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Instrumental Variables

Y = θ0(X) + ǫ ,

with E[ǫ|X] , 0, E[ǫ|Z] = 0 and θ ∈ Θ for some smooth set of functions Θ.

Defining Υ : L2(X)→ L2(Z) by Υ(θ) = E[θ(X)|Z] we obtain the equation:

E[Y |Z] = Υ(θ) .

Problem is ill posed if:

• Υ−1 exists but is not continuous (instability).

• E[Y |Z] is not in the image of Υ (nonexistence).

• Υ is not injective (nonuniqueness).

http://dss.ucsd.edu/~a2santos
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Set of Solutions

Assuming existence and for N(Υ) the null space of Υ, the set of solutions is:

V0 ≡ θ0 +N(Υ) .

Note: Identified set is an affine vector space, potentially infinite dimensional.

Restrict domain of Υ to Θ

• The relevant set of solutions becomes V0 ∩ Θ.

• Regularize through compactness of Θ⇒ nonuniqueness with stability.

• Inverse correspondence Υ−1 is upper hemicontinuous.

http://dss.ucsd.edu/~a2santos
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Parameter Space

Norms X ∈ Rdx , m,m0 integers, δ0 > δ > 0 scalars with m0 >
dx

2 and dx

m +
dx

δ
< 2

‖θ‖2s ≡
∑

|λ|≤m+m0

∫

[Dλθ(x)]2(1+ x′x)δ0dx ‖θ‖cδ ≡ max
|λ|≤m

sup
x
|Dλθ(x)|(1+ x′x)

δ
2

Vector Spaces For X ⊆ Rdx the support of X define the metric vector spaces:

W s(X) ≡ {θ : X → R s.t. ‖θ‖s < ∞} Wcδ(X) ≡ {θ : X → R s.t. ‖θ‖cδ < ∞}

Parameter Space Θ is the closure under ‖ · ‖cδ of a sphere in W s(X):

Θ ≡ cl{θ ∈ W s(X) : ‖θ‖s ≤ B} .

Key: Θ is bounded in W s(X) and compact in Wcδ(X).

http://dss.ucsd.edu/~a2santos
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Identification

Question: Does restriction θ0 ∈ Θ identify θ0?

Answer: If θ0 ∈ W s(X), then unlikely unless N(Υ) ∩W s(X) = ∅, since:

V0 ∩ Θ ⊇ {θ0 +N(Υ) ∩W s(X)}
︸                     ︷︷                     ︸

∩ {θ ∈ W s(X) : ‖θ‖s ≤ B}
︸                       ︷︷                       ︸

.

affine vector space sphere

Three cases

• Sphere does not intersect affine space (misspecification)

• Sphere intersects affine space at many points (partial identification)

• Sphere is tangent to affine space (identification)

Basic Insight: N(Υ) ∩W s(X) , ∅, then identification fails for B large.

http://dss.ucsd.edu/~a2santos
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Counterexamples

Goal: Find fX|Z(x|z) such that
∫

ψ(x) fX|Z(x|z)dx = 0 for some ψ ∈ W s(X).

Basic Approach:

• Suppose {ψk(x)}∞k=1 and {φ j(z)}∞j=1 are basis of L2(X) and L2(Z).

• Let fX|Z(x|z) be square integrable and admitting for an expansion (in ‖ · ‖L2)

fX|Z(x|z) =
∞∑

k=1

∞∑

j=1

ak jψk(x)φ j(z) .

• If for some k∗ we have ψk∗ ∈ W s(X) and ak∗ j = 0 for all j then:

θ0 + ψk∗ ∈ V0 ∩W s(X) .

But! Most basis functions are in W s(X) and it is easy to construct fX|Z(x|z).

http://dss.ucsd.edu/~a2santos
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Counterexamples

Example 1: Suppose (X, Z) ∈ [−1, 1]2 and fX|Z(x|z) is polynomial of finite order.

Example 2: (X, Z) scalars, correlation arbitrarily close to one, but not identified.

In many instances, the set of densities for which identification fails is dense.

D(K) ≡ { f : K → R : f ≥ 0,
∫

K
f (x, z)dxdz = 1, f is continuous } .

Further define the subset of D(K) for which identification fails by:

D∅(K) ≡ { f ∈ D(K) : 0 , θ ∈ W s(X), such that
∫

K
θ(x) f (x, z)dx = 0 ∀z } .

Lemma If K is compact, then D∅(K) is dense in D(K) under ‖ · ‖∞.

http://dss.ucsd.edu/~a2santos
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Literature Review

Nonparametric/Semiparametric IV: Ai & Chen (2003), Darolles, Florens &
Renault (2003), Newey & Powell (2003), Blundell, Chen & Kristensen (2004),
Hall & Horowitz (2005), Horowitz (2006, 2007), Chen & Pouzo (2008, 2010).

