zi − Zjh

)∣∣∣∣ |Wi

])j
(F j(Xi) +Gj(Xi))

]

=
∫
E[F j(Xi)|zi]E[Gj(Xi)|zi]

(∫
|K(u)| fZ(zi − hu)du

)j
fZ(zi)dzi

=
[∫
|K(u)|du

]
E[F j(X)E[Gj(X)|Z]f jZ(Z)] + o(1) (80)

For the second claim of the Lemma, we examine hdz(j−1)E[Jjn] in (81). The first inequality follows by convexity since

j ≥ 1, while the first equality is implied by the change of variables u = (zi − zj)/h. For the final equality use that

E[Gj(X)|z] and fZ(z) are bounded to apply the dominated convergence theorem.

hdz(j−1)E[Jjn] ≤ h−dz2jE
[∣∣∣∣Kj

(
Zi − Zj

h

)∣∣∣∣F j(Xi)Gj(Xj)
]

=
∫
|Kj(u)|E[F j(Xi)|zi]E[Gj(Xi)|zi − hu]fZ(zi − hu)fZ(zi)dudzi

=
[∫
|Kj(u)|du

] [
E[F j(X)E[Gj(X)|Z]fZ(Z)]

]
+ o(1) (81)

The resulting expectations in (80) and (81) are finite by Assumptions 2(ii)-(iii), which establishes the Lemma. �
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APPENDIX D - Proof of Theorems 3.1, 3.2, Auxiliary Theorem .3 and Auxiliary Lemma .4

Theorem .3. If Assumptions 1(i)-(iv), 2(i)-(iii), 3(i)-(iii), 4(i) hold and Θ0 ∩R 6= ∅, then

inf
Θ∩R

(
n−rTn(θ) + T ∗n(θ)

) L∗−→ inf
Θ0∩R

G(θ) a.s.

where G(θ) is a Gaussian process on L∞(Θ0) with the same marginals as in Theorem 2.1. Furthermore, under the

same assumptions, if Θ0 ∩R = ∅, then

inf
Θ∩R

(
n−rTn(θ) + T ∗n(θ)

) p∗−→∞ a.s.

Proof of Theorem .3: The strategy of the proof is to show that since the term n−rTn(θ) diverges to infinity

outside a shrinking neighborhood of Θ0, the minimum is asymptotically attained in Θ0. Because in L∞(Θ0), the law

of T ∗n(θ) is consistent for that of G(θ) in Theorem 2.1, the result will follow. With this purpose define:

Θεn
0 = {θ ∈ Θ : E[(E[m(X, θ)|Z])2fZ(Z)] ≤ εn} (82)

where εn ↘ 0 with εn proportional to hl for l ≤ bkc, n 1
2−rhl →∞ and nγ+(1−2r) ū2 h

(
dz+l− l(m0+δ0)dx

2m0δ0

)
ū
2 → 0 for some

γ > 1. Notice this is possible due to Assumption 4(i).

First assume Θ0 ∩R 6= ∅. In this case, we begin by deriving a useful inequality in (83). The left hand side holds by

simple manipulations, while the right hand side is implied by Θεn
0 ⊆ Θ0.

− sup
Θεn0

n−r|Tn(θ)− E[Tn(θ)]|+ inf
Θεn0

n−rE[Tn(θ)] + inf
Θεn0 ∩R

T ∗n(θ)

≤ inf
Θεn0 ∩R

(
n−rTn(θ) + T ∗n(θ)

)
≤ sup

Θ0∩R
n−rTn(θ) + inf

Θ0∩R
T ∗n(θ) (83)

In (84), we examine E[Hn(θ)]. The first equality follows by the change of variables u = (zi− zj)/h, while the second

equality follows by a bkc order Taylor expansion of the integral around h = 0 and the fact that K(u) is a kernel of

order bkc. Differentiation through the integral is permitted due to Assumptions 2(i) and 3(i).∣∣∣E[Hn(θ)]− E
[
(E[m(X, θ)|Z])2

fZ(Z)
]∣∣∣

=
∣∣∣∣∫ K (u)E[m(Xi, θ)|zi − hu]E[m(Xi, θ)|zi]fZ(zi)fZ(zi − hu)dzidu− E

[
(E[m(X, θ)|Z])2

fZ(Z)
]∣∣∣∣

= hbkc ×
∣∣∣∣∫ K(u)E[m(X, θ)|zi](∇bkch E[m(X, θ)|zi − h̃u]fZ(zi − h̃u))fZ(zi)dzidu

