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Summary This paper studies non-separable structural models that are of the form Y =
mα(X, U ) with U uniform on (0, 1) in which mα is a known real function parametrized
by a structural parameter α. We study the case in which α contains a finite dimensional
component θ and an infinite dimensional component h. We assume that the true value α0

is identified by the restriction U ⊥ X. Our proposal is to estimate α0 by a minimum distance
from independence (MDI) criterion. We show that: (a) our estimator for h0 is consistent and
we obtain rates of convergence and (b) the estimator for θ0 is

√
n consistent and asymptotically

normally distributed.
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1. INTRODUCTION

Non-parametric identification of non-linear non-separable structural models is often achieved by
assuming that the model’s latent variables are independent of the exogenous variables. Examples
of such arguments include Brown (1983), Roehrig (1988), Matzkin (1994), Chesher (2003),
Matzkin (2003) and Benkard and Berry (2006) among others. Yet the criteria used for estimation
in such models rarely involve the independence property. Instead, non-parametric and semi-
parametric estimation methods typically use the mean independence between the latent and
exogenous variables that comes in a form of conditional moment restrictions (see e.g. Ai and
Chen, 2003, Blundell et al., 2007). Weaker than independence, the mean independence property
by itself does not guarantee the identification to hold. As a result, this literature most often simply
assumes the models to be identified by the conditional moment restrictions.

In this paper, we unify the estimation and identification of non-separable models by
employing the same criterion to obtain both: full independence between the models’ latent and
exogenous variables. We focus on models of the form: Y = mα(X,U ), with variables Y ∈ R

and X ∈ X ⊆ R
dx that are observable, and a latent disturbance U that is uniformly distributed

on (0, 1).1 We denote by α0 the true value of the structural parameter α which consists of (a) a

1 In a semi-parametric specification, requiring U ∼ U (0, 1) can often be seen as a normalization on the non-parametric
component that does not affect the parametric one. This assumption is also often used for non-parametric identification
(see Matzkin, 2003, for examples of such arguments).
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component θ in � that is finite dimensional (� ⊂ R
dθ ) and (b) a function h of x and u belonging

to an infinite dimensional set of functions H. Thus α ≡ (θ, h) ∈ A ≡ � × H. We focus on non-
separable models in which for every value x ∈ X the mapping mα(x, u) is strictly increasing in
u on (0, 1), and the true value α0 of α is identified by the independence restriction U ⊥ X.

The key insight of our estimation procedure lies in the following equality implied by the
model:

P (Y � mα0 (X, tu); X � tx) = tu · P (X � tx) (1.1)

for all t ≡ (tx, tu) ∈ X × (0, 1). We exploit this relationship between the marginal and joint cdfs
to construct a Cramér–von Mises-type criterion function:

Q(α) ≡
∫
X×(0,1)

[P (Y � mα(X, tu); X � tx) − tu · P (X � tx)]2dμ(t),

where μ is a measure on X × (0, 1). In a sense, the criterion function Q(α) measures the distance
from independence of U and X in the model. Hence, we call our estimator α̂—which we obtain by
minimizing an appropriate sample analogue Qn(α) of Q(α) above—a minimum distance from
independence (MDI) estimator. When α0 is identified by the assumptions of the model, then
α0 will also be the unique zero of Q(α). Exploiting the standard M-estimation arguments we are
then able to: (i) show that the MDI estimator α̂ = (θ̂ , ĥ) is consistent for α0 = (θ0, h0); (ii) obtain
the rate of convergence of the estimator ĥ for h0; (iii) establish the asymptotic normality of the
estimator θ̂ for θ0.

The approach of minimizing the distance from independence for estimation was originally
explored in the seminal work of Manski (1983). In the context of non-linear parametric
simultaneous equations systems, the asymptotic properties of the MDI estimators were derived
in Brown and Wegkamp (2002). These results, however, assume that the structural mappings
are finitely parametrized and do not allow for the presence of non-parametric components,
which our approach does. Our paper is also related to the vast literature on estimation of
conditional quantiles. Horowitz and Lee (2007) and Chen and Pouzo (2008a), for example,
study non-parametric and semi-parametric estimation, respectively, in an instrumental variables
setting. However, these results concern a finite number of quantile restrictions, while (1.1)
constitutes a continuum of them. Carrasco and Florens (2000) examine efficient GMM estimation
under a continuum of restrictions, but their results apply only to finite dimensional parameters.
Additional work in non-separable models concerns identification and estimation of average
treatment effects rather than the entire structural parameter as in Altonji and Matzkin (2005),
Chernozhukov and Hansen (2005), Florens et al. (2008) and Imbens and Newey (2009) among
others.

The remainder of the paper is organized as follows. In Section 2, we present the estimator
and establish its consistency while in Section 3 we obtain a rate of convergence. The asymptotic
normality result for

√
n(θ̂ − θ0) is derived in Section 4. In Section 5, we illustrate how semi-

parametric non-separable models arise naturally in economic analysis by studying a simple
version of Berry et al. (1995) model of price-setting with differentiated products. The same
section contains a Monte Carlo experiment that illustrates the properties of our estimator. Section
6 concludes the paper. The proofs of all the results stated in the text are relegated to the
Appendices.
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2. MINIMUM DISTANCE FROM INDEPENDENCE ESTIMATION

We consider the following non-separable model:

Y = mα(X,U ) and U ∼ U (0, 1) (2.1)

with observables Y ∈ R and X ∈ X ⊆ R
dx , unobservable U ∈ (0, 1), and structural parameter

α ∈ A. In our setup α consists of an unknown parameter θ ∈ � that is finite dimensional (� ⊆
R

dθ ), as well as an unknown real function h : X × (0, 1) → R. The latter component of α is
infinite dimensional and we assume that h ∈ H, where H is an infinite dimensional set of real
valued functions of x and u. We therefore let (θ, h) ≡ α ∈ A ≡ � × H. Hereafter, we assume
that the model (2.1) is correctly specified and we denote by α0 the true value of the parameter α.

For every α ∈ A, the structural mapping mα : X × (0, 1) → R in (2.1) is a known real
function that is continuously differentiable in u on (0, 1) for every x ∈ X . Moreover, we assume
that for every x ∈ X , we have ∂mα0 (x, u)/∂u > 0. In other words, at the true parameter value
α0, the real function mα0 (x, u) is assumed to be strictly increasing in u on (0, 1) for all values
of x ∈ X . In particular, this property guarantees that, conditional on X, the mapping from the
unobservables U to the observables Y is one-to-one.

Our estimator will be constructed from a sample {yi, xi}ni=1 of observations of (Y ,X) drawn
according to model (2.1) with α = α0. We assume the following:

ASSUMPTION 2.1. (a) {yi, xi}ni=1 are i.i.d.; (b) X is continuously distributed on X with density
fX(x) and (c) the densities fY | X(y | x) and fX(x) are uniformly bounded in (y, x) on S (defined
below) and in x on X , respectively.

Assumption 2.1(a) is more likely to hold in cross-sectional applications; though extensions
to time-series context are feasible, we do not pursue them here. Assumptions 2.1(b) and
(c) put restrictions on the density of the observables. Combining U ∼ U (0, 1) with mα0 (x, ·)
being strictly increasing ensures that conditional on X = x, Y is continuously distributed with
support in mα0 (x, (0, 1)); we denote by fY |X(·|·) its conditional density. Assumption 2.1(b) then
ensures that (Y ,X) are jointly continuously distributed on the set S ≡ ⋃

x∈X (mα0 (x, (0, 1)), x).
Moreover, Y is then continuous on Y ≡ ⋃

x∈X mα0 (x, (0, 1)). Note that we allow the support of
the dependent variable Y to depend on the true value α0 of α, as in some well-known examples
of (2.1) such as the Box–Cox transformation model (see e.g. Komunjer, 2009).

The key property of model (2.1) upon which we base our estimation procedure is that α0 is
non-parametrically identified by an independence restriction.

ASSUMPTION 2.2. The true value α0 ∈ A of the structural parameter α in model (2.1) is
identified by the restriction: U ⊥ X.

Assumption 2.2 requires that model (2.1) be identified by an independence restriction. For
fully non-parametric specifications, the arguments that lead to this result are well understood (see
e.g. Matzkin, 2003). Identification in semi-parametric setups, however, can be more challenging
and of course depends on the model specification. In Section 5, we provide more primitive
conditions under which the identification Assumption 2.2 holds within a simplified BLP model.
The following lemma derives a simple characterization of the property in Assumption 2.2.

LEMMA 2.1. Let Assumptions 2.1(b) and 2.2 hold. Then, it follows that:

P (Y � mα(X, u); X � x) = u · P (X � x) for all (x, u) ∈ X × (0, 1)

if and only if α = α0.
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Lemma 2.1 suggests a straightforward way to construct a criterion function through which to
estimate α0. Let t = (x, u) ∈ X × (0, 1) and define

Wα(t) ≡ P (Y � mα(X, u); X � x) − u · P (X � x). (2.2)

Under the assumptions of Lemma 2.1, we have Wα(t) = 0 for all t ∈ X × (0, 1) if and only if
α = α0. Hence, a natural candidate for a population criterion function is the Cramer–von Mises-
type objective:

Q(α) ≡
∫
X×(0,1)

W 2
α (t)dμ(t), (2.3)

where μ is a measure on X × (0, 1) that is absolutely continuous with respect to Lebesgue
measure. The choice of μ is free, though we note that it will influence the asymptotic variance
of our estimator for θ .

When the model in (2.1) is identified by the restriction U ⊥ X, Lemma 2.1 implies that α0 is
the unique zero of Q(α) and hence we have

α0 = arg min
α∈A

Q(α).

The absolute continuity of μ is needed to ensure that α0 is the unique minimum of Q(α). Indeed,
if μ were to place point masses on some finite number of values ti ∈ X × (0, 1) of t (with i ∈ I

and I finite), then the objective function Q(α) would be minimized at values of α for which
Wα(ti) = 0 for all i ∈ I . Therefore, multiple minimizers will exist in specifications where the
independence assumption cannot be weakened without losing identification.

Estimation will proceed by minimizing an empirical analogue Qn(α) of Q(α) over an
appropriate sieve space. First define the sample analogue to Wα(t):

Wα,n(t) ≡ 1

n

n∑
i=1

1{yi � mα(xi, u); xi � x} − u · 1

n

n∑
i=1

1{xi � x}, (2.4)

which yields a finite sample criterion function:

Qn(α) ≡
∫
X×(0,1)

W 2
α,n(t)dμ(t). (2.5)

Since A contains a non-parametric component, minimizing Qn(α) to obtain an estimator
may not only be computationally difficult, but also undesirable as it may yield slow rates of
convergence (see Chen, 2006). For this reason we instead sieve the parameter space A. Let
Hn ⊂ H be a sequence of approximating spaces, and define the sieve An = � × Hn. The MDI
estimator is then given by

α̂ ∈ arg min
α∈An

Qn(α). (2.6)

For the consistency analysis, we endow A with the metric ‖α‖c = ‖θ‖ + ‖h‖∞ and impose
the following additional assumption:2

2 See the Appendix for details regarding the notations and definitions.
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ASSUMPTION 2.3. (a) μ has full support on X × (0, 1); (b) � and H are compact
w.r.t. ‖ · ‖ and ‖ · ‖∞; (c) mα(x, ·) : (0, 1) → R is strictly increasing for every (α, x) ∈ A ×
X ; (d) For every x ∈ X , supu∈(0,1) | mα(x, u) − mα̃(x, u) | � G(x){‖θ − θ̃‖ + ‖h − h̃‖∞} with

E[G2(X)] < ∞; (e) The entropy
∫∞

0

√
N[ ](η3,H, ‖ · ‖∞)dη < ∞; (f) Hn ⊂ H are closed in

‖ · ‖∞ and for any h ∈ H there exists �nh ∈ Hn such that ‖h − �nh‖∞ = o(1).