Causality/Triangular systems: Newey, Powell & Vella (1999), Chesher (2003,
2005, 2007), Imbens & Newey (2006).

Partial Identification: Manski (2003), Chernozhukov, Hong & Tamer (2004),
Severini & Tripathi (2006, 2007), Romano & Shaikh (2008, 2009),
Chernozhukov, Lee & Rosen (2009).

Specification Testing: Anderson & Rubin (1949), Bierens (1990), Bierens &
Ploberger (1997), Stinchcombe & White (1998).
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Talk Outline

1. Testing Framework.

2. Test Statistic and Asymptotic Distribution.

3. Almost Sure Consistent Bootstrap.

4. Monte Carlo Evidence.

http://dss.ucsd.edu/~a2santos


Testing

Statistic

Bootstrap

Simulations

Andres Santos, June 12 2010 - p. 10/36

Testing Framework
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Basic Setup

Identified Set: Models consistent with the exogeneity assumption on Z

Θ0 ≡ {θ ∈ Θ : E[Y − θ(X)|Z] = 0}

Hypothesis Tests: Does at least one element of Θ0 satisfy a restriction R?

H0 : Θ0 ∩ R , ∅ H1 : Θ0 ∩ R = ∅

Under Identification: If Θ0 is a singleton, so that Θ0 = {θ0}, then we have:

H0 : Θ0 ∩ R , ∅ ⇔ θ0 ∈ R H1 : Θ0 ∩ R = ∅ ⇔ θ0 < R

Hence: Under identification, analysis simplifies to inference on true parameter.

http://dss.ucsd.edu/~a2santos
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The Set R

Functions in the set R are assume to satisfy a linear equality restriction:

R ≡ {θ ∈ Wcδ(X) : L(θ) = l }

Assumption: L : (Wcδ(X), ‖ · ‖cδ)→ (L, ‖ · ‖L) is linear, continuous operator.

Comments

• Restriction of L linear compensated by flexibility in choosing (L, ‖ · ‖L).

• Strength of norm ‖ · ‖cδ makes continuity easy to verify.

• Assumption can be relaxed to R closed subset of Wcδ(X) ...
... but inference becomes potentially conservative.

http://dss.ucsd.edu/~a2santos


Andres Santos, June 12 2010 - p. 13/36

Identifiable Functionals

Often we are interested in a functional f : Θ→ Rk, and the identified set:

F0 ≡ { f (θ) : θ ∈ Θ0} .

Goal: Construct a confidence region Cn(1− α) satisfying the requirement:

inf
θ∈Θ0

lim inf
n→∞

P( f (θ) ∈ Cn(1− α)) ≥ 1− α .

Solution: Proceed by test inversion of the family of null hypotheses:

H0(γ) : Θ0 ∩ R(γ) , ∅ R(γ) ≡ {θ ∈ Wcδ(X) : f (θ) = γ} .

If size can be controlled for each H0(γ), then coverage requirement is satisfied.

http://dss.ucsd.edu/~a2santos
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Identifiable Functionals

Example: Suppose we want to know the value of θ0 at a point x0, then:

R(γ) = {θ ∈ Wcδ(X) : θ(x0) = γ} .

Just let (L, ‖ · ‖L) = (R, ‖ · ‖) and L(θ) ≡ θ(x0). Also applies to derivatives.

Example: Let θ(p, x) denote a demand function. For elasticity at a point (p0, x0):

R(γ) = {θ ∈ Wcδ(X) : −p0
∂θ(p0, x0)

∂p
1

θ(p0, x0)
= γ} .

Now let (L, ‖ · ‖L) = (R, ‖ · ‖) and L(θ) = −p0
∂θ(p0,x0)

∂p − γθ(p0, x0) and set:

R = {θ ∈ Wcδ(X) : L(θ) = 0} .

http://dss.ucsd.edu/~a2santos
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Specification Testing

Let X be compact, {ψk}Kk=1 ∈ Wcδ(X) and define the parametric family:

P ≡ {θ ∈ Wcδ(X) : θ(x) =
K∑

k=1

βkψk(x)} .

Suppose we wish to test whether Θ0 intersects with the parametric model,

H0 : Θ0 ∩ P , ∅ H1 : Θ0 ∩ P = ∅ .

