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In the unconditional moment restriction model of Hansen (1982), specification tests
and more efficient estimators are both available whenever the number of moment re-
strictions exceeds the number of parameters of interest. We show that a similar relation-
ship between potential refutability of a model and existence of more efficient estima-
tors is present in much broader settings. Specifically, a condition we name local overi-
dentification is shown to be equivalent to both the existence of specification tests with
nontrivial local power and the existence of more efficient estimators of some “smooth”
parameters in general semi/nonparametric models. Under our notion of local overiden-
tification, various locally nontrivial specification tests such as Hausman tests, incremen-
tal Sargan tests (or optimally weighted quasi likelihood ratio tests) naturally extend to
general semi/nonparametric settings. We further obtain simple characterizations of lo-
cal overidentification for general models of nonparametric conditional moment restric-
tions with possibly different conditioning sets. The results are applied to determining
when semi/nonparametric models with endogeneity are locally testable, and when non-
parametric plug-in and semiparametric two-step GMM estimators are semiparametri-
cally efficient. Examples of empirically relevant semi/nonparametric structural models
are presented.

KEYWORDS: Overidentification, semiparametric efficiency, specification testing,
nonparametric conditional moment restrictions, semiparametric two step, regular mod-
els, non-regular models.

1. INTRODUCTION

IN WORK ORIGINATING WITH Anderson and Rubin (1949) and Sargan (1958), and cul-
minating in Hansen (1982), overidentification in the generalized method of moments
(GMM) framework was equated with the number of unconditional moment restrictions
exceeding the number of parameters of interest. Under mild regularity conditions, such
a surplus of moment restrictions was shown to enable the construction of both more ef-
ficient estimators and model specification tests. It is hard to overstate the importance of
this result, which has granted practitioners with an intuitive condition characterizing the
existence of both efficiency gains and specification tests, and has thus intrinsically linked
both phenomena to the notion of overidentification.

Unfortunately, the existence of an analogous simple condition in general semi/
nonparametric models is, to the best of our knowledge, unknown. Yet, such a result stands
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to be particularly valuable for these more flexible models, as their richer structure renders
their potential refutability harder to evaluate while simultaneously generating a broader
set of parameters for which efficiency considerations are of concern.

In this paper, we show that, just as in GMM, efficiency and testability considerations
are linked by a single condition we name local overidentification. In order to be applica-
ble to general semi/nonparametric models, however, we must abstract from “counting”
parameters and moment restrictions as in GMM when defining local overidentification.
Instead we employ the tangent set T(P) which, given a (data) distribution P and a candi-
date model P, consists of the set of scores corresponding to all parametric submodels of P
that contain P (Bickel, Klaassen, Ritov, and Wellner (1993)). Heuristically, T(P) consists
of all the paths from which P may be approached from within P. In particular, whenever
the closure of T(P) in the mean squared norm equals the set of all possible scores, the
model P is locally consistent with any parametric specification and hence we say P is lo-
cally just identified by P. In contrast, whenever there exist scores that do not belong to the
closure of T(P), the model P is locally inconsistent with some parametric specification and
hence we say P is locally overidentified by P. While these definitions can be generally ap-
plied, we mainly focus on models that are regular—in the sense that T(P) is linear—due
to the importance of this condition in semiparametric efficiency analysis (van der Vaart
(1989)).1 When specialized to GMM, our notion of local overidentification is equivalent
to the standard condition that the number of unconditional moment restrictions exceed
the number of parameters of interest.

Our definition of local overidentification arises naturally from embedding estimators
of “smooth” (i.e., regular or root-n estimable for n the sample size) parameters and spec-
ifications tests in a common limiting experiment of LeCam (1986). This enables us to
establish several equivalent characterizations of local overidentification. In particular, we
show that if P is locally just identified by P, then: (i) All asymptotically linear regular es-
timators of any common “smooth” parameter must be first-order equivalent; and (ii) the
local asymptotic power of any local asymptotic level α specification test cannot exceed
α along all paths approaching P from outside P. Moreover, we establish that the local
overidentification of P by a regular model P is equivalent to both: (i) the existence of
asymptotically distinct linear regular estimators for any “smooth” parameter that admits
one such estimator; and (ii) the existence of a locally unbiased asymptotic level α specifi-
cation test with nontrivial power against some path approaching P from outside P.

Our equivalent characterizations of local overidentification are very useful. They offer
researchers seemingly different yet equivalent ways to verify whether a data distribution P
is locally overidentified by a complicated semi/nonparametric regular model P. One obvi-
ous way is to directly verify the definition by first computing the closure of the tangent set
T(P) and then checking whether it is a strict subset of the space of all possible scores. An
equivalent but sometimes simpler approach is to examine whether it is possible to obtain
two asymptotically distinct regular estimators of a common “smooth” function of P ∈ P,2
such as the cumulative distribution function or a mean parameter

∫
f dP for a known

bounded function f . Given some structure on P, it is often easy to compute two root-n
consistent asymptotically normal estimators of a simple common “smooth” parameter,
say as approximate optimizers of weighted criterion functions with different weights, and
then verify whether their asymptotic variances differ.

1See Section 5 for a partial extension of our results for regular models to non-regular models in which T(P)
is a convex cone.

2We stress that a “smooth” parameter of P ∈ P always exists and does not need to be any structural param-
eter associated with the model P; see Remark 3.1.
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The local overidentification condition by itself, however, may not lead to feasible effi-
cient estimators of parameters of interest nor to feasible tests with nontrivial local power
in general regular models. Indeed, in parallel to GMM, additional regularity conditions
are required to accomplish the latter two objectives. In our general setting, these regu-
larity conditions are imposed by assuming the existence of a score statistic (a stochastic
process) Ĝn whose marginals are first-order equivalent to sample means of scores orthog-
onal to the tangent set T(P). We show that such a score statistic Ĝn can be constructed
from two asymptotically distinct regular estimators of a common “smooth” parameter of
P ∈ P3—a result that can be exploited to provide low level sufficient conditions for the
availability of Ĝn given additional structure on P. In addition, we show that Ĝn can be
used to obtain locally unbiased nontrivial specification tests. The constructed tests en-
compass, among others, Hausman (1978) type tests, and criterion-based tests such as the
J test of Sargan (1958) and Hansen (1982) as special cases. In particular, proceeding in
analogy to an incremental J test proposed in Eichenbaum, Hansen, and Singleton (1988)
for GMM models, we demonstrate, for general regular models P and M satisfying P ⊂ M,
how to build specification tests that aim their power at deviations from P that satisfy the
maintained larger model M.

We deduce from the described results that the equivalence between efficiency gains
and nontrivial specification tests found in Hansen (1982) is not coincidental, but rather
the reflection of a deeper principle applicable to all regular models. Our results on local
overidentification in general regular models should be widely applicable. For example,
our equivalent characterizations immediately imply that semi/nonparametric models of
conditional moment restrictions (with a common conditioning set) containing unknown
functions of potentially endogenous variables are locally overidentified because they allow
for both inefficient and efficient estimators (Ai and Chen (2003), Chen and Pouzo (2009)).
Hence locally unbiased nontrivial specification tests of these models exist. Our results
further show that the optimally weighted sieve quasi likelihood ratio tests of Chen and
Pouzo (2009, 2015) direct the power at deviations of P that remain within a larger model
M. We also show that Hausman (1978) type tests that compare estimators efficient under
P to those efficient under a larger model M aim the power at violations of P that remain
within M. Therefore, both kinds of tests could be understood as generalized incremental
J tests.

In this paper, we focus on a new application to nonparametric conditional moment
restriction models with possibly different conditioning sets and potential endogeneity.
We derive simple equivalent characterizations of local just identification for this very
large class of models so that other researchers do not need to compute the closure of
the tangent set T(P) case by case. When specialized to nonparametric conditional mo-
ment restrictions with possibly different conditioning sets but without endogeneity, such
as nonparametric conditional mean or quantile regressions, our characterization of P be-
ing locally just identified reduces to the condition of the nonparametric functions be-
ing “exactly identified” in Ackerberg, Chen, Hahn, and Liao (2014) for such models.
When specialized to semi/nonparametric models using a control function approach for
endogeneity (Heckman (1990), Olley and Pakes (1996), Newey, Powell, and Vella (1999),
Blundell and Powell (2003)), our characterization implies that P is typically locally overi-
dentified by such models. When specialized to the semi/nonparametric models of sequen-

3We also establish a converse, that is, the availability of such a score statistic Ĝn yields asymptotically distinct
regular estimators of any common “smooth” parameter of P ∈ P.
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tial moment restrictions containing unknown functions of potentially endogenous vari-
ables, our characterization implies that P is typically locally overidentified, which is con-
sistent with the semiparametric efficiency bound calculation in Ai and Chen (2012) for
such models. In Section 4, our results are applied further to determining when nonpara-
metric plug-in and semiparametric two-step GMM estimators are semiparametrically ef-
ficient. Empirically relevant examples of semi/nonparametric structural models are also
presented.

The rest of the paper is organized as follows. Section 2 formally defines local overiden-
tification, while Section 3 establishes its connections to efficient estimation and testing
in regular models. Section 4 applies the general theoretical results to characterize local
overidentification in nonparametric conditional moment restriction models with possibly
different information sets and potential endogeneity. Section 5 provides a partial exten-
sion of the main theoretical results in Section 3 for regular models to non-regular models
in which T(P) is a convex cone. Section 6 briefly concludes. Appendix A provides a short
discussion of limiting experiments. Appendix B contains the proofs for Sections 2 and 3,
while Appendix C contains the proofs for Section 5. The Supplemental Material (Chen
and Santos (2018)) contains additional technical lemmas, examples, and the proofs for
Section 4.

2. LOCAL OVERIDENTIFICATION

2.1. Main Definition

We let M denote the collection of all probability measures on a measurable space
(X�B). A model P is a (not necessarily strict) subset of M. Typically, a model P is in-
dexed by (model) parameters that consist of parameters of interest and perhaps addi-
tional nuisance parameters. We say a model P is semiparametric if the parameters of
interest are finite dimensional but the nuisance parameters are infinite dimensional (such
as the GMM model of Hansen (1982)); semi-nonparametric if the parameters of interest
contain both finite- and infinite-dimensional parts; nonparametric if all the parameters
are infinite dimensional. We call a model P fully unrestricted if P =M.

Throughout, the data {Xi}ni=1 are assumed to be an i.i.d. sample from a distribution
P ∈ P of X ∈ X. We call P the data distribution, which is always identified from the data,
although its associated model parameters might not be. Our analysis is local in nature
and hence we introduce suitable perturbations to P . Following the literature on limiting
experiments (LeCam (1986)), we consider arbitrary smooth parametric likelihoods, which
are defined as follows:

DEFINITION 2.1: A “path” t �→ Pt�g is a function defined on [0�1) such that Pt�g is a
probability measure on (X�B) for every t ∈ [0�1), P0�g = P , and

lim
t↓0

∫ [
1
t

(
dP1/2

t�g − dP1/2
)− 1

2
gdP1/2

]2

= 0� (1)

The scalar measurable function g : X → R is referred to as the “score” of the path t �→ Pt�g.

For any σ-finite positive measure μt dominating (Pt + P), the integral in (1) is under-
stood as ∫ [

1
t

((
dPt�g

dμt

)1/2

−
(
dP

dμt

)1/2)
− 1

2
g

(
dP

dμt

)1/2]2

dμt
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(the choice of μt does not affect the value of the integral). Heuristically, a path is a para-
metric model that passes through P and is smooth in the sense of satisfying (1) or, equiv-
alently, being differentiable in quadratic mean. We note that Definition 2.1 implies any
score must have mean zero and be square integrable with respect to P , and therefore
belong to the space L2

0(P) given by

L2
0(P)≡

{
g : X → R�

∫
gdP = 0 and ‖g‖P�2 <∞

}
� ‖g‖2

P�2 ≡
∫
g2 dP� (2)

The restriction g ∈ L2
0(P) is solely the result of Pt�g ∈ M for all t in a neighborhood of

zero. If we, in addition, demand that Pt�g ∈ P, then the set of feasible scores reduces to

T(P)≡ {g ∈L2
0(P) : (1) holds for some t �→ Pt�g ∈ P

}
� (3)

which is called the tangent set at P . Finally, we let T̄ (P) denote the closure of T(P) under
‖ · ‖P�2. By definition, T̄ (P) is a (not necessarily strict) subset of L2

0(P). For instance, if
P =M, then T̄ (P)= T(P)=L2

0(P) for any P ∈ P.
Given the introduced notation, we can now formally define local overidentification.

DEFINITION 2.2: If T̄ (P) = L2
0(P), then we say P is locally just identified by P. Con-

versely, if T̄ (P) 
=L2
0(P), then we say P is locally overidentified by P.

Intuitively, P is locally overidentified by a model P if P yields meaningful restrictions
on the scores that can be generated by parametric submodels. Conversely, P is locally just
identified by P when the sole imposed restriction is that the scores have mean zero and a
finite second moment—a quality common to the scores of all paths regardless of whether
they belong to P or not. It is clear that Definition 2.2 is inherently local in that it concerns
only the “shape” of P at the point P rather than P in its entirety as would be appropriate
for a global notion of overidentification.

REMARK 2.1: Koopmans and Riersol (1950) referred to a model P as overidentified
whenever there is a possibility that P does not belong to P. Thus, P is deemed globally
overidentified if P 
= M (i.e., P is a strict subset of M), and globally just identified if
P = M (i.e., P is fully unrestricted). Clearly, global just identification implies local just
identification, while local overidentification implies global overidentification. Although
more demanding, local overidentification will provide a stronger connection to both the
testability of P and the performance of regular estimators.

It is worth emphasizing that local overidentification concerns solely a relationship be-
tween the data distribution P and a model P. As a result, it is possible for P to be locally
overidentified (hence globally overidentified) despite underlying structural parameters of
the model P being partially identified—an observation that simply reflects the fact that
partially identified models may still be refuted by the data. See, for example, Koopmans
and Riersol (1950), Hansen and Jagannathan (1997), Manski (2003), Haile and Tamer
(2003), Hansen (2014), and references therein.

2.2. Equivalent Definitions in Regular Models

In many applications, the following condition holds and simplifies our analysis.
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ASSUMPTION 2.1: (i) {Xi}ni=1 is an i.i.d. sequence with Xi ∈ X distributed according to
P ∈ P; (ii) T(P) is linear; that is, if g� f ∈ T(P), a�b ∈ R, then ag+ bf ∈ T(P).

The i.i.d. requirement in Assumption 2.1(i) may be relaxed but is imposed to streamline
exposition. Assumption 2.1(ii) requires the model P to be regular at P in the sense that its
tangent set be linear. This is satisfied by numerous models (such as the GMM model), and
is either implicitly or explicitly imposed whenever semiparametric efficiency bounds and
efficient estimators are considered (Hájek (1970), Hansen (1985), Chamberlain (1986),
Newey (1990), Bickel et al. (1993), Ai and Chen (2003)). We stress, however, that a model
P being regular does not imply that all the parameters underlying the model are regular
(i.e., “smooth” or root-n estimable). In fact, some parameters of a regular model P may
only be slower-than-root-n estimable or not even be identified. Nonetheless, Assump-
tion 2.1(ii) does rule out models in which the tangent set T(P) is not linear but a convex
cone instead. See Section 5 for a partial extension of the main results for regular models
to non-regular models where T(P) is a convex cone.

In the literature, the closed linear span of T(P) under ‖ · ‖P�2 is called the tangent space
at P ∈ P (see, e.g., Definition 3.2.2 in Bickel et al. (1993)). Under Assumption 2.1(ii),
T̄ (P) becomes the tangent space at P , and hence a vector subspace of L2

0(P). We also
define

T̄ (P)⊥ ≡
{
g ∈L2

0(P) :
∫
gf dP = 0 for all f ∈ T̄ (P)

}
� (4)

which is the orthogonal complement of T̄ (P). The vector spaces T̄ (P) and T̄ (P)⊥ then
form an orthogonal decomposition of L2

0(P) (the space of all possible scores)

L2
0(P)= T̄ (P)⊕ T̄ (P)⊥� (5)

and we let ΠT(·) and ΠT⊥(·) denote the orthogonal projections under ‖ · ‖P�2 onto T̄ (P)
and T̄ (P)⊥, respectively. Every g ∈L2

0(P) then satisfies g=ΠT(g)+ΠT⊥(g) and Var(g)=
Var(ΠT(g)) + Var(ΠT⊥(g)). Intuitively, ΠT(g) ∈ T̄ (P) is the component of g that is in
accord with model P, while ΠT⊥(g) ∈ T̄ (P)⊥ is the component orthogonal to P.

The decomposition in (5) implies equivalent characterizations of local overidentifica-
tion that we summarize in the following simple yet useful lemma.

LEMMA 2.1: Under Assumption 2.1, the following are equivalent to Definition 2.2:
(i) P is locally just identified by P if and only if T̄ (P)⊥ = {0}, or equivalently,

Var(ΠT⊥(g))= 0 for all g ∈L2
0(P).

(ii) P is locally overidentified by P if and only if T̄ (P)⊥ 
= {0}, or equivalently,
Var(ΠT⊥(g)) > 0 for some g ∈L2

0(P).