∣∣∣∣ (84)

Next, notice that since E[Tn(θ)] = 0 for θ ∈ Θ0, the first inequality in (85) immediately follows. The second

inequality in (85) is then implied by E[Tn(θ)] = h
dz
2 nE[Hn(θ)]. Use (84) to obtain the final result in (85).

0 ≥ inf
Θεn0

n−rE[Tn(θ)] ≥ inf
Θεn0

n1−rh
dz
2 E

[
(E[m(X, θ)|Z])2

fZ(Z)
]

− sup
Θ
n1−rh

dz
2

∣∣∣E[Hn(θ)]− E
[
(E[m(X, θ)|Z])2

fZ(Z)
]∣∣∣ = O(n1−rh

dz
2 +bkc) (85)

Hence, since nh
dz
2 +bkc → 0, the inequalities in (85) imply infΘεn0

E[Tn(θ)] = o(1). Thus, applying Lemma .4 and

inequality (83), we obtain (86).

inf
Θεn0 ∩R

T ∗n(θ) + oas(1) ≤ inf
Θεn0 ∩R

(
n−rTn(θ) + T ∗n(θ)

)
≤ inf

Θ0∩R
T ∗n(θ) + oas(1) (86)
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Next, notice that since Θ0, R and Θεn
0 are closed and Θ is compact under || · ||cδ, as shown in Gallant & Nychka

(1987), the infimums in the left hand side of (87) are attained. The first inequality in (87) is then implied for

θ∗ = arg minΘεn0 ∩R T
∗
n(θ) and θ∗p = arg minΘ0∩R ||θ∗ − θ||cδ. Next we argue ||θ∗ − θp||∞ → 0. For δ > 0, define

Aδ = {θ̃ ∈ Θ : infΘ0∩R ||θ̃ − θ||∞ ≥ δ}, which is compact under || · ||∞. Therefore, by continuity under || · ||∞, the

minimum π∗ = minAδ E
[
(E[m(X, θ)|Z])2fZ(Z)

]
is attained with π∗ > 0. Hence, since Aδ ∩Θεn

0 ∩R = ∅ for εn < π∗

it follows that supθ1∈Θεn0 ∩R infθ2∈Θ0∩R ||θ1 − θ2||∞ < δ when εn < π∗. Therefore, letting δn = ||θp − θ∗||∞ implies

the second inequality in (87).

inf
Θ0∩R

T ∗n(θ)− inf
Θεn0 ∩R

T ∗n(θ) ≤ T ∗n(θp)− T ∗n(θ∗)

≤ sup
||θ1−θ2||∞≤δn

|T ∗n(θ1)− T ∗n(θ2)| (87)

Because the left hand side of (87) is always weakly positive, result (87) and the a.s. asymptotic equicontinuity of

T ∗n(θ) under || · ||∞, established in Lemma 3.2, implies result (88).

inf
Θεn0 ∩R

T ∗n(θ)
p∗−→ inf

Θ0∩R
T ∗n(θ) a.s. (88)

Thus, combining the inequality from (86) and the convergence result in (88) establishes (89).

inf
Θεn0 ∩R

(
n−rTn(θ) + T ∗n(θ)

) p∗−→ inf
Θ0∩R

T ∗n(θ) a.s. (89)

To study the process on (Θεn
0 )c ∩ R, notice that the first inequality in (90) follows by direct calculation. Since

supΘ T
∗
n(θ) = Op∗(1) a.s. by Lemma 3.2, Lemma .4 implies the final result in (90).

inf
(Θεn0 )c∩R

(
n−rTn(θ) + T ∗n(θ)

)
≥ inf

(Θεn0 )c∩R
n−rTn(θ)− sup

Θ
T ∗n(θ)

p∗−→∞ a.s. (90)

To conclude, notice that since infΘ0∩R T
∗
n(θ) = Op∗(1) a.s. by Lemma 3.2, results (89) and (90) establish (91).

inf
Θ∩R

(
n−rTn(θ) + T ∗n(θ)

)
= inf

Θ0∩R
T ∗n(θ) + op∗(1) a.s. (91)

The continuous mapping theorem, result (91) and Lemma 3.2 then establish the first claim of the Theorem.