As already pointed out, Assumption 2.3(a) ensures that Q(α) is uniquely minimized at
α0. Assumptions 2.3(b)–(e) ensure the stochastic process is asymptotically equicontinuous in
probability. It is interesting to note that while strict monotonicity of mα(x, ·) is not needed
for identification, imposing it on the parameter space is helpful in the statistical analysis. In
Assumption 2.3(e), N[ ](η3,H, ‖ · ‖∞) denotes the bracketing number of H with respect to
‖ · ‖∞; see van der Vaart and Wellner (1996) for details and examples of function classes
satisfying Assumption 2.3(e). Finally, Assumption 2.3(f) requires the sieve can approximate the
parameter space with respect to the norm ‖ · ‖∞.

Assumptions 2.1–2.3 are sufficient for establishing the consistency of the MDI estimator
under the norm ‖ · ‖c.

THEOREM 2.1. Under Assumptions 2.1–2.3 it follows that ‖α̂ − α‖c = op(1).

3. RATE OF CONVERGENCE

In this section, we establish the rate of convergence of ĥ. This result is not only interesting in its
own right, but is also instrumental in deriving the asymptotic normality of

√
n(θ̂ − θ ). We focus

on the following norm for h(x, u):

‖h‖2
L2 =

∫
X×(0,1)

h2(x, u)fX(x)dx du. (3.1)

Associated to the norm ‖h‖L2 is the vector space L2 = {h(x, u) : ‖h‖L2 < ∞}. We assume the
structural function mα(x, u) in (2.1) satisfies ‖mα‖L2 < ∞ and define the mapping m : (A,

‖ · ‖c) → L2 which to any α ∈ A associates m(α) ≡ mα .
Given these definitions, we introduce the following assumption.3

ASSUMPTION 3.1. (a) In a neighbourhood N (α0) ⊂ A,m : (A, ‖ · ‖c) → L2 is continuously
Fréchet differentiable; (b) For every (y, x) ∈ S, the conditional densities satisfy |fY | X(y | x) −
fY |X(y ′ | x)| � J (x)|y − y ′|ν with E[J 2(X)G2∨2ν(X)] < ∞; (c) The marginal density of μ with
respect to u is uniformly bounded on (0, 1).

In what follows, we denote by dm
dα

(α̃) the Fréchet derivative of m evaluated at α̃ ∈ A. For
example, consider the structural mapping mα(x, u) = h(x, u) + x ′θ and assume that ‖mα‖L2 <

∞. In this case m is linear and so it is its own Fréchet derivative, i.e. for any π = (πh, πθ ) ∈ A
we have dm

dα
(α)[π ](x, u) = πh(x, u) + x ′πθ . To simplify the notation, we hereafter let

dmα(x, u)

dα
[π ] ≡ dm

dα
(α)[π ](x, u).

3 See the Appendix for definitions.
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In order to obtain the rates of convergence for ‖ĥ − h‖L2 , it is necessary to examine the
local behaviour of Q(α) at α0. Under Assumptions 2.1(b)–(c), 2.3(d) and 3.1, the Fréchet
differentiability of m is inherited by the mapping Q : (A, ‖ · ‖c) → R, which to every α ∈ A
associates Q(α). To state the form of this Fréchet derivative, we define the linear map Dᾱ :
(A, ‖ · ‖c) → L2

μ which to every π ∈ A associates Dᾱ[π ], where Dᾱ[π ] : X × (0, 1) → R maps
t = (x, u) ∈ X × (0, 1) into Dᾱ[π ](t) given by:

Dᾱ[π ](t) =
∫
X

fY | X(mᾱ(sx, u)|sx)
dmᾱ(sx, u)

dα
[π ]1{sx � x}fX(sx)dsx. (3.2)

Lemma 3.1 establishes that Q(α) is twice Fréchet differentiable at α0.

LEMMA 3.1. Under Assumptions 2.1(b)–(c), 2.3(d) and 3.1(a)–(c), Q : (A, ‖ · ‖c) → R is: (a)
continuously Fréchet differentiable in N (α0) with

dQ(ᾱ)

dα
[π ] =

∫
X×(0,1)

Wᾱ(t)Dᾱ[π ](t)dμ(t);

(b) twice Fréchet differentiable at α0 with

d2Q(α0)

dα2
[ψ,π ] =

∫
X×(0,1)

Dα0 [ψ](t)Dα0 [π ](t)dμ(t).

In this model, since Q(α) is minimized at α0, its second derivative at α0 induces a norm on
A. This result is analogous to a parametric model, in which if the Hessian H is a positive definite
matrix, then

√
a′Ha is a norm equivalent to the standard Euclidean norm. Guided by Lemma 3.1

we therefore define the inner product and associated norm:

〈α, α̃〉w ≡
∫
X×(0,1)

Dα0 [α](t)Dα0 [α̃](t)dμ(t) and ‖α‖2
w = 〈α, α〉w. (3.3)

The advantage of the norm ‖ · ‖w is that through a Taylor expansion it is often possible to show
‖α − α0‖2

w � Q(α), which makes it feasible to obtain rates of convergence in ‖ · ‖w. However,
the norm ‖ · ‖w may not be of interest in itself. We instead aim to obtain a rate of convergence
in the stronger norm ‖α‖s ≡ ‖θ‖ + ‖h‖L2 . It is possible to obtain a rate of convergence for
‖α̂ − α0‖s by understanding the behaviour of the ratio ‖ · ‖s/‖ · ‖w on the sieve An. We impose
the following assumptions in order to obtain the rate of convergence of α̂ in the norm ‖ · ‖s .

ASSUMPTION 3.2. (a) In a neighbourhood N (α0), ‖α − α0‖2
w � Q(α) � ‖α − α0‖2

s ; (b) The
ratio τn ≡ supAn

‖αn‖2
s /‖αn‖2

w satisfies τn = o(nγ ) with γ < 1/4; (c) For any h ∈ H there exists

�nh ∈ Hn with ‖h − �nh‖s = o(n− 1
2 ) and ‖h − �nh‖c = o(n− 1

4 ).

Assumption 3.2(a) requires ‖α − α0‖w � Q(α). As discussed, this is often verified through
a Taylor expansion and allows us to obtain a rate of convergence in ‖ · ‖w. In our model, ‖ · ‖w is
too weak and Q(α) is often not continuous in this norm. We impose instead Q(α) � ‖α − α0‖2

s .
Assumption 3.2(b) is crucial in enabling us to obtain rates in ‖ · ‖s from rates in ‖ · ‖w, and vice
versa, which is needed to refine initial estimates of the rate of convergence. The ratio τn is often
referred to as the sieve modulus of continuity (see e.g. Chen and Pouzo, 2008b). In practice,
Assumption 3.2(b) is requiring the sieve not to grow too fast. Finally, Assumption 3.2(c) refines
the requirements of rates of approximation for the sieve An.
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Given these assumptions we obtain the following rate of convergence result:

THEOREM 3.1. Under Assumptions 2.1–2.3, 3.1 and 3.2, ‖α̂ − α0‖s = op(n− 1
4 ).

Note that since ‖α̂ − α0‖s = ‖θ̂ − θ0‖ + ‖ĥ − h0‖L2 , it immediately follows from
Theorem 3.1 that ‖ĥ − h0‖L2 = op(n− 1

4 ) as well.

4. ASYMPTOTIC NORMALITY

In this section, we establish the asymptotic normality of
√

n(θ̂ − θ ). The approach of the proof
is similar to that of Ai and Chen (2003) and Chen and Pouzo (2008a). We proceed in two steps.
First, we show that for any λ ∈ R

dθ the linear functional Fλ(α) = λ′θ , which returns a linear
combination of the parametric component of the semi-parametric specification, is continuous in
‖ · ‖w. By appealing to the Riesz Representation Theorem it then follows that there is vλ such that
〈vλ, α̂ − α0〉w = λ′(θ̂ − θ0). Second, we establish the asymptotic normality of

√
n〈vλ, α̂ − α0〉w

and employ the Cramér–Wold device to conclude the asymptotic normality of
√

n(θ̂ − θ ).
We therefore first aim to establish the continuity of Fλ(α) = λ′θ in ‖ · ‖w. Let Ā denote the

closure of the linear span of A − α0 under ‖ · ‖w, and observe that (Ā, ‖ · ‖w) is a Hilbert space
with inner product 〈·, ·〉w and that Ā is of the form Ā = R

dθ × H̄. For any (α − α0) in Ā, we can
then decompose Dα0 [α − α0] as:4

Dα0 [α − α0] ≡ dW (α0)

dα
[α − α0] = dW (α0)

dθ ′ [θ − θ0] + dW (α0)

dh
[h − h0] . (4.1)

For each component θi of θ, 1 � i � dθ , let h∗
j ∈ H̄ be defined by

h∗
j ≡ arg min

h∈H̄

∫
X×(0,1)

(
dWα0 (t)

dθj

− dWα0 (t)

dh
[h]

)2

dμ(t) , (4.2)

where the minimum in (4.2) is indeed attained and h∗
j is well defined due to the Projection

Theorem in Hilbert spaces (see e.g. Theorem 3.3.2 in Luenberger, 1969). Similarly, define h∗ ≡
(h∗

1, . . . , h
∗
dθ

) and let

dWα0 (t)

dh
[h∗] =

(
dWα0 (t)

dh

[
h∗

1

]
, . . . ,

dWα0 (t)

dh

[
h∗

dθ

])
. (4.3)

As a final piece of notation, we also need to denote the vector of residuals:

Rh∗ (t) = dWα0 (t)

dθ
− dWα0 (t)

dh
[h∗] , (4.4)

4 The first equality in (4.1) is formally justified in the proof of Lemma 3.1 in the Appendix, in which it is shown Dᾱ

is the Fréchet derivative of the mapping W : (A, ‖ · ‖c) → L2
μ given by W : α �→ Wα , when evaluated at ᾱ. Similar to

before, we use the notation

dWα(t)

dα
[π ] ≡ dW

dα
(α)[π ](t).
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and the associated matrix

�∗ ≡
∫
X×(0,1)

Rh∗ (t)R′
h∗(t)dμ(t). (4.5)

Lemma 4.1 shows that the functional Fλ(α) = λ′θ is continuous if the matrix �∗ is positive
definite, which may be interpreted as a local identification condition on θ0. Lemma 4.1 also
obtains the formula for the Riesz Representor of Fλ(α).