We next illustrate the introduced concepts in the GMM model.4

GMM ILLUSTRATION: Let Γ ⊆ Rdγ with dγ <∞ be the parameter space and ρ : X ×
Rdγ → Rdρ be a known moment function with dρ ≥ dγ . The GMM model P is

P ≡
{
P ∈M :

∫
ρ(·�γ)dP = 0 for some γ ∈ Γ

}
� (6)

4We thank Lars Peter Hansen for sharing with us his notes on GMM and for helping us with the GMM
example.
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and for any P ∈ P we let γ(P) solve
∫
ρ(·�γ(P))dP = 0. For simplicity, let ρ be differen-

tiable in γ, and set D(P)≡ ∫ ∇γρ(·�γ(P))dP . For any path t �→ Pt�g ∈ P, we then obtain

0 = d

dt

∫
ρ
(·�γ(Pt�g))dPt�g

∣∣∣∣
t=0

=
∫
ρ
(·�γ(P))gdP +D(P)γ̇(g)� (7)

where γ̇(g) is the derivative of γ(Pt�g) at t = 0. If
∫
ρ(·�γ(P))ρ(·�γ(P))′ dP is full rank,

then the linear functional g �→ ∫
ρ(·�γ(P))gdP mapsL2

0(P) onto Rdρ . On the other hand,
D(P) maps Rdγ onto a linear subspace of Rdρ whose dimension equals the rank of D(P).
Therefore, (7) imposes restrictions on the possible set of scores g only when the rank of
D(P) is smaller than dρ. When D(P) is full rank, we thus obtain that P is locally just
identified by P if and only if the “standard” GMM just identification condition that dρ =
dγ is satisfied.

Our definition of local overidentification extends that in GMM models to general
infinite-dimensional models. This will be very useful for nonparametric conditional mo-
ment restriction models, where both the number of parameters (of interest) and the num-
ber of (unconditional) moments are infinite. Moreover, for general regular models, we
will show Definition 2.2 retains the fundamental link to the properties of regular esti-
mators and specification tests present in Hansen (1982). For instance, just as all regular
estimators of γ(P) in the GMM model are asymptotically equivalent whenever dρ = dγ ,
Theorem 2.1 in Newey (1994) has shown that the asymptotic variance of root-n consis-
tent plug-in estimators is invariant to the choice of first-stage nonparametric estimators
whenever L2

0(P)= T̄ (P).

3. GENERAL RESULTS FOR REGULAR MODELS

In this section, we show that, in general regular models, local overidentification is intrin-
sically linked to the importance of efficiency considerations and the potential refutability
of a model.

3.1. The Setup

3.1.1. The Setup: Estimation

Since the data distribution P is always identified, many known functions of P are identi-
fied and consistently estimable even if some underlying (structural) parameters of a model
P are not identified. For general regular models, we therefore represent an identifiable
parameter as a known mapping θ : P → B and the “true” parameter value as θ(P) ∈ B,
where B is a Banach space with norm ‖ · ‖B. We further denote the dual space of B by
B∗ ≡ {b∗ : B → R : b∗ is linear, ‖b∗‖B∗ <∞}, which is the space of continuous linear func-
tionals with norm ‖b∗‖B∗ ≡ sup‖b‖B≤1 |b∗(b)|.

An estimator θ̂n : {Xi}ni=1 → B for θ(P) ∈ B is a map from the data into the space B.
To address the question of whether θ(P) admits asymptotically distinct estimators (i.e.,
efficiency “matters”), we focus on asymptotically linear regular estimators. In what follows,

for any path t �→ Pt�g ∈M, we use the notation
Ln�g→ to represent convergence in law under

Pn1/√n�g ≡⊗n

i=1 P1/
√
n�g, and

L→ for convergence in law under Pn ≡⊗n

i=1 P .
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DEFINITION 3.1: θ̂n : {Xi}ni=1 → B is a regular estimator of θ(P) if there is a tight ran-

dom variable D such that
√
n{θ̂n − θ(P1/

√
n�g)} Ln�g→ D for any path t �→ Pt�g ∈ P.

DEFINITION 3.2: θ̂n : {Xi}ni=1 → B is an asymptotically linear estimator of θ(P) if

√
n
{
θ̂n − θ(P)}= 1√

n

n∑
i=1

ν(Xi)+ op(1) under Pn� (8)

for some ν : X → B satisfying b∗(ν) ∈L2
0(P) for any b∗ ∈ B∗. Here ν is called the influence

function of the estimator θ̂n.

By restricting attention to regular estimators, we focus on root-n consistent estimators
whose asymptotic distribution is invariant to local perturbations to P within the model P.
While most commonly employed estimators are regular and asymptotically linear, their
existence does impose restrictions on the map θ : P → B. In fact, the existence of an
asymptotically linear regular estimator of θ(P) in regular models implies θ : P → B must
be “pathwise differentiable” (or “smooth”) at P relative to T(P) (van der Vaart (1991b)).

REMARK 3.1: Regardless of a model P being regular or non-regular, there always exists
a “smooth” map θ : P → B and an asymptotically linear regular estimator θ̂n : {Xi}ni=1 → B
of θ(P) under i.i.d. data. For example, for any bounded function f : X → R, the sample
mean, n−1

∑n

i=1 f (Xi), is an asymptotically linear regular estimator of θ(P)≡ ∫ f dP along
any path t �→ Pt�g ∈ M. Thus, we emphasize that θ(P) should not be solely thought of as
an intrinsic parameter of the model P, but rather as any “smooth” map of P ∈ P.

3.1.2. The Setup: Testing

A specification test for a general model P is a test of the null hypothesis that P belongs
to P against the alternative that it does not; that is, it is a test of the hypotheses

H0 : P ∈ P vs. H1 : P ∈M \ P� (9)

We denote an arbitrary (possibly randomized) test of (9) by φn : {Xi}ni=1 → [0�1], which
is a function specifying for each realization of the data a corresponding probability of
rejecting the null hypothesis. In our analysis, we restrict attention to specification tests φn
that have local asymptotic level α and possess a local asymptotic power function.

DEFINITION 3.3: A specification test φn : {Xi}ni=1 → [0�1] for a model P has local
asymptotic level α if, for any path t �→ Pt�g ∈ P, it follows that

lim sup
n→∞

∫
φn dP

n
1/

√
n�g ≤ α� (10)

DEFINITION 3.4: A specification test φn : {Xi}ni=1 → [0�1] for a model P has a local
asymptotic power function π :L2

0(P)→ [0�1] if, for any path t �→ Pt�g ∈M, it follows that

lim
n→∞

∫
φn dP

n
1/

√
n�g = π(g)� (11)
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Finally, a test φn for (9) with a local asymptotic power function π is said to be locally
unbiased if it satisfies: π(g)≤ α for all t �→ Pt�g ∈ P and π(g)≥ α for all t �→ Pt�g ∈M \ P.

Note that a local asymptotic power function only depends on the score g ∈ L2
0(P) and

is independent of any other characteristics of the path t �→ Pt�g ∈ M. This is because the
product measures of any two local paths that share the same score must converge in the
Total Variation metric (see Lemma D.1 in the Supplemental Material). Intuitively, a test
possesses a local asymptotic power function if the limiting rejection probability of the
test is well defined along any local perturbation to P . The existence of a local asymptotic
power function is a mild requirement that is typically satisfied; see Remark 3.2.

REMARK 3.2: Tests φn are often constructed by comparing a test statistic T̂n to an es-
timate of the (1 − α) quantile of its asymptotic distribution. By LeCam’s Third Lemma
and the Portmanteau Theorem, such tests have a local asymptotic power function pro-
vided that: (i) (T̂n� 1√

n

∑n

i=1 g(Xi)) ∈ R2 converges jointly in distribution under Pn for any

g ∈L2
0(P), and (ii) the limiting distribution of T̂n under Pn is continuous. See Theorem 6.6

in van der Vaart (1998).

3.2. Equivalent Characterizations of Local Overidentification

In Hansen (1982)’s GMM framework, overidentifying restrictions are necessary for
both the existence of efficiency gains in estimation and the testability of the model. We
now extend this conclusion to general regular models.

THEOREM 3.1: Let Assumption 2.1 hold and P be locally just identified by P.
(i) Let θ̂n : {Xi}ni=1 → B and θ̃n : {Xi}ni=1 → B be any asymptotically linear regular estima-

tors of any parameter θ(P) ∈ B. Then:
√
n{θ̂n − θ̃n} = op(1) in B.

(ii) Let φn be any specification test for (9) with local asymptotic level α and a local asymp-
totic power function π. Then: π(g)≤ α for all paths t �→ Pt�g ∈M.

Theorem 3.1 establishes that the local overidentification of P is a necessary condition
for the existence of efficiency gains and nontrivial specification tests. Specifically, Theo-
rem 3.1(i) shows that if P is locally just identified, then all asymptotically linear regular es-
timators of any “smooth” parameter θ(P) must be first-order equivalent. This conclusion
is a generalization of Newey (1990) who showed scalar (i.e., B = R) asymptotically linear
and regular estimators are first-order equivalent when T̄ (P) = L2

0(P). Theorem 3.1(ii)
establishes that if P is locally just identified by P, then the local asymptotic power of any
local asymptotic level α specification test cannot exceed α along any path, including all
paths approaching P from outside P. Heuristically, under local just identification, the set
of scores corresponding to paths t �→ Pt�g ∈ P is dense in the set of all possible scores and
hence every path t �→ Pt�g ∈M \ P is locally on the “boundary” of the null hypothesis.

In order to discern how the local overidentification of P can facilitate the existence of
efficiency gains and the testability of the model, we consider the asymptotic behavior of
sample means of scores. For any 0 
= f̃ ∈ L2

0(P), if Xi is distributed according to P1/
√
n�g

for a path t �→ Pt�g ∈M, then

Gn(f̃ )≡ 1√
n

n∑
i=1

f̃ (Xi)
Ln�g→ N

(∫
f̃ g dP�

∫
f̃ 2 dP

)
(12)
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by LeCam’s Third Lemma. Recall that, for regular models, local overidentification is
equivalent to the existence of at least one score 0 
= f̃ ∈ T̄ (P)⊥. For any such 0 
= f̃ ∈
T̄ (P)⊥ and all path t �→ Pt�g ∈ P, we have

∫
f̃ g dP = 0 and hence Gn(f̃ ) converges to

a centered Gaussian random variable; that is, Gn(f̃ ) behaves as “noise” that can alter
the efficiency of estimators. On the other hand, for any 0 
= f̃ ∈ T̄ (P)⊥, there is a path
t �→ Pt�g ∈ M \ P such that

∫
f̃ g dP 
= 0, and hence Gn(f̃ ) can be employed to construct

a local asymptotic nontrivial specification test—i.e. Gn(f̃ ) is a “signal” that enables the
detection of violations of the model P. Our next result builds on this intuition by using the
score statistics Gn(f̃ ) to establish a converse to Theorem 3.1.

THEOREM 3.2: Let Assumption 2.1 hold. Then: the following statements are equivalent:
(i) P is locally overidentified by P.

(ii) If a parameter θ(P) ∈ B admits an asymptotically linear regular estimator θ̂n, then
there exists another asymptotically linear regular estimator θ̃n of θ(P) such that

√
n{θ̂n −

θ̃n} L→ Δ 
= 0 in B.
(iii) There exists a locally unbiased asymptotic level α testφn for (9) with a local asymptotic

power function π such that π(g) > α for some path t �→ Pt�g ∈M \ P.

Theorems 3.1 and 3.2 establish that the local overidentification of P is equivalent to
the availability of efficiency gains and also to the existence of locally nontrivial specifi-
cation tests. In addition, Theorems 3.1(i) and 3.2(i)–(ii) imply the following equivalent
characterization of local just identification.

COROLLARY 3.1: Let Assumption 2.1 hold and D be a set of bounded functions that is
dense in (L2(P)�‖ · ‖P�2). For any f ∈ D, let Ω∗

f be the semiparametric efficient variance
bound for estimating

∫
f dP under P. Then: Ω∗

f = Var{f (X)} for all f ∈D if and only if P is
locally just identified by P.

This corollary is very useful in assessing whether P is locally overidentified by a compli-
cated model P. For example, in Section 4.1.1, we employ Corollary 3.1 and the semipara-
metric efficiency bound analysis in Ai and Chen (2012) to characterize local overidentifi-
cation in nonparametric models defined by sequential moment restrictions.

3.3. Feasible Estimators and Tests

The intuition for Theorem 3.2 suggests that any statistics asymptotically equivalent to
the score statistics Gn(f̃ ) with some 0 
= f̃ ∈ T̄ (P)⊥ (see (12)) may be employed to ob-
tain distinct regular estimators for arbitrary “smooth” parameters θ(P) and specification
tests with nontrivial local power. To elaborate on this intuition, for any set A, we let
�∞(A)≡ {f :A→ R s.t. ‖f‖∞ <∞} where ‖f‖∞ = supa∈A |f (a)|, and impose the follow-
ing condition:

ASSUMPTION 3.1: For some set T, there is a statistic Ĝn : {Xi}ni=1 → �∞(T) satisfying:
(i) Ĝn(τ) = 1√

n

∑n

i=1 sτ(Xi) + op(1) uniformly in τ ∈ T, where 0 
= sτ ∈ T̄ (P)⊥ for all
τ ∈ T;

(ii) for some tight nondegenerate centered Gaussian measure G0, Ĝn
L→ G0 in �∞(T).
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Assumption 3.1 requires the availability of a statistic n−1/2
Ĝn(τ) that is first-order equiv-

alent to the sample mean of some score (or influence function) sτ ∈ T̄ (P)⊥. We further
let

S(P)≡ {sτ ∈ T̄ (P)⊥ : τ ∈ T
}

(13)

denote the collection of such scores, which will play an important role in our analysis. As
we argue below, statistics Ĝn satisfying Assumption 3.1 are implicitly constructed by vari-
ous specification tests, such as Hausman tests and criterion-based tests; see Remark 3.5.
In order to establish a connection to Hausman tests in particular, we introduce the fol-
lowing assumption:

ASSUMPTION 3.2: For some parameter θ(P) ∈ B, there are asymptotically linear regular
estimators θ̂n and θ̃n with influence functions ν and ν̃ such that

√
n{θ̂n − θ̃n} L→ Δ 
= 0.

Assumption 3.2 simply requires the existence of two distinct estimators of some
“smooth” function of P ∈ P, which need not be structural parameter of the model P;
see Remark 3.1.

LEMMA 3.1: Let Assumption 2.1 hold.
(i) Let Assumption 3.1 hold. Then: For any parameter θ(P) ∈ B that admits an asymptot-

ically linear regular estimator θ̂n, Assumption 3.2 is satisfied with θ̃n = θ̂n + b̃× n−1/2
Ĝn(τ

∗)
and Δ= −b̃×G0(τ

∗) for some 0 
= b̃ ∈ B and some τ∗ ∈ T.
(ii) Let Assumption 3.2 hold. Then: Assumption 3.1 is satisfied with T = {b∗ ∈ B∗ :

‖b∗‖B∗ ≤ 1}, and G0� Ĝn ∈ �∞(T) given by G0(b
∗)= b∗(Δ), Ĝn(b

∗)= b∗(
√
n{θ̂n− θ̃n}) where

sb∗ = b∗(ν− ν̃).

Lemma 3.1 establishes that Assumptions 3.1 and 3.2 are equivalent to each other. In
particular, Lemma 3.1(ii) shows that the difference of any two asymptotically distinct lin-
ear regular estimators of any common parameter θ(P) may be employed to construct
Ĝn, that is, Assumption 3.2 implies Assumption 3.1. As a result, given the specific struc-
ture of a regular model P, it is straightforward to obtain lower level sufficient conditions
for Assumption 3.1. Specifically, we need only ensure the existence of two asymptotically
distinct linear regular estimators of some “smooth” parameter, which could be a sim-
ple identified reduced form parameter if the structural parameters are not identified. In
a large class of semiparametric and nonparametric models, asymptotically distinct esti-
mators may be found as the optimizers of weighted criterion functions with alternative
choices of weights. See, for example, Shen (1997) for efficient estimation based on sieve
or penalized maximum likelihood in semi/nonparametric likelihood models, and Ai and
Chen (2003) for efficient estimation based on optimally weighted sieve minimum distance
of semi/nonparametric conditional moment restrictions models. In the Supplemental Ma-
terial, we apply Lemma 3.1(ii) to verify Assumption 3.1 in general nonparametric condi-
tional moment restriction models (26).

We next employ the fact that Ĝn behaves as a “signal” from a testing perspective (i.e.,
Theorem 3.2(iii)) to construct nontrivial local specification tests. Let S̄(P)≡ lin{S(P)} be
the closed linear span of S(P) in L2

0(P), and ΠS(g) be the metric projection of g ∈L2
0(P)

onto S̄(P). We note Assumption 3.1(i) (or (12)) implies that Ĝn exhibits a nonzero asymp-
totic drift along a path t �→ Pt�g ∈ M if and only if ΠS(g) 
= 0. Intuitively, S̄(P) therefore
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represents the alternatives for which specification tests based on Ĝn have nontrival local
asymptotic power. To obtain such a test, we employ a map Ψ : �∞(T)→ R+ to reduce Ĝn

to a scalar test statistic T̂n =Ψ(Ĝn).

ASSUMPTION 3.3: (i) Ψ : �∞(T) → R+ is continuous, convex, and nonconstant;
(ii) Ψ(0) = 0, Ψ(b) = Ψ(−b) for all b ∈ �∞(T); (iii) {b ∈ �∞(T) : Ψ(b) ≤ c} is bounded
for all c > 0.

Finally, we let c1−α > 0 be the (1 − α) quantile of Ψ(G0) and define the specification
test for (9) as

φn ≡ 1
{
Ψ(Ĝn) > c1−α

}; (14)

that is, we reject correct model specification for large values of Ψ(Ĝn). Multiple speci-
fication tests in the literature are in fact asymptotically equivalent to (14) with different
choices of Ψ ; see Theorem 3.3 Part (ii) and Remark 3.5 below. In the rest of the paper we
often use P1/

√
n�g() and EP1/

√
n�g

[] for calculations under Pn1/√n�g.