Now suppose Θ0∩R = ∅. Let π∗ = infΘ∩RE[(E[m(X, θ)|Z])2fZ(Z)]. By compactness of Θ∩R and continuity under

|| · ||∞, the infimum is attained for some θ∗ /∈ Θ0, which in turn implies π∗ > 0. Therefore, Θ ∩ R ⊆ (Θεn
0 )c for εn

small enough. Together with (90), this implies (92).

inf
Θ∩R

(
n−rTn(θ) + T ∗n(θ)

)
≥ inf

(Θεn0 )c∩R

(
n−rTn(θ) + T ∗n(θ)

) p∗−→∞ a.s. (92)

which concludes the proof of the Theorem. �

Proof of Theorem 3.1: Throughout the proof I will use the same notations as in the proof of Theorem .3. We begin

by establishing the first claim. First note that since Θ is compact under || · ||cδ, the different closedness assumptions

imply Θj ∩R and Θ0 ∩R are both compact under || · ||∞. Hence, θ∗ and θ∗p in (93) are well defined.

θ∗ = arg min
Θ0∩R

(
n−rTn(θ) + T ∗n(θ)

)
θ∗p = arg min

Θj∩R
||θ − θ∗||∞ (93)

Furthermore, since θ∗ ∈ Θ0, E[m(X, θ∗)|z] = 0, and therefore by Assumption 2(iii) inequality (94) follows.

E[(E[m(X, θ∗p)|Z])2fZ(Z)] ≤ E[G2(X)fZ(Z)]||θ∗p − θ∗||2∞ (94)
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Next, notice that ||θ∗p − θ∗||∞ = o((n1−rh
dz
2 )−1) and n

1
2−rhl →∞ imply ||θ∗p − θ∗||∞ = o(h

l
2 ). Hence, it follows by

(94), that for n large enough θ∗p ∈ Θεn
0 , for Θεn

0 as defined in (82). In turn, this implies the inequality in (95). The

second result then holds for δn = supΘ∩R infΘj∩R ||θ − θj ||∞ due to (84) and Lemma .4.

n−rTn(θ∗p) ≤ sup
Θεn0

n−r|Tn(θ∗p)− E[Tn(θ∗p)]|+ n−rE[Tn(θ∗p)] = oas(1) +O(n1−rh
dz
2 δ2

n + n1−rh
dz
2 +bkc) (95)

The first inequality in (96) is then implied by (91). In order to obtain the second inequality then employ (95),

n1−rh
dz
2 δ2

n → 0 by Assumption 4(ii) and n1−rh
dz
2 +bkc → 0 by Assumption 4(i).

inf
Θ∩R

(
n−rTn(θ) + T ∗n(θ)

)
− inf

Θj∩R

(
n−rTn(θ) + T ∗n(θ)

)
≥ T ∗n(θ∗)−

(
n−rTn(θ∗p) + T ∗n(θ∗p)

)
+ op∗(1) a.s.

≥ − sup
||θ1−θ2||∞≤δn

|T ∗n(θ1)− T ∗n(θ2)|+ op∗(1) a.s. (96)

Furthermore, since Θj ∩R ⊆ Θ∩R implies infΘ∩R n
−rTn(θ)+T ∗n(θ) ≤ infΘj∩R n

−rTn(θ)+T ∗n(θ), result (97) follows

from (96) and Lemma 3.2.

inf
Θj∩R

n−rTn(θ) + T ∗n(θ)
p∗−→ inf

Θ∩R
n−rTn(θ) + T ∗n(θ) a.s. (97)

Theorem .3 then implies the first claim of the theorem. For the second part, simply note that if Θ0 ∩ R = ∅, then

(98) follows by Theorem .3 and Θj ⊆ Θ.

