Nonparametric IV and Partial Identification

Andres Santos

University of California - San Diego

June 12, 2010

a2santos@ucsd.edu

 $Y = \theta_0(X) + \epsilon \; ,$

with $E[\epsilon|X] \neq 0$, $E[\epsilon|Z] = 0$ and $\theta \in \Theta$ for some smooth set of functions Θ .

Defining $\Upsilon : L^2(X) \to L^2(Z)$ by $\Upsilon(\theta) = E[\theta(X)|Z]$ we obtain the equation: $E[Y|Z] = \Upsilon(\theta)$.

Problem is ill posed if:

- Υ^{-1} exists but is not continuous (*instability*).
- E[Y|Z] is not in the image of Υ (nonexistence).
- Υ is not injective (*nonuniqueness*).

Assuming existence and for $\mathcal{N}(\Upsilon)$ the null space of Υ , the set of solutions is:

 $\mathbf{V}_0 \equiv \theta_0 + \mathcal{N}(\Upsilon) \; .$

Note: Identified set is an affine vector space, potentially infinite dimensional.

Restrict domain of Υ to Θ

- The relevant set of solutions becomes $V_0 \cap \Theta$.
- Regularize through compactness of $\Theta \Rightarrow$ nonuniqueness with stability.
- Inverse correspondence Υ^{-1} is upper hemicontinuous.

Norms $X \in \mathbf{R}^{d_x}$, m, m_0 integers, $\delta_0 > \delta > 0$ scalars with $m_0 > \frac{d_x}{2}$ and $\frac{d_x}{m} + \frac{d_x}{\delta} < 2$

$$\|\theta\|_{s}^{2} \equiv \sum_{|\lambda| \le m+m_{0}} \int [D^{\lambda}\theta(x)]^{2} (1+x'x)^{\delta_{0}} dx \qquad \|\theta\|_{c\delta} \equiv \max_{|\lambda| \le m} \sup_{x} |D^{\lambda}\theta(x)| (1+x'x)^{\frac{\delta}{2}}$$

Vector Spaces For $X \subseteq \mathbb{R}^{d_x}$ the support of X define the metric vector spaces: $W^s(X) \equiv \{\theta : X \to \mathbb{R} \text{ s.t. } \|\theta\|_s < \infty\}$ $W^{c\delta}(X) \equiv \{\theta : X \to \mathbb{R} \text{ s.t. } \|\theta\|_{c\delta} < \infty\}$

Parameter Space Θ is the closure under $\|\cdot\|_{c\delta}$ of a sphere in $W^{s}(X)$:

 $\Theta \equiv \mathsf{Cl}\{\theta \in W^{s}(\mathcal{X}) : \|\theta\|_{s} \leq B\}.$

Key: Θ is bounded in $W^{s}(X)$ and compact in $W^{c\delta}(X)$.

Question: Does restriction $\theta_0 \in \Theta$ identify θ_0 ?

Answer: If $\theta_0 \in W^s(X)$, then unlikely unless $\mathcal{N}(\Upsilon) \cap W^s(X) = \emptyset$, since:

 $\mathbf{V}_0 \cap \Theta \supseteq \{\theta_0 + \mathcal{N}(\Upsilon) \cap W^s(\mathcal{X})\} \cap \{\theta \in W^s(\mathcal{X}) : ||\theta||_s \le B\}.$

affine vector space

sphere

Three cases

- Sphere does not intersect affine space (*misspecification*)
- Sphere intersects affine space at many points (partial identification)
- Sphere is tangent to affine space (identification)

Basic Insight: $\mathcal{N}(\Upsilon) \cap W^{s}(\mathcal{X}) \neq \emptyset$, then identification fails for *B* large.

Goal: Find $f_{X|Z}(x|z)$ such that $\int \psi(x) f_{X|Z}(x|z) dx = 0$ for some $\psi \in W^s(X)$.