THEOREM 3.3: Let Assumption 2.1 hold.
(i) Let Assumptions 3.1 and 3.3 hold. Then: φn defined in (14) with c1−α > 0 is a locally

unbiased asymptotic level α specification test for (9) with a local asymptotic power function
π. Moreover, for any path t �→ Pt�g ∈M with ΠS(g) 
= 0, it follows that

π(g)≡ lim
n→∞

P1/
√
n�g

(
Ψ(Ĝn) > c1−α

)
>α� (15)

(ii) Let Assumption 3.2 hold. Then: Assumption 3.3 holds with Ψ = ‖ · ‖∞, and Part (i)
holds with Ψ(Ĝn)= √

n‖θ̂n − θ̃n‖B, and S(P)= {b∗(ν− ν̃) : b∗ ∈ B∗�‖b∗‖B∗ ≤ 1}.
Theorems 3.1, 3.2, 3.3, and Lemma 3.1 link local overidentification to the existence

of asymptotically distinct estimators and locally nontrivial specification tests. The latter
two concepts were also intrinsically linked by the seminal work of Hausman (1978), who
proposed comparing estimators of a common parameter to perform specification tests.
Theorem 3.3(ii) shows Hausman tests are a special case of (14) in general regular models.

REMARK 3.3: Whenever S̄(P)= T̄ (P)⊥, result (15) holds for any path t �→ Pt�g with

lim inf
n→∞

inf
Q∈P
n

∫ [
dQ1/2 − dP1/2

1/
√
n�g

]2
> 0; (16)

that is, the proposed test has nontrivial local power against any path that does not ap-
proach P “too fast.” If condition (16) fails, then there is a sequence Qn ∈ P for which

lim sup
n→∞

∣∣∣∣
∫
φn
(
dQn

n − dPn1/√n�g
)∣∣∣∣≤ lim sup

n→∞

∥∥Qn
n − Pn1/√n�g

∥∥
TV

= 0� (17)

where ‖ · ‖TV denotes the total variation distance; see, for example, Theorem 13.1.3 in
Lehmann and Romano (2005). Therefore, a violation of (16) implies P1/

√
n�g approaches

P “too fast” in the sense that it is not possible to discriminate the induced distribution on
the data {Xi}ni=1 from a distribution that is in accord with P.
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REMARK 3.4: Theorem 3.3(ii) states a Hausman test has nontrivial local power against
any path t �→ Pt�g ∈M whose score g is correlated with b∗(ν− ν̃) for some b∗ ∈ B∗. When
θ̂n is a semiparametric efficient estimator, it follows that S̄(P)= lin{ΠT⊥(b∗(ν̃)) : b∗ ∈ B∗}
(see Proposition 3.3.1 in Bickel et al. (1993)). In particular, L2

0(P) = lin{b∗(ν̃) : b∗ ∈ B∗}
implies S̄(P)= T̄ (P)⊥, and hence the corresponding Hausman test for (9) has nontrivial
power against all local alternatives.

REMARK 3.5: In addition to Hausman tests, multiple specification tests for (9) are also
asymptotically equivalent to test (14). For example, optimally weighted criterion-based
tests employ statistics T̂n that have a chi-squared asymptotic distribution and satisfy

T̂n =
K∑
k=1

(
1√
n

n∑
i=1

fk(Xi)

)2

+ op(1)� (18)

where K corresponds to the degrees of freedom and {fk}Kk=1 ⊂ L2
0(P) are orthonormal.

A test with this property can only have nominal and local asymptotic level α if fk ∈ T̄ (P)⊥
for all k. Otherwise, there is a path t �→ Pt�g ∈ P such that

∫
g{ΠT(fk)}dP 
= 0 for at least

one k, which by (12) leads to a null rejection probability exceeding α. As a result, the
structure in test (14) is also present in the J test of Hansen (1982), the semiparametric
LR statistic of Murphy and van der Vaart (1997), the sieve QLR statistic in Chen and
Pouzo (2009), and the generalized emipirical likelihood test in Parente and Smith (2011)
among many others.

3.4. Incremental J Tests

In applications, specification tests are often informed by a concern with a particular
violation of the model. For instance, in GMM, we may question the validity of a subset
of the moment conditions but have confidence in the remaining ones; see, for example,
Eichenbaum, Hansen, and Singleton (1988). In such circumstances, a J test, which enter-
tains the possibility of any moment being violated, can be less revealing than the so-called
incremental J (Sargan–Hansen) test, which focuses on the specific moments that are of
concern (Arellano (2003)).

The tests in Theorem 3.3 can similarly direct their power at specific violations of the
model. To this end, we introduce a set M satisfying P ⊆ M ⊆ M, which represents the
characteristics of the model we believe P satisfies even when P /∈ P, and consider

H0 : P ∈ P vs. H1 : P ∈ M \ P� (19)

The “maintained” model M generates its own tangent set, which we denote by

M(P)≡ {g ∈L2
0(P) : (1) holds for some t �→ Pt�g ∈ M

}
� (20)

with M̄(P) being the closure of M(P) in (L2
0(P)�‖ · ‖P�2). If M(P) is linear, then M̄(P)=

T̄ (P)⊕ {T̄ (P)⊥ ∩ M̄(P)} and the space L2
0(P) of all possible scores satisfies

L2
0(P)= M̄(P)⊕ M̄(P)⊥ = T̄ (P)⊕ {T̄ (P)⊥ ∩ M̄(P)}⊕ M̄(P)⊥; (21)

that is, any score consists of a component that agrees with P (in T̄ (P)), a component that
disagrees with P but still agrees with M (in T̄ (P)⊥ ∩ M̄(P)), and a component that dis-
agrees with M (in M̄(P)⊥). Intuitively, when testing for the validity of P while remaining
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confident on the correct specification of M, we should employ tests that direct their power
towards the subspace T̄ (P)⊥ ∩ M̄(P) rather than all of T̄ (P)⊥.

In the following, recall thatΠT⊥(·) denotes the orthogonal projection under ‖ ·‖P�2 onto
T̄ (P)⊥.

LEMMA 3.2: Let Assumption 2.1 hold, P ⊆ M, and M(P) be linear.
(i) Let Assumptions 3.1 and 3.3 hold with S(P)⊆ T̄ (P)⊥ ∩M̄(P). Then: Theorem 3.3(i)

remains valid for testing (19) for any path t �→ Pt�g ∈ M with ΠS(g) 
= 0.
(ii) Let Assumption 3.1 hold with T = {1� � � � � d}, d <∞, and {sτ}dτ=1 be an orthonormal

basis for S̄(P) = T̄ (P)⊥ ∩ M̄(P). Then: For any asymptotic level α specification test φn for
(19) with an asymptotic local power function, it follows that

inf
g∈G(κ)

lim
n→∞

∫
φn dP

n
1/

√
n�g ≤ inf

g∈G(κ)
lim
n→∞

P1/
√
n�g

(‖Ĝn‖2 > c1−α
)
� (22)

where G(κ) ≡ {g ∈ M̄(P) : ‖ΠT⊥(g)‖P�2 ≥ κ}, and c1−α is the (1 − α) quantile of a chi-
squared distribution with d degrees of freedom.

(iii) Let Assumption 3.2 hold with θ̂n and θ̃n being efficient estimators of θ(P) ∈ B under
P and M, respectively. Then: Theorem 3.3(ii) remains valid for testing (19) with b∗(ν − ν̃) ∈
T̄ (P)⊥ ∩ M̄(P) for all b∗ ∈ B∗.

Lemma 3.2(i) revisits the tests examined in Theorem 3.3(i) under the additional re-
quirement that the test focus its power on detecting deviations from P that remain
within M (i.e., S̄(P) ⊆ T̄ (P)⊥ ∩ M̄(P)) rather than arbitrary deviations from P (i.e.,
S̄(P) ⊆ T̄ (P)⊥). In order for the resulting test to be able to detect any local deviation
of P that remains within M, Ĝn must be chosen so that S̄(P) = T̄ (P)⊥ ∩ M̄(P). When
T̄ (P)⊥ ∩ M̄(P) is finite dimensional, Lemma 3.2(ii) additionally provides a characteriza-
tion of the optimal specification test in the sense of maximizing local minimum power
against alternatives in M \ P that are a “local distance” of κ away from P. Specifically, the
optimal test corresponds to a quadratic form in Ĝn where Ĝn must be chosen so that it
weights every possible local deviation in M\P “equally”; that is, S(P)= {sτ : τ ∈ T} should
be an orthonormal basis for T̄ (P)⊥ ∩ M̄(P).

In parallel to our results in Section 3.3, multiple tests for (19) implicitly possess the
structure of the tests described in Lemma 3.2(i)–(ii); see our GMM discussion be-
low. Lemma 3.2(iii), for example, shows that a process Ĝn satisfying the conditions of
Lemma 3.2(i) may be obtained by comparing an estimator θ̂n that is efficient under P to
an estimator θ̃n that is efficient under the larger model M. It is again helpful to note that
θ̂n and θ̃n can be regular estimators of any “smooth” function of P ∈ P and need not be
of any structural parameter of the model P. The resulting Hausman type test then satis-
fies the optimality claim in Lemma 3.2(ii) provided the influence function of

√
n{θ̂n − θ̃n}

spans T̄ (P)⊥ ∩M̄(P); see Remark 3.4. Finally, we emphasize, as in Remark 3.5, that many
alternatives to a Hausman type test also satisfy the conditions of Lemmas 3.2(i)–(ii). In
fact, the sieve likelihood ratio test of Shen and Shi (2005) and Chen and Liao (2014) for
semi/nonparametric likelihood models, and the sieve optimally weighed quasi likelihood
ratio test of Chen and Pouzo (2009, 2015) for semi/nonparametric conditional moment
restriction models, can be regarded as versions of incremental J tests for (19). These in-
cremental J tests are also applicable to testing hypotheses on structural parameters of a
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model M, in which case P corresponds to the subset of distributions in M that satisfy the
conjectured null hypothesis on the structural parameters.

GMM ILLUSTRATION—cont.: For P as defined in (6), we now let ρ(x�γ)= (ρ1(x�γ)
′�

ρ2(x�γ)
′)′, where ρj : X × Rdγ → Rdρj with dρ1 ≥ dγ , and let

M ≡
{
P ∈M :

∫
ρ1(·�γ)dP = 0 for some γ ∈ Γ

}
� (23)

Eichenbaum, Hansen, and Singleton (1988) proposed testing P with M as a maintained
hypothesis by employing an incremental J statistic Jn(ρ)− Jn(ρ1), where Jn(ρ) and Jn(ρ1)
are the J statistics based on the moments ρ (for P) and ρ1 (for M), respectively. As in
Remark 3.5, under their conditions, it can be shown that for {pk}dρ−dγk=1 and {mk}dρ1 −dγ

k=1

orthonormal bases for T̄ (P)⊥ and M̄(P)⊥, we have

Jn(ρ)− Jn(ρ1)=
dρ−dγ∑
k=1

(
1√
n

n∑
i=1

pk(Xi)

)2

−
dρ1 −dγ∑
k=1

(
1√
n

n∑
i=1

mk(Xi)

)2

+ op(1)

=
dρ2∑
k=1

(
1√
n

n∑
i=1

fk(Xi)

)2

+ op(1)�
(24)

where the second equality holds for {fk}dρ2
k=1 an orthonormal basis for T̄ (P)⊥ ∩ M̄(P) since

M̄(P)⊥ ⊆ T̄ (P)⊥. Therefore, an incremental J test corresponds to a special case of the test
discussed in Lemma 3.2(i) for which S̄(P)= T̄ (P)⊥ ∩M̄(P). Moreover, by Lemma 3.2(ii),
the resulting test is locally maximin optimal. Instead of the statistic Jn(ρ) − Jn(ρ1), an
alternative approach employs the ρ1 moments for efficient estimation of γ(P) (under M)
and the remaining ρ2 moments for testing; see, for example, Christiano and Eichenbaum
(1992), Hansen and Heckman (1996), and Hansen (2010). Such a test corresponds to
the Hausman type test in Lemma 3.2(iii). Specifically, θ̂n = 0 is an efficient estimator of
θ(P)= ∫ ρ2(·�γ(P))dP under P, while an efficient estimator θ̃n of θ(P) under M equals

1
n

n∑
i=1

{
ρ2(Xi� γ̂n)− B̂′

nρ1(Xi� γ̂n)
}

(25)

for γ̂n an efficient estimator of γ(P) using ρ1 moments (under M), and B̂n the OLS coef-
ficients from regressing {ρ2(Xi� γ̂n)}ni=1 on {ρ1(Xi� γ̂n)}ni=1. By Lemma 3.2(ii), an (orthogo-
nalized) quadratic form in (25) leads to a locally maximin optimal test that is asymptoti-
cally equivalent to (24).

4. GENERAL NONPARAMETRIC CONDITIONAL MOMENT MODELS

In this section, we apply our previous results to a rich class of models defined by non-
parametric conditional moment restrictions with possibly different conditioning sets and
potential endogeneity.
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4.1. Models and Characterizations

The data distribution P ofX = (Z�W ) ∈ X is assumed to satisfy the following nonpara-
metric conditional moment restrictions:

E
[
ρj(Z�hP)|Wj

]= 0 for all 1 ≤ j ≤ J for some hP ∈ H� (26)

for some known measurable mappings ρj : Z × H → R, where H is some Banach space
(with norm ‖ · ‖H) of measurable functions of X = (Z�W ). Here Z ∈ Z denotes poten-
tially endogenous random variables, and W ∈ W denotes the union of distinct random
elements of the conditioning variables (or instruments) (W1� � � � �WJ). Note that there are
no restrictions imposed on how the conditioning variables relate; for example, Wj and Wj′
may have all, some, or no elements in common, and some of the Wj could be constants
(indicating unconditional moment restrictions).

Model (26) encompasses a very wide array of semiparametric and nonparametric mod-
els. It was first studied in Ai and Chen (2007) for root-n consistent estimation of a par-
ticular “smooth” linear functional of hP when the generalized residual functions ρj are
pointwise differentiable (in hP) for all j = 1� � � � � J. Since Ai and Chen (2007) focused
on possibly globally misspecified models, in that P may fail to satisfy (26), they did not
characterize the tangent space.

In this section, we characterize the tangent space for model (26) without assuming the
differentiability of ρj(Z� ·) : H →L2(P) for all j. We assume instead that

mj(Wj�h)≡E[ρj(Z�h)|Wj

]
(27)

is “smooth” (at hP) when viewed as a map from H into L2(Wj), where L2(Wj) is the
subset of functions f ∈ L2(P) depending only on Wj . Specifically, we require Fréchet
differentiability of each mj(Wj� ·) : H → L2(Wj) (at hP) and denote its derivative by
∇mj(Wj�hP), which could be computed as ∇mj(Wj�hP)[h] ≡ ∂

∂τ
mj(Wj�hP + τh)|τ=0 for

any h ∈ H. Employing these derivatives, we may then define the linear map ∇m(W �hP) :
H →⊗J

j=1L
2(Wj) to be given by

∇m(W �hP)[h] ≡ (∇m1(W1�hP)[h]� � � � �∇mJ(WJ�hP)[h])′� (28)

Note that
⊗J

j=1L
2(Wj) is itself a Hilbert space when endowed with an inner product (and

induced norm) equal to 〈f� f̃ 〉 ≡∑J

j=1E[fj(Wj)f̃j(Wj)] for any f = (f1� � � � � fJ) and f̃ =
(f̃1� � � � � f̃J). The range space R of the linear map ∇m(W �hP) is then defined as

R≡
{
f ∈

J⊗
j=1

L2(Wj) : f = ∇m(W �hP)[h] for some h ∈ H

}
� (29)

and we let R̄ be its closure (in
⊗J

j=1L
2(Wj)), which is a vector space and plays an im-

portant role in this section. Finally, we set R̄⊥ to be the orthocomplement of R̄ (in⊗J

j=1L
2(Wj)).

In order to be explicit about the local perturbations we consider, we next introduce a
set of conditions on the paths t �→ Pt�g employed to construct the tangent set T(P).
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CONDITION A: (i) UnderX ∼ Pt�g, E[ρj(Z�ht)|Wj] = 0 for some ht ∈ H and all 1 ≤ j ≤
J; (ii) ‖t−1(ht − hP)− Δ‖H = o(1) as t ↓ 0 for some Δ ∈ H; (iii) |ρj(z�ht)| ≤ F(z) for all
1 ≤ j ≤ J and F ∈L2(P) satisfying

∫
F 2 dPt�g =O(1) as t ↓ 0.

Thus, a path t �→ Pt�g satisfies Condition A if whenever X is distributed according to
Pt�g, the conditional moment restrictions in (26) hold for some ht ∈ H and the map t �→ ht
is “smooth” in t. These requirements are satisfied, for instance, by the paths considered
in semiparametric efficiency calculations, in which distributions are parameterized by ht
and a complementary infinite-dimensional parameter describing aspects of the distribu-
tion not characterized by ht ; see, for example, Begun, Hall, Huang, and Wellner (1983),
Hansen (1985), Chamberlain (1986, 1992), Newey (1990), and Ai and Chen (2012). We
also introduce a vector space V given by

V ≡
{
g=

J∑
j=1

ρj(Z�hP)ψj(Wj) : (ψ1� � � � �ψJ) ∈
J⊗
j=1

L2(Wj)

}
� (30)

which is a subset of L2
0(P) provided P satisfies (26) and E[{ρj(Z�hP)}2|Wj] is bounded

P-a.s. for 1 ≤ j ≤ J. Let V̄ be the closure of V , and V̄⊥ be the orthocomplement of V̄ (in
L2

0(P)).
Finally, we impose the following regularity conditions on the distribution P .

ASSUMPTION 4.1: (i) P satisfies model (26); (ii) mj(Wj� ·) : H → L2(Wj) is Fréchet dif-
ferentiable at hP for 1 ≤ j ≤ J; (iii) ρj(Z� ·) : H → L2(P) is continuous at hP for 1 ≤ j ≤ J;
(iv) there is a D ⊆ H such that lin{D} = H and for every h ∈ D there is a t �→ Pt�g satisfying
Condition A with Δ= h; (v) V⊥ has a dense subset of bounded functions.