inf
Θj∩R

n−rTn(θ) + T ∗n(θ) ≥ inf
Θ∩R

n−rTn(θ) + T ∗n(θ)
p∗−→∞ a.s. (98)

Hence concluding the proof of the Theorem. �

Lemma .4. Let Θεn
0 =

{
θ ∈ Θ : E

[
(E[m(X, θ)|Z])2

fZ(Z)
]
≤ εn

}
, where εn = Chl for l ≤ bkc, n 1

2−rhl → ∞ and

nγ+(1−2r) ū2 h

(
dz+l− l(m0+δ0)dx

2m0δ0

)
ū
2 → 0 for some γ > 1. If C is large enough, and Assumptions 1(i)-(iii), 2(i)-(iv),

3(i)-(ii) and 4(i) hold, then:

inf
(Θεn0 )c∩R

n−rTn(θ) a.s.−→∞ sup
Θεn0 ∩R

n−r|Tn(θ)− E[Tn(θ)]| a.s.−→ 0

Proof of Lemma .4: To establish the first result, we define the U-Statistic:

Cn(θ) ≡
(
nh

dz
2

)−1

Tn(θ) =
2

n(n− 1)

n∑
i=2

∑
j<i

Hn(wi, wj , θ) (99)

In addition, let P in(θ) be the ith term in the Hoeffding decomposition of Cn(θ). The inequality in (100) then follows.

inf
(Θεn0 )c∩R

n−rTn(θ) ≥ (nhdz )
1
2

(
n

1
2−r inf

(Θεn0 )c
E[Hn(θ)]− sup

Θ
n

1
2−r|P 1

n(θ)|
)
− sup

Θ
n1−rh

dz
2 |P 2

n(θ)| (100)

Next, define the class Θ̃1
n = {E[Hn(θ)|wi] − E[Hn(θ)] : θ ∈ Θ} and notice that Theorem .1 implies the first

inequality in (101) for Dn the diameter of Θ̃1
n under ρ1n(θ1, θ2). Furthermore, by Lemma .3, |θ̃1(wi) − θ̃2(wi)| ≤

G1n(wi)||θ1−θ2||∞ for any θ̃1, θ̃2 ∈ Θ̃1
n and G1n(wi) = E[Jn|wi]+E[Jn]. The second inequality in (101) then follows

by Theorem .2 and the change of variables u = ε/2||G1n||1n. Theorem 0.4 in Santos (2007) and Dn ≤M ||G1n||1n for

some M not depending on n implies the third result in (101). Use convexity due to ū ≥ 2 to obtain the final result
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in (101).

E

[(
sup
Θ
n

1
2−r|P 1

n(θ)|
)ū]

. n−rūE

[(∫ Dn

0

[logN(Θ̃1
n, ρ1n, ε)]

1
2 dε

)ū]

. n−rūE

||G1n||ū1n

(∫ Dn
||G1n||1n

0

[logN(Θ, || · ||∞, u)]
1
2 du

)ū
. n−rūE

( 1
n

n∑
i=1

(E[Jn|Wi] + E[Jn])2

) ū
2


≤ n−rūE
[
(E[Jn|Wi] + E[Jn])ū

]
(101)

Therefore, using Markov’s inequality we obtain the first inequality in (102). Next, note that Assumption 4(i) and

Lemma .3 imply (E[Jn])ū and E[(E[Jn|Wi])ū] are uniformly bounded in n. Since rū > 1, the final inequality follows.

∞∑
i=1

P

(
sup
Θ
n

1
2−r|P 1

n(θ)| > ε

)
≤ 1
εū

∞∑
i=1

1
nrū

E
[
(E[Jn|Wi] + E[Jn])ū

]
<∞ (102)

In turn, (102) and the Borel-Cantelli Lemma imply (103).

n
1
2−r sup

Θ
|P 1
n(θ)| a.s.−→ 0 (103)

Next, note that the first inequality in (104) follows by the same arguments as in (102). The second inequality is then

implied by convexity, since ū ≥ 2.