Basic Approach:

- Suppose $\{\psi_k(x)\}_{k=1}^{\infty}$ and $\{\phi_j(z)\}_{j=1}^{\infty}$ are basis of $L^2(X)$ and $L^2(Z)$.
- Let $f_{X|Z}(x|z)$ be square integrable and admitting for an expansion (in $\|\cdot\|_{L^2}$)

$$f_{X|Z}(x|z) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{kj} \psi_k(x) \phi_j(z) .$$

• If for some k^* we have $\psi_{k^*} \in W^s(X)$ and $a_{k^*j} = 0$ for all j then:

 $\theta_0 + \psi_{k^*} \in \mathbf{V}_0 \cap W^s(\mathcal{X})$.

But! Most basis functions are in $W^{s}(X)$ and it is easy to construct $f_{X|Z}(x|z)$.

Example 1: Suppose $(X, Z) \in [-1, 1]^2$ and $f_{X|Z}(x|z)$ is polynomial of finite order. **Example 2:** (X, Z) scalars, correlation arbitrarily close to one, but not identified.

In many instances, the set of densities for which identification fails is dense.

$$\mathbf{D}(K) \equiv \{f: K \to \mathbf{R} : f \ge 0, \int_{K} f(x, z) dx dz = 1, f \text{ is continuous } \}.$$

Further define the subset of D(K) for which identification fails by:

$$\mathbf{D}_{\emptyset}(K) \equiv \{ f \in \mathbf{D}(K) : 0 \neq \theta \in W^{s}(\mathcal{X}), \text{ such that } \int_{K} \theta(x) f(x, z) dx = 0 \quad \forall z \}.$$

Lemma If *K* is compact, then $\mathbf{D}_{\emptyset}(K)$ is dense in $\mathbf{D}(K)$ under $\|\cdot\|_{\infty}$.

Nonparametric/Semiparametric IV: Ai & Chen (2003), Darolles, Florens & Renault (2003), Newey & Powell (2003), Blundell, Chen & Kristensen (2004), Hall & Horowitz (2005), Horowitz (2006, 2007), Chen & Pouzo (2008, 2010).

Causality/Triangular systems: Newey, Powell & Vella (1999), Chesher (2003, 2005, 2007), Imbens & Newey (2006).

Partial Identification: Manski (2003), Chernozhukov, Hong & Tamer (2004), Severini & Tripathi (2006, 2007), Romano & Shaikh (2008, 2009), Chernozhukov, Lee & Rosen (2009).

Specification Testing: Anderson & Rubin (1949), Bierens (1990), Bierens & Ploberger (1997), Stinchcombe & White (1998).

- 1. Testing Framework.
- 2. Test Statistic and Asymptotic Distribution.
- 3. Almost Sure Consistent Bootstrap.
- 4. Monte Carlo Evidence.

Т	es	Т	n

Statistic

Bootstrap

Simulations

Testing Framework

Identified Set: Models consistent with the exogeneity assumption on Z

 $\Theta_0 \equiv \{\theta \in \Theta : E[Y - \theta(X)|Z] = 0\}$

Hypothesis Tests: Does at least one element of Θ_0 satisfy a restriction *R*?

 $H_0: \Theta_0 \cap R \neq \emptyset \qquad \qquad H_1: \Theta_0 \cap R = \emptyset$

Under Identification: If Θ_0 is a singleton, so that $\Theta_0 = \{\theta_0\}$, then we have:

 $H_0: \Theta_0 \cap R \neq \emptyset \Leftrightarrow \theta_0 \in R \qquad \qquad H_1: \Theta_0 \cap R = \emptyset \Leftrightarrow \theta_0 \notin R$

Hence: Under identification, analysis simplifies to inference on true parameter.

Functions in the set *R* are assume to satisfy a linear equality restriction:

 $R \equiv \{\theta \in W^{c\delta}(\mathcal{X}) : L(\theta) = l\}$

Assumption: $L: (W^{c\delta}(X), \|\cdot\|_{c\delta}) \to (\mathcal{L}, \|\cdot\|_{\mathcal{L}})$ is linear, continuous operator.

Comments

- Restriction of *L* linear compensated by flexibility in choosing $(\mathcal{L}, \|\cdot\|_{\mathcal{L}})$.
- Strength of norm $\|\cdot\|_{c\delta}$ makes continuity easy to verify.
- Assumption can be relaxed to *R* closed subset of $W^{c\delta}(X)$ but inference becomes potentially conservative.