LEMMA 4.1. Let vλ
θ ≡ (�∗)−1λ and vλ

h ≡ −h∗vλ
θ . If �∗ is positive definite, then for any λ ∈

R
dθ , Fλ(α − α0) = λ′(θ − θ0) is continuous on Ā under ‖ · ‖w and in addition we have Fλ(α −

α0) = 〈vλ, α − α0〉w = λ′(θ − θ0).

Having established the continuity of Fλ(α) in ‖ · ‖w and the closed-form solution or the Riesz
Representor vλ we can study the asymptotic normality of λ′(θ̂ − θ ) by examining

√
n〈vλ, α̂ −

α0〉w instead. The latter representation is simpler to analyse as it is determined by the local
behaviour of Q(α) near its minimum α0. In order to establish asymptotic normality, we require
one final assumption.

ASSUMPTION 4.1. (a) The matrix �∗ is positive definite; (b) vλ ∈ A for ‖λ‖ small;
(c) For every α ∈ N (α0) and every (π, ᾱ) ∈ A2, the pathwise derivative dDα+τ ᾱ [π]

dτ
exists

and in addition satisfies
∫
X×(0,1) sups∈[0,1] | dDα+τ ᾱ[π]

dτ
(t)|τ=s |dμ(t) � ‖ᾱ‖s‖π‖s as well as∫

X×(0,1) sups∈[0,1]

[
dDα+τ ᾱ [π]

dτ
(t)|τ=s

]2
dμ(t) � ‖ᾱ‖2

s ; (d) For every α ∈ N (α0) and every π ∈
A, |Dα[π ](t)| is bounded uniformly in t ∈ X × (0, 1).

Assumption 4.1(a) ensures that Fλ(α) = λ′θ is continuous in ‖ · ‖w, as shown in
Lemma 4.1. While vλ ∈ Ā, Assumption 4.1(b) additionally requires vλ ∈ A. As a result vλ may
be approximated by an element �nv

λ ∈ An due to Assumption 3.1(c). The qualification ‘for ‖λ‖
small’ is due to the compactness assumption on � × H imposing that they be bounded in norm.
Finally Assumptions 4.1(c)–(d) require Wα(t) to be twice differentiable and for certain regularity
conditions to hold on the derivatives.

We are now ready to establish the asymptotic normality of
√

n(θ̂ − θ0).

THEOREM 4.1. Let Assumptions 2.1–4.1 hold. Then,
√

n(θ̂ − θ )
L→ N (0, �), where

� ≡ [�∗]−1

[∫
(X×(0,1))2

Rh∗ (t)R′
h∗(s)�(t, s)dμ(t)dμ(s)

]
[�∗]−1,

and for every t = (x, u) and t ′ = (x ′, u′) in X × (0, 1) the kernel �(t, t ′) is given by

�(t, t ′) ≡ E[(1{U � u; X � x} − u · 1{X � x})(1{U � u′; X � x ′} − u′ · 1{X � x ′})].

5. EXAMPLE AND MONTE CARLO EVIDENCE

5.1. The model

We proceed to illustrate how non-separable structures of the form in (2.1) arise naturally in
simple economic models. We shall also use this example in a small Monte Carlo study of
the performance of our estimator. Our example is a basic version of Berry et al. (1995) (BLP
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henceforth) model with two products and two firms. On the demand side, we use a random
utility specification à la Hausman and Wise (1978):

uij = −apj + b′xj + ξj + ζi + εij , (5.1)

in which uij is the utility of product j (j = 1, 2) to individual i (i = 1, . . . , I ) with unobserved
characteristics ζi (ζi ∈ R), pj and xj are, respectively, the price and a dx-vector of observed
characteristics of product j (pj ∈ R+, xj ∈ R

dx , dx < ∞); b is a dx-vector of coefficients
determining the impact of xj on the utility for j (b ∈ R

dx ), and ξj is an index of unobserved
characteristics of the latter (ξj ∈ R); −a is a taste parameter on the price assumed constant across
individuals (a > 0); finally, εij is an error term that represents the deviations from an average
behaviour of agents and whose distribution is induced by the characteristics of the individual i
and those of product j (εij ∈ R).

A baseline specification of the random utility in (5.1) is that εij are i.i.d. across products j
and individuals i. For example, assuming that εij ’s are Gumbel random variables, the resulting
individual choice model is logit. In what follows, we let the difference εi2 − εi1 be distributed
with some known cdf F that need not be logit. Note that F necessarily satisfies F (−ε) = 1 −
F (ε). When εi2 − εi1 has cdf F, the demand for good j, denoted Dj (pj , p−j ), is given by

Dj (pj , p−j ) = M · F (−a(pj − p−j ) + b′(xj − x−j ) + ξj − ξ−j ), (5.2)

where M is the total market size.
Hereafter, we let the Y ≡ F−1(D1(p1, p2)/M) be the quantile of the market share for firm

1’s good (Y ∈ R), P ≡ p1 − p2, X ≡ x1 − x2 and ξ ≡ ξ1 − ξ2. Then, the structural BLP model
of (5.2) takes the form

Y = −aP + b′X + ξ with ξ ⊥ X. (5.3)

In the model above, prices are endogenous, so even if ξ is independent of X, we can expect
P to depend on ξ . Hence, without further restrictions on ξ and P it is not possible to identify
the parameters a and b in (5.3). We now show how the supply-side information may be used to
identify these parameters.

We assume that firms compete in prices (à la Bertrand), so each firm chooses the price
which maximizes its profit �j (pj , p−j ) = (pj − c)Dj (pj , p−j ). We assume the marginal cost
parameter c to be the same for both firms. The equilibrium prices (p1, p2) are implicitly defined
by the solution to the Bertrand game with exogenous variables X. Lemma 5.1 exploits this
relationship to obtain an alternative representation for the BLP model (5.3).

LEMMA 5.1. Assume F is twice continuously differentiable on R with strictly increasing hazard
rate τ . If ξ is continuously distributed, then it follows that:

Y = h(X,U ) + X′θ, U ∼ U (0, 1), (5.4)

with h continuously differentiable, ∂h(x, u)/∂u > 0, and θ = b.

Lemma 5.1 assumes the hazard rate τ (ε) ≡ f (ε)/[1 − F (ε)] to be strictly increasing on
R, which is equivalent to requiring that f ′(ε)[1 − F (ε)] + f 2(ε) > 0 for all ε ∈ R (also
equivalent to f ′(ε)F (ε) − f 2(ε) < 0). This assumption guarantees the existence of a unique
Nash equilibrium and the lemma can then be obtained by analysing the equilibrium strategies.
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The BLP model (5.4) is clearly a special case of the non-separable structural model in (2.1)
with α ≡ (θ, h) and

mα(X,U ) = h(X,U ) + X′θ. (5.5)

We now illustrate how to verify other assumptions for this model. If the BLP model variables are
i.i.d. with continuous distribution functions, then the continuous differentiability of the demand
function guarantees that the sampling Assumption 2.1 holds. We note that in this example the
supports of the endogenous and exogenous variables are given by Y = R and X ⊆ R

dx .
But far more difficult to check is the identification Assumption 2.2 for which we now derive

more primitive conditions. Our identification result for the BLP model (5.4) is contained in the
following theorem.

THEOREM 5.1. Assume F is strictly increasing, twice continuously differentiable on R with
strictly increasing hazard rate τ . Assume moreover that ξ is continuously distributed, and that
we have: (a) h(0, 1/2) = 0 and (b) ∂h(0, 1/2)/∂x = 1. Then, the BLP model (5.4) satisfies
Assumption 2.2.

The conditions of Theorem 5.1 fix the values of the unknown function h and of its gradient
with respect to x, denoted by ∂h(x, u)/∂x, at zero. In particular, (a) holds if the distribution Fξ

of the products’ unobservables ξ in the BLP model in equation (5.3) is known to satisfy Fξ (0) =
1/2, since when X = 0 and ξ = 0 the equilibrium is symmetric (x1 = x2), which implies P = 0.5

Hence, −aP + ξ = 0 = h(0, 1/2). Requirement (b) fixes the value of the gradient ∂h(x, u)/∂x

at zero. It ensures that the effects of changing θ can be separated from those of changing h.
Indeed, if h is additive in x as in h(x, u) = φ′x + r(u), then (ii) holds if φ = 1. This restriction
is as we would expect since it would be otherwise impossible to identify θ in Y = (φ + θ )′X +
r(U ).

In the context of the BLP model (5.4), Assumptions 2.3(b) and 2.3(e) can be verified
by letting H be a smooth set of functions. For example, suppose x has compact support
X and let λ be a dx + 1 dimensional vector of positive integers. Define |λ| ≡ ∑dx+1

i=1 λi and

Dλ = ∂λ/∂x
λ1
1 . . . ∂x

λdx

dx
∂uλdx+1 . An appropriate set H is then

H =
{

h : max
|λ|� 3(dx+1)

2 +1

[
sup

(x,u)∈X×(0,1)
|Dλh(x, u)|

]
� M, inf

(x,u)∈X×(0,1)

∂h(x, u)

∂x
≥ ε

}

for some positive M and ε. By Theorem 2.7.1 in van der Vaart and Wellner (1996),
Assumptions 2.3(a) and 2.3(e) are then satisfied. The definition of H also ensures Assumption
2.3(c) holds, while 2.3(d) is immediate from (5.5).

As already noted, mα in (5.5) is linear, and since it is a continuous map from (A, ‖ · ‖c) to
L2, it is continuously Fréchet differentiable with

dmα(x, u)

dα
[π ] = πh(x, u) + x ′πθ ,

which verifies Assumption 3.1(a). In addition, for any t = (x, u) we then have

Dα[π ](t) =
∫
X

fY |X
(
h(sx, u) + s ′

xθ |sx

)(
πh(sx, u) + s ′

xπθ

)
1{sx � x}fX(sx)dsx . (5.6)

5 Note that whenever ξ1 and ξ2 are identically distributed, the distribution of their difference ξ satisfies Fξ (0) = 1/2.
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Hence, if fY | X(y | x) is uniformly bounded, then X and � compact together with our choice for
H imply Assumption 4.1(d) holds. Similarly, by direct calculation we obtain that in the discussed
BLP example, for any α = (θ, h) and ᾱ = (θ̄ , h̄) we have

dDα+τ ᾱ[π ]

dτ
(t)
∣∣∣
τ=s

=
∫
X

f ′
Y | X

(
h(sx, u) + sh̄(sx, u) + s ′

x(θ + sθ̄ ) | sx

)(
πh(sx, u) + s ′

xπθ

)
× (

h̄(sx, u) + s ′
x θ̄
)
1{sx � x}fX(sx)dsx ;

hence Assumption 4.1(c) is easily verified if |f ′
Y | X(y | x)| is bounded in (y, x) on S.