E
[(

sup
Θ

n1−rh
dz
2 |P 2

n(θ)|
)2b ū2 c]

. n−r2b
ū
2 chdzb

ū
2 cE


 2
n(n− 1)

n∑
i=2

∑
j<i

(Jn(Wi,Wj) + E[Jn|Wi] + E[Jn|Wj ] + E[Jn])2

b ū2 c


. n−r2b
ū
2 chdzb

ū
2 cE


 2
n(n− 1)

n∑
i=2

∑
j<i

J2
n(Wi,Wj)

b ū2 c
+ n−r2b

ū
2 chdzb

ū
2 cE

[
(E[Jn|Wi] + E[Jn])2

būc
2

]
(104)

Let A be the set of vectors λ = (λ1, . . . , λn(n−1)/2) such that each λk is a nonnegative integer and
∑
k λk = b ū2 c.

The first equality in (105) then follows from the multinomial theorem. Next, let A(l, s) be the set of λ ∈ A such that

l indices have λk 6= 0, and these l pairs are formed by s distinct Wi. Let c(l) be the smallest integer m satisfying

m(m− 1) ≥ 2l, and note that this is the smallest number of distinct Wi that can form l distinct pairs. The second

inequality in (105) then follows by noting A = ∪s,lA(s, l).

E
[( 2
n(n− 1)

n∑
i=2

∑
j<i

J2
n(Wi,Wj)

)b ū2 c]

=
(

2
n(n− 1)

)b ū2 c∑
λ∈A

b ū2 c!
λ1! . . . λn(n−1)/2!

E
[
J2λ1(W2,W1) . . . J2λn(n−1)/2(Wn,Wn−1)

]
.

(
2

n(n− 1)

)b ū2 c b ū2 c∑
l=1

2l∑
s=c(l)

∑
λ∈A(l,s)

E
[
J2λ1(W2,W1) . . . J2λn(n−1)/2(Wn,Wn−1)

]
(105)
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In turn, use the definition of Jn(wi, wj) in (79), the K(u), E[Gj(X)|z] and E[F j(X)|z] being bounded for 1 ≤ j ≤ ū,

to obtain the inequality in (106). Define the resulting expression to be e(λ).

E
[
J2λ1(W2,W1) . . . J2λn(n−1)/2(Wn,Wn−1)

]
. h−2dzb ū2 cE

[
K2λ1

(
Z1 − Z2

h

)
. . .K2λn(n−1)/2

(
Zn − Zn−1

h

)]
≡ h−2dzb ū2 ce(λ) (106)

For each λ let b(λ) be the largest integer k such that h−dzke(λ) = O(1). Note that the value of b(λ) will depend on

how many substitutions of the form u = (zi− zj)/h are appropriate when calculating e(λ). Similarly, we also define:

B(l, s) = min
λ∈A(l,s)

b(λ) (107)

Since the cardinality of A(l, s) is smaller than
(
n
s

)
, using (105), (106) and (107) then implies the first inequality

in (108). Notice, however, that B(l, s + 1) ≤ B(l, s) + 1 and similarly B(l + 1, 2l + 2) ≤ B(l, 2l) + 1. Thus, since

nhdz →∞, the term of largest order in the summation corresponds to (l, s) = (b ū2 c, 2b
ū
2 c). Using B(b ū2 c, 2b

ū
2 c) = b ū2 c

then establishes the second inequality in (108).

E


 2
n(n− 1)

n∑
i=2

∑
j<i

J2
n(Wi,Wj)

b ū2 c
 . ( 2

n(n− 1)

)b ū2 c b ū2 c∑
l=1

2l∑
s=c(l)

O

((
n

s

)
× h−dz(2b ū2 c−B(l,s))

)

. O
(
n−b

ū
2 c
)
×O

(
nb

ū
2 c × h−dz(2b ū2 c−b

ū
2 c)
)

(108)

Hence, since by Lemma .3, (E[Jn])2b ū2 c and E[(E[Jn|Wi])2b ū2 c] are uniformly bounded in probability, combining (104)

and (108) establishes (109).