Let (L, ‖ · ‖L) = (L2(X), ‖ · ‖L) and PP(θ) be the projection of θ ∈ L2(X) onto P

Θ0 ∩ P = Θ0 ∩ R R = {θ ∈ Wcδ(X) : L(θ) = 0} L(θ) = PP(θ) − θ .

Note: Key property is P be a vector subspace. Also for semiparametric models.

http://dss.ucsd.edu/~a2santos
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Homogeneity

Suppose we wish to test for homogeneous production functions of degree α.

P ≡ {θ ∈ Wcδ(X) : θ(λk, λl) = λαθ(k, l)} .

To characterize homogeneity as a linear restriction, use Euler’s Theorem:

θ(λk, λl) = λαθ(k, l) ⇔ k
∂θ(k, l)
∂k

+ l
∂θ(k, l)
∂l

= αθ(k, l) .

Let (L, ‖ · ‖L) = (L∞(X), ‖ · ‖∞) and L(θ) = k ∂θ(k,l)
∂k + l ∂θ(k,l)

∂l − αθ(k, l) to obtain

Θ0 ∩ P = Θ0 ∩ R R = {θ ∈ Wcδ(X) : L(θ) = 0} .

and test whether the identified set Θ0 contains homogenous functions.

http://dss.ucsd.edu/~a2santos


Testing

Statistic

Bootstrap

Simulations

Andres Santos, June 12 2010 - p. 17/36

Test Statistic
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Testing Outline

Since Θ0 ⊆ Θ, we can rephrase the null hypothesis H0 : Θ0 ∩ R , ∅ as:

Is there a θ ∈ Θ ∩ R such that E[Y − θ(X)|Z] = 0?

Goal: Use this observation for a simple characterization of the null hypothesis.

Strategy

• Suppose you had a positive functional F : Θ→ R such that:

F(θ) = 0 i f f θ ∈ Θ0 .

• If F is continuous under ‖ · ‖cδ and R is closed under ‖ · ‖cδ, then:

Θ0 ∩ R , ∅ i f f min
θ∈Θ∩R

F(θ) = 0 .

... because Θ is compact under ‖ · ‖cδ.

http://dss.ucsd.edu/~a2santos
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Conditional to Unconditional

Revealing Functions

• Let Z be the support of Z, let T ⊂ Rdt and w : T ×Z → R be such that:

E[V |Z] = 0 if and only if E[Vw(t, Z)] = 0 ∀t ∈ T (GCR)

• Examples: Bierens (1990), Stinchcombe & White (1998).

Lemma: Under regularity conditions, it follows that if GCR holds:

θ ∈ Θ0 i f f max
t∈T

(E[(Y − θ(X))w(t, Z)])2
= 0 .

Moreover, exploiting compactness and continuity we also get:

Θ0 ∩ R , ∅ i f f min
θ∈Θ∩R

max
t∈T

(E[(Y − θ(X))w(t, Z)])2
= 0 .

http://dss.ucsd.edu/~a2santos
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Test Statistic

In(R) ≡ min
θ∈Θn∩R

max
t∈Tn

( 1
√

n

n∑

i=1

(Yi − θ(Xi))w(t, Zi)
)2

Sieve Details

• Tn is a grid for T . The whole set T may be employed as well.

• For the sieve of Θ ∩ R we consider:

Θn ∩ R ≡ {θ ∈ W s(X) : θ(x) = pk′n(x)h for h ∈ Rkn , L(θ) = l, ‖θ‖s ≤ B} .

where pkn(x) = (p1(x), . . . , pkn(x))′ and pi ∈ W s(X) for all i.

• Constraints L(θ) = l is linear in h and ‖θ‖2 ≤ B2 quadratic in h.

http://dss.ucsd.edu/~a2santos
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Local Parameter Space

• For each θ0 ∈ Θ0 ∩ R, let Πnθ0 be its projection onto Θn ∩ R (under ‖ · ‖L2).

θn(x)
︸︷︷︸

≡ Πnθ0(x)
︸  ︷︷  ︸

+pk′n(x)
h
√

n
.

in R in R

Since we must have L(pk′n h) = 0, the local values of h are contained in the set

Hkn ≡ {h ∈ Rkn : L(pk′n h) = 0} .