Often we are interested in a functional $f: \Theta \to \mathbf{R}^k$, and the identified set:

 $\mathcal{F}_0 \equiv \{f(\theta) : \theta \in \Theta_0\} .$

Goal: Construct a confidence region $C_n(1 - \alpha)$ satisfying the requirement:

 $\inf_{\theta \in \Theta_0} \liminf_{n \to \infty} P(f(\theta) \in C_n(1-\alpha)) \ge 1-\alpha .$

Solution: Proceed by test inversion of the family of null hypotheses:

 $H_0(\gamma): \Theta_0 \cap R(\gamma) \neq \emptyset \qquad \qquad R(\gamma) \equiv \{\theta \in W^{c\delta}(X): f(\theta) = \gamma\}.$

If size can be controlled for each $H_0(\gamma)$, then coverage requirement is satisfied.

Example: Suppose we want to know the value of θ_0 at a point x_0 , then:

$$R(\gamma) = \{ \theta \in W^{c\delta}(X) : \theta(x_0) = \gamma \} .$$

Just let $(\mathcal{L}, \|\cdot\|_{\mathcal{L}}) = (\mathbf{R}, \|\cdot\|)$ and $L(\theta) \equiv \theta(x_0)$. Also applies to derivatives.

Example: Let $\theta(p, x)$ denote a demand function. For elasticity at a point (p_0, x_0) :

$$R(\gamma) = \{ \theta \in W^{c\delta}(X) : -p_0 \frac{\partial \theta(p_0, x_0)}{\partial p} \frac{1}{\theta(p_0, x_0)} = \gamma \} .$$

Now let $(\mathcal{L}, \|\cdot\|_{\mathcal{L}}) = (\mathbf{R}, \|\cdot\|)$ and $L(\theta) = -p_0 \frac{\partial \theta(p_0, x_0)}{\partial p} - \gamma \theta(p_0, x_0)$ and set:

$$R = \{\theta \in W^{c\delta}(X) : L(\theta) = 0\}.$$

Let X be compact, $\{\psi_k\}_{k=1}^K \in W^{c\delta}(X)$ and define the parametric family:

$$\mathcal{P} \equiv \{\theta \in W^{c\delta}(\mathcal{X}) : \theta(x) = \sum_{k=1}^{K} \beta_k \psi_k(x) \} .$$

Suppose we wish to test whether Θ_0 intersects with the parametric model,

 $H_0: \Theta_0 \cap \mathcal{P} \neq \emptyset \qquad \qquad H_1: \Theta_0 \cap \mathcal{P} = \emptyset .$

Let $(\mathcal{L}, \|\cdot\|_{\mathcal{L}}) = (L^2(\mathcal{X}), \|\cdot\|_{\mathcal{L}})$ and $P_{\mathcal{P}}(\theta)$ be the projection of $\theta \in L^2(\mathcal{X})$ onto \mathcal{P}

 $\Theta_0 \cap \mathcal{P} = \Theta_0 \cap R \qquad \qquad R = \{\theta \in W^{c\delta}(X) : L(\theta) = 0\} \qquad \qquad L(\theta) = P_{\mathcal{P}}(\theta) - \theta .$

Note: Key property is \mathcal{P} be a vector subspace. Also for semiparametric models.

Suppose we wish to test for homogeneous production functions of degree α .

$$\mathcal{P} \equiv \{\theta \in W^{c\delta}(\mathcal{X}) : \theta(\lambda k, \lambda l) = \lambda^{\alpha} \theta(k, l)\}.$$

To characterize homogeneity as a linear restriction, use Euler's Theorem:

$$\theta(\lambda k, \lambda l) = \lambda^{\alpha} \theta(k, l) \quad \Leftrightarrow \quad k \frac{\partial \theta(k, l)}{\partial k} + l \frac{\partial \theta(k, l)}{\partial l} = \alpha \theta(k, l) \; .$$

Let $(\mathcal{L}, \|\cdot\|_{\mathcal{L}}) = (L^{\infty}(X), \|\cdot\|_{\infty})$ and $L(\theta) = k \frac{\partial \theta(k,l)}{\partial k} + l \frac{\partial \theta(k,l)}{\partial l} - \alpha \theta(k,l)$ to obtain $\Theta_0 \cap \mathcal{P} = \Theta_0 \cap R \qquad R = \{\theta \in W^{c\delta}(X) : L(\theta) = 0\}.$

and test whether the identified set Θ_0 contains homogenous functions.