5.2. Monte Carlo setup

We consider the case in which the idiosyncratic errors εi1 and εi2 in (5.1) are i.i.d. Gumbel
random variables, so that the distribution F of their difference is logistic. The equilibrium prices
are solution to the FOC equations:

exp(�) + 1 − a(p1 − c) = 0,

exp(−�) + 1 − a(p2 − c) = 0,

where � ≡ −a(p1 − p2) + bX + ξ as before; in this model X is scalar (dx = 1). The equilibrium
prices obtained by solving the above equations are continuously differentiable functions of X; see
Lemma E.1. A simple application of the Implicit Function Theorem shows that at equilibrium
the prices satisfy

∂(p1 − p2)

∂x
= 2b

3a
,

so ∂h(0, 1/2)/∂x = −2b/3. We set the true values of the parameters to be a = 2.4, b = −1.5
and c = 1. The variables are drawn as X ∼ U [−1, 1] and ξ ∼ N (0, 1), where X and ξ are
independent.6 For the sieve we used a fully interacted polynomial of order 2 in X and U, while
the measure μ was chosen to be uniform on [−1, 1] × [0, 1].

Table 1 reports the mean, standard deviation, mean squared error and the 10th, 50th and
90th percentile of the proposed estimator θ̂ for sample sizes n = 100, 200, 500. The statistics
were computed based on 500 replications. The estimator performs well, exhibiting only a small
downward bias (recall true value is b = −1.5) and small mean squared errors for sample sizes of
200 and 500 observations. For the latter two sample sizes, the estimator is also within 0.1 of the
true value in over 80% of the replications. Figure 1 exhibits a Gaussian kernel estimate for the

Table 1. Monte Carlo results.

Mean STD MSE 10% 50% 90%

n = 100 −1.493 0.110 0.012 −1.629 −1.498 −1.354

n = 200 −1.493 0.072 0.005 −1.583 −1.495 −1.395

n = 500 −1.486 0.043 0.002 −1.541 −1.484 −1.432

6 Note that by setting b = −1.5 we ensure that the identification condition (b) of Theorem 5.1 is satisfied. Condition (a)
holds since the distribution of ξ is symmetric around zero.
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Figure 1. θ̂ Kernel density estimate (n = 500).

density of θ̂ obtained with sample size 500. The density is fairly symmetric and centred at the
true value −1.5.

Overall, we find the performance of the estimator on this limited Monte Carlo study to be
encouraging.

6. CONCLUSION

We have proposed a general estimation framework for a large class of semi-parametric non-
separable models. The resulting estimator converges to the non-parametric component at a
op(n− 1

4 ) rate, and yields an asymptotically normal estimator for the parametric component.
Some of the assumptions must be verified in a model-specific basis, which we have done in
an example motivated by Berry et al. (1995) model of price-setting with differentiated products.
A small Monte Carlo study illustrates the performance of the proposed estimator within the BLP
example.
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APPENDIX A: NOTATION AND DEFINITIONS

The following is a table of the notation and definitions to be used.

a � b a ≤ Mb for some constant M which is universal in the context of the proof.

‖ · ‖c The norm ‖α‖c ≡ ‖θ‖ + ‖h‖∞ where α = (θ, h).

‖ · ‖s The norm ‖α‖s ≡ ‖θ‖ + ‖h‖L2 where α = (θ, h).

‖ · ‖∞ The norm ‖h‖∞ ≡ sup(x,u)∈X×(0,1) |h(x, u)|.
‖ · ‖L2 The norm ‖h‖L2 ≡ ∫

X×(0,1) h(x, u)fX(x)dxdu.

‖ · ‖L2
μ

The norm ‖h‖L2
μ

≡ ∫
X×(0,1) h(x, u)dμ(t) where t ≡ (x, u).

N[ ](ε,F, ‖ · ‖) The bracketing numbers of size ε for F under the norm ‖ · ‖.

A mapping, m : (A, ‖ · ‖) → L2 is said to be Fréchet differentiable, if there exists a bounded linear
map dm

dα
: (A, ‖ · ‖c) → L2 such that,

lim
‖π‖c↘0

‖π‖−1
c

∥∥∥∥mα+π − mα − dm

dα
[π ]

∥∥∥∥
L2

= 0.

The Fréchet derivative is a natural extension of a derivative to general metric spaces.

APPENDIX B: PROOFS FOR SECTION 2

Proof of Lemma 2.1: First, consider all values ᾱ of α in A such that mᾱ(x, u) is not strictly increasing in
u on (0, 1) for all values of x ∈ X . Let x̄ ∈ X be one such value. Then, the function u �→ P (X � x̄; Y �
mᾱ(X, u)) is not strictly increasing on (0, 1); hence, there must exist ū ∈ (0, 1) such that P (X � x̄; Y �
mᾱ(X, ū)) �= ū · P (X � x̄). Now, consider all values α̃ of α in A such that mα̃(x, u) is strictly increasing in
u on (0, 1) for all values of x ∈ X . Note that α0 is an element of that set. Now, for any such α̃, note that for
any (x, u) ∈ X × (0, 1) the following holds:

P (X � x; Y � mα̃(X, u)) =
∫

sx�x

∫
sy�mα̃ (sx ,u)

fXY (sx, sy)dsxdsy

=
∫

sx�x

∫
su�u

fXY (sx, mα̃(sx, su))
∂mα̃(sx, su)

∂u
dsxdsu

=
∫

sx�x

∫
su�u

fXŨ (sx, su)dsx dsu

= P (X � x; Ũ � u), (B.1)

where for the second and third equalities follow we made a change of variable (sx, sy) = (sx, mα̃(sx, su))
and a change in measure Y = mα̃(X, Ũ ). Under Assumption 2.2, α̃ = α0 if and only if Ũ ⊥ X, which since
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Ũ is uniform on (0, 1) is equivalent to

P (Ũ � u; X � x) = u · P (X � x) (B.2)

for all (x, u) ∈ X × (0, 1). Combining (B.2) and (B.1) then establishes the lemma. �

LEMMA B.1. Under Assumptions 2.1(a)–(c) and 2.3(b)–(e), the following class is Donsker:

F ≡ {f (yi, xi) = 1{yi � mα(xi, u); xi � x}, (α, x, u) ∈ A × R
dx × (0, 1)}.

Proof: First define the following classes of functions for 1 � k � dx :

Fu ≡ {f (yi, xi) = 1{yi � mα(xi, u)} : (α, u) ∈ A × (0, 1)} (B.3)

F (k)
x ≡ {

f (xi) = 1
{
x

(k)
i � t

}
: t ∈ R

}
, (B.4)

where x(k) is the kth coordinate of x. Further note that by direct calculation we have

F = Fu ×
dx∏

k=1

F (k)
x . (B.5)

We establish the lemma by exploiting (B.5). For any continuously distributed random variable V ∈ R

and η > 0 we can find {−∞ = t1, . . . , t�η−2�+2 = +∞} such that they satisfy P (ts � V � ts+1) � η2. The
brackets [1{v � ts}, 1{v � ts+1}] then cover {1{v � t} : t ∈ R} and in addition we have

E[(1{V � ts} − 1{V � ts+1})2] � η2.

Therefore, we immediately establish that for all 1 � k � dx :

N[ ]

(
η,F (k)

x , ‖ · ‖L2

) = O(η−2). (B.6)

By Assumption 2.3(b), H is compact under ‖ · ‖∞ and � under ‖ · ‖. Thus, for any Kh, Kθ > 0 there
exists a collection {hj } and {θl} such that the open balls of size Khη

3 around {hj } and of size Kθη
3 around

{θl} cover H and �, respectively. Defining {αs} = {hj } × {θl} we then have:

#{αs} = N[ ](Khη
3,H, ‖ · ‖∞) × (Kθη

3)−dθ . (B.7)

Hence, by Assumption 2.3(c), for any α ∈ A there is a (θs∗ , hs∗ ) ≡ αs∗ ∈ {αs} with

sup
u∈(0,1)

| mα(xi, u) − mαs∗ (xi, u)| � G(xi){‖θ − θs∗‖ + ‖h − hs∗‖∞}

� G(xi){Kθ + Kh}η3. (B.8)

We conclude from (B.8) that for αs ∈ {αs} brackets of the form

[mαs
(xi, u) − {Kθ + Kh}η3G(xi); mαs

(xi, u) + {Kθ + Kh}η3G(x)] (B.9)

cover the class {mα(xi, u) : α ∈ A} for each fixed u ∈ (0, 1). Next note that since mα(xi, u) is strictly
increasing in u for all (xi, α) by Assumption 2.3(c), we may define their inverses:

vα(xi, t) = u ⇐⇒ mα(xi, u) = t . (B.10)

Following Akritas and van Keilegom (2001), for each αs ∈ {αs} we let F U
s (u) be as in the first equality in

(B.11) and obtain second equality in (B.11) from (B.10).

F U
s (u) ≡ P (Yi � mαs

(Xi, u) + {Kθ + Kh}η3G(Xi))

= P (vαs
(Xi, Yi − {Kθ + Kh}η3G(Xi)) � u). (B.11)
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Arguing as in (B.6), there is a collection {uU
sk} with #{uU

sk} = O(η−2) such that it partitions R into segments
each with F U

s probability at most η2/6. Similarly, also let

F L
s (u) ≡ P (Yi � mαs

(Xi, u) − {Kθ + Kh}η3G(Xi)) (B.12)

and choose {uL
sk} with #{uL

sk} = O(η−2) so that it partitions R into segments with F L
s probability at most

η2/6. Next, combine {uL
sk} and {uU

sk} by letting each u ∈ R form the bracket

uL
sk1

� u � uU
sk2

,

where uL
sk1

is the largest element of {uL
sk} such that uL

sk � u, and similarly uU
sk2

is the smallest element in
{uU

sk} such that uU
sk ≥ u. We denote this new bracket by {[usk1 , usk2 ]} and note that

#{[usk1 , usk2 ]} = O(η−2). (B.13)

It follows from (B.9) and the strict monotonicity of mα(x, u) in u that for every (α, u) ∈ A × (0, 1) there
exists an αs ∈ {αs} and [usk1 , usk2 ] ∈ {[usk1 , usk2 ]} such that

1{yi � mαs
(x, usk1 ) − {Kθ + Kh}η3G(xi)}

� 1{yi � mα(xi, u)} � 1{yi � mαs
(x, uik2 ) + {Kθ + Kh}η3G(xi)}, (B.14)

and hence {[1{yi � mαs
(x, usk1 ) − {Kθ + Kh}η3G(xi)}, 1{yi � mαs

(x, uik2 ) + {Kθ + Kh}η3G(xi)}]} form
brackets for the class of functions Fu.