• Distribution depends on effect of local parameters on criterion function. Let,

Vkn(T ) ≡ {v : T → R s.t. v(t) = E[w(t, Z)pk′n(X)h], h ∈ Hkn}

Define the function space V∞(T ) the closure of
⋃

Vkn(T ) under ‖ · ‖∞.

http://dss.ucsd.edu/~a2santos
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Some Intuition

min
Θn∩R

max
Tn

( 1
√

n

n∑

i=1

(Yi − θn(Xi))w(t, Zi)
)2

≈ min
Θn∩R

max
Tn

( 1
√

n

n∑

i=1

(Yi − θ0(Xi))w(t, Zi) +
1
√

n

n∑

i=1

(Πnθ0(Xi) − θn(Xi))w(t, Zi)
)2

≈ min
h∈Hkn

max
Tn

( 1
√

n

n∑

i=1

(Yi − θ0(Xi))w(t, Zi) +
1
√

n

n∑

i=1

pk′n(Xi)h√
n

w(t, Zi)
)2

≈ min
h∈Hkn

max
Tn

( 1
√

n

n∑

i=1

(Yi − θ0(Xi))w(t, Zi)
︸                   ︷︷                   ︸

+ E[w(t, Zi)pk′n(Xi)h]
︸                  ︷︷                  ︸

)2

Gaussian Process in Vkn(T )

http://dss.ucsd.edu/~a2santos
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Asymptotic Distribution

Theorem: Under appropriate regularity conditions, if Θ0 ∩ R , ∅, then:

In(R)
L−→ inf

θ0∈Θ0∩R
inf

v∈V∞(T )
‖G(t, θ0) − v(t)‖2∞

where G(t, θ0) is a tight Gaussian process on L∞(T × Θ0). If Θ0 ∩ R = ∅, then:

n−1In(R)
a.s.−→ min

θ∈Θ∩R
‖E[(Y − θ(X))w(t, Z)]‖2∞

.

Comments

• Statistic has a proper limit distribution under the null hypothesis.

• Statistic diverges to infinity under the alternative hypothesis.

http://dss.ucsd.edu/~a2santos
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Alternative Result

Remark: If c1−α is the 1− α quantile of infΘ0∩R ‖G(t, θ0)‖2∞ ...

... Then it is possible to show that under the null hypothesis:

lim inf
n→∞

P(In(R) ≥ c1−α) ≥ 1− α .

... While under the alternative hypothesis we have:

lim
n→∞

P(In(R) ≥ c1−α) = 1 .

Comments

• Only requires that R be closed under ‖ · ‖cδ.
• Potentially conservative.

http://dss.ucsd.edu/~a2santos
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Bootstrap Procedure
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The Unknowns

Limiting distribution under the null hypothesis:

In(R)
L→ inf

θ0∈Θ0∩R
inf

v∈V∞(T )
‖G(t, θ0) − v(t)‖2∞ .

Three Unknowns

• Distribution of the Gaussian process G(t, θ0).

• Identified set Θ0 ∩ R.

• The function space V∞(T ).

http://dss.ucsd.edu/~a2santos
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Estimating V∞(T )

Recall that V∞(T ) is the closure of
⋃

Vkn(T ) under ‖ · ‖∞, where:

Vkn(T ) ≡ {v : T → R : s.t. v(t) = E[w(t, Z)pk′n(X)h], L(pk′n h) = 0 } .

For some bn ր ∞ and Bn ր ∞, define the sample analogue:

V̂bn (T ) ≡
{

v : T → R : s.t. v(t) =
1
n

n∑

i=1

w(t, Zi)pb′n (Xi)h, L(pb′n h) = 0, ‖h‖ ≤ Bn

}

.

Comments

• bn plays role of kn but they need not be equal.

• The norm bound Bn is imposed to obtain a uniform law of large numbers.

http://dss.ucsd.edu/~a2santos
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Estimating G(t, θ0)

Recall that the Gaussian process G(t, θ0) on L∞(T × Θ0) is the limit of:

1
√

n

n∑

i=1

(Yi − θ0(Xi))w(t, Zi)
L−→ G(t, θ0) .

For (Y∗i , X
∗
i , Z

∗
i ) distributed according to the empirical distribution, we define:

G∗n(t, θ) ≡ 1
√

n

n∑

i=1

{(Y∗i − θ(X∗i ))w(t, Z∗i ) − E∗[(Yi − θ(Xi))w(t, Zi)] .}

Problem

• G∗n(t, θ) is properly centered for all (t, θ) ∈ T × Θ.

• G∗n(t, θ) convergence is in L∞(T × Θ) not L∞(T × Θ0).