E
[(

sup
Θ
n1−rh

dz
2 |P 2

n(θ)|
)2b ū2 c]

= O
(
n−2rb ū2 c

)
(109)

Arguing as in (102) and (103) together with 2rb ū2 c > 1 in turn establishes (110).

n1−rh
dz
2 sup

Θ
|P 2
n(θ)| a.s.−→ 0 (110)

Furthermore, it follows that the first inequality in (111) holds for M sufficiently large due to result (84). Next, notice

that εn −Mhbkc ≥ εn/2 by setting the level of εn sufficiently large when εn = hbkc, or trivially when εn = hl with

l < bkc. The final result in (111) then follows by n
1
2−rεn →∞.

n
1
2−r inf

(Θεn0 )c∩R
E[Hn(θ)] ≥ n 1

2−r(εn −Mhbkc)→∞ (111)

Combining (100), (103), (110) and (111) then establishes the first claim of the Lemma.

In order to establish the second claim of the Lemma, we derive a useful inequality in (112) which immediately follows

from the Hoeffding decomposition of (Tn(θ)− E[Tn(θ)]).

sup
Θεn0 ∩R

n−r|Tn(θ)− E[Tn(θ)]| ≤ sup
Θεn0

n1−rh
dz
2 |P 1

n(θ)|+ sup
Θ
n1−rh

dz
2 |P 2

n(θ)| (112)

Next, notice that the first inequality in (113) was already established in (101). For the second inequality use

Theorem 0.4 in Santos (2007), G1n(wi) as defined in the derivation in (101) and let λ = (m0 + δ0)dx/(2m0δ0).

Holder’s inequality in turn implies the third inequality in (113).

E

[(
sup
Θεn0

n1−rh
dz
2 |P 1

n(θ)|

)ū]
. n( 1

2−r)ūh
dz
2 ūE

||G1n||ū1n

(∫ Dn
||G1n||1n

0

[logN(Θ, || · ||∞, u)]
1
2 du

)ū
. n( 1

2−r)ūh
dz
2 ūE

[
Dū(1−λ)
n ||G1n||ūλ1n

]
≤ n( 1

2−r)ūh
dz
2 ū
(
E
[
Dū
n

]1−λ) (
E
[
||G1n||ū1n

])λ (113)
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To examine the right hand side of (113), in (114) we first study E[Dū
n]. The first equality in (114) follows from the

definition of Dn, while the first and second inequalities follows by convexity as ū ≥ 2.

E[Dū
n] = E

 sup
θ1,θ2∈Θεn0

(
1
n

n∑
i=1

(E[Hn(θ1)|wi]− E[Hn(θ1)]− (E[Hn(θ2)|wi]− E[Hn(θ2)])2

) ū
2


≤ 2
ū
2E

sup
Θεn0

(
1
n

n∑
i=1

(E[Hn(θ)|wi]− E[Hn(θ)])2

) ū
2


≤ 2ūE

sup
Θ

∣∣∣∣∣ 1n
n∑
i=1

(E[Hn(θ)|wi]− E[Hn(θ)])2 −Var(E[Hn(θ)|Wi])

∣∣∣∣∣
ū
2
+ 2ū sup

Θεn0

Var(E[Hn(θ)|Wi])
ū
2 (114)

Next, define the function G3n(wi) = 2(E[Jn|wi])2 + 4E[(E[Jn|Wi])2]. Using Lemma .1 and the arguments in (101)

then implies the inequality in (115).

E

sup
Θ

∣∣∣∣∣ 1√
n

n∑
i=1

(E[Hn(θ)|wi]− E[Hn(θ)])2 −Var(E[Hn(θ)|Wi])

∣∣∣∣∣
ū
2
 . E[||G3n||

ū
2
1n] (115)

To control the right hand side of (114) we now examine E(E[Hn(θ)|wi])2] in (116). The first equality follows by

inspection, while the first inequality is implied by Assumption 2(ii) and the change of variables u = (zi− zj)/h. The

final equality then follows by a Taylor expansion of order bkc at h = 0 and Assumptions 2(i) and 3(i).