In order to calculate the size of the proposed brackets, note their L2 squared norm is equal to F U
s (usk2 ) −

F L
s (usk1 ). The construction of {[usk1 , usk2 ]} in turn implies the first inequality in (B.15) holds for any u ∈

[usk1 , usk2 ], while direct calculation yields the second inequality for any constant Mη > 0. Setting Mη =√
6E[G2(Xi)]/η and Chebychev’s inequality yields the final result in (B.15).

F U
s (usk2 ) − F L

s (usk1 )

� F U
s (u) − F L

s (u) + η2

3

� F U
s (u; G(Xi) � Mη) − F L

s (u; G(Xi) � Mη) + 2P (G(Xi) ≥ Mη) + η2

3

� F U
s (u; G(Xi) � Mη) − F L

s (t ; G(Xi) � Mη) + 2

3
η2. (B.15)

To conclude, note that Mη =
√

6E[G2(Xi)]/η and the Mean Value Theorem imply that

F U
s (u; G(Xi) � Mη) − F L

s (u; G(Xi) � Mη)

� P
(
Yi � mαs

(Xi, u) + {Kθ + Kh}Mηη
3
)− P

(
Yi � mαs

(Xi, u) − {Kθ + Kh}Mηη
3
)

� 2

{
sup
yi ,xi

fY | X(yi | xi)

}
{Kθ + Kh}

√
6E[G2(Xi)]η

2,

where the resulting expression is finite due to Assumptions 2.1(c) and 2.3(d). Combining the preceding
result with that obtained in (B.15) it follows that by choosing

{Kθ + Kh} �
(

2

{
sup
yi ,xi

fY | X(yi | xi)

}√
6E[G2(Xi)]

)−1

the proposed brackets will have L2 size η. Thus, we have from (B.7) and (B.13),

N[ ](η,Fu, ‖ · ‖L2 ) = O(N[ ](Khη
3,H, ‖ · ‖∞) × (Kθη

3)−(2+dθ )). (B.16)

To conclude note that (B.6), (B.16), Assumption 2.3(d) and Theorem 2.5.6 in van der Vaart and Wellner
(1996) imply the classes F (k)

x and Fu are Donsker. In turn, since all classes are uniformly bounded by
1, Theorem 2.10.6 in van der Vaart and Wellner (1996) and equation (B.5) establish the claim of the
lemma. �
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Proof of Theorem 2.1: By Assumption 2.3(b) and the Tychonoff Theorem, A is compact with respect to
‖ · ‖c. Furthermore, Lemma B.1 and simple manipulations show,

sup
t,α

|Wα,n(t) − Wα(t)| = op(1). (B.17)

Exploiting (B.17) and Wα,n(t) and Wα(t) being bounded by 1, we obtain that

sup
α

| Qn(α) − Q(α)| �
[

sup
t,α

|Wα,n(t) − Wα(t)|
]

×
[

sup
t,α

|Wα,n(t)| + sup
t,α

|Wα(t)|
]

= op(1). (B.18)

The result then follows by Lemma A1 in Newey and Powell (2003) and noticing that their requirement that
Qn(α) being continuous can be substituted by α̂ being an element of the argmin correspondence. �

APPENDIX C: PROOFS FOR SECTION 3

Proof of Lemma 3.1: Similar to previously, let W : (A, ‖ · ‖c) → L2
μ be a mapping which to each α ∈ A

associates W (α) ≡ Wα . We first study the differentiability of W in a neighbourhood of α0. Recall that for
any t = (x, u),

Dᾱ[π ](t) =
∫
X

fY | X(mᾱ(sx, u)|sx)
dmᾱ(sx, u)

dα
[π ]1{sx � x}fX(sx)dsx

and note that Dᾱ[π ] is well defined for every ᾱ ∈ N (α0) due to Assumption 3.1(a). Next, use fY | X(y | x)
uniformly bounded and Jensen’s inequality to obtain the first result in (C.1). The second inequality then
holds for ‖ · ‖o the linear operator norm by Assumption 3.1(c).

‖Dᾱ[π ]‖2
L2

μ
=
∫
X×(0,1)

[∫
X

fY | X(mᾱ(sx, u)|sx)
dmᾱ(sx, u)

dα
[π ]1{sx � x}fX(sx)dsx

]2

dμ(t)

�
∫
X×(0,1)

∫
X

[
dmᾱ(sx, u)

dα
[π ]

]2

fX(sx)dsxdμ(t)

�
∥∥∥∥dm

dα
(ᾱ)

∥∥∥∥
2

o

‖π‖2
c . (C.1)

Since Fréchet derivatives are a fortiori continuous, (C.1) implies Dᾱ[π ] is continuous in π ∈ A for
all ᾱ ∈ N (α0). To examine continuity of Dᾱ in ᾱ ∈ N (α0), we consider (ᾱ, α̃) ∈ A2 and use Jensen’s
inequality to obtain (C.2) pointwise in t = (x, u).

|Dᾱ[π ](t) − Dα̃[π ](t)|

�
∫
X

fY | X(mα̃(sx, u) | sx)

∣∣∣∣dmᾱ(sx, u)

dα
[π ] − dmα̃(sx, u)

dα
[π ]

∣∣∣∣ fX(sx)dsx

+
∫
X

∣∣fY | X(mᾱ(sx, u) | sx) − fY | X(mα̃(sx, u) | sx)
∣∣ ∣∣∣∣dmᾱ(sx, u)

dα
[π ]

∣∣∣∣ fX(sx)dsx. (C.2)

In turn, the Lipschitz Assumptions 2.3(d) and 3.1(b), fY | X(y | x) uniformly bounded by Assumption 2.1(c)
and equation (C.2) yield that pointwise in t = (x, u),

|Dᾱ[π ](t) − Dα̃[π ](t)| � ‖ᾱ − α̃‖ν
c

∫
X

J (sx)Gν(sx)

∣∣∣∣dmᾱ(sx, u)

dα
[π ]

∣∣∣∣ fX(sx)dsx

+
∫
X

∣∣∣∣dmᾱ(sx, u)

dα
[π ] − dmα̃(sx, u)

dα
[π ]

∣∣∣∣ fX(sx)dsx. (C.3)
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Using (C.3), Cauchy–Schwarz and Jensen’s inequality and E[J 2(X)G2ν(X)] < ∞ yields

‖Dᾱ[π ] − Dα̃[π ]‖2
L2

μ
� ‖ᾱ − α̃‖2ν

c

∫
X×(0,1)

∫
X

[
dmᾱ(sx, u)

dα
[π ]

]2

fX(sx)dsxdμ(t)

+
∫
X×(0,1)

∫
X

[
dmᾱ(sx, u)

dα
[π ] − dmα̃(sx, u)

dα
[π ]

]2

fX(sx)dsxdμ(t). (C.4)

Let Āc denote the completion of the linear span of A under ‖ · ‖c. The definition of ‖ · ‖o then implies the

first equality in (C.5), while the first inequality follows from (C.4). Further, since the functional
∥∥∥ dm

dα
(ᾱ)
∥∥∥

o
:

(N (α0), ‖ · ‖c) → R is continuous and A is compact under ‖ · ‖c it follows that supN (α0)

∥∥∥ dm(ᾱ)
dα

∥∥∥
o

< ∞.

The second inequality in (C.5) then follows.

‖Dᾱ − Dα̃‖2
o = sup

π∈Āc

‖π‖−2
c ‖Dᾱ[π ] − Dα̃[π ]‖2

L2
μ

� ‖ᾱ − α̃‖2ν
c

∥∥∥∥dm

dα
(ᾱ)

∥∥∥∥
2

o

+
∥∥∥∥dm

dα
(ᾱ) − dm

dα
(α̃)

∥∥∥∥
2

o

� ‖ᾱ − α̃‖2ν
c +

∥∥∥∥dm

dα
(ᾱ) − dm

dα
(α̃)

∥∥∥∥
2

o

. (C.5)

Therefore, Dᾱ is continuous in α by m being continuously Fréchet differentiable.
We now show Dᾱ is indeed the Fréchet derivative of W at ᾱ. Straightforward manipulations imply that

for any t = (x, u) ∈ X × (0, 1) we have

Wα(t) =
∫
X

P (Y � mα(sx, u) | sx)1{sx � x}fX(sx)dsx − u · P (X � x). (C.6)

Next, using the definition of Dᾱ and (C.6) together with Jensen’s inequality we obtain (C.7) pointwise in t
for any ᾱ ∈ N (α0) and π ∈ A.

|Wᾱ+π (t) − Wᾱ(t) − Dᾱ[π ](t)| �
∫
X

|P (Y � mᾱ+π (sx, u)|sx)

− P (Y � mᾱ(sx, u)|sx) − fY | X(mᾱ(sx, u)|sx)
dmᾱ(sx, u)

dα
[π ]|fX(sx)dsx. (C.7)

Applying the Mean Value Theorem inside the integral in (C.7) then implies

|Wᾱ+π (t) − Wᾱ(t) − Dᾱ[π ](t)| �
∫
X

|fY | X(m̄(sx, u) | sx)[mᾱ+π (sx, u) − mᾱ(sx, u)]

−fY | X(mᾱ(sx, u) | sx)
dmᾱ(sx, u)

dα
[π ]|fX(sx)dsx, (C.8)

where m̄(sx, u) is a convex combination of mᾱ+π (sx, u) and mᾱ(sx, u). Therefore, it follows that |m̄(sx, u) −
mᾱ(sx, u)| � |mᾱ+π (sx, u) − mᾱ(sx, u)|. The Lipschitz conditions of Assumptions 2.3(d) and 3.1(b) then
imply the inequality:

∫
X

|[fY | X(m̄(sx, u) | sx) −fY | X(mᾱ(sx, u) | sx)][mᾱ+π (sx, u) − mᾱ(sx, u)]|fX(sx)dsx

� ‖π‖1+ν
c

∫
J (sx)G1+ν(sx)fX(sx)dsx. (C.9)
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Using (C.8), (C.9), fY | X(y | x) being bounded and Jensen’s inequality in turn establishes the first inequality
in (C.10). The final result in (C.10) then follows by dm

dα
being the Fréchet derivative of m.

‖Wᾱ+π (t) − Wᾱ(t) − Dᾱ[π ](t)‖2
L2

μ
� ‖π‖2+2ν

c

+
∫
X×(0,1)

∫
X

[
mᾱ+π (sx, u) − mᾱ(sx, u) − dmᾱ(sx, u)

dα
[π ]

]2

fX(sx)dsxdμ(t) = o
(‖π‖2

c

)
.