• Need to evaluate restriction of G∗n(t, θ) to proper domain.

http://dss.ucsd.edu/~a2santos
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Estimating Θ0 ∩ R

Goal: Use penalty function to evaluate G∗n(t, θ) on proper set. Define:

P∗n(t, θ) ≡
(1
n

n∑

i=1

(Yi − θ(Xi))w(t, Zi)
)2

Indicator for Identified Set

If λn ր ∞ at an appropriate rate, then the penalty function:

λn max
t∈T

P∗n(t, θ)

... converges a.s. to zero for all θ ∈ Θ0 ... but diverges a.s. to +∞ for all θ < Θ0.

http://dss.ucsd.edu/~a2santos
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Consistency

I∗n(R) ≡ inf
θ∈Θn∩R

inf
v∈V̂bn (T )

max
t∈Tn

{(G∗n(t, θ) − v(t))2
+ λnP∗n(t, θ)}

Theorem Under appropriate regularity conditions, if Θ0 ∩ R , ∅, then:

I∗n(R)
L∗−→ inf

θ0∈Θ0∩R
inf

v∈V∞(T )
‖G(t, θ0) − v(t)‖2∞ a.s.

On the other hand, if Θ0 ∩ R = ∅ then we obtain:

λ−1
n I∗n(R)

p∗

−→ min
θ∈Θ∩R

‖E[(Y − θ(X))w(t, Z)]‖2∞ a.s.

Note: Under the null, bootstrap equivalent to plug-in estimator for Θ̂0.

http://dss.ucsd.edu/~a2santos
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Inference

ĉ1−α ≡ inf {u : P∗(I∗n(R) ≤ u) ≥ 1− α}

Corollary Under H0, if limit distribution of In(R) is continuous, strictly increasing,

lim
n→∞

P(In(R) ≤ ĉ1−α) = 1− α .

On the other hand, if Θ0 ∩ R = ∅, then we have:

lim
n→∞

P(In(R) > ĉ1−α) = 1 .

Note: Consistency is due to I∗n(R) diverging to infinity at slower rate than In(R).

http://dss.ucsd.edu/~a2santos
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Monte Carlo

http://dss.ucsd.edu/~a2santos
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Monte Carlo

Distribution Design

• (X, Z, ǫ) transformed from multivariate normal (X∗, Z∗, ǫ∗).

• ρ(X∗, Z∗) = 0.5 and ρ(X∗, ǫ∗) = 0.3, (X, Z) have compact support.

• True model: Y = 2 sin(Xπ) + ǫ

Implementation Details

• B-Splines used for sieve Θn.

•Weight function w(t, z) = φ((t1 − z)/t2), where φ(u) is normal pdf.

• 500 replications, sample size of 500.

http://dss.ucsd.edu/~a2santos
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Empirical Size

Null hypothesis: Does θ0(0) = 0?

α/λn λn = 0 λn = n
1
3 λn = n

1
2 λn = n

2
3

α = 0.1 0.508 0.220 0.178 0.140
α = 0.05 0.378 0.152 0.114 0.072
α = 0.01 0.198 0.050 0.028 0.014

Comments

• λn = 0 not warranted by theory. Should over-reject.

• (n
1
3 , n

1
2 , n

2
3 ) ≈ (7.9, 22.4, 63) ... broad range for choices.

• n
1
3 seems to be too small, controls size poorly.

http://dss.ucsd.edu/~a2santos
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Figure 1: Rejection probabilities as a function of γ

rates. These differences are of the order of the size distortions in Table 1 for small values of γ, but

are significantly larger for alternatives such as γ ∈ {−0.5, 0.5}.

4 Brazilian Fuel Engel Curves

In response to the oil shocks of the 1970s, Brazil embarked in 1975 on a national program to sub-

stitute gasoline consumption with ethanol processed from sugar cane. Today, ethanol accounts for

an important fraction of the transport fuel market. In this section, we study the Engel curves for

ethanol and gasoline in Brazil using data from “Pesquisa de Orçamentos Familiares 2002-2003”

(POF). The POF is similar to the United States Bureau of Labor Statistics Consumer Expendi-

ture Survey (CEX), but is conducted more sporadically (previous study was 1995-1996) and more

extensively (total of 48,470 households).

We let Ye and Yg be the share of total nondurable expenditures spent on ethanol and gasoline

respectively, X denote log of total nondurable expenditures and Z be total household income. The

Engel curves for ethanol and gasoline are assumed to satisfy the additively separable specification:

Ym = θm(X) + εm (62)

where m ∈ {e, g} and εm is unobserved heterogeneity. We condition on households with positive

consumption formed by cohabitating couples in urban areas with children. These restrictions yield

a dataset of 4994 observations for gasoline and 467 observations for ethanol.

21
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Final Remarks

Partial Identification

• Smoothness restriction aid in identification but do not guarantee it.

• Straightforward to construct examples where identification fails.

Methods for Inference

• Robust to partial identification.

• Identifiable functionals through test inversion.

• Bootstrap procedure for obtaining critical values.

http://dss.ucsd.edu/~a2santos
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