Testing

Statistic

Bootstrap

Simulations

Test Statistic

Since $\Theta_0 \subseteq \Theta$, we can rephrase the null hypothesis $H_0 : \Theta_0 \cap R \neq \emptyset$ as:

```
Is there a \theta \in \Theta \cap R such that E[Y - \theta(X)|Z] = 0?
```

Goal: Use this observation for a simple characterization of the null hypothesis.

Strategy

• Suppose you had a positive functional $F: \Theta \rightarrow \mathbf{R}$ such that:

 $F(\theta) = 0 \quad iff \quad \theta \in \Theta_0 \ .$

• If *F* is continuous under $\|\cdot\|_{c\delta}$ and *R* is closed under $\|\cdot\|_{c\delta}$, then:

 $\Theta_0 \cap R \neq \emptyset \quad iff \quad \min_{\theta \in \Theta \cap R} F(\theta) = 0$.

... because Θ is compact under $\|\cdot\|_{c\delta}$.

Revealing Functions

• Let \mathcal{Z} be the support of Z, let $T \subset \mathbf{R}^{d_t}$ and $w : T \times \mathcal{Z} \to \mathbf{R}$ be such that:

E[V|Z] = 0 if and only if $E[Vw(t, Z)] = 0 \quad \forall t \in T \quad (GCR)$

• Examples: Bierens (1990), Stinchcombe & White (1998).

Lemma: Under regularity conditions, it follows that if *GCR* holds:

$$\theta \in \Theta_0 \quad iff \quad \max_{t \in T} \left(E[(Y - \theta(X))w(t, Z)] \right)^2 = 0 \; .$$

Moreover, exploiting compactness and continuity we also get:

 $\Theta_0 \cap R \neq \emptyset \quad iff \quad \min_{\theta \in \Theta \cap R} \max_{t \in T} \left(E[(Y - \theta(X))w(t, Z)] \right)^2 = 0 \; .$

$$I_n(R) \equiv \min_{\theta \in \Theta_n \cap R} \max_{t \in T_n} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n (Y_i - \theta(X_i)) w(t, Z_i) \right)^2$$

Sieve Details

- T_n is a grid for T. The whole set T may be employed as well.
- For the sieve of $\Theta \cap R$ we consider:

 $\Theta_n \cap R \equiv \{\theta \in W^s(\mathcal{X}) : \theta(x) = p^{k'_n}(x)h \text{ for } h \in \mathbf{R}^{k_n}, \ L(\theta) = l, \ \|\theta\|_s \le B\}.$

where $p^{k_n}(x) = (p_1(x), \ldots, p_{k_n}(x))'$ and $p_i \in W^s(X)$ for all i.

• Constraints $L(\theta) = l$ is linear in h and $||\theta||^2 \le B^2$ quadratic in h.

Local Parameter Space

• For each $\theta_0 \in \Theta_0 \cap R$, let $\prod_n \theta_0$ be its projection onto $\Theta_n \cap R$ (under $\|\cdot\|_{L^2}$).

$$\underbrace{\theta_n(x)}_{\text{in }R} \equiv \underbrace{\prod_n \theta_0(x)}_{\text{in }R} + p^{k'_n}(x) \frac{h}{\sqrt{n}} \ .$$

Since we must have $L(p^{k'_n}h) = 0$, the local values of *h* are contained in the set

$$\mathcal{H}_{k_n} \equiv \{h \in \mathbf{R}^{k_n} : L(p^{k'_n}h) = 0\}.$$

• Distribution depends on effect of local parameters on criterion function. Let,

$$V_{k_n}(T) \equiv \{v : T \to \mathbf{R} \text{ s.t. } v(t) = E[w(t, Z)p^{k'_n}(X)h], h \in \mathcal{H}_{k_n}\}$$

Define the function space $V_{\infty}(T)$ the closure of $\bigcup V_{k_n}(T)$ under $\|\cdot\|_{\infty}$.