ASSUMPTION 4.2: (i)
∑J

j=1E[ρ2
j (Z�hP)|Wj] is bounded P-a.s.; (ii) there is C0 <∞ such

that
∑J

j=1 ‖ψj‖P�2 ≤ C0‖∑J

j=1 ρj(·�hP)ψj‖P�2 for all (ψ1� � � � �ψJ) ∈⊗J

j=1L
2(Wj).

Assumptions 4.1(i), (ii), (iii), and 4.2(i) are standard. Assumptions 4.1(iv), (v), and
4.2(ii) are sufficient conditions for the simple characterization of the tangent space ob-
tained in Theorem 4.1 below. Assumption 4.1(iv) assumes that H is the local parameter
space for hP , while Assumption 4.1(v) assumes that any function g ∈ V⊥ can be approxi-
mated by sequences of bounded functions in V⊥—low level sufficient conditions for this
requirement are often readily available in specific applications. Assumption 4.2(ii) im-
poses a linear independence restriction on {ρj(Z�hP)}Jj=1.

Our next result provides a simple characterization for local overidentification.

THEOREM 4.1: Let P satisfy Assumptions 4.1 and 4.2. Then: T̄ (P)⊥ satisfies

T̄ (P)⊥ =
{
g ∈L2

0(P) : g=
J∑
j=1

ρj(Z�hP)ψj(Wj) for some (ψ1� � � � �ψJ) ∈ R̄⊥
}
�

and moreover, T̄ (P)⊥ = {0} if and only if R̄=⊗J

j=1L
2(Wj).

In view of Lemma 2.1, Theorem 4.1 implies that P is locally just identified by a regu-
lar model (26) if and only if R̄ =⊗J

j=1L
2(Wj). Heuristically, local overidentification by
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model (26) is equivalent to the existence of a nonconstant transformation (ψ1� � � � �ψJ) of
the conditioning variable that is uncorrelated with the span of the derivative of the condi-
tional expectation with respect to the nonparametric parameter. Theorem 4.1 also has a
useful dual representation.

LEMMA 4.1: Let Assumption 4.1(ii) hold. Let H∗ be the dual space of a Banach space
H, and ∇mj(Wj�hP)

∗ : L2(Wj)→ H∗ be the adjoint of ∇mj(Wj�hP) : H → L2(Wj) for j =
1� � � � � J. Then: R̄=⊗J

j=1L
2(Wj) if and only if

{
f = (f1� � � � � fJ) ∈

J⊗
j=1

L2(Wj) :
J∑
j=1

∇mj(Wj�hP)
∗[fj] = 0

}
= {0}�

Theorem 4.1 and Lemma 4.1 together imply that P is locally just identified by model
(26) if and only if the adjoint operator ∇m(W �hP)∗ : ⊗J

j=1L
2(Wj) → H∗ is injective.

Interestingly, this resembles a necessary condition, the injectivity of ∇m(W �hP) : H →⊗J

j=1L
2(Wj), for local identification of the unknown function hP by model (26) in Chen,

Chernozhukov, Lee, and Newey (2014)—when (26) is linear in hP , this condition is also
sufficient (Newey and Powell (2003)).

4.1.1. Sequential Moment Restrictions

While the proof of Theorem 4.1 directly computes T̄ (P)⊥, we note that in special cases
of model (26) for which semiparametric efficiency bounds are known, one could also em-
ploy Corollary 3.1 to characterize local just identification. We next follow such an ap-
proach by employing the efficiency bound results in Ai and Chen (2012) to characterize
the local just identification of P by models defined by sequential moment restrictions.

The data distribution P of X = (Z�W ) ∈ X is now assumed to satisfy the following
nonparametric sequential moment restrictions:

model (26) holds with σ
({Wj}

)⊆ σ({Wj′ }
)

for all 1 ≤ j ≤ j′ ≤ J� (31)

where σ({Wj}) denotes the σ-field generated by Wj for j = 1� � � � � J. Note now W =WJ ,
which is assumed to be a non-degenerate random variable.

We will restrict attention to distributions P for which the conditional moments in (31)
are suitably linearly independent. To this end, we define

s2
j (WJ)≡ inf

{ak}J
k=j+1

E

[{
ρj(Z�hP)−

J∑
k=j+1

akρk(Z�hP)

}2∣∣∣WJ

]
for j = 1� � � � � J − 1� (32)

and s2
J(WJ)≡E[{ρJ(Z�hP)}2|WJ]. Since WJ is the most informative conditioning variable,

we may interpret s2
j (WJ) as the residual variance obtained by projecting ρj(Z�hP) on

{ρj′(Z�hP)}j′>j conditionally on all instruments.
The following assumption imposes the basic condition on the distribution P .

ASSUMPTION 4.3: (i) P satisfies (31); (ii) Assumption 4.1(ii) holds; (iii) maxj E[{ρj(Z�
h)}2]<∞ for any h ∈ H (a Banach space); (iv) P(η ≤ E[s2

j (WJ)|Wj])= 1 for some η > 0
and all 1 ≤ j ≤ J; (v) P(|E[ρk(Z�hP)ρj(Z�hP)|Wj]| ≤M) = 1 for some M <∞ and all
1 ≤ k≤ j ≤ J; (vi) L2(WJ) is infinite dimensional.



OVERIDENTIFICATION IN REGULAR MODELS 1789

Assumptions 4.3(i), (ii), (iii) are standard. Assumption 4.3(iv) restricts the conditional
dependence across moments, while Assumption 4.3(v) imposes an almost sure upper
bound in the conditional covariance across residuals. When the same instrument is used
in all conditioning equations, so thatWj =WJ for all j, Assumptions 4.3(iv), (v) are equiv-
alent to the covariance matrix of the residuals conditional on WJ being nonsingular and
finite uniformly in the support of WJ . Finally, Assumption 4.3(vi) ensures that model (31)
implies an infinite number of unconditional moment restrictions. If L2(WJ) is finite di-
mensional, then model (31) consists of a finite number of unconditional moment restric-
tions, thus reducing to the well-understood GMM setting.

THEOREM 4.2: Let Assumption 4.3 hold. Then: P is locally just identified by model (31)
if and only if R̄=⊗J

j=1L
2(Wj).

It is interesting that the characterization of local just identification in nonparametric
sequential moment restrictions (31) coincides with that for the more general model (26)
derived in Theorem 4.1. Nevertheless, the additional structure afforded by sequential
moment restrictions does allow for the semiparametric efficiency bound calculation in Ai
and Chen (2012) and enables us to obtain the local just identification characterization
under lower level conditions.

4.1.2. Models With Triangular Structures

Numerous nonparametric structural models possess a triangular structure in which the
(conditional) moment restrictions depend on a non-decreasing subset of the parameters;
see examples in Section 4.2. Lemma 4.2 below focuses on such a setting by assuming the
parameter space takes the form H =⊗J

j=1 Hj and imposing that the moment conditions
can be ordered in a manner such that the kth moment condition depends only on the sub-
set
⊗k

j=1 Hj of the parameter space. In the lemma, we let ∇mj�j(Wj�hP)
∗ : L2(Wj)→ H∗

j

be the adjoint of ∇mj�j(Wj�hP) : Hj → L2(Wj), and R̄j be the closure of Rj (in L2(Wj)),
where Rj is given by

Rj ≡
{
f ∈L2(Wj) : f = ∇mj�j(Wj�hP)[hj] for hj ∈ Hj

}
�

LEMMA 4.2: Let Assumption 4.1(ii) hold, and H =⊗J

j=1 Hj with Hj being Banach spaces
for all j. Suppose there are linear maps ∇mj�k(Wj�hP) : Hk →L2(Wj) such that

∇mj(Wj�hP)[h] =
J∑
k=1

∇mj�k(Wj�hP)[hk] for any h= (h1� � � � �hJ) ∈
J⊗
j=1

Hj� (33)

where ∇mj�k(Wj�hP)[hk] = 0 for all k> j, and there is 0 ≤ C <∞ such that∥∥∇mj�k(·�hP)[hk]
∥∥
P�2

≤ C∥∥∇mk�k(·�hP)[hk]
∥∥
P�2

for all k≤ j� (34)

Then: R̄ =⊗J

j=1L
2(Wj) if and only if R̄j = L2(Wj) for all j, which also holds if and only if

{f ∈L2(Wj) : ∇mj�j(Wj�hP)
∗[f ] = 0} = {0} for all j.

Lemma 4.2 implies that, under the stated requirements on the partial derivative maps,
one may assess whether P is locally overidentified by examining each (conditional) mo-
ment restriction separately. This lemma simplifies the verification of local just identifica-
tion in many nonparametric models. For example, it is directly applicable to the following
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class of models:

E
[
ρj(Z�hP�j)|Wj

]= 0 for some hP�j ∈ Hj for all 1 ≤ j ≤ J� (35)

where hP = (hP�1� � � � �hP�J) ∈ H =⊗J

j=1 Hj , and the unknown functions hP�j ∈ Hj could
depend on the endogenous variables Z. Our final result applies Lemma 4.2 to special
cases of model (35) in which Hj contains functions of conditioning variables Wj only; that
is,

E
[
ρj
(
Z�hP�j(Wj)

)|Wj

]= 0 for some hP�j ∈ Hj ⊆L2(Wj) for all 1 ≤ j ≤ J� (36)

COROLLARY 4.1: Let P satisfy model (36) with hP = (hP�1� � � � �hP�J) ∈ H = ⊗J

j=1 Hj

and Assumption 4.1(ii) hold. Suppose, for each 1 ≤ j ≤ J, there is dj ∈ L2(Wj) that is
bounded P-a.s. and ∇mj(Wj�hP)[h] = dj(Wj)hj(Wj) for any h = (h1� � � � �hJ) ∈ H. Then:
R̄ =⊗J

j=1L
2(Wj) if and only if, for all 1 ≤ j ≤ J, Hj is dense in L2(Wj) and P(dj(Wj) 
=

0)= 1.

Corollary 4.1 reduces assessing local just identification of P by model (36) to examining
two simple conditions for all j = 1� � � � � J: (i) Hj must be sufficiently “rich” (Hj is dense in
L2(Wj)), and (ii) the derivative of the moment restrictions must be injective (dj(Wj) 
= 0
P-a.s.). It immediately implies, for example, that nonparametric conditional mean and
quantile regression models are locally just identified,5 and that restricting the parameter
space to the space of bounded or differentiable functions is not sufficient for yielding local
overidentification as Hj remains dense in L2(Wj). On the other hand, Corollary 4.1 does
imply that P will be locally overidentified by model (36) as soon as there is one j such that
Hj is not a dense subset of (L2(Wj)�‖ · ‖P�2). Examples in which Hj is not dense include,
among others, the partially linear or additively separable conditional mean specifications
of Robinson (1988) and Stone (1985).

REMARK 4.1: Semiparametric two-step GMM models are widely used in applied work.
Building on the insights of Newey (1994) and Newey and Powell (1999), Ackerberg et al.
(2014) showed that when the unknown function hP = (hP�1� � � � �hP�J) is “exactly identi-
fied” by model (36) in the first stage, the second-stage optimally weighted GMM esti-
mator of γP identified by unconditional moment restriction E[g(X�γP�hP)] = 0 is semi-
parametrically efficient. Our Corollary 4.1 shows that their requirement of nonparametric
“exact identification” of hP is equivalent to our P being locally just identified by model
(36) in the first stage. Our Theorem 4.1, Lemmas 4.1 and 4.2 further imply, however, that
the second-stage optimally weighted GMM estimator may be inefficient when P is locally
overidentified by model (26) in the first stage, such as in the various semiparametric con-
ditional moment restriction models of Ai and Chen (2003, 2012). More generally, our
results imply that the asymptotic variance of a plug-in estimator of a regular functional
of hP can depend on the choice of estimator of hP whenever P is locally overidentified
by model (26). See Section 4.2 for examples of P being locally overidentified by nonpara-
metric models.

5For Z = (Y�W ) with Y ∈ R, note that a mean regression model corresponds to ρ1(Z�h) = Y − h(W ),
so that d1(W ) = −1. Instead, in a quantile regression model, ρ1(Z�h) = τ − 1{Y ≤ h(W )}, in which case
d1(W )= −gY |W (hP(W )|W ) for gY |W (y|w) the conditional density of Y given W .
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4.2. Illustrative Examples

This section presents three empirically relevant examples to illustrate the implications
of our results; see the Supplemental Material for additional results and discussion.

EXAMPLE 4.1—Differentiated Products Markets: An extensive literature has studied
identification of demand and cost functions in differentiated products markets, including
the seminal work of Berry, Levinsohn, and Pakes (1995). Here, we follow Berry and Haile
(2014) who derived multiple identification results by relying on moment restrictions of
the form

E
[
Yij − hj�P(Vi)|Wij

]= 0 for 1 ≤ j ≤ J� (37)

where 1 ≤ i ≤ n denotes a market and 1 ≤ j ≤ J a good. For instance, in their analy-
sis of demand, hj�P corresponds to the inverse demand function for good j, Vi denotes
market shares and prices in market i, Yij is a “demand shifter,” and Wij is a vector of
price instruments and product/market characteristics for good j. Let hj�P ∈ Hj ⊆ L2(V )

for all j and hP = (h1�P� � � � �hJ�P) ∈ H =⊗J

j=1 Hj . We note that this model is a special case
of model (35) and we may then apply Lemma 4.2. To this end, we observe that for any
h= (h1� � � � �hJ) ∈ H, we have

∇mj(Wj�hP)[h] = −E[hj(V )|Wj

]
� (38)

Hence, following the notation of Lemma 4.2, ∇mj�j(Wj�hP)[hj] = −E[hj(V )|Wj] and
∇mj�k(Wj�hP)[hk] = 0 when k 
= j. To find the adjoint ∇mj�j(Wj�hP)

∗, we let H̄j be the
closure of Hj under ‖ · ‖P�2 and for any f ∈L2(Wj) define

ΠH̄j f ≡ arg min
hj∈H̄j

∥∥(−f )− hj
∥∥
P�2
� (39)

By orthogonality of projections, the map ΠH̄j : L2(Wj)→ H̄j equals ∇mj�j(Wj�hP)
∗ and

therefore Lemma 4.2 implies that P is locally just identified if and only if{
f ∈L2(Wj) :ΠH̄j f = 0

}= {0} for all 1 ≤ j ≤ J� (40)

For instance, if H̄j = L2(V ), then (40) is equivalent to the distribution of (V �Wj) be-
ing L2-complete with respect to V for all j (Newey and Powell (2003)), which is an
untestable condition under endogeneity (Andrews (2017), Canay, Santos, and Shaikh
(2013)).6 Hence, plug-in estimation of average derivatives may not be efficient when L2-
completeness fails (Ai and Chen (2012)). We also note that the structure in model (37) is
also present in a large literature on consumer demand; see, for example, Blundell, Dun-
can, and Pendakur (1998), Blundell, Browning, and Crawford (2003). Semiparametric
restrictions that are consistent with agents’ optimization behaviors, however, can ren-
der P locally overidentified (Blundell, Chen, and Kristensen (2007), Chen and Pouzo
(2009)). Finally, we note very similar arguments apply when (37) consists of condi-
tional quantile restrictions instead—simply note that in such a model ∇mj�j(Wj�hP)[h] =
−E[gYj |V �Wj (hj�P(V ))hj(V )|Wj] for gYj |V �Wj the conditional density of Yj given (V �Wj).

6Since there are examples of distributions for which L2-completeness fails (Santos (2012)), the model may
be locally overidentified even when V and Wj are of equal dimension.
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EXAMPLE 4.2—Nonparametric Selection: This example concerns nonparametric ver-
sions of the canonical selection model of Heckman (1979) as studied in, for example,
Heckman (1990). Suppose that for each individual i, there are latent variables (Y ∗

0�i�Y
∗
1�i)

satisfying

Y ∗
d�i = gd�P(Vi)+Ud�i� (41)

where d ∈ {0�1}, Vi is a set of regressors, and gd�P are unknown functions. Instead of
(Y ∗

0�i�Y
∗
1�i), we observe Yi = Y ∗

0�i + Di(Y
∗
1�i − Y ∗

0�i), where Di ∈ {0�1} indicates selection
into “treatment.” As in Heckman and Vytlacil (2005), we assume there exists a variable
Ri excluded from gd�P and impose the index sufficiency requirement

E[Ud�i|Vi�Ri�Di = d] = λd�P
(
P(Di = 1|Vi�Ri)

)
(42)

for unknown functions λd�P . Assuming E[Ud�i|Vi] = 0 for d ∈ {0�1}, we can then employ
equations (41) and (42) to obtain the system of conditional moment restrictions

E
[
Di − sP(Vi�Ri)|Vi�Ri

]= 0� (43)

E
[
Yi − gd�P(Vi)− λd�P

(
sP(Vi�Ri)

)|Vi�Ri�Di = d
]= 0� (44)

which can be used to identify the conditional average treatment effect g1�P(Vi)− g0�P(Vi);
see also Newey, Powell, and Vella (1999) and Das, Newey, and Vella (2003) for related
models. Hence, in this context, J = 2, hP = (g0�P� g1�P� λ0�P�λ1�P� sP), Wi1 = (Vi�Ri), and
Wi2 = (Vi�Ri�Di).

We examine a general nonparametric version of this model by only requiring gd�P ∈
L2(V ) and λd�P be continuously differentiable for d ∈ {0�1}. For any (g0� g1�λ0�λ1� s) ∈ H,
restrictions (43) and (44) then possess a sequential moment structure which simplifies
applying Theorems 4.1 or 4.2. In particular, Lemma 4.2 implies P is locally just identified
if and only if

Sd ≡ {f ∈L2
(
(V �R)

) : f (V �R)= gd(V )+ λd
(
sP(V �R)

)
for some gd�λd

}
(45)

is dense in L2(V �R) for d ∈ {0�1}. However, identification of the functions gd�P and λd�P
requires

P
(
Var
{
sP(V �R)|V

}
> 0
)
> 0� (46)

that is, the instrument R must be relevant. When (46) holds, Sd is not dense in L2(V �R).
Thus, the conditions for the identification of (gd�P�λd�P) imply that P is locally overidenti-
fied by the model. Hence, the model is testable and efficiency considerations matter when
estimating smooth parameters such as the average treatment effects.

