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Instrumental Variables

Y=90(X)+E,

with E[€]X] # O, E[€]Z] = 0 and 6 € ® for some smooth set of functions ©.

Defining 7 : L2(X) — L?%(2Z) by (6) = E[6(X)|Z] we obtain the equation:
E[Y|Z] = T(6) .

Problem is ill posed if:
e T~1 exists but is not continuous (instability).
e E[Y|Z] is not in the image of T (nonexistence).

e T IS not injective (nonuniqueness).
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Set of Solutions

Assuming existence and for N (Y) the null space of T, the set of solutions is:

VoEH()-i-N(T).

Note: Identified set is an affine vector space, potentially infinite dimensional.

Restrict domainof Y to ©
e The relevant set of solutions becomes Vg N ©.
e Regularize through compactness of ® = nonuniqueness with stability.

e Inverse correspondence Y is upper hemicontinuous.
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Parameter Space

Norms X e R%, m, mg integers, & > & > 0 scalars with mp > % and & + & < 2

l6lls = Z f[DAH(X)]Z(l + X' x)°°dx 16]|cs = |rﬂaxsuplD”H(x)l(l + x’x)%
|A|<m+mg X

Vector Spaces For X € R% the support of X define the metric vector spaces:

WS(X)={6: X - R s.t. ||6)ls < oo} WP(X)={0: X > R s.t. ||lles < o}

Parameter Space O is the closure under || - ||cs Of a sphere in W3(X):
® =cl{f e W3X) : |18]ls < B} .
Key: O is bounded in WS(X) and compact in W% (X).

Andres Santos, June 12 2010 - p. 4136


http://dss.ucsd.edu/~a2santos

|dentification

Question: Does restriction 6y € ® identify 657
Answer: If 85 € W3(X), then unlikely unless N(Y) N W3(X) = 0, since:

Vo N © 2 {fo + N(T) N WE(X)} N {6 € W(X) : [10lls < B} .

affine vector space sphere

Three cases
e Sphere does not intersect affine space (misspecification)
e Sphere intersects affine space at many points (partial identification)

e Sphere Is tangent to affine space (identification)

Basic Insight:  N(T7) N W35(X) # 0, then identification fails for B large.
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Counterexamples

Goal: Find fxz(X|2) such that fw(x) fxz(X|2)dx = O for some y € W3(X).

Basic Approach:
e Suppose {yx(X)}2, and {¢;(2)}5, are basis of L2(X) and L?(2).

o Let fxz(X|2) be square integrable and admitting for an expansion (in || - ||.2)

(GO NG )

fuz(X2) = > > agun(e;(@) .

k=1 j=1
o If for some k* we have y\. € W3(X) and a.j = O for all j then:

0o + Y- € Vg N WS(X) .

But! Most basis functions are in W5(X) and it is easy to construct fxz(X2).
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Counterexamples

Example 1: Suppose (X, Z) € [-1,1]? and fxz(X2) is polynomial of finite order.
Example 2: (X, Z) scalars, correlation arbitrarily close to one, but not identified.
In many instances, the set of densities for which identification fails is dense.
DK)={f:K—>R:f>0, f f(x,2dxdz= 1, f is continuous }.
K
Further define the subset of D(K) for which identification fails by:

Do(K) = {f € D(K) : 0 # 6 € W3(X), such that f@(x)f(x, 2)dx =0 Vz}.
K

Lemma If K is compact, then Dy(K) is dense in D(K) under || - ||co.
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Literature Review

Nonparametric/Semiparametric IV:  Ai & Chen (2003), Darolles, Florens &
Renault (2003), Newey & Powell (2003), Blundell, Chen & Kristensen (2004),
Hall & Horowitz (2005), Horowitz (2006, 2007), Chen & Pouzo (2008, 2010).

Causality/Triangular systems:  Newey, Powell & Vella (1999), Chesher (2003,
2005, 2007), Imbens & Newey (2006).