Theorem: Under appropriate regularity conditions, if $\Theta_0 \cap R \neq \emptyset$, then:

$$I_n(R) \xrightarrow{L} \inf_{\theta_0 \in \Theta_0 \cap R} \inf_{v \in V_\infty(T)} \|G(t, \theta_0) - v(t)\|_\infty^2$$

where $G(t, \theta_0)$ is a tight Gaussian process on $L^{\infty}(T \times \Theta_0)$. If $\Theta_0 \cap R = \emptyset$, then:

$$n^{-1}I_n(R) \xrightarrow{a.s.} \min_{\theta \in \Theta \cap R} \|E[(Y - \theta(X))w(t, Z)]\|_{\infty}^2$$

Comments

- Statistic has a proper limit distribution under the null hypothesis.
- Statistic diverges to infinity under the alternative hypothesis.

Remark: If $c_{1-\alpha}$ is the $1 - \alpha$ quantile of $\inf_{\Theta_0 \cap R} ||G(t, \theta_0)||_{\infty}^2 \dots$

... Then it is possible to show that under the null hypothesis:

 $\liminf_{n\to\infty} P(I_n(R) \ge c_{1-\alpha}) \ge 1 - \alpha .$

... While under the alternative hypothesis we have:

 $\lim_{n\to\infty} P(I_n(R) \ge c_{1-\alpha}) = 1 \; .$

Comments

- Only requires that *R* be closed under $\|\cdot\|_{c\delta}$.
- Potentially conservative.

Testing

Statistic

Bootstrap

Simulations

Bootstrap Procedure

Limiting distribution under the null hypothesis:

$$I_n(R) \xrightarrow{L} \inf_{\theta_0 \in \Theta_0 \cap R} \inf_{v \in V_\infty(T)} \|G(t, \theta_0) - v(t)\|_\infty^2 .$$

Three Unknowns

- Distribution of the Gaussian process $G(t, \theta_0)$.
- Identified set $\Theta_0 \cap R$.
- The function space $V_{\infty}(T)$.

Recall that $V_{\infty}(T)$ is the closure of $\bigcup V_{k_n}(T)$ under $\|\cdot\|_{\infty}$, where:

 $V_{k_n}(T) \equiv \{v: T \to \mathbf{R} : \text{ s.t. } v(t) = E[w(t, Z)p^{k'_n}(X)h], \ L(p^{k'_n}h) = 0 \}.$

For some $b_n \nearrow \infty$ and $B_n \nearrow \infty$, define the sample analogue:

$$\hat{V}_{b_n}(T) \equiv \left\{ v: T \to \mathbf{R} : \text{ s.t. } v(t) = \frac{1}{n} \sum_{i=1}^n w(t, Z_i) p^{b'_n}(X_i) h, \ L(p^{b'_n}h) = 0, \ \|h\| \le B_n \right\}.$$

Comments

- b_n plays role of k_n but they need not be equal.
- The norm bound B_n is imposed to obtain a uniform law of large numbers.

Recall that the Gaussian process $G(t, \theta_0)$ on $L^{\infty}(T \times \Theta_0)$ is the limit of:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_i - \theta_0(X_i)) w(t, Z_i) \xrightarrow{L} G(t, \theta_0) .$$

For (Y_i^*, X_i^*, Z_i^*) distributed according to the empirical distribution, we define:

$$G_n^*(t,\theta) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n \{ (Y_i^* - \theta(X_i^*)) w(t, Z_i^*) - E^*[(Y_i - \theta(X_i)) w(t, Z_i)] \}$$

Problem

- $G_n^*(t, \theta)$ is properly centered for all $(t, \theta) \in T \times \Theta$.
- $G_n^*(t,\theta)$ convergence is in $L^{\infty}(T \times \Theta)$ not $L^{\infty}(T \times \Theta_0)$.
- Need to evaluate restriction of $G_n^*(t, \theta)$ to proper domain.