EXAMPLE 4.3—Nonparametric Production: This example closely follows the firm’s
production structural models proposed by Olley and Pakes (1996), Ackerberg, Caves, and
Frazer (2015), and others. Econometricians observe a random sample {Xi}ni=1 of a panel
of firms i= 1� � � � � n from the distribution ofX = {Yt�Kt�Lt� It}Tt=1 for a fixed finite T ≥ 2,
where Yt�Kt�Lt� It respectively denote a firm’s log output, capital, labor, and investment
levels at time t. Suppose that

Yit = gP(Kit�Lit)+ωit +Uit� E[Uit |Kit�Lit� Iit] = 0� (47)
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where gP is an unknown function, and ωit is a productivity factor observed by the firm
but not the econometrician. Olley and Pakes (1996) provided conditions under which the
firm’s dynamic optimization problem implies, for some unknown function λP , that

ωit = λP(Kit� Iit)� (48)

Let W = (K1�L1� I1), and for simplicity let T = 2 and ωit follow an AR(1) process. The
literature has employed (47) and (48) to derive the semiparametric conditional moment
restrictions

E
[
Y1 − gP(K1�L1)− λP(K1� I1)|W

]= 0� (49)

E
[
Y2 − gP(K2�L2)−πPλP(K1� I1)|W

]= 0� (50)

where πP is the coefficient in the AR(1) process for ωit . This model contains multiple
overidentifying restrictions that are easily characterized through Theorem 4.1. Specifi-
cally, note hP = (gP�λP�πP), and for any h= (g�λ�π), we have

∇m1(W �hP)[h] = −g(K1�L1)− λ(K1� I1)� (51)

∇m2(W �hP)[h] = −E[g(K2�L2)|W
]−πPλ(K1� I1)−πλP(K1� I1)� (52)

By Theorem 4.1, a necessary condition for local just identification is for the closure of the
range of (51) to equal L2(W ). However, this requirement fails since (51) cannot approx-
imate nonseparable functions f ∈ L2((L1� I1))—a failure reflecting the assumption that
labor is not a dynamic variable. Consequently, sequential estimation of average output
elasticities, as in Olley and Pakes (1996), can be inefficient. Similarly, we note

∇m2(W �hP)[h] −πP∇m1(W �hP)[h]
= πPg(K1�L1)−E[g(K2�L2)|W

]−πλP(K1� I1)�
(53)

and local just identification requires the closure of the range of (53) to equal L2(W ).
However, such a condition can fail reflecting the empirical content of assuming constancy
of gP through time and additive separability of ωit . As in Section 3.4, the power of spec-
ification tests can be directed at violations of these assumptions. See our working paper
version, Cowles Foundation Discussion Paper No. 1999R, for a numerical illustration.

5. EXTENSION TO T(P) BEING A CONVEX CONE

Our main theoretical results in Section 3 rely on the requirement that the tangent set
T(P) be linear. In this section, we examine whether the main conclusions could be ex-
tended to models in which T(P) is a convex cone—a setting that can arise, for example,
in mixture models (van der Vaart (1989)) and models where a parameter is on a bound-
ary (Andrews (1999)). To this end, we replace Assumption 2.1 with the following weaker
condition:

ASSUMPTION 5.1: (i) Assumption 2.1(i) holds; (ii) the tangent set T(P) is a convex cone;
that is, if g� f ∈ T(P), a�b ∈ R with a≥ 0 and b≥ 0, then ag+ bf ∈ T(P).

We let T̄ (P) still denote the closure of T(P) under ‖ · ‖P�2 and maintain Definition 2.2.
Crucially, Assumption 5.1(ii) implies T̄ (P) is a closed convex cone but not necessarily a
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closed linear subspace of L2
0(P) as in regular models. Thus, the alternative characteri-

zation of local overidentification in terms of the orthogonal complement of T̄ (P) is no
longer valid (see Lemma 2.1). However, for any closed convex cone T̄ (P) in L2

0(P), we
may define its polar cone, denoted T̄ (P)−, which is given by

T̄ (P)− ≡
{
g ∈L2

0(P) :
∫
gfdP ≤ 0 for all f ∈ T̄ (P)

}
� (54)

Let ΠT(g) and ΠT−(g) denote the metric projections of a g ∈ L2
0(P) onto T̄ (P) and

T̄ (P)−, respectively. For any g ∈L2
0(P), the so-called “Moreau decomposition” (Moreau

(1962)) implies

g=ΠT(g)+ΠT−(g)�

∫ {
ΠT(g)

}{
ΠT−(g)

}
dP = 0� (55)

Unlike the setting in which T̄ (P) is a linear subspace, however, there may in fact exist
f ∈ T̄ (P) and g ∈ T̄ (P)− such that

∫
fgdP < 0. Nevertheless, the decomposition in (55)

immediately implies the following direct generalization of Lemma 2.1.

LEMMA 5.1: Under Assumption 5.1, the following are equivalent to Definition 2.2:
(i) P is locally just identified by P if and only if T̄ (P)− = {0}.

(ii) P is locally overidentified by P if and only if T̄ (P)− 
= {0}.

By definition, it is clear that Theorem 3.1 remains valid for the case that P is locally
just identified by P (i.e., T̄ (P)= L2

0(P)). Given Lemma 5.1, it should also be possible to
establish results similar to Theorem 3.2 for the locally overidentified case. That is, if P
is locally overidentified by P, then the model should be locally testable and “efficiency”
should “matter” even when T(P) is a convex cone. To gain some intuition, we can again
rely on the sample means of scores 0 
= f̃ ∈ L2

0(P). Recall that if Xi ∼ P1/
√
n�g for any

path t �→ Pt�g ∈ M, then Gn(f̃ ) ≡ 1√
n

∑n

i=1 f̃ (Xi) is asymptotically normally distributed

with mean
∫
f̃ g dP (see equation (12)). By Lemma 5.1, P being locally overidentified

by P is equivalent to the existence of a 0 
= f̃ ∈ T̄ (P)−. For any such f̃ , it follows that∫
f̃ g dP ≤ 0 for all g ∈ T̄ (P). Thus, for the purposes of specification testing, observing

a large and positive value for Gn(f̃ ) may be viewed as a “signal” that the distribution
of Xi ∼ P1/

√
n�g is approaching P from outside the model P. On the other hand, from an

estimation perspective, we should be able to employ the knowledge that
∫
f̃ g dP ≤ 0 for

all g ∈ T̄ (P) to improve on “inefficient” estimators.
The potential lack of orthogonality between T̄ (P) and T̄ (P)−, however, presents some

important complications. For instance, it is no longer natural to restrict attention to regu-
lar estimators. We instead focus on a broader class of estimators for parameter θ(P) ∈ B
satisfying

√
n
{
θ̂n − θ(P1/

√
n�g)
} Ln�g→ Zg (56)

for some tight random variable Zg ∈ B along any path t �→ Pt�g ∈ P. Note that in contrast to
regular estimators, the limit Zg may depend on g. Focusing on estimators satisfying (56)
enables us to easily characterize the local asymptotic risk along any path t �→ Pt�g ∈ P.
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Concretely, for a loss function Ψ : B → R+, the local asymptotic risk of θ̂n is given by

lim sup
n→∞

EP1/
√
n�g

[
Ψ
(√
n
{
θ̂n − θ(P1/

√
n�g)
})]
� (57)

which represents the expected loss of employing θ̂n to estimate θ(P) when the data gen-
erating process is locally perturbed within P. For simplicity, we consider Ψ -loss functions,
defined as follows:

DEFINITION 5.1: Ψ -loss is a map from B to R+ such that: (i) {b ∈ B :Ψ(b)≤ t} is con-
vex for all t ∈ R; (ii) Ψ(0) = 0 and Ψ(b) = Ψ(−b); (iii) Ψ is bounded, continuous, and
nonconstant.

A minimal requirement on an estimator is that its local asymptotic risk not be domi-
nated by that of an alternative estimator; that is, a sensible estimator should be “asymp-
totically locally admissible.”

DEFINITION 5.2: θ̂n : {Xi}ni=1 → B is “asymptotically locally admissible” for θ(P) under
Ψ -loss if it satisfies (56) and there is no estimator θ̃n : {Xi}ni=1 → B satisfying (56) and

lim sup
n→∞

EP1/
√
n�g

[
Ψ
(√
n
{
θ̃n − θ(P1/

√
n�g)
})]≤ lim sup

n→∞
EP1/

√
n�g

[
Ψ
(√
n
{
θ̂n − θ(P1/

√
n�g)
})]

for all paths t �→ Pt�g ∈ P, and with the inequality holding strictly for some path t �→
Pt�g ∈ P.

Given the introduced concepts, we can document an equivalence result between the lo-
cal overidentification of P , the importance of “efficiency” in estimation, and the potential
refutability of a model.

THEOREM 5.1: Let Assumption 5.1 hold. Then: the following statements are equivalent:
(i) P is locally overidentified by P.

(ii) There exists a bounded function f : X → R such that
∑n

i=1 f (Xi)/n is not an asymp-
totically locally admissible estimator for θ(P)= ∫ f dP under any Ψ -loss.

(iii) There exists a local asymptotic level α test φn for (9) with a local asymptotic power
function π satisfying π(g) > α for some path t �→ Pt�g ∈M \ P.

Theorem 3.2 and Theorem 5.1 reflect both the similarities and the differences between
regular and non-regular models. With regard to estimation, for example, Theorems 3.2(i),
(ii) and 5.1(i), (ii) both show that local overidentification of P is equivalent to the avail-
ability of “efficiency” gains in estimation. However, since in non-regular models we need
to consider a broader class of estimators than just regular estimators, Theorem 5.1(i),
(ii) links the availability of “efficiency” gains to the local overidentification of P through
the estimation of simple “smooth” maps θ(P)= ∫ f dP (population means) for bounded
functions f . In particular, while sample means are always locally admissible when P is
locally just identified (see Lemma C.1 in Appendix C), Theorem 5.1(ii) shows this fails to
be the case when P is locally overidentified.

With regard to specification testing, Theorem 3.2(i), (iii) and Theorem 5.1(i), (iii) both
show that local overidentification of P is equivalent to the potential refutability of the
model. However, important differences also exist in the properties of local specification
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tests for regular and non-regular models. Notably, our next result shows that for any non-
regular model whose convex cone T̄ (P) contains at least two linearly independent ele-
ments, any asymptotically locally unbiased specification test for (9) will have local power
no larger than its level against an important class of alternatives.

THEOREM 5.2: Let Assumption 5.1 hold and let there be linearly independent f1� f2 ∈
T̄ (P)− with λf1�λf2 ∈ T̄ (P) for any λ ≤ 0. Let φn be any specification test for (9) with a
local asymptotic power function π such that π(g) ≤ α for all g ∈ T̄ (P) and π(g) ≥ α for
all g /∈ T̄ (P). Then: π(g)= α for any path t �→ Pt�g ∈ M \ P with λΠT−(g) ∈ T̄ (P) for any
λ≤ 0.

Given Theorem 5.1(iii), Theorem 5.2 does not preclude the existence of asymptotically
nontrivial specification tests, but rather implies such tests can necessarily be asymptoti-
cally locally biased for non-regular models whose convex cone T̄ (P) is not a ray. We next
examine in more detail the construction of both such specification tests and of “better”
estimators than the sample mean. To this end, we impose the following:

ASSUMPTION 5.2: For some set T, there is a statistic Ĝn : {Xi}ni=1 → �∞(T) satisfying:
(i) Ĝn(τ) = 1√

n

∑n

i=1 sτ(Xi) + op(1) uniformly in τ ∈ T, where 0 
= sτ ∈ T̄ (P)− for all
τ ∈ T;

(ii) Assumption 3.1(ii) holds.

Assumption 5.2(i) is identical to Assumption 3.1(i) except that sτ is required to belong
to T̄ (P)− instead of T̄ (P)⊥. As in Theorem 3.3(i), Ĝn can be employed to construct a
specification test for (9). For any 0 ≤ ω ∈ �∞(T), we define Ĝ

ω
n (τ) ≡ ω(τ) × Ĝn(τ) and

G
ω
0 (τ) ≡ ω(τ)× G0(τ) for τ ∈ T. Let cω1−α be the 1 − α quantile of ‖max{Gω

0 �0}‖∞. We
then define the test

φωn ≡ 1
{∥∥max

{
Ĝ
ω
n �0
}∥∥

∞ > c
ω
1−α
}
� (58)

Intuitively, 0 ≤ ω ∈ �∞(T) is a weight function that determines the local alternatives
against which φωn has nontrivial power. In parallel to Theorem 3.3(i), the power prop-
erties of φωn also depend on the set C(P)≡ {sτ ∈ T̄ (P)− : τ ∈ T} being sufficiently “rich.”
Let C̄(P) denote the closed convex cone generated by C(P) (in L2

0(P)), that is, C̄(P)
parallels S̄(P) in Theorem 3.3(i). For any g ∈ L2

0(P), we let ΠC(g) denote the metric
projection of g onto C̄(P).

Our next result shows that for any path t �→ Pt�g ∈ M with ΠC(g) 
= 0, it is possible
to select an ω� ∈ �∞(T) such that the corresponding specification test φω�n has nontrivial
local power against that alternative. Given Theorem 5.2, φω�n can be asymptotically locally
biased, however.

THEOREM 5.3: Let Assumptions 5.1, 5.2 hold, and 0 ≤ω ∈ �∞(T) satisfy cω1−α > 0. Then:
φωn is a local asymptotic level α test for (9) with a local asymptotic power function. Moreover,
for any t �→ Pt�g ∈ M with ΠC(g) 
= 0, there is 0 ≤ω� ∈ �∞(T) with cω�1−α > 0 for α ∈ (0� 1

2),
and

lim
n→∞

P1/
√
n�g

(∥∥max
{
Ĝ
ω�

n �0
}∥∥

∞ > c
ω�

1−α
)
>α� (59)
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Turning to estimation, we note that when restricting attention to paths t �→ Pt�g ∈ P,
knowledge that

∫
sτg dP ≤ 0 should be useful. Specifically, for any bounded function f :

X → R, we define

μ̂n(f� τ)≡ 1
n

n∑
i=1

f (Xi)−β(f�τ)× n−1/2 max
{
Ĝn(τ)�0

}
(60)

for β(f�τ)≡ max{∫ f sτ dP�0}/‖sτ‖2
P�2. The function β(f�τ)sτ is the projection of f onto

the cone generated by sτ ∈ T̄ (P)− inL2
0(P). Our final theorem shows that when P is locally

overidentified, μ̂n(f� τ) can be viewed as a more “efficient” estimator for θ(P) = ∫ f dP
than the sample mean whenever f /∈ T̄ (P). It is analogous to Lemma 3.1(i).

THEOREM 5.4: Let Assumptions 5.1 and 5.2 hold. Then: for any bounded f : X → R and
τ� ∈ T such that

∫
f sτ� dP > 0 and f and sτ� are linearly independent, we have: μ̂n(f� τ�)

defined in (60) satisfies (56) and

lim sup
n→∞

EP1/
√
n�g

[
Ψ

(√
n

{
μ̂n
(
f� τ�

)− ∫ f dP1/
√
n�g

})]

< lim sup
n→∞

EP1/
√
n�g

[
Ψ

(
1√
n

n∑
i=1

{
f (Xi)−

∫
f dP1/

√
n�g

})] (61)

for any path t �→ Pt�g ∈ P and any Ψ -loss.

Thus, when P is locally overidentified, there is information in the model that can be em-
ployed to both render the model testable (Theorem 5.3) and to obtain “efficiency” gains
(Theorem 5.4). As a result, the local testability of a model and “efficiency” considerations
remain intrinsically linked to P being locally overidentified by P even when T̄ (P) is a con-
vex cone. We emphasize that many important issues, such as optimality in estimation and
specification testing, and analog of incremental J test for (19), remain open when T̄ (P)
is a convex cone. We leave these questions for future research.

6. CONCLUSION

This paper reinterprets the common practice of counting the numbers of restrictions
and parameters of interest in GMM to determine overidentification as an approach that
examines whether the tangent space is a strict subset of L2

0(P). This abstraction naturally
leads to a notion of local overidentification, which we show is responsible for an intrinsic
link between efficiency considerations in estimation and the local testability of a model.
While we have relied on an i.i.d. assumption for simplicity, there are ample works de-
riving efficiency bounds in time series settings (Hansen (1985, 1993)) and characterizing
limit experiments under nonstationary, strongly dependent data (Ploberger and Phillips
(2012)). We conjecture the results in this paper could similarly be extended to allow for
dependence, but leave such extensions for future work.

APPENDIX A: LIMITING EXPERIMENT

In this appendix, we embed specification tests and regular estimators in a common
statistical experiment that highlights their connection to each other and to the local overi-
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dentification of P . The main result in this appendix, Theorem A.1 below, plays an impor-
tant role in the proofs of our main results in Section 3, and is therefore presented here
for completeness. The proof of Theorem A.1 can be found in the Supplemental Material.