(C.10)

We conclude from (C.10) and (C.5) that Dᾱ is the Fréchet derivative at ᾱ of the map W : (A, ‖ · ‖c) → L2
μ

and that it is continuous in ᾱ. To conclude the proof of the first claim of the lemma, note that Q(α) =
‖Wα(t)‖2

L2
μ
. Since the functional ‖ · ‖2

L2
μ

: L2
μ → R is trivially Fréchet differentiable, applying the Chain

rule for Fréchet derivatives (see e.g. Theorem 5.2.5 in Siddiqi, 2004) yields

dQ(ᾱ)

dα
[π ] =

∫
X×(0,1)

Wᾱ(t)Dᾱ[π ](t)dμ(t). (C.11)

To establish the second claim of the lemma, define the bilinear form T : A × A → R,

T [ψ, π ] =
∫
X×(0,1)

Dα0 [ψ](t)Dα0 [π ](t)dμ(t). (C.12)

We will show T is the second Fréchet derivative of Q(α) at α0. Note that T [ψ, · ] : A → R is a linear
operator. The first requirement of Fréchet differentiability is to show T [ψ, · ] is continuous in ψ . For this
purpose, note that the first equality in (C.13) follows by definition while the first and second inequalities are
implied by the Cauchy–Schwarz inequality and (C.1), respectively.

‖T [ψ, · ]‖2
o = sup

π∈Āc

‖π‖−2
c T 2[ψ, π ]

�
∫
X×(0,1)

D2
α0

[ψ](t)dμ(t) × sup
π∈Āc

‖π‖−2
c

∫
X×(0,1)

D2
α0

[π ](t)dμ(t)

�
∥∥∥∥dm(α0)

dα

∥∥∥∥
4

o

‖ψ‖2
c . (C.13)

It follows from (C.13) that T [ψ, · ] is continuous in ψ ∈ A. Next, we verify T is the second Fréchet
derivative of Q(α) at α0. In (C.14) use (C.11) and Wα0 (t) = 0 for all t to note dQ(α0)

dα
= 0 and obtain

∥∥∥∥dQ(α0 + ψ)

dα
− dQ(α0)

dα
− T [ψ, · ]

∥∥∥∥
2

o

= sup
π∈Āc

‖π‖−2
c

(∫
X×(0,1)

(Wα0+ψ (t)Dα0+ψ [π ](t) − Dα0 [ψ](t)Dα0 [π ](t))dμ(t)

)2

. (C.14)

Next, use the Cauchy–Schwarz inequality to obtain the first inequality in (C.15) and Dα0 being the Fréchet
derivative of W : (A, ‖ · ‖c) → L2

μ at α0 for the second.

sup
π∈Āc

‖π‖−2
c

(∫
X×(0,1)

(Wα0+ψ (t) − Wα0 (t) − Dα0 [ψ](t))Dα0+ψ [π ](t)dμ(t)

)2

� ‖Wα0+ψ (t) − Wα0 (t) − Dα0 [ψ]‖2
L2

μ
× sup

π∈Āc

‖π‖−2
c ‖Dα0+ψ [π ]‖2

L2
μ

� o
(
‖ψ‖2

c

)
× ‖Dα0+ψ‖2

o.
(C.15)
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Similarly, we use the Cauchy–Schwarz inequality and the definition of ‖ · ‖o to obtain,

sup
π∈Āc

‖π‖−2
c

(∫
X×(0,1)

Dα0 [ψ](t)(Dα0+ψ [π ](t) − Dα0 [π ](t))dμ(t)

)2

�‖Dα0‖2
o‖ψ‖2

c × sup
π∈Āc

‖π‖−2
c ‖Dα0+ψ [π ] − Dα0 [π ]‖2

L2
μ

�‖Dα0‖2
o‖ψ‖2

c × ‖Dα0+ψ − Dα0‖2
o. (C.16)

To conclude, combine (C.14), (C.15) and (C.16) and Wα0 (t) = 0 for all t to derive the first inequality in
(C.17). As argued in (C.5), however, ‖Dᾱ‖o is bounded in a neighbourhood of α0. Thus, the continuity of
Dᾱ in ᾱ for ᾱ ∈ N (α0) implies the final result in (C.17).

∥∥∥∥dQ(α0 + ψ)

dα
− dQ(α0)

dα
− T [ψ, · ]

∥∥∥∥
2

o

� o
(‖ψ‖2

c

)× ‖Dα0+ψ‖2
o + ‖ψ‖2

c‖Dα0‖2
o‖Dα0+ψ − Dα0‖2

o = o
(‖ψ‖2

c

)
. (C.17)

It follows from (C.17) that T is the second Fréchet derivative of Q(α) at α0. �

Proof of Theorem 3.1: Let �nα0 = arg minAn
‖α0 − α‖s . By Theorem 2.1, α̂ ∈ N (α0) with probability

tending to one and hence Assumptions 3.2(a) and 3.2(c), imply that with probability tending to one we have
that

‖α̂ − α0‖2
w � Q(α̂) − Q(�nα0) + Q(�nα0)

= Q(α̂) − Q(�nα0) + o(n−1). (C.18)

By Theorem 2.1 and ‖ · ‖s � ‖ · ‖c, there is a δn → 0 such that P (‖α̂ − α0‖s > δn) → 0. Letting Aδn

0 =
{α ∈ A : ‖α − α0‖s � δn} then yields the first inequality in (C.19). Noticing that Qn(α̂) � Qn(�nα0) by
virtue of α̂ minimizing Qn(α) over An and using the Cauchy–Schwarz inequality gives us the second
inequality. For the third and fourth inequalities we use Lemma B.1 which implies

√
n(Wα,n(t) − Wα(t)) is

tight in L∞(Rdt × A) together with the definition of Q(α).

Q(α̂) − Q(�nα0)

� Qn(α̂) − Qn(�nα0) + 2 sup
Aδn

0

| Qn(α) − Q(α)|

� 2 sup
(t,α)∈Rdt ×A

| Wα,n(t) − Wα(t)| ×
⎡
⎣sup

Aδn
0

∫
X×(0,1)

(Wα,n(t) + Wα(t))2dμ(t)

⎤
⎦

1
2

� Op(n− 1
2 ) ×

⎡
⎣ sup

(t,α)∈Rdt ×A
(Wα,n(t) − Wα(t))2 + sup

Aδn
0

4
∫
X×(0,1)

W 2
α (t)dμ(t)

⎤
⎦

1
2

� Op(n− 1
2 ) ×

⎡
⎣Op(n−1) + sup

Aδn
0

4Q(α)

⎤
⎦

1
2

. (C.19)

By Assumption 3.2(a), supAδn
0

Q(α) � δ2
n = o(1). Therefore, combining (C.18) and (C.19):

‖α̂ − α0‖2
w � Op(n− 1

2 ) × op(1) + o(n−1) = op(n− 1
2 ). (C.20)
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To obtain a rate with respect to ‖ · ‖s , we use Assumption 3.2(c) for the first and second inequalities in
(C.21). It follows from (C.20) and Assumption 3.2(c) that ‖α̂ − �nα0‖2

w = op(n− 1
2 ) which together with

Assumption 3.2(b) implies the equality in (C.21).

‖α̂ − α0‖2
s � ‖α̂ − �nα0‖2

s + o(n−1) � sup
α∈An

‖α‖2
s

‖α‖2
w

× ‖α̂ − �nα0‖2
w + o(n−1) = op(n− 1

2 +γ ).
(C.21)

We can now exploit the local behaviour of the objective function to improve on the obtained rate of
convergence. Note that due to (C.21) it is possible to choose δn = o(n− 1

4 + γ
2 ) such that P (α̂ ∈ Aδn

0 ) → 1.
Repeating the steps in (C.19) we obtain (C.22) with probability approaching one.

Q(α̂) − Q(�nα0) � Op(n− 1
2 ) ×

⎡
⎣Op(n−1) + sup

Aδn
0

4Q(α)

⎤
⎦

1
2

= Op(n− 1
2 ) × op(n− 1

4 + γ
2 ). (C.22)

From (C.18), (C.22) and Assumption 3.2(b), we then obtain ‖α̂ − α0‖2
w = op(n− 1

2 − 1
4 + γ

2 ) and similarly that

‖α̂ − �nα0‖2
w = op(n− 1

2 − 1
4 + γ

2 ). In turn, by repeating the argument in (C.21) we obtain the improved rate

‖α̂ − α0‖2
s = op(n(γ− 1

2 )(1+ 1
2 )). Proceeding in this fashion we get ‖α̂ − α0‖2

s = op(n(γ− 1
2 )(1+ 1

2 + 1
4 + 1

8 +···)). Since
γ − 1/2 < −1/4, repeating this argument a possibly large, but finite number of times yields the desired
conclusion ‖α̂ − α0‖2

s = op(n− 1
2 ) thus establishing the claim of the theorem. �

APPENDIX D: PROOFS FOR SECTION 4

Because the criterion function Qn(α) is not smooth in α, it is convenient to define

Qs
n(α) =

∫
X×(0,1)

(Wα0,n(t) + Wα(t))2dμ(t). (D.1)

Throughout the proofs we will exploit the following lemma:

LEMMA D.1. If Assumptions 2.1, 2.3, 3.1, 3.2 hold, then: Qs
n(α̂) � infAn

Qs
n(α) + op(n−1).

Proof: Since ‖α̂ − α0‖c = op(1) and Wα0 (t) = 0 for all t ∈ X × (0, 1), Lemma B.1 implies

sup
t∈X×(0,1)

|Wα̂,n(t) − Wα̂(t) − Wα0,n(t)| = op(n− 1
2 ).

By simple manipulations we therefore obtain

Qs
n(α̂) �

∫
X×(0,1)

(|Wα0,n(t) + Wα̂(t) − Wα̂,n(t)| + |Wα̂,n(t)|)2dμ(t)

=
∫
X×(0,1)

W 2
α̂,n(t)dμ(t) + op(n− 1

2 ) ×
∫
X×(0,1)

|Wα̂,n(t)|dμ(t) + op(n−1). (D.2)

Next, apply Jensen’s inequality and Qn(α̂) � Qn(�nα0) to obtain the first and second inequalities in
(D.3). By Lemma B.1, supt,α |Wα,n(t) − Wα(t)| = Op(n− 1

2 ). Together with Assumption 3.2(a), the final
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two inequalities in (D.3) then immediately follow.∫
X×(0,1)

|Wα̂,n(t)|dμ(t)

�
[∫

X×(0,1)
W 2

α̂,n(t)dμ(t)

] 1
2

�
[∫

X×(0,1)
W 2

�nα0,n(t)dμ(t)

] 1
2

�
[

2
∫
X×(0,1)

(W�nα0,n(t) − W�nα0 (t))2dμ(t) + 2
∫
X×(0,1)

W 2
�nα0

(t)dμ(t)

] 1
2

�
[
Op(n−1) + ‖�nα0 − α0‖2

s

] 1
2 . (D.3)

By Assumption 3.2(c), ‖�nα0 − α0‖s = o(n− 1
2 ) and hence combining (D.2) and (D.3),

Qs
n(α̂) � Qn(α̂) + op(n−1). (D.4)

Let α̃ ∈ arg minAn
Qs

n(α), and note that Lemma B.1 and the same arguments as in Theorem 2.1 imply
‖α0 − α̃‖c = op(1). The same arguments as in (D.2) then imply that Qn(α̃) is bounded above by∫

X×(0,1)
(|Wα̃,n(t) − Wα0,n(t) − Wα̃(t)| + |Wα0,n(t) + Wα̃(t)|)2dμ(t)

=
∫
X×(0,1)