Goal: Use penalty function to evaluate $G_n^*(t, \theta)$ on proper set. Define:

$$P_n^*(t,\theta) \equiv \left(\frac{1}{n}\sum_{i=1}^n (Y_i - \theta(X_i))w(t,Z_i)\right)^2$$

Indicator for Identified Set

If $\lambda_n \nearrow \infty$ at an appropriate rate, then the penalty function:

 $\lambda_n \max_{t \in T} P_n^*(t, \theta)$

... converges a.s. to zero for all $\theta \in \Theta_0$... but diverges a.s. to $+\infty$ for all $\theta \notin \Theta_0$.

$$I_n^*(R) \equiv \inf_{\theta \in \Theta_n \cap R} \inf_{v \in \hat{V}_{b_n}(T)} \max_{t \in T_n} \{ (G_n^*(t,\theta) - v(t))^2 + \lambda_n P_n^*(t,\theta) \}$$

Theorem Under appropriate regularity conditions, if $\Theta_0 \cap R \neq \emptyset$, then:

$$I_n^*(R) \xrightarrow{L^*} \inf_{\theta_0 \in \Theta_0 \cap R} \inf_{v \in V_\infty(T)} \|G(t, \theta_0) - v(t)\|_\infty^2 \qquad a.s.$$

On the other hand, if $\Theta_0 \cap R = \emptyset$ then we obtain:

$$\lambda_n^{-1} I_n^*(R) \xrightarrow{p^*} \min_{\theta \in \Theta \cap R} \|E[(Y - \theta(X))w(t, Z)]\|_{\infty}^2 \qquad a.s.$$

Note: Under the null, bootstrap equivalent to plug-in estimator for $\hat{\Theta}_0$.

Inference

 $\hat{c}_{1-\alpha} \equiv \inf\{u : P^*(I_n^*(R) \le u) \ge 1 - \alpha\}$

Corollary Under H_0 , if limit distribution of $I_n(R)$ is continuous, strictly increasing,

 $\lim_{n\to\infty} P(I_n(R) \le \hat{c}_{1-\alpha}) = 1 - \alpha \; .$

On the other hand, if $\Theta_0 \cap R = \emptyset$, then we have:

 $\lim_{n\to\infty} P(I_n(R) > \hat{c}_{1-\alpha}) = 1 \; .$

Note: Consistency is due to $I_n^*(R)$ diverging to infinity at slower rate than $I_n(R)$.

resund

Statistic

Bootstrap

Simulations

Monte Carlo

Distribution Design

- (X, Z, ϵ) transformed from multivariate normal (X^*, Z^*, ϵ^*) .
- $\rho(X^*, Z^*) = 0.5$ and $\rho(X^*, \epsilon^*) = 0.3$, (X, Z) have compact support.
- True model: $Y = 2\sin(X\pi) + \epsilon$

Implementation Details

- B-Splines used for sieve Θ_n .
- Weight function $w(t, z) = \phi((t_1 z)/t_2)$, where $\phi(u)$ is normal pdf.
- 500 replications, sample size of 500.

Null hypothesis: Does $\theta_0(0) = 0$?

α/λ_n	$\lambda_n = 0$	$\lambda_n = n^{\frac{1}{3}}$	$\lambda_n = n^{\frac{1}{2}}$	$\lambda_n = n^{\frac{2}{3}}$
$\alpha = 0.1$	0.508	0.220	0.178	0.140
$\alpha = 0.05$	0.378	0.152	0.114	0.072
$\alpha = 0.01$	0.198	0.050	0.028	0.014

Comments

- $\lambda_n = 0$ not warranted by theory. Should over-reject.
- $(n^{\frac{1}{3}}, n^{\frac{1}{2}}, n^{\frac{2}{3}}) \approx (7.9, 22.4, 63)$... broad range for choices.
- $n^{\frac{1}{3}}$ seems to be too small, controls size poorly.

Partial Identification

- Smoothness restriction aid in identification but do not guarantee it.
- Straightforward to construct examples where identification fails.

Methods for Inference

- Robust to partial identification.
- Identifiable functionals through test inversion.
- Bootstrap procedure for obtaining critical values.