Heuristically, in an asymptotic framework that is local to P , our parameter uncertainty
is over what “direction” P is being approached from. We may intuitively interpret such a
direction as the score g of P1/

√
n�g and represent our parameter uncertainty as possessing

only a “noisy” measure of g. Let dT ≡ dim{T̄ (P)} and dT⊥ ≡ dim{T̄ (P)⊥} denote the
(possibly infinite) dimensions of the tangent space and its orthogonal complement. Both
T̄ (P) and T̄ (P)⊥ are Hilbert spaces with norm ‖ · ‖P�2 and hence there exist orthonormal
bases {ψTk }dTk=1 and {ψT⊥

k }dT⊥
k=1 for T̄ (P) and T̄ (P)⊥, respectively. We then consider a random

variable (YT �YT⊥
) ∈ RdT × Rd

T⊥ whose law is such that the vectors Y
T ≡ (YT

1 � � � � �Y
T
dT
)′

and Y
T⊥ ≡ (YT⊥

1 � � � � �YT⊥
d
T⊥ )

′ have mutually independent coordinates and satisfy, for some
(unknown) g0 ∈L2

0(P), the relation

Y
T
k ∼N

(∫
g0ψ

T
k dP�1

)
for 1 ≤ k≤ dT �

Y
T⊥
k ∼N

(∫
g0ψ

T⊥
k dP�1

)
for 1 ≤ k≤ dT⊥ �

(A.1)

Here, if dT⊥ = 0, then we interpret YT⊥ as being equal to zero with probability 1. Finally,
we let Qg denote the distribution of (YT �YT⊥

) ∈ RdT × Rd
T⊥ when (A.1) holds with g0 =

g ∈L2
0(P). Thus, by definition, we know that the (unknown) distributionQg0 of (YT �YT⊥

)
belongs to the nonparametric family {Qg : g ∈L2

0(P)}.
The following theorem formalizes the connection between specification tests, regular

estimators, and the tangent space through the introduced limiting experiment.7 Recall
that

L→ means convergence in law under Pn ≡⊗n

i=1 P .

THEOREM A.1: Under Assumption 2.1, the following two propositions hold:
(i) Let φn be any local asymptotic level α specification test for (9) with a local asymptotic

power function π. Then: there is a level α test φ : (YT �YT⊥
)→ [0�1] of

H0 :ΠT⊥(g0)= 0� H1 :ΠT⊥(g0) 
= 0 (A.2)

based on one observation (YT �YT⊥
) such that π(g0)= ∫ φdQg0 for all g0 ∈L2

0(P).
(ii) (Convolution Theorem) Let θ̂n : {Xi}ni=1 → B be any asymptotically linear regular esti-

mator of any parameter θ(P) ∈ B. Then: for any b∗ ∈ B∗, there exist linear maps FT : RdT → R
and FT⊥ : Rd

T⊥ → R such that under the law Pn, it follows that

√
n
{
b∗(θ̂n)− b∗(θ(P))} L→ FT

(
Y
T
)+ FT⊥(

Y
T⊥)
� (A.3)

where (YT �YT⊥
)∼Qg0 with g0 = 0, and the map FT : RdT → R depends on θ : P → B and

b∗ ∈ B∗ but not on the estimator θ̂n.

7See Choi, Hall, and Schick (1996) and Hirano and Porter (2009) for other applications of the limit experi-
ment.
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FIGURE 1.—The tangent space, specification tests, and regular estimators.

Theorem A.1(i) relates the local properties of any specification test for P (as in (9))
to a testing problem concerning the unknown distribution Qg0 of (YT �YT⊥

) through the
asymptotic representation theorem (van der Vaart (1991a)). Intuitively, any path t �→ Pt�g
that approaches P from outside the model P should be such that its score does not belong
to the tangent set or, equivalently, ΠT⊥(g) 
= 0; see Figure 1(a). In contrast, the score g
of any submodel t �→ Pt�g ∈ P must belong to the tangent set, implying ΠT⊥(g)= 0. Thus,
any specification test for P should behave locally as a test of the null hypothesis in (A.2).
Theorem A.1(i) formalizes these heuristics by showing that if π is the local asymptotic
power function of a specification test for P (as in (9)), then π must also be the power
function of a test of (A.2) based on a single observation (YT �YT⊥

) whose (unknown) law
Qg0 is known to belong to the nonparametric family {Qg : g ∈L2

0(P)}.
Theorem A.1(ii) is essentially the convolution theorem of Hájek (1970), stated here

in a manner that facilitates a connection to Theorem A.1(i). To gain intuition on this
result, we focus on the scalar case (B = R) and suppose there are two asymptotically
linear regular estimators θ̂n and θ̃n of a common parameter with influence functions ν
and ν̃, respectively. Regularity constrains the projection of ν and ν̃ onto the tangent space
to be equal, which originates a term in the asymptotic distribution that is independent of
the choice of estimator (FT (YT )); see Figure 1(b). The estimators, however, may differ on
a component that is extraneous to the model (ΠT⊥(ν) 
=ΠT⊥(ν̃)), contributing a “noise”
term to the asymptotic distribution that depends on the choice of estimator (FT⊥

(YT⊥
)).

An efficient estimator is the one for which the “noise” component is zero.
Crucial for our purposes is the observation that YT⊥ plays fundamental yet distinct

roles in the asymptotic behavior of both specification tests and regular estimators. From
a specification testing perspective, YT⊥ is a partially sufficient statistic for ΠT⊥(g) and is
needed to construct any nontrivial test of (A.2). In contrast, from a regular estimation
perspective, YT⊥ is an ancillary statistic that can only contribute “noise” to estimators.8

Thus, the limit experiment requires P to be locally overidentified (T̄ (P)⊥ 
= {0}) in order
to allow for both nontrivial tests and asymptotically distinct estimators.

8In regular estimation, only paths within the model are considered; see Definition 3.1. The resulting limiting
experiment is then indexed by {Qg : g ∈ T̄ (P)}, in which YT⊥ is ancillary.
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APPENDIX B: PROOFS FOR SECTIONS 2 AND 3

In this appendix, we present proofs of the theoretical results in Sections 2 and 3. All of
the additional technical lemmas used in this appendix can be found in the Supplemental
Material.

PROOF OF LEMMA 2.1: Since T(P) is linear by Assumption 2.1(ii), T̄ (P) is a vector sub-
space of L2

0(P), and therefore L2
0(P)= T̄ (P)⊕ T̄ (P)⊥; see, for example, Theorem 3.4.1 in

Luenberger (1969). The claims of the lemma then immediately follow from T̄ (P)=L2
0(P)

if and only if T̄ (P)⊥ = {0}. Q.E.D.

PROOF OF THEOREM 3.1: To establish part (i) of the theorem, we let ν and ν̃ denote
the influence functions of θ̂n and θ̃n, respectively. Then note, for any b∗ ∈ B∗ and λ ∈ R,
that

√
n
{
b∗(λθ̂n + (1 − λ)θ̃n

)− b∗(θ(P))}
= 1√

n

n∑
i=1

{
λb∗(ν(Xi)

)+ (1 − λ)b∗(ν̃(Xi)
)}+ op(1) L→N

(
0�σ2

λ

) (B.1)

for σ2
λ = ‖b∗(λν + (1 − λ)ν̃)‖2

P�2 by asymptotic linearity and the central limit theorem.
Further note that if P is locally just identified, then Theorem A.1(ii) implies σ2

λ does not
depend on λ. However, since ‖b∗(λν + (1 − λ)ν̃)‖2

P�2 being constant in λ implies that
‖b∗(ν− ν̃)‖P�2 = 0, and b∗ ∈ B∗ was arbitrary, we can conclude that

b∗(√n{θ̂n − θ̃n}
)= 1√

n

n∑
i=1

b∗(ν(Xi)− ν̃(Xi)
)+ op(1)= op(1) (B.2)

for any b∗ ∈ B∗. Since
√
n{θ̂n − θ̃n} is asymptotically tight and measurable by Lemmas

1.4.3 and 1.4.4 in van der Vaart and Wellner (1996), result (B.2) and Lemma E.1 (in the
Supplemental Material) imply

√
n{θ̂n − θ̃n} = op(1) in B, which establishes part (i) of the

theorem.
To establish part (ii) of the theorem, we note that by Theorem A.1(i), there exists a

level α test φ of (A.2) such that, for any g ∈L2
0(P) and path t �→ Pt�g,

lim
n→∞

∫
φn dP

n
1/

√
n�g =

∫
φdQg� (B.3)

However, if P is locally just identified by P, then T̄ (P)=L2
0(P), or equivalently, T̄ (P)⊥ =

{0}. Therefore, the null hypothesis in (A.2) holds for all g ∈ L2
0(P), which implies∫

φdQg ≤ α for all g ∈L2
0(P), and part (ii) of the theorem holds by (B.3). Q.E.D.

PROOF OF THEOREM 3.2: First, by Theorem 3.1, it follows that (ii) implies (i) and that
(iii) implies (i). Therefore, it suffices to show that (i) (i.e., P being locally overidentified
by P) implies that both (ii) and (iii) hold. To this end, we observe that if P is locally
overidentified by P, then Lemma 2.1 implies there exists a 0 
= f̃ ∈ T̄ (P)⊥, which without
loss of generality we assume satisfies ‖f̃‖P�2 = 1. We next aim to employ such a f̃ to verify
that (ii) and (iii) indeed hold.
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To establish that (i) implies (ii), we note that Gn(f̃ )≡∑n

i=1 f̃ (Xi)/
√
n trivially satisfies

Assumption 3.1(i) and Assumption 3.1(ii) with G0 ∼ N(0�1) since ‖f̃‖P�2 = 1 and f̃ ∈
L2

0(P). Thus, part (i) implying part (ii) is a special case of Lemma 3.1(i).
To establish that (i) implies (iii), we let Z ∼N(0�1) and note that Theorem 3.10.12 in

van der Vaart and Wellner (1996) implies that, for any path t �→ Pt�g ∈M,

Gn(f̃ )
Ln�g→ Z+

∫
f̃ g dP (B.4)

since ‖f̃‖P�2 = 1. For z1−α/2 the (1 − α/2) quantile of a standard normal distribution, we
define the test φn ≡ 1{|Gn(f̃ )|> z1−α/2}. Then:(B.4) and the Portmanteau theorem imply
that

π(g)≡ lim
n→∞

∫
φn dP1/

√
n�g = P

(∣∣∣∣Z+
∫
f̃ g dP

∣∣∣∣> z1−α/2

)
(B.5)

for any path t �→ Pt�g ∈ M. Hence, (B.5) implies φn indeed has a local asymptotic power
function. Moreover, since f̃ ∈ T̄ (P)⊥, result (B.5) implies π(g)= α whenever g ∈ T̄ (P),
which establishes φn is a local asymptotic level α specification test. In addition, for any
g ∈ T̄ (P)⊥, we have either

∫
f̃ g dP = 0 (and hence π(g) = α by (B.5)), or

∫
f̃ g dP 
= 0

(and hence π(f̃ ) > α by (B.5)). Thus, this test is locally unbiased. Finally, there exists a
path t �→ Pt�f̃ ∈M with score f̃ ∈ T̄ (P)⊥, in which case (B.5) implies π(f̃ ) > α and hence
(i) implies (iii). Q.E.D.

PROOF OF COROLLARY 3.1: First note that since every f ∈ D is bounded, θf (P) ≡∫
f dP is pathwise differentiable at P relative to T(P) with derivative θ̇f (g) ≡∫
ΠT(f )gdP ; see Lemma F.1 (in the Supplemental Material). Therefore, by Theo-

rem 5.2.1 in Bickel et al. (1993), its efficiency bound is given by Ω∗
f = ‖ΠT(f )‖2

P�2. For
any f ∈ L2(P), let ΠL2

0(P)
(f ) denote its projection onto L2

0(P) and note that ΠL2
0(P)
(f )=

{f − ∫
f dP}, and hence Var{f (X)} = ‖ΠL2

0(P)
(f )‖2

P�2. By orthogonality of T̄ (P) and
T̄ (P)⊥, then

Var
{
f (X)

}= ∥∥ΠL2
0(P)
(f )
∥∥2

P�2
= ∥∥ΠT

(
ΠL2

0(P)
(f )
)+ΠT⊥

(
ΠL2

0(P)
(f )
)∥∥2

P�2

= ∥∥ΠT

(
ΠL2

0(P)
(f )
)∥∥2

P�2
+ ∥∥ΠT⊥

(
ΠL2

0(P)
(f )
)∥∥2

P�2
=Ω∗

f + ∥∥ΠT⊥(f )
∥∥2

P�2
�

(B.6)

where in the final equality we used ΠT(ΠL2
0(P)
(f )) = ΠT(f ) and ΠT⊥(ΠL2

0(P)
(f )) =

ΠT⊥(f ) for any f ∈ L2(P) due to T̄ (P) and T̄ (P)⊥ being subspaces of L2
0(P). Thus, by

(B.6), Var{f (X)} = Ω∗
f for all f ∈ D if and only if ΠT⊥(f ) = 0 for all f ∈ D, which by

denseness of D is equivalent to T̄ (P)⊥ = {0}. Q.E.D.

PROOF OF LEMMA 3.1: For part (i) of the lemma, note that since G0 is non-degenerate,
Assumption 3.1(i) implies sτ∗ 
= 0 for some τ∗ ∈ T, and for a 0 
= b̃ ∈ B, we set

θ̃n ≡ θ̂n + b̃× n−1/2
Ĝn

(
τ∗)� (B.7)
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Notice θ̂n is asymptotically linear by hypothesis and denote its influence function by ν.
Assumption 3.1(i), definition (B.7), and the continuous mapping theorem then yield

√
n
{
θ̃n − θ(P)}= 1√

n

n∑
i=1

{
ν(Xi)+ b̃× sτ∗(Xi)

}+ op(1)� (B.8)

Setting ν̃(Xi) ≡ ν(Xi) + b̃ × sτ∗(Xi), we obtain for any b∗ ∈ B∗ that b∗(ν̃) = {b∗(ν) +
b∗(b̃) × sτ∗} ∈ L2

0(P) since b∗(ν) ∈ L2
0(P) due to θ̂n being asymptotically linear and

sτ∗ ∈ T̄ (P)⊥ ⊆ L2
0(P) by Assumption 3.1(i). Hence, (B.8) implies θ̃n is indeed asymptot-

ically linear and its influence function equals ν̃. Moreover, by Lemma D.4 (in the Sup-
plemental Material), (

√
n{θ̂n − θ(P)}� 1√

n

∑n

i=1 sτ∗(Xi)) converge jointly in distribution in
B × R under Pn, and hence the continuous mapping theorem implies

√
n
{
θ̃n − θ(P)}= √

n
{
θ̂n − θ(P)}+ b̃×

{
1√
n

n∑
i=1

sτ∗(Xi)

}
L→ Z (B.9)

on B under Pn for some tight Borel random variable Z. In addition, we have that

√
n{θ̂n − θ̃n} = −b̃×

{
1√
n

n∑
i=1

sτ∗(Xi)

}
L→ Δ (B.10)

by the central limit and continuous mapping theorems. Further note that since b̃ 
= 0, we
trivially have Δ 
= 0 in B because b∗(Δ) ∼ N(0�‖b∗(b̃)sτ∗‖2

P�2) and ‖b∗(b̃)sτ∗‖P�2 > 0 for
some b∗ ∈ B∗ since b̃ 
= 0. Thus, to conclude the proof of part (i), it only remains to show
that θ̃n is regular. To this end, let t �→ Pt�g ∈ P, and note Lemma 25.14 in van der Vaart
(1998) yields

n∑
i=1

log
(
dP1/

√
n�g

dP
(Xi)

)
= 1√

n

n∑
i=1

g(Xi)− 1
2

∫
g2 dP + op(1) (B.11)

under Pn, and thus Example 3.10.6 in van der Vaart and Wellner (1996) implies
Pn and Pn1/√n�g are mutually contiguous. Since θ̃n is asymptotically linear, (

√
n{θ̃n −

θ(P)}� 1√
n

∑n

i=1 g(Xi)) converge jointly in B × R by Lemma D.4. Hence, by (B.11) and
Lemma A.8.6 in Bickel et al. (1993), we obtain that

√
n
{
θ̃n − θ(P)} Ln�g→ Zg (B.12)

for some tight Borel Zg on B. Furthermore, since T(P) is linear by Assumption 2.1(ii),
and θ̂n is regular by hypothesis, Lemma D.4 and Theorem 5.2.3 in Bickel et al. (1993)
imply there is a bounded linear map θ̇ : T̄ (P)→ B such that, for any t �→ Pt�g ∈ P,

lim
t↓0

∥∥t−1
{
θ(Pt�g)− θ(P)}− θ̇(g)∥∥

B
= 0� (B.13)

Therefore, combining (B.12) and (B.13) and the continuous mapping theorem yields

√
n
{
θ̃n − θ(P1/

√
n�g)
} Ln�g→ Zg + θ̇(g)� (B.14)
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Next, we note that for any b∗ ∈ B∗, (B.9), (B.11), and the central limit theorem imply
⎛
⎜⎝

√
n
{
b∗(θ̃n)− b∗(θ(P))}

n∑
i=1

log
(
dP1/

√
n�g

dP
(Xi)

)⎞⎟⎠ L→N

⎛
⎝
⎡
⎣ 0

−1
2

∫
g2 dP

⎤
⎦ �Σ

⎞
⎠ (B.15)

under Pn, where since
∫
gsτ∗ dP = 0 due to g ∈ T(P) and sτ∗ ∈ T̄ (P)⊥, we have

Σ=
⎡
⎢⎣
∫ (
b∗(ν)+ b∗(b̃)sτ∗

)2
dP

∫
b∗(ν)gdP∫

b∗(ν)gdP
∫
g2 dP

⎤
⎥⎦ � (B.16)

In addition, since b∗(θ̂n) is an asymptotically linear regular estimator of b∗(θ(P)), Propo-
sition 3.3.1 in Bickel et al. (1993) and g ∈ T̄ (P) imply

∫
b∗(ν)gdP = b∗(θ̇(g)). Hence,

results (B.15) and (B.16) and Lemma A.9.3 in Bickel et al. (1993) establish

√
n
{
b∗(θ̃n)− b∗(θ(P1/

√
n�g)
)} Ln�g→ N

(
0�
∫ (
b∗(ν)+ b∗(b̃)sτ∗

)2
dP

)
� (B.17)

Define ζb∗(Xi)≡ {b∗(ν(Xi))+ b∗(b̃)sτ∗(Xi)}, and for any finite collection {b∗
k}Kk=1 ⊂ B∗ let

(Wb∗
1
� � � � �Wb∗

K
) denote a multivariate normal vector with E[Wb∗

k
] = 0 for all 1 ≤ k ≤ K

and E[Wb∗
k
Wb∗

j
] = E[ζb∗

k
(Xi)ζb∗

j
(Xi)] for any 1 ≤ j ≤ k ≤ K. Letting Cb(RK) denote the

set of continuous and bounded functions on RK , we then obtain from (B.14), (B.17), the
Cramer–Wold device, and the continuous mapping theorem that

E
[
f
(
b∗

1

(
Zg + θ̇(g))� � � � � b∗

K

(
Zg + θ̇(g)))]=E[f (b∗

1(Wb∗
1
)� � � � � b∗

K(Wb∗
K
)
)]
� (B.18)

for any f ∈ Cb(RK). Since G ≡ {f ◦ (b∗
1� � � � � b

∗
K) : f ∈ Cb(RK)� {b∗

k}Kk=1 ⊂ B∗�1 ≤K <∞} is
a vector lattice that separates points in B, it follows from Lemma 1.3.12 in van der Vaart
and Wellner (1996) that there is a unique tight Borel measure W on B satisfying (B.18).
In particular, since the right-hand side of (B.18) does not depend on g, we conclude that
the law of Zg + θ̇(g) is constant in g, establishing the regularity of θ̃n.