(Wα0,n(t) + Wα̃(t))2dμ(t) + op(n− 1
2 ) ×

∫
X×(0,1)

|Wα0,n(t) + Wα̃(t)|dμ(t) + op(n−1).
(D.5)

Proceeding as in (D.3), Jensen’s inequality and Qs
n(α̃) � Qs

n(�nα0) imply the first and second inequalities
in (D.6). The last two results in (D.6) then follow by Assumption 3.2(a) and by noting that Lemma B.1
implies supt |Wα0,n(t)| = Op(n− 1

2 ),∫
X×(0,1)

|Wα0,n(t) + Wα̃(t)|dμ(t)

�
[∫

X×(0,1)
(Wα0,n(t) + Wα̃(t))2dμ(t)

] 1
2

�
[∫

X×(0,1)
(Wα0,n(t) + W�nα0 (t))2dμ(t)

] 1
2

�
[

2
∫
X×(0,1)

W 2
α0,n(t)dμ(t) + 2

∫
X×(0,1)

W 2
�nα0

(t)dμ(t)

] 1
2

�
[
Op(n−1) + ‖α0 − �nα0‖2

s‖
] 1

2 .
(D.6)

Since ‖�nα0 − α0‖s = o(n− 1
2 ) by Assumption 3.2(c), (D.5) and (D.6) imply

Qn(α̃) � Qs
n(α̃) + op(n−1). (D.7)

Hence, since Qn(α̂) � Qn(α̃), the definition of α̃ together with (D.4) and (D.7) establish

Qs
n(α̂) � Qn(α̃) + op(n−1) � inf

An

Qs
n(α) + op(n−1),

which establishes the claim of the lemma. �
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Proof of Lemma 4.1: The arguments closely follow those of Ai and Chen (2003). We first establish
continuity. Since Fλ is linear, it is only necessary to establish that it is bounded. For any θ ∈ R

dθ , we can
obtain the first equality in (D.8) by using (4.2), while the second equality is definitional.

min
h∈H̄

∫
X×(0,1)

(
dW (α0)

dθ ′ [θ ](t) − dW (α0)

dh
[h](t)

)2

dμ(t)

=
∫
X×(0,1)

([
dW (α0)

dθ
(t) − dW (α0)

dh
[h∗](t)

]′
θ

)2

dμ(t) = θ ′�∗θ. (D.8)

In order to show Fλ is bounded we need to establish the left-hand side of (D.9) is finite. Using (D.8)
immediately implies the first equality in (D.9). For the second equality note the optimization problem is
solved at θ∗ = (�∗)−1λ and plug in θ∗.

sup
0�=α∈Ā

F 2
λ (α)

‖α‖2
w

= sup
0�=θ∈R

dθ

(λ′θ )2

θ ′�∗θ
= λ′(�∗)−1λ. (D.9)

Since by assumption �∗ is positive definite, (D.9) is finite and hence Fλ is bounded which establishes
continuity. For the second claim of the lemma, note the following orthogonality condition must hold as a
result of (4.1) and (4.2):∫

X×(0,1)

(
dW (α0)

dθ
(t) − dW (α0)

dh
[h∗](t)

)
dW (α0)

dh
[h](t)dμ(t) = 0 (D.10)

for all h ∈ H̄. Therefore, employing result (D.10) we obtain 〈α − α0, v
λ〉 equals:

(θ − θ0)′
{∫

X×(0,1)

[
dW (α0)

dθ
(t) − dW (α0)

dh
[h∗](t)

] [
dW (α0)

dθ
(t) − dW (α0)

dh
[h∗](t)

]′
dμ(t)

}
vλ

θ .

Hence, since vλ
θ = (�∗)−1λ, the second claim of the lemma follows. �

LEMMA D.2. Let Assumptions 2.1, 2.3, 3.1, 3.2 and 4.1 hold, and let vλ
n = �nv

λ. Then: (a)∫
X×(0,1) Wα0,n(t)Dα̂[vλ

n](t)dμ(t) = ∫
X×(0,1) Wα0,n(t)Dα0 [vλ](t)dμ(t) + op(n− 1

2 ); also (b)
∫
X×(0,1)(Wα̂(t) −

Wα0 (t))Dα̂[vλ
n](t)dμ(t) = ∫

X×(0,1) Dα0 [α̂ − α0](t)Dα0 [vλ](t)dμ(t) + op(n− 1
2 ); and (c)

√
nWα0,n(t)

L→ G(t),
where G(t) is a Gaussian process with covariance:

�(t, t ′) = E[(1{U � u; X � x} − u1{X � x})(1{U � u′; X � x ′} − u′1{X � x ′})].

Proof: To establish the first claim apply the Cauchy–Schwarz inequality, the definition of the operator
norm, Theorem 2.1 and Lemma B.1 implying supt | Wα0,n(t)| = Op(n− 1

2 ) to obtain that with probability
approaching one we have

∣∣∣∣
∫
X×(0,1)

Wα0,n(t)Dα̂[vλ
n − vλ](t)dμ(t)

∣∣∣∣ �
[∫

X×(0,1)
W 2

α0,n(t)dμ(t)

] 1
2

× ‖Dα̂

[
vλ

n − vλ
] ‖L2

μ

� Op(n− 1
2 ) × sup

α∈N (α0)
‖Dα‖o × ‖vλ

n − vλ‖c. (D.11)

As argued in (C.5), supα∈N (α0) ‖Dα‖o < ∞. Further, Assumptions 4.1(b) and 2.3(f) imply that ‖vλ − vλ
n‖c =

o(1). Therefore, we obtain from (D.11) that∫
X×(0,1)

Wα0,n(t)Dα̂

[
vλ

n

]
(t)dμ(t) =

∫
X×(0,1)

Wα0,n(t)Dα̂[vλ](t)dμ(t) + op(n− 1
2 ). (D.12)
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Similarly, the derivations in (D.11) imply the inequality in (D.13). The equality is a result of the continuity
of Dα in α under ‖ · ‖c, as established in the proof of Lemma 3.1.∣∣∣∣

∫
X×(0,1)

Wα0,n(t)(Dα̂[vλ](t) − Dα0 [vλ](t))dμ(t)

∣∣∣∣
� Op(n− 1

2 ) × ‖Dα̂ − Dα0‖o × ‖vλ‖c = op(n− 1
2 ). (D.13)

Together, equations (D.12) and (D.13) establish the first claim of the lemma.
For the second claim of the lemma, note that Assumption 4.1(c) allows us to do a second-order Taylor

expansion to obtain (D.14) pointwise in t ∈ X × (0, 1),

Wα̂(t) = Wα0 (t) + Dα0 [α̂ − α0](t) + 1

2

dDα0+τ (α̂−α0)[α̂ − α0](t)

dτ

∣∣∣∣
τ=s(t)

. (D.14)

The first equality in (D.15) then follows from (D.14), while the second one is implied by Assum-
ptions 4.1(c) and 4.1(d). The final equality in turn follows from Theorem 3.1.∫

X×(0,1)
(Wα̂(t) − Wα0 (t) − Dα0 [α̂ − α0](t))Dα̂

[
vλ

n

]
(t)dμ(t)

= 1

2

∫
X×(0,1)

(
dDα0+τ (α̂−α0)[α̂ − α0](t)

dτ

∣∣∣∣
τ=s(t)

)
Dα̂

[
vλ

n

]
(t)dμ(t) � ‖α̂ − α0‖2

s = op(n− 1
2 ).

(D.15)

Next, apply the Cauchy–Schwarz inequality and a Taylor expansion to obtain the first inequality in (D.16).
The second inequality then follows by Assumption 4.1(c), ‖α̂ − α0‖w � ‖α̂ − α0‖s in a neighbourhood of
α0 by Assumption 3.2(a) and Theorem 3.1.∣∣∣∣

∫
X×(0,1)

Dα0 [α̂ − α0](t)(Dα̂

[
vλ

n

]
(t) − Dα0

[
vλ

n

]
(t))dμ(t)

∣∣∣∣
� ‖α̂ − α0‖w ×

⎡
⎣∫

X×(0,1)

(
dDα0+τ (α̂−α0)

[
vλ

n

]
(t)

dτ

∣∣∣∣
τ=s(t)

)2

dμ(t)

⎤
⎦

1
2

� ‖α̂ − α0‖2
s = op(n− 1

2 ).

(D.16)

Similarly, applying the Cauchy–Schwarz inequality, ‖α̂ − α0‖w = op(n− 1
4 ) and ‖vλ

n − vλ‖c = o(n− 1
4 ) by

Assumption 3.2(b) we are able to conclude,∣∣∣∣
∫
X×(0,1)

Dα0 [α̂ − α0](t)(Dα0

[
vλ

n

]
(t) − Dα0 [vλ](t))dμ(t)

∣∣∣∣
� ‖α̂ − α0‖w × ‖Dα0‖o × ‖vλ

n − vλ‖c = op(n− 1
2 ). (D.17)

Combining results (D.15)–(D.17) establishes the second claim of the lemma. The third claim of the
lemma is immediate from Wα0,n(t) being a Donsker class due to Lemma B.1 and regular Central Limit
Theorem. �

Proof of Theorem 4.1: Let u∗ = ±vλ, u∗
n = �nu

∗ and 0 < εn = o(n− 1
2 ) be such that it satisfies Qs

n(α̂) �
infAn

Qs
n(α) + Op(ε2

n), which is possible due to Lemma D.1. Define α(τ ) = α̂ + τεnu
∗
n and note that by

Assumption 3.1(a) and Lemma 2.1, with probability tending to one α(τ ) ∈ An for τ ∈ [0, 1]. Therefore,
Lemma D.1 establishes the first equality in (D.18). A second-order Taylor expansion around τ = 0 yields
the equality in (D.18) for some s ∈ [0, 1].

0 � Qs
n(α(1)) − Qs

n(α(0)) + Op

(
ε2

n

)
= 2εn

∫
X×(0,1)

(Wα0,n(t) + Wα̂(t))Dα̂

[
u∗

n

]
(t)dμ(t) + 1

2

d2Qn(α(τ ))

dτ 2

∣∣∣∣
τ=s

, (D.18)
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where by direct calculation we have that

d2Qn(α(τ ))

dτ 2

∣∣∣∣
τ=s

= ε2
n

∫
X×(0,1)

(
Dα(s)

[
u∗

n

]
(t)
)2

dμ(t)

+
∫
X×(0,1)

(Wα0,n(t) + Wα(s)(t))
dDα̂+τεnu∗

n

[
εnu

∗
n

]
(t)

dτ

∣∣∣∣
τ=s

dμ(t). (D.19)

As shown in (C.5), supα∈N (α0) ‖Dα‖o < ∞, and hence, since ‖vλ‖c < ∞, we obtain that∫
X×(0,1)

(
Dα(s)

[
u∗

n

]
(t)
)2

dμ(t) � sup
α∈N (α0)

‖Dα‖2
o × ∥∥u∗

n

∥∥2

c
= O(1). (D.20)

Since Wα,n(t) and Wα(t) are both bounded by 1, Assumption 4.1(c) establishes∣∣∣∣∣
∫
X×(0,1)

(Wα0,n(t) + Wα(s)(t))
dDα̂+τεnu∗

n

[
εnu

∗
n

]
(t)

dτ

∣∣∣∣
τ=s

dμ(t)

∣∣∣∣∣ �
∥∥εnu

∗
n

∥∥2

s
= O

(
ε2

n

)
. (D.21)

Therefore, by combining (D.18)–(D.21), u∗
n = ±vλ

n and εn = o(n− 1
2 ), it follows that:∫

X×(0,1)
(Wα0,n(t) + Wα̂(t))Dα̂

[
u∗

n

]
(t)dμ(t) = op(n− 1

2 ). (D.22)

To conclude, in (D.23) use Lemma 4.1 for the first equality, Lemma D.2(b) for the second equality,
Wα0 (t) = 0 and (D.22) for the third one and Lemma D.2(a) for the final result.