Partial Identification: Manski (2003), Chernozhukov, Hong & Tamer (2004),
Severini & Tripathi (2006, 2007), Romano & Shaikh (2008, 2009),
Chernozhukov, Lee & Rosen (2009).

Specification Testing: Anderson & Rubin (1949), Bierens (1990), Bierens &
Ploberger (1997), Stinchcombe & White (1998).
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Talk Outline

1. Testing Framework.
2. Test Statistic and Asymptotic Distribution.
3. Almost Sure Consistent Bootstrap.

4. Monte Carlo Evidence.
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Statistic

Bootstrap

Simulations

Testing Framework
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Basic Setup

ldentified Set: Models consistent with the exogeneity assumption on Z

@ = (6 €O : E[Y -6(X)Z] = 0}

Hypothesis Tests: Does at least one element of ®g satisfy a restriction R?

Ho : O NR#0 Hi: OoNR=10

Under Identification: If ®q is a singleton, so that ®g = {6y}, then we have:
Ho :OoNR#0 & 6 R Hi :®oNR=0 6 ¢R

Hence: Under identification, analysis simplifies to inference on true parameter.
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The Set R

Functions in the set R are assume to satisfy a linear equality restriction:

R={0eW%(X): L6 =I)

Assumption: L (WP(X), |l - lles) = (£ 1l - ll) is linear, continuous operator.

Comments
e Restriction of L linear compensated by flexibility in choosing (L, || - I|z)-
e Strength of norm || - ||cs makes continuity easy to verify.

e Assumption can be relaxed to R closed subset of W¥(X) ...
... but inference becomes potentially conservative.
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|dentiflable Functionals

Often we are interested in a functional f : ® — RX, and the identified set:

ToE{f(H)ZHE(*Do}.

Goal: Construct a confidence region C,(1 — «) satisfying the requirement:
inf liminf P(f(0) eCh(1-0a))>1-a.
fe®@y N—ooo

Solution: Proceed by test inversion of the family of null hypotheses:

Ho(y) : @0 N R(y) # 0 R(y) = {0 e W*(X) : 1(6) = 7} .

If size can be controlled for each Hy(y), then coverage requirement is satisfied.
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|dentiflable Functionals

Example: Suppose we want to know the value of 6y at a point Xg, then:

R(y) = {6 € W®(X) : 0(x0) = 7} .

Justlet (L, 1-llx) = (R, - I]) and L(6) = 6(Xp). Also applies to derivatives.

Example: Let 6(p, X) denote a demand function. For elasticity at a point (pg, Xo):

00(po, Xo) 1

RO) = (6 € WE(X) £ —po ™= 0 2=

=7}

Now let (L.1|-Il) = (R.II - I}) and L(#) = ~po™ 5"} — y6(po. ¥o) and set:

R={6ecW*X): L) =0}.
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Specification Testing

Let X be compact, {lﬂk}kK:l e W®(X) and define the parametric family:

K
P = {0 e W9(X) : 6(X) = Zﬁklﬁk(x)} :
o1

Suppose we wish to test whether @ intersects with the parametric model,

Ho: Og NP #0 Hi :®oNP=0.

Let (L, |- Il2) = (L%(X), ]l - Ilz) and Pp(6) be the projection of 8 € L?(X) onto P
GNP =0NR R={6ecW*X): L6 =0} L(6) = Pp(6) — 6.

Note: Key property is # be a vector subspace. Also for semiparametric models.
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Homogeneity

Suppose we wish to test for homogeneous production functions of degree a.

P = {0 € WO(X) : 0(ak, A1) = 1%6(k, 1)} .

To characterize homogeneity as a linear restriction, use Euler's Theorem:

dok.1)  o6(k.1)
G 1 = ab(k)

oAk, Al) = 299k, 1) o Kk

Let (L1l Ilz) = (L=(X), Il - lo) and L(F) = k2L + 1 24C) _ og(k, 1) to obtain

@ NP =06,NR R= {0 e W¥(X):L(6) =0} .

and test whether the identified set ®y contains homogenous functions.
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Testing

Statistic

Bootstrap

Simulations

Test Statistic
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Testing Outline

Since ®g C O, we can rephrase the null hypothesis Hy : ® N R # 0 as:
Is there a 6 € ® N Rsuch that E[Y - 6(X)|Z] = 0?