For part (ii) of the lemma, we let ν and ν̃ denote the influence functions of θ̂n and θ̃n,
respectively, and note that since ‖b∗‖B∗ ≤ 1 for all b∗ ∈ T, it follows that

sup
b∗∈T

∣∣∣∣∣Ĝn

(
b∗)− 1√

n

n∑
i=1

b∗(ν(Xi)− ν̃(Xi)
)∣∣∣∣∣

≤ sup
b∗∈B∗

∥∥b∗∥∥
B∗ ×

∥∥∥∥∥√n{θ̂n − θ̃n} − 1√
n

n∑
i=1

{
ν(Xi)− ν̃(Xi)

}∥∥∥∥∥
B

= op(1)�
(B.19)

Moreover, note that since b∗(θ̂n) and b∗(θ̃n) are both asymptotically linear regular esti-
mators of the parameter b∗(θ(P)) ∈ R, Proposition 3.3.1 in Bickel et al. (1993) implies

ΠT

(
b∗(ν)

)=ΠT

(
b∗(ν̃)

)
� (B.20)
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In particular, since b∗(ν) ∈ L2
0(P), we may decompose b∗(ν)=ΠT(b

∗(ν))+ΠT⊥(b∗(ν)),
and therefore, applying an identical argument to b∗(ν̃), we can conclude that

b∗(ν− ν̃)=ΠT⊥
(
b∗(ν)

)−ΠT⊥
(
b∗(ν̃)

)
(B.21)

by result (B.20). It follows that b∗(ν − ν̃) ∈ T̄ (P)⊥ for any b∗ ∈ T, which together with
(B.19) verifies that Assumption 3.1(i) holds. Next, define F : B → �∞(T) to be given by
F(b)(b∗)= b(b∗) for any b ∈ B, and note F is linear and in addition∥∥F(b)∥∥∞ = sup

‖b∗‖B∗≤1

∣∣b(b∗)∣∣= ‖b‖B� (B.22)

due to the definition of T and Lemma 6.10 in Aliprantis and Border (2006). In particular,
(B.22) implies F is continuous, and by the continuous mapping theorem, we obtain

Ĝn = F(√n{θ̂n − θ̃n}
) L→ F(Δ) in �∞(T)� (B.23)

Let G0 ≡ F(Δ) and note Gaussianity of G0 follows by (B.19). Moreover, we note there
must exist a b∗ ∈ B∗ such that ‖b∗(ν − ν̃)‖P�2 > 0, for otherwise Lemma E.1 (in the Sup-
plemental Material) would imply Δ = 0, contradicting Assumption 3.2. Hence, G0 is in
addition non-degenerate, which verifies Assumption 3.1(ii). Q.E.D.

PROOF OF THEOREM 3.3: For part (i) of the theorem, we note that Lemma E.2 (in the
Supplemental Material), Assumption 3.3(i), and the continuous mapping theorem imply
that for any path t �→ Pt�g ∈M,

Ψ(Ĝn)
Ln�g→ Ψ(G0 +Δg)� (B.24)

where Δg : T → R satisfies Δg(τ)= ∫ sτg dP for any τ ∈ T. Further note that by direct cal-
culation, Δ−g = −Δg, and hence Lemma E.3 (in the Supplemental Material) implies −Δg
belongs to the support of G0 for any g ∈L2

0(P). In particular, sinceΨ(0)= 0 andΨ(b)≥ 0
for all b ∈ �∞(T), it follows that, for any c > 0, there exists an open neighborhood Nc of
−Δg ∈ �∞(T) such that 0 ≤ Ψ(b+ Δg) ≤ c for all b ∈Nc . Thus, we can conclude, for any
c > 0, that

P
(
Ψ(G0 +Δg)≤ c)≥ P(G0 ∈Nc) > 0� (B.25)

where the final inequality follows from −Δg belonging to the support of G0. Next, note
that Theorem 7.1.7 in Bogachev (2007) implies G0 is a regular measure, and hence, since
it is tight by Assumption 3.1(ii), it follows that it is also a Radon measure. Together with
the convexity of the map Ψ(· + Δg) : �∞(T) → R, G0 being Radon allows us to apply
Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998) to conclude that the point

c0 ≡ inf
{
c : P(Ψ(G0 +Δg)≤ c)> 0

}
(B.26)

is the only possible discontinuity point of the c.d.f. of Ψ(G0 +Δg). However, since Ψ(b)≥
0 for all b ∈ �∞(T), result (B.25) holding for any c > 0 implies that c0 = 0. In particular,
c1−α > 0 by hypothesis implies that c1−α is a continuity point of the c.d.f. of Ψ(G0 +Δg) for
any g ∈L2

0(P). Therefore, result (B.24) allows us to conclude: for any path t �→ Pt�g ∈M,

π(g)≡ lim
n→∞

P1/
√
n�g

(
Ψ(Ĝn) > c1−α

)= P(Ψ(G0 +Δg) > c1−α
)
� (B.27)
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which establishes that the test φn indeed has an asymptotic local power function. More-
over, if t �→ Pt�g ∈ P, then Lemma E.2 (in the Supplemental Material) implies Δg = 0 and
hence result (B.27) yields

lim
n→∞

P1/
√
n�g

(
Ψ(Ĝn) > c1−α

)= P(Ψ(G0) > c1−α
)= α� (B.28)

where we exploited that c1−α is the 1 − α quantile of Ψ(G0) and that the c.d.f. of Ψ(G0)
is continuous at c1−α. Thus, we conclude from (B.28) that φn is also an asymptotic level
α specification test. On the other hand, we note that Δg 
= 0 whenever ΠS(g) 
= 0 since
Δg(τ) = ∫

sτg dP and S̄(P) = lin{sτ : τ ∈ T}. In addition, Theorem 3.6.1 in Bogachev
(1998) implies the support of G0 is a separable vector subspace of �∞(T), and hence
Δg 
= 0 belonging to the support of G0 and Lemma E.5 (in the Supplemental Material)
establish

P
(
Ψ(G0 +Δg) < c1−α

)
<P

(
Ψ(G0) < c1−α

)= 1 − α� (B.29)

We can now exploit that c1−α > 0 is a continuity point of the c.d.f. of Ψ(G0 +Δg) together
with results (B.27) and (B.29) to conclude that, for any path t �→ Pt�g ∈M withΠS(g) 
= 0,

lim
n→∞

P1/
√
n�g

(
Ψ(Ĝn) > c1−α

)= 1 − P(Ψ(G0 +Δg)≤ c1−α
)
>α� (B.30)

which satisfies (15). Finally, for any path t �→ Pt�g ∈ M with ΠS(g) = 0, we have Δg =
0 and hence π(g) = α by equations (B.27) and (B.28). Thus, the test φn is also locally
unbiased, and we establish part (i) of the theorem.

For part (ii) of the theorem, we proceed as in Lemma 3.1(ii) and set T = {b∗ ∈
B∗ : ‖b∗‖B∗ ≤ 1} and Ĝn(b

∗) = √
nb∗(θ̂n − θ̃n) for any b∗ ∈ B∗. Since sb∗ = b∗(ν − ν̃) by

Lemma 3.1(ii), we obtain by definition that S(P)= {b∗(ν− ν̃) : b∗ ∈ T} = {b∗(ν− ν̃) : b∗ ∈
B∗�‖b∗‖B ≤ 1}. Moreover, if Ψ = ‖ · ‖∞, then

Ψ(Ĝn)= sup
‖b∗‖B∗ ≤1

∣∣b∗(√n{θ̂n − θ̃n}
)∣∣= √

n‖θ̂n − θ̃n‖B� (B.31)

where the final equality follows by Lemma 6.10 in Aliprantis and Border (2006). Since
Ψ = ‖ · ‖∞ satisfies Assumption 3.3, the second claim of the theorem follows. Q.E.D.

PROOF OF LEMMA 3.2: Part (i) of the lemma is immediate since T̄ (P)⊥ ∩ M̄(P) ⊆
T̄ (P)⊥.

For part (ii) of the lemma, we will exploit Theorem A.1(i) and its notation. Note that
Theorem A.1(i) implies there exists a level α test φ : (YT �YT⊥

)→ [0�1] of the hypothesis
in (A.2), and such that, for any path t �→ Pt�g ∈M,

lim
n→∞

∫
φn dP

n
1/

√
n�g =

∫
φdQg� (B.32)

where Qg denotes the (unknown) distribution of (YT �YT⊥
) as defined in (A.1). Recall

{sτ}dτ=1 with d <∞ is an orthonormal basis for T̄ (P)⊥ ∩ M̄(P); we let dr denote the (pos-
sibly infinite) dimension of M̄(P)⊥ and {rk}drk=1 be an orthonormal basis for M̄(P)⊥. By
(21), {sτ}dτ=1 ∪{rk}drk=1 is then an orthonormal basis for T̄ (P)⊥. Thus, in Theorem A.1(i), we
may set {ψT⊥

k }dT⊥
k=1 = {sτ}dτ=1 ∪{rk}drk=1, which implies we may write Y

T⊥ = (M�R) ∈ Rd × Rdr ,



1806 X. CHEN AND A. SANTOS

where the vectors M ≡ (M1� � � � �Md)
′ and R = (R1� � � � �Rdr )

′ have mutually independent
coordinates, and whenever (YT �YT⊥

) are distributed according to Qg, the induced distri-
bution on (M�R) is

Mτ ∼N
(∫

gsτ dP�1
)

for 1 ≤ τ ≤ d�

Rk ∼N
(∫

grk dP�1
)

for 1 ≤ k≤ dr�
(B.33)

Let � denote the standard normal measure on R. Note that Q0 =⊗dT
k=1� ×⊗d

k=1� ×⊗dr
k=1�, and define a test φ̄ :M → [0�1] to be given by

φ̄(M)≡EQ0

[
φ
(
Y
T �M�R

)|M]� (B.34)

where the expectation is taken over (YT �YT⊥
)∼Q0. Since {g ∈ T̄ (P)⊥ ∩ M̄(P) : ‖g‖P�2 ≥

κ} ⊆ G(κ), we can conclude from result (B.32) that

inf
g∈G(κ)

lim
n→∞

∫
φn dP

n
1/

√
n�g ≤ inf

g∈T̄ (P)⊥∩M̄(P):‖g‖P�2≥κ

∫
φdQg

= inf
g∈T̄ (P)⊥∩M̄(P):‖g‖P�2≥κ

∫
φ̄d

{
d⊗
τ=1

�

(
· −
∫
gsτ dP

)}
�

(B.35)

where in the equality we exploited (B.34), the independence of (YT �R) and M, and that
for any g ∈ T̄ (P)⊥ ∩M̄(P) it follows that (YT �R)∼⊗dT

k=1�×⊗dr
k=1� underQg as a result

of g being orthogonal to {ψTk }dTk=1 ∪ {rk}drk=1. Finally, note that

inf
g∈T̄ (P)⊥∩M̄(P):‖g‖P�2≥κ

∫
φ̄d

{
d⊗
τ=1

�

(
· −
∫
gsτ dP

)}

= inf
h∈Rd :‖h‖≥κ

∫
φ̄d

{
d⊗
τ=1

�(· − hk)
} (B.36)

by Parseval’s equality and where h = (h1� � � � �hd). Let χ2
d(κ) denote a chi-squared ran-

dom variable with d degrees of freedom and non-centrality parameter κ. It then follows
from

∫
φ̄d{⊗d

τ=1�} ≤ α due to (B.34) and φ being a level α test of (A.2), results (B.35)
and (B.36), and Problem 8.29 in Lehmann and Romano (2005), that

inf
g∈G(κ)

lim
n→∞

∫
φn dP

n
1/

√
n�g ≤ P(χ2

d(κ) > qd�1−α
)
� (B.37)

where qd�1−α denotes the (1 − α) quantile of a chi-squared random variable with d de-
grees of freedom. However, note that since {sτ}dτ=1 is orthonormal by hypothesis, Assump-
tion 3.1(i) implies ‖Ĝn‖2 L→ χ2

d(0) under Pn and therefore c1−α = qd�1−α. Furthermore,
Lemma E.2 (in the Supplemental Material) implies that, for G0 ∼ N(0� Id) with Id the
d × d identity matrix and Δg ∈ Rd given by Δg = (

∫
gs1 dP� � � � �

∫
gsd dP)

′, we must have,
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for any path t �→ Pt�g ∈M,

Ĝn

Ln�g→ G0 +Δg� (B.38)

In particular, since ‖Δg‖ = ‖ΠT⊥(g)‖P�2 for any g ∈ M̄(P), we obtain from (B.38) that

inf
g∈G(κ)

lim
n→∞

P1/
√
n�g

(‖Ĝn‖2 > c1−α
)

= inf
g∈G(κ)

P
(‖G0 +Δg‖2 > qd�1−α

)= P(χ2
d(κ) > qd�1−α

)
�

(B.39)

Therefore, part (ii) of the lemma follows from (B.37) and (B.39).
For part (iii) of the lemma, it suffices to verify that b∗(ν− ν̃) ∈ T̄ (P)⊥ ∩M̄(P) for all b∗ ∈

B∗. To this end, we note that b∗(θ̂n) and b∗(θ̃n) are both asymptotically linear regular (with
respect to P) estimators of b∗(θ(P)) with influence functions b∗(ν) and b∗(ν̃), respectively.
We also have that

b∗(ν̃)− b∗(ν)=ΠT⊥
(
b∗(ν̃)

)
� (B.40)

since by Proposition 3.3.1 in Bickel et al. (1993), b∗(ν) ∈ T̄ (P) due to b∗(θ̂n) being ef-
ficient (with respect to P), and ΠT(b

∗(ν̃)) = b∗(ν) due to b∗(θ̃n) being regular (with
respect to M and P). However, b∗(ν̃) being efficient with respect to M and Proposi-
tion 3.3.1 in Bickel et al. (1993) imply b∗(ν̃) ∈ M̄(P). Since M̄(P) is a vector subspace
and b∗(ν) ∈ T̄ (P) ⊆ M̄(P), result (B.40) additionally implies ΠT⊥(b∗(ν̃)) ∈ M̄(P), and
thus b∗(ν− ν̃) ∈ T̄ (P)⊥ ∩ M̄(P) as claimed. Q.E.D.

APPENDIX C: PROOFS FOR T(P) A CONVEX CONE

PROOF OF LEMMA 5.1: Since T̄ (P) is a convex cone by Assumption 5.1, Proposi-
tion 46.5.4 in Zeidler (1984) implies L2

0(P) = T̄ (P) ⊕ T̄ (P)−. The lemma then follows
since T̄ (P)− = {0} if and only if T̄ (P)=L2

0(P). Q.E.D.

LEMMA C.1: Let Assumption 5.1 hold and let P be locally just identified by P. Then: for all
bounded function f : X → R, the sample mean, n−1

∑n

i=1 f (Xi), is an asymptotically locally
admissible estimator of

∫
f dP under any Ψ -loss.

PROOF: We aim to show that if P is locally just identified by P, then n−1
∑n

i=1 f (Xi) is
an asymptotically locally admissible estimator of

∫
f dP . To this end, we note that for any

bounded f : X → R, Theorem 3.10.12 in van der Vaart and Wellner (1996) implies that,
for any path t �→ Pt�g ∈M,

1√
n

n∑
i=1

{
f (Xi)−

∫
f dP1/

√
n�g

}
Ln�g→ G0� (C.1)

where G0 ∼N(0�Var{f (Xi)}). Therefore, since Ψ is bounded and continuous, we obtain
from (C.1) that, for any path t �→ Pt�g ∈ P,

lim sup
n→∞

EP1/
√
n�g

[
Ψ

(
1√
n

n∑
i=1

{
f (Xi)−

∫
f dP1/

√
n�g

})]
=E[Ψ(G0)

]
� (C.2)
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By way of contradiction, next suppose that 1
n

∑n

i=1 f (Xi) is not an asymptotically locally
admissible estimator of

∫
f dP under Ψ -loss. It then follows that there must exist another

estimator θ̂n : {Xi}ni=1 → R of
∫
f dP satisfying, for any path t �→ Pt�g ∈ P and some tight

law Zg,

√
n

{
θ̂n −

∫
f dP1/

√
n�g

}
Ln�g→ Zg� (C.3)

and moreover, by result (C.2), for any t �→ Pt�g ∈ P, θ̂n must additionally be such that

lim sup
n→∞

EP1/
√
n�g

[
Ψ

(√
n

{
θ̂n −

∫
f dP1/

√
n�g

})]
≤ E[Ψ(G0)

]
(C.4)

with strict inequality holding for some t �→ Pt�g ∈ P. In particular, since Ψ is bounded and
continuous, results (C.3) and (C.4) imply that

E
[
Ψ(G0)

]≥ sup
g∈T(P)

E
[
Ψ(Zg)

]= sup
g∈T̄ (P)

E
[
Ψ(Zg)

]
� (C.5)

where the equality follows from Lemma E.6 (in the Supplemental Material), which es-
tablishes both that Zg is well defined for g ∈ T̄ (P) and that the supremums over T(P)
and T̄ (P) must be equal. Since P is just identified by P, however, we have T̄ (P)=L2

0(P),
which implies f − ∫ f dP ∈ T̄ (P). Therefore, result (C.5), Theorem 2.6 in van der Vaart
(1989), and Proposition 8.6 in van der Vaart (1998) together establish that under

⊗n

i=1 P ,
we must have

√
n

{
θ̂n −

∫
f dP

}
= 1√

n

n∑
i=1

(
f (Xi)−

∫
f dP

)
+ op(1)� (C.6)

Equivalently,
√
n{θ̂n − 1

n

∑n

i=1 f (Xi)} = op(1) under
⊗n

i=1 P and, by contiguity, also under⊗n

i=1 P1/
√
n�g for any path t �→ Pt�g. However, by results (C.1) and (C.3), we can then con-

clude that Zg must equal G0 in distribution, thus establishing the desired contradiction
since, as a result, (C.4) cannot hold strictly for any path t �→ Pt�g ∈ P. Q.E.D.