E[(E[Hn(θ)|wi])2] = h−2dzE

[
E[m2(Xi, θ)|Zi]

(
E

[
K

(
Zi − Zj

h

)
E[m(Xj , θ)|Zj ]

∣∣∣Zi])2
]

.
∫ (∫

K(u)E[m(Xi, θ)|zi − hu]fZ(zi − hu)du
)2

fZ(zi)dzi

= E[(E[m(X, θ)|Z])2f2
Z(Z)] +O(hbkc) (116)

By Lemma .3, E[||G3n||
ū
2
1n is uniformly bounded in n, while (116) implies supΘεn0

Var(E[Hn(θ)|Wi]) = O(εn + hbkc).

Hence, combining (114), (115) and εn = hl with
√
nhl →∞ and l ≤ bkc implies (117).

E[Dū
n] = O(hl

ū
2 ) (117)

Furthermore, notice that Lemma .3 implies E[||G1n||ū1n] is uniformly bounded in n. Therefore, combining results

(113) and (117) we derive the equality in (118).

E

[(
sup
Θεn0

n1−rh
dz
2 |P 1

n(θ)|

)ū]
= O

(
n( 1

2−r)ūh(dz+l(1−λ)) ū2

)
(118)

By Assumption 4(i) there exists a γ > 1 such that nγ+(1−2r) ū2 h

(
dz+l− l(m0+δ0)dx

2m0δ0

)
ū
2 → 0. Therefore, arguing as in

(102) and (103) establishes (119).

sup
Θεn0

n1−rh
dz
2 |P 1

n(θ)| a.s.−→ 0 (119)

Combining results (112), (119) and (110) in turn establishes the second claim of the Lemma. �

Proof of Theorem 3.2: In order to show the first claim we begin by establishing that the law of

min
Θ0∩R

G(θ) (120)

is absolutely continuous with respect to Lebesgue measure. Define, f(ξ) : L∞(Θ0) → < by f(ξ) = −minΘ0∩R ξ(θ)

for ξ(θ) ∈ L∞(Θ0). Notice that f(ξ) is a convex functional, and in addition it is continuous with respect to || · ||∞.
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Furthermore, by tightness, P (f(G(θ)) = −∞) = 0. This verifies the conditions for Theorem 11.1 in Davydov, Lifshits

& Smorodina (1998), which implies the law of −minΘ0∩RG(θ) is absolutely continuous with respect to Lebesgue

measure. Thus, so is the law of minΘ0∩RG(θ). To conclude, note that since

I∗n(R) L
∗

−→ min
Θ0∩R

G(θ) a.s. (121)

by Theorem .3, continuity of the limiting distribution and Theorem 1 in Beran (1984) establish the first claim.

For the second claim notice that the first equality in (122) follows by the definitions of In(R) and I∗n(R), while the

first and second inequalities are implied by simple manipulations and Θj ⊆ Θ.

P ∗(I∗n(R) ≤ In(R)) = P ∗
(

inf
Θj∩R

(
n−rTn(θ) + T ∗n(θ)

)
≤ inf

Θj∩R
Tn(θ)

)
≥ P ∗

(
inf

Θj∩R
n−rTn(θ) + sup

Θj∩R
T ∗n(θ) ≤ inf

Θj∩R
Tn(θ)

)

≥ P ∗
(

sup
Θ
T ∗n(θ) ≤ (1− n−r) inf

Θ∩R
Tn(θ)

)
(122)

Let π∗ = infΘ∩RE[(E[m(X, θ)|Z])2fZ(Z)] and notice that by compactness of Θ ∩ R the infimum is attained. In

turn, Θ0 ∩R = ∅ implies that π∗ > 0. Thus, Θ∩R ⊆ (Θεn
0 )c for εn sufficiently small and Θεn

0 as defined in (82). The

inequality in (123) then follows for n sufficiently large since r > 0. The final result in (123) is implied by Lemma .4.

(1− n−r) inf
Θ∩R

Tn(θ) ≥ n−r inf
(Θεn0 )c

Tn(θ) as−→∞ (123)

By Lemma 3.2, supΘ T
∗
n(θ) = Op∗(1) almost surely, and therefore combining (122) and (123) we conclude (124).

P ∗(I∗n(R) ≤ In(R)) as−→ 1 (124)

Result (124) and the definition of ĉ1−α in turn establish the second claim of the Theorem. �
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