Goal: Use this observation for a simple characterization of the null hypothesis.

Strategy
e Suppose you had a positive functional F : ® — R such that:
FO)=0 iff 0€0y.
e If F is continuous under || - ||cs and Ris closed under || - ||cs, then:

ONR=O Iff min F@ =0.
0cONR

... because 0O is compact under || - ||cs-
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Conditional to Unconditional

Revealing Functions

e Let Z be the supportof Z, let T c R* and w: T x Z — R be such that:
E[V|Z] =0 if and only if E[VwW(t,2)] =0 Vte T (GCR)
e Examples: Bierens (1990), Stinchcombe & White (1998).

Lemma: Under regularity conditions, it follows that if GCR holds:

6e@ iff max (E[(Y-o(X)wt. Z))?=0.

Moreover, exploiting compactness and continuity we also get:

@ NR=0 iff min max (E[(Y - 6(X))w(t,2)])*> = 0.
0e®NR teT
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Test Statistic

n

(R = min_max (2= 3 (Y- 60wt 2))
" " i=1

Sieve Detalils
e Thisagrid for T. The whole set T may be employed as well.
e For the sieve of ® N Rwe consider:
OnNR= {0 WX):0(xX) = p(x)h forhe R*, L©) =1, ||6lls< B} .

where p“(x) = (p1(X),..., P, (X)) and p; € WS(X) for all i.

e Constraints L(6) = | is linear in h and ||g]|> < B? quadratic in h.
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Local Parameter Space

e For each 6y € ®g N R, let 11,6 be its projection onto ®, N R (under || - ||.2).

, h
On(X) = Tnbo(X) +pkn(x)_ -
—_—— N—— \/ﬁ
In R In R

Since we must have L(p*h) = 0, the local values of h are contained in the set

H,, ={he R : L(p“h) =0} .

e Distribution depends on effect of local parameters on criterion function. Let,

Vie(T) = (v: T = R s.t. v(t) = E[w(t, 2)p“(X)h], he H, )

Define the function space V. (T) the closure of | Vi (T) under || - ||.
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Some Intuition

min max(% Zn:(Yi — O (X)WL, Zi))2

ORI
~ min mT?x Z(Y, Bo(X )WL, Z:) + le (ITa600(%) — B (X)WL, Z))
~ i mex( 2”‘ o2+ 3} e 2)f
~ min rq?X(T nf —Qo(i(l))W(taZi)+F[W(tazi2rpk6(xi)hl)2
Gaussian Process  in Vi (T)
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Asymptotic Distribution

Theorem: Under appropriate regularity conditions, if ® N R # 0, then:

L. . 5
In(R) = inf _inf_IIG(t.60) - V(D)

where G(t, 6p) Is a tight Gaussian process on L*(T X ©g). If g N R = 0, then:

nHa(R) =5 min IEI(Y — 600)w(t, )

Comments
e Statistic has a proper limit distribution under the null hypothesis.

e Statistic diverges to infinity under the alternative hypothesis.
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Alternative Result

Remark: If ¢;_, is the 1 - a quantile of infe,~r |IG(t, 6o)II5, ...

... Then it is possible to show that under the null hypothesis:

Iirnn inf P(Ih,(R) >C1.,)>1-«a.

... While under the alternative hypothesis we have:

lim P(I(R) > ¢1o) = 1.
N—oo

Comments
e Only requires that R be closed under || - ||cs-

e Potentially conservative.
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Testing

Statistic

Bootstrap

Simulations

Bootstrap Procedure
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The Unknowns

Limiting distribution under the null hypothesis:

L . : 5
Ih(R) — i E'BImRVE'VTC(T) IG(t, 6o) — V(DI -

Three Unknowns
e Distribution of the Gaussian process G(t, 6p).
e |Identified set ®y N R.

e The function space V. (T).
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Estimating V..(T)

Recall that V., (T) is the closure of | Vi (T) under || - ||, Where:

Vie(M = {v: T - R: s.t. v(t) = E[w(t, 2)p(X)h], L(p*h) =0} .

For some b, /" o and B, ~ «, define the sample analogue:

. 1 < , ,
Vo, (M) ={v:T 5 R: st v(t) = . Zw(t, Z)pP(X)h, L(p™h) =0, [Ih| < By }.
=1

Comments
e b, plays role of k, but they need not be equal.

e The norm bound B, is imposed to obtain a uniform law of large numbers.
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Estimating G(t, 6p)

Recall that the Gaussian process G(t, p) on L*(T x Q) is the limit of:

\/iﬁ 3 (Y - (X)WL Z) — Gt )
=1

For (Y, X*, Z") distributed according to the empirical distribution, we define:
1 n
Gi(t.) = = DG = 0L Z7) - E[(Y: - 00%)W(t. Z)] -}
i=1

Problem
e G/ (t,0) is properly centered for all (t,0) € T x ©.
e G’ (t,0) convergence is in L*(T x ®) not L*(T x @g).

e Need to evaluate restriction of G/(t, ) to proper domain.
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Estimating ®gN R

Goal: Use penalty function to evaluate G (t, 6) on proper set. Define:

Pite) = (D0 - 0. 2))

=1

Indicator for Identified Set

If 1, /" oo at an appropriate rate, then the penalty function:

An maxP(t, 6)
teT

... converges a.s. to zero for all 8 € O¢ ... but diverges a.s. to +co for all 8 ¢ Q.
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Consistency

* — . * . 2 *
AR = inf ot max (Gy(t,0) = O) + 4P5(t.0)

Theorem Under appropriate regularity conditions, if 8 N R # 0, then:

L*
1I"(R inf inf —v(b)|? S,
h(R) — LI (T)IIG(t, 6o) — V(DS a.s

On the other hand, if ®; N R = 0 then we obtain:

3R 5 min [E[(Y - 600)w(t, 2)]12 as

Note: Under the null, bootstrap equivalent to plug-in estimator for @.
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Inference

Cio =INf{u: P (I (R <u)>1-0a}

Corollary Under Hy, if limit distribution of 1,(R) is continuous, strictly increasing,

IrI]im PIh(R)<Ciy)=1-«.
On the other hand, if ®; N R = 0, then we have:

im P(In(R) > &) = 1.

Note: Consistency is due to I;;(R) diverging to infinity at slower rate than I,(R).
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Testing

Statistic

Bootstrap

Simulations

Monte Carlo
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Monte Carlo

Distribution Design
e (X, Z ¢) transformed from multivariate normal (X*, Z*, €).
o p(X*,Z*) = 0.5 and p(X*, €*) = 0.3, (X, Z) have compact support.

e True model: Y = 2sin(Xn) + €

Implementation Detalils
e B-Splines used for sieve 6,.
e Weight function w(t, z2) = ¢((t; — 2)/t2), where ¢(u) is normal pdf.

e 500 replications, sample size of 500.
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Empirical Size

Null hypothesis: Does 6p(0) = 0?

@/l | =0 A,=ns A, =Nz Ay =n3
=01 | 0508 0.220 0.178 0.140
«=005| 0378 0.152 0.114 0.072
a=001] 0.198 0.050 0.028 0.014

Comments

¢ 1, = 0 not warranted by theory. Should over-reject.

) (n%, nz, né) ~ (7.9,22.4,63) ... broad range for choices.

1 .
e N3 seems to be too small, controls size poorly.
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Final Remarks

Partial Identification
e Smoothness restriction aid in identification but do not guarantee it.

e Straightforward to construct examples where identification fails.

Methods for Inference
e Robust to partial identification.
e |dentifiable functionals through test inversion.

e Bootstrap procedure for obtaining critical values.
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