PROOF OF THEOREM 5.1: We note that if P is locally just identified, then by
Lemma C.1, it follows that (ii) implies (i). Similarly, we also note that by Theorem 3.1(ii),
it follows that (iii) implies (i). Thus, to conclude the proof, we need only show that (i) im-
plies (ii) and (iii). To this end, note that if P is locally overidentified by P, then Lemma 5.1
implies there exists a 0 
= f̃ ∈ T̄ (P)−, which without loss of generality we assume satis-
fies ‖f̃‖P�2 = 1. For G0 ∼ N(0�1), then note that Theorem 3.10.12 in van der Vaart and
Wellner (1996) implies that

Gn(f̃ )≡ 1√
n

n∑
i=1

f̃ (Xi)
Ln�g→ G0 +

∫
f̃ g dP for any path t �→ Pt�g ∈M� (C.7)

In order to establish that (i) implies (ii), we consider two cases. First, note that if f̃
is unbounded, then we may set f to equal f (x) = f̃ (x)1{|f̃ (x)| ≤ M}, which satisfies∫
f̃ f dP > 0 for M large enough. Moreover, for any finite M , unboundedness of f̃ im-

plies f and f̃ are linearly independent, and therefore (ii) follows by applying Theorem 5.4
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with sτ� = f̃ . On the other hand, if f̃ is bounded, then we may set f = f̃ and define the
estimator

θ̂n ≡ min

{
1
n

n∑
i=1

f (Xi)�0

}
� (C.8)

Next note that since
∫
f dP = 0 due to f = f̃ ∈ L2

0(P), f being bounded and Lemma F.1
(in the Supplemental Material) imply, for any path t �→ Pt�g ∈M, that

lim
n→∞

∫ √
nf dP1/

√
n�g =

∫
fgdP� (C.9)

Therefore, results (C.7), (C.8), (C.9), and the continuous mapping theorem establish that

√
n

{
θ̂n −

∫
f dP1/

√
n�g

}
Ln�g→ min

{
G0�−

∫
fgdP

}
≡ Zg (C.10)

for any path t �→ Pt�g ∈ M, which verifies that θ̂n indeed satisfies (56). Similarly, results
(C.7) and (C.9) together imply, for any path t �→ Pt�g ∈M, that

√
n

{
1
n

n∑
i=1

f (Xi)−
∫
f dP1/

√
n�g

}
Ln�g→ G0� (C.11)

Since 0 
= f ∈ T(P)−, however, it follows that
∫
fgdP ≤ 0 whenever t �→ Pt�g ∈ P and

therefore

P
(|Zg| ≤ t)≥ P(|G0| ≤ t

)
� (C.12)

with strict inequality holding whenever t > − ∫ fgdP . By definition of Ψ -loss, however,
Ψ(b)=Ψ(|b|), andΨ(b)≥Ψ(b′) whenever |b| ≥ |b′|, and therefore result (C.12) implies
that

E
[
Ψ(Zg)

]≤E[Ψ(G0)
]
� (C.13)

The path t �→ Pt�g satisfying Pt�g = P for all t, however, trivially satisfies t �→ Pt�g ∈ P and
has score g = 0. Therefore, the fact that Ψ is not constant together with results (C.10)
and (C.11) imply E[Ψ(Z0)]<E[Ψ(G0)]. Since Ψ being bounded and continuous implies

lim
n→∞

EP1/
√
n�g

[
Ψ

(√
n

{
θ̂n −

∫
f dP1/

√
n�g

})]
=E[Ψ(Zg)]� (C.14)

we conclude from (C.2) that
∑n

i=1 f (Xi)/n is indeed not asymptotically locally admissible
since it is dominated by θ̂n.

Finally, to establish that (i) implies (iii), we define the test φn ≡ 1{Gn(f̃ ) > z1−α} for
z1−α the 1 − α quantile of G0. Then equation (C.7) implies that

π(g)≡ lim
n→∞

∫
φn dP1/

√
n�g = P

(
G0 +

∫
f̃ g dP > z1−α

)
(C.15)

for any path t �→ Pt�g ∈ M. Thus, whenever the path t �→ Pt�g ∈ P, it follows from g ∈
T̄ (P) and f̃ ∈ T̄ (P)− that

∫
gf̃ dP ≤ 0 and hence by (C.15) that π(g)≤ α, that is, φn has
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asymptotic local level α. On the other hand, there exists a path t �→ Pt�f̃ ∈ M with score
f̃ ∈ T̄ (P)−. This observation and (C.15) together imply π(f̃ ) > α; hence we conclude (i)
implies (iii). Q.E.D.

PROOF OF THEOREM 5.2: Fix a path t �→ Pt�g such that its score g ∈ L2
0(P) satisfies

λΠT−(g) ∈ T̄ (P) for any λ≤ 0, and note that by Proposition 46.5.4 in Zeidler (1984),

g=ΠT(g)+ΠT−(g)� (C.16)

Moreover, we note that if ΠT−(g) = 0, then g ∈ T̄ (P) and thus π(g) ≤ α since π(g) ≤
α for all g ∈ T̄ (P) by hypothesis. We therefore assume without loss of generality that
ΠT−(g) 
= 0 and observe that by the hypotheses of the theorem, there exists an f � ∈ {f1� f2}
such that f � ∈ T̄ (P)−, f � is linearly independent of ΠT−(g), and f � satisfies λf � ∈ T̄ (P)
for all λ≤ 0. Defining

H ≡ {h ∈L2
0(P) : h=ΠT(g)+ γ1ΠT−(g)+ γ2f

� for some (γ1�γ2) ∈ R2
}
� (C.17)

we may then construct for any h ∈ H a path t �→ P̄t�h whose score is h and such that
P̄t�h � P � P̄t�h; see, for example, Example 3.2.1 in Bickel et al. (1993). Recall that B is
the σ-algebra on X, and consider the sequence of experiments En given by

En ≡
(

Xn�Bn�

n⊗
i=1

P̄1/
√
n�h : h ∈H

)
� (C.18)

Setting h0 ≡ΠT(g), then observe that Lemma 25.14 in van der Vaart (1998) implies

n∑
i=1

log
(
dP̄1/

√
n�h

dP̄1/
√
n�h0

(Xi)

)
= 1√

n

n∑
i=1

(
h(Xi)− h0(Xi)

)− 1
2

∫ (
h2 − h2

0

)
dP + op(1) (C.19)

under Pn ≡⊗n

i=1 P , and where we exploited that P̄t�h � P � P̄t�h0 . Since similarly

n∑
i=1

log
(
dP̄1/

√
n�h0

dP
(Xi)

)
= 1√

n

n∑
i=1

h0(Xi)− 1
2

∫
h2

0 dP + op(1) (C.20)

under Pn by Lemma 25.14 in van der Vaart (1998), it follows by LeCam’s Third Lemma
(see, e.g., Lemma A.8.6 in Bickel et al. (1993)) that, for an arbitrary finite subset {hj}Jj=1 ≡
I ⊆H and Ln�h0 denoting the law under

⊗n

i=1 P̄1/
√
n�h0 , we have

(
n∑
i=1

log
(
dP̄1/

√
n�h1

dP̄1/
√
n�h0

(Xi)

)
� � � � �

n∑
i=1

log
(
dP̄1/

√
n�hJ

dP̄1/
√
n�h0

(Xi)

))′
Ln�h0→ N(−μI�ΣI)� (C.21)

where ΣI ≡ ∫ (h1 − h0� � � � �hJ − h0)(h1 − h0� � � � �hJ − h0)
′ dP and the mean is given by

μI ≡ 1
2(
∫
(h1 − h0)

2 dP� � � � �
∫
(hJ − h0)

2 dP)′. Next, define vh ∈ R2 and Ω ∈ R2×2 by

vh ≡
⎛
⎜⎝
∫ {
ΠT−(g)

}
hdP∫

f �hdP

⎞
⎟⎠ � Ω≡

⎛
⎜⎝
∫ {
ΠT−(g)

}2
dP

∫ {
ΠT−(g)

}
f � dP∫ {

ΠT−(g)
}
f � dP

∫ {
f �
}2
dP

⎞
⎟⎠ � (C.22)
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and note that the linear independence of f � and ΠT−(g) in L2
0(P) imply Ω is invertible.

For any h ∈H, then let Qh be the bivariate normal law on R2 satisfying

Qh
L=N(Ω−1{vh − 2vh0}�Ω−1

)
� (C.23)

Further observe that for any h ∈H and U ∈ R2, we can obtain by direct calculation

log
(
dQh

dQh0

(U)

)
=U ′(vh − vh0)+ 1

2
{
v′
h0
Ω−1vh0 − (vh − 2vh0)

′Ω−1(vh − 2vh0)
}
� (C.24)

and therefore, exploiting (C.24) and (vhi − vh0)
′Ω−1(vhk − vh0)= ∫ (hi − h0)(hk − h0)dP

for any hi�hk ∈H implies that, for any finite subset {hj}Jj=1 ≡ I ⊆H, we have(
log
(
dQh1

dQh0

)
� � � � � log

(
dQhJ

dQh0

))
∼N(−μI�ΣI) (C.25)

under Qh0 . Since (C.21) and Corollary 12.3.1 in Lehmann and Romano (2005) imply
{P1/

√
n�h} and {P1/

√
n�h0} are mutually contiguous for any h ∈H, results (C.21) and (C.25)

together with Lemma 10.2.1 in LeCam (1986) establish En converges weakly to

E ≡ (R2�A2�Qh : h ∈H)� (C.26)

where A denotes the Borel σ-algebra on R.
By the asymptotic representation theorem (see, e.g., Theorem 7.1 in van der Vaart

(1991a)), it then follows from φn having a local asymptotic power function π that there
exists a test φ based on a single observation of U ∼Qh such that, for all h ∈H,

π(h)≡ lim
n→∞

∫
φn dP̄

n
1/

√
n�h =

∫
φdQh� (C.27)

Further note that any h ∈H can be written as h =ΠT(g)+ γ1(h)ΠT−(g)+ γ2(h)f
� for

some γ(h)= (γ1(h)�γ2(h))
′ ∈ R2 and that, moreover, γ(h)=Ω−1{vh − vh0}. In addition,

we observe that λf ��λΠT−(g) ∈ T̄ (P)− whenever λ ≥ 0 and λf ��λΠT−(g) ∈ T̄ (P) when-
ever λ ≤ 0 together with the linear independence of ΠT−(g) imply that h ∈ T̄ (P) if and
only if γ1(h)≤ 0 and γ2(h)≤ 0. Thus, the hypothesis on π and result (C.27) yield∫

φdQh ≤ α if γ1(h)≤ 0 and γ2(h)≤ 0�

∫
φdQh ≥ α if γ1(h) > 0 or γ2(h) > 0�

(C.28)

However, (C.28), h �→ γ(h) being bijective between H and R2, and Lehmann (1952,
p. 542) imply that

∫
φdQh = α for all h ∈ H. In particular, since g ∈ H, the claim of

the theorem finally follows from
∫
φdQg = α, result (C.27), and Lemma D.1 (in the Sup-

plemental Material). Q.E.D.

PROOF OF THEOREM 5.3: For any path t �→ Pt�g ∈ M, we first note that applying
Lemma E.2 (in the Supplemental Material) with Assumption 5.2 in place of Assump-
tion 3.1 implies

Ĝn

Ln�g→ G0 +Δg� (C.29)
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for Δg ∈ �∞(T) given by Δg(τ) ≡ ∫ sτg dP . Let x ∨ y ≡ max{x� y}. Defining Δωg ∈ �∞(T)
to be Δωg (τ) ≡ ω(τ) × Δg(τ), we then obtain from (C.29) and the continuous mapping
theorem ∥∥Ĝω

n ∨ 0
∥∥

∞
Ln�g→ ∥∥(Gω

0 +Δωg
)∨ 0

∥∥
∞� (C.30)

Moreover, note that Gω
0 is a regular measure by Theorem 7.1.7 in Bogachev (2007), and

hence since Gω
0 is also tight due to ω ∈ �∞(T) and G0 being tight by Assumption 5.2(ii),

we conclude G
ω
0 is Radon. Together with the convexity of the map ‖ · ∨0‖∞ : �∞(T)→ R,

G
ω
0 being Radon allows us to apply Theorem 11.1 in Davydov, Lifshits, and Smorodina

(1998) to obtain that

c0 ≡ inf
{
c : P(∥∥(Gω

0 +Δωg
)∨ 0

∥∥
∞ ≤ c)> 0

}
(C.31)

is the only possible discontinuity point of the c.d.f. of ‖(Gω
0 + Δωg ) ∨ 0‖∞. However, note

that since cω1−α > 0 by hypothesis, we must have ‖ω‖∞ > 0, and therefore, for any c > 0,

P
(∥∥(Gω

0 +Δωg
)∨ 0

∥∥
∞ ≤ c)≥ P(‖G0 +Δg‖∞ ≤ c

‖ω‖∞

)
> 0� (C.32)

where we exploited that ω ≥ 0, and the final inequality follows from Proposition 12.1 in
Davydov, Lifshits, and Smorodina (1998) and −Δg = Δ−g belonging to the support of G0

by Lemma E.3 (in the Supplemental Material).9 Since cω1−α > 0 by hypothesis, it follows
from (C.31) and (C.32) that cω1−α is a continuity point of the c.d.f. of ‖(Gω

0 + Δωg ) ∨ 0‖∞.
Therefore, we obtain from (C.29) that

lim
n→∞

P1/
√
n�g

(∥∥Ĝω
n ∨ 0

∥∥
∞ > c

ω
1−α
)= P(∥∥(Gω

0 +Δωg
)∨ 0

∥∥
∞ > c

ω
1−α
)
� (C.33)

which verifies that φωn indeed has an asymptotic local power function. Moreover, note
that if t �→ Pt�g ∈ P, then g ∈ T̄ (P) by definition and hence

∫
sτg dP ≤ 0 for all τ ∈ T since

sτ ∈ T̄ (P)−. Thus, ω≥ 0 implies Δωg ≤ 0, and therefore (C.33) yields

lim
n→∞

P1/
√
n�g

(∥∥Ĝω
n ∨ 0

∥∥
∞ > c

ω
1−α
)≤ P(∥∥Gω

0 ∨ 0
∥∥

∞ > c
ω
1−α
)= α� (C.34)

where we exploited that cω1−α is the 1−α quantile of ‖Gω
0 ∨0‖∞ and the c.d.f. of ‖Gω

0 ∨0‖∞
is continuous at cω1−α. Since (C.34) holds for any path t �→ Pt�g ∈ P, we conclude φωn is
indeed an asymptotic level α specification test.

To establish (59), note that C̄(P)⊆L2
0(P) is a closed convex cone by definition, and let

C̄(P)− ≡ {g ∈L2
0(P) : ∫ gf dP ≤ 0 for all f ∈ C̄(P)}. For any g ∈L2

0(P), Proposition 46.5.4
in Zeidler (1984) implies g =ΠC(g)+ΠC−(g) and

∫ {ΠC(g)}{ΠC−(g)}dP = 0. In partic-
ular, if a path t �→ Pt�g ∈M is such that ΠC(g) 
= 0, then∫

g
{
ΠC(g)

}
dP =

∫ {
ΠC(g)+ΠC−(g)

}{
ΠC(g)

}
dP =

∫ {
ΠC(g)

}2
dP > 0� (C.35)

9Lemma E.3 requires Assumption 3.1 in place of Assumption 5.2, but the proof of Lemma E.3 also holds
under the latter assumption with no modifications.
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Since ΠC(g) ∈ C̄(P) and C̄(P) is the closed convex cone generated by {sτ}τ∈T, there exist
an integer K <∞, positive scalars {αk}Kk=1, and {τk}Kk=1 ⊆ T such that

∥∥∥∥∥ΠC(g)−
K∑
k=1

αksτk

∥∥∥∥∥
P�2

<
1
2

∥∥ΠC(g)
∥∥2

P�2

‖g‖P�2 � (C.36)

Therefore, results (C.35) and (C.36) together with the Cauchy–Schwarz inequality yield

∫
g

{
K∑
k=1

αksτk

}
dP ≥

∫
g
{
ΠC(g)

}
dP −

∣∣∣∣∣
∫
g

{
ΠC(g)−

K∑
k=1

αksτk

}
dP

∣∣∣∣∣
≥ 1

2

∥∥ΠC(g)
∥∥2

P�2
> 0�

(C.37)

Since αk ≥ 0 for all 1 ≤ k≤K, result (C.37) implies that
∫
gsτ� dP > 0 for some τ� ∈