√
nλ′(θ̂ − θ0) = √

n

∫
X×(0,1)

Dα0 [α̂ − α0](t)Dα0 [vλ](t)dμ(t)

= √
n

∫
X×(0,1)

(Wα̂(t) − Wα0 (t))Dα̂

[
vλ

n

]
(t)dμ(t) + op(1)

= √
n

∫
X×(0,1)

Wα0,n(t)Dα̂

[
vλ

n

]
(t)dμ(t) + op(1)

= √
n

∫
X×(0,1)

Wα0,n(t)Dα0 [vλ](t)dμ(t) + op(1). (D.23)

Hence, applying Lemma D.2(c) we are able to conclude from (D.23) that

√
nλ′(θ̂ − θ )

L→ N (0,�λ), (D.24)

where �λ = ∫
Dα0 [vλ](t)Dα0 [vλ](s)�(t, s)dμ(t)dμ(s). Using the closed form for vλ, obtained in

Lemma 4.1, and the definition of Rh∗ (t) in turn imply

Dα0 [vλ](t) =
[

dW (α0)

dθ
(t) − dW (α0)

dh
[h∗](t)

]
[�∗]−1λ

= Rh∗ (t)[�∗]−1λ. (D.25)

The Cramér–Wold device, (D.24) and (D.25) then establish the claim of the theorem. �

APPENDIX E: DETAILS OF THE BLP EXAMPLE

In this appendix, we give the proofs of Lemma 5.1 and Theorem 5.1. We start with an auxiliary lemma
whose result will be useful later on.
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LEMMA E.1. Assume F is twice continuously differentiable on R with strictly increasing hazard rate τ .
Then the BLP equilibrium prices exist, are unique, and the map (ξ1 − ξ2, x1 − x2, c) �→ (p1 − p2) is twice
continuously differentiable with:

0 <
∂(p1 − p2)

∂(ξ1 − ξ2)
<

1

a
.

Proof: Under the strictly increasing hazard rate assumption the goods are substitutes, and since
f ′(ε)[1 − F (ε)] + f 2(ε) > 0 and f ′(ε)F (ε) − f 2(ε) < 0 we have

∂2 ln Dj (pj , p−j )

∂pj∂p−j

> 0,

i.e. the elasticity of demand is a decreasing function of the other firm’s prices. It follows that the (log-
transformed) Bertrand duopoly played by the firms is supermodular; hence, there exists a pure Nash
equilibrium to the game (see e.g. Milgrom and Roberts, 1990). We now show that this equilibrium is unique.
For this purpose note that

∂2 ln �j (pj , p−j )

∂p2
j

< 0,
∂2 ln �j (pj , p−j )

∂pj∂p−j

> 0

and ∣∣∣∣∣∂
2 ln �j (pj , p−j )

∂p2
j

∣∣∣∣∣− ∂2 ln �j (pj , p−j )

∂pj∂p−j

= 1

(pj − c)2
> 0

so that the ‘dominant diagonal’ condition of Milgrom and Roberts (1990) holds; this guarantees that the
equilibrium is unique.

Since under the strictly increasing hazard rate assumption we have f ′(ε)[1 − F (ε)] + f 2(ε) >

0 and f ′(ε)F (ε) − f 2(ε) < 0 it also holds that ∂2 ln Dj (pj , p−j )/∂p2
j < 0, which implies that

∂2 ln �j (pj , p−j )/∂p2
j < 0, and the Nash equilibrium (p∗

1, p
∗
2) is the unique solution to the first-order

conditions �(p1, p2, ξ ) = 0, where we have let ξ = ξ1 − ξ2 and

�(p1, p2, ξ ) =

⎡
⎢⎢⎣

1

p1 − c
+ ∂ ln D1(p1, p2)

∂p1

1

p2 − c
+ ∂ ln D2(p1, p2)

∂p2

⎤
⎥⎥⎦ .

Note that the map � is continuously differentiable and we have

D(p1,p2)� =

⎡
⎢⎢⎢⎣

− 1

(p1 − c)2
+ ∂2 ln D1(p1, p2)

∂p2
1

∂2 ln D1(p1, p2)

∂p1∂p2

∂2 ln D2(p1, p2)

∂p1∂p2
− 1

(p2 − c)2
+ ∂2 ln D2(p1, p2)

∂p2
2

⎤
⎥⎥⎥⎦ .

In addition, note that the demand function in (5.2) satisfies

−∂2 ln Dj (pj , p−j )

∂p2
j

= ∂2 ln Dj (pj , p−j )

∂pj∂p−j

= a
∂2 ln Dj (pj , p−j )

∂pj∂(ξj − ξ−j )
> 0, (E.1)

where the last inequality follows from f ′(ε)F (ε)/f 2(ε) < 1. Therefore,

det D(p1,p2)� = 1

(p1 − c)2(p2 − c)2
− 1

(p1 − c)2

∂2 ln D2(p1, p2)

∂p2
2

− 1

(p2 − c)2

∂2 ln D1(p1, p2)

∂p2
1

> 0.
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Hence, by the Implicit Function Theorem (see e.g. Theorem 9.28 in Rudin, 1976), the equation
�(p1, p2, ξ ) = 0 defines in a neighbourhood of the point (p∗

1, p
∗
2 , ξ ) a mapping ξ �→ (p1, p2) that is

continuously differentiable, and whose derivative at this point equals⎛
⎜⎜⎜⎝

∂p1

∂ξ

∂p2

∂ξ

⎞
⎟⎟⎟⎠ = −[D(p1,p2)�(p1, p2, ξ )]−1Dξ�(p1, p2, ξ ).

Thus,

∂p1

∂ξ
= − 1

a

1

det D(p1,p2)�

1

(p2 − c)2

∂2 ln D1(p1, p2)

∂p2
1

, (E.2)

∂p2

∂ξ
= 1

a

1

det D(p1,p2)�

1

(p1 − c)2

∂2 ln D2(p1, p2)

∂p2
2

, (E.3)

where the first equality uses (E.1) and the fact that

∂2 ln D2(p1, p2)

∂p2
2

∂2 ln D1(p1, p2)

∂p1∂ξ
− ∂2 ln D1(p1, p2)

∂p1∂p2

∂2 ln D2(p1, p2)

∂p2∂ξ
= 0,

while the second exploits (E.1) and the fact that

∂2 ln D1(p1, p2)

∂p2
1

∂2 ln D2(p1, p2)

∂p2∂ξ
− ∂2 ln D2(p1, p2)

∂p1∂p2

∂2 ln D1(p1, p2)

∂p1∂ξ
= 0.

From (E.2) to (E.3) we then have the desired result:

0 <
∂(p1 − p2)

∂ξ
= ∂(p1 − p2)

∂(ξ1 − ξ2)
<

1

a
,

which concludes the proof of the lemma. �

Proof of Lemma 5.1: Since ξ = ξ1 − ξ2 is continuously distributed, it has a strictly increasing cdf, which
we denote Fξ . Noting that Fξ (ξ ) ∼ U (0, 1), we may define

h(X,U ) ≡ −a(p1 − p2) + F −1
ξ (U ), with X ≡ x1 − x2,

so that

Y ≡ F −1

(
D1(p1, p2)

M

)
= h(X,U ) + θ ′X, where θ ≡ b.

Since that by Lemma E.1 h is continuously differentiable we have for all (x, u) ∈ X × (0, 1):

∂h(x, u)

∂u
=
[
−a

∂(p1 − p2)

∂ξ
+ 1

]
1

fξ (F −1
ξ (u))

> 0,

which completes the proof of Lemma 5.1. �

Proof of Theorem 5.1: Consider the BLP model in (5.4) and let FY | X(·|·) denote the conditional
distribution of Y given X that is induced by the structure (θ, h). Fix x ∈ X and let v : R × X → (0, 1)
be such that for any u ∈ (0, 1), we have: h(x, u) = t if and only if u = v(t, x). Note that v(·, x) is well
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defined since by (a) we have ∂h(x, u)/∂u > 0. Then, for any (y, x) ∈ S,

FY | X(y|x) = P (Y � y | X = x)

= P (h(X, U ) � y − θ ′x | X = x)

= P (U � v(y − θ ′x, x) | X = x)

= P (U � v(y − θ ′x, x))

= v(y − θ ′x, x), (E.4)

where the second equality uses the fact that h(x, u) is strictly increasing in u, the third exploits the
independence of U and X, and the last follows from U being uniform. Since h(x, u) is continuously
differentiable on X × (0, 1) and such that ∂h(x, u)/∂u > 0 on X × (0, 1), v(t, x) is continuously
differentiable on R × X with

∂v

∂x
(t, x) = −∂h

∂x
(x, v(t, x))

[
∂h

∂u
(x, v(t, x))

]−1

,

∂v

∂t
(t, x) =

[
∂h

∂u
(x, v(t, x))

]−1

.

(E.5)

Further, for any (y, x) ∈ S let �(y, x) ≡ FY |X(y|x). Under our assumptions on F, �(y, x) is continuously
differentiable on S and we have

∂�

∂y
(y, x) = ∂v

∂t
(y − θ ′x, x),

∂�

∂x
(y, x) = −θ

∂v

∂t
(y − θ ′x, x) + ∂v

∂x
(y − θ ′x, x).

(E.6)

In particular, ∂�(y, x)/∂y > 0 on S. Combining (E.5) and (E.6) we then obtain

−
[

∂�

∂x
(y, x)

][
∂�

∂y
(y, x)

]−1

= θ + ∂h

∂x

(
x, v(y − θ ′x, x)

)
. (E.7)

Evaluate the left-hand side of (E.7) at x = 0 ∈ X and y = 0. For these values of x and y, we have: y − θ ′x =
0 so by using condition (i) of Theorem 5.1, v(0, 0) = 1/2. Combining the latter with condition (b) then gives

θ = −
[

∂�

∂x
(0, 0)

][
∂�

∂y
(0, 0)

]−1

− 1,

from which it follows that θ is identified. The identification of v, and hence h, then immediately follows
from (E.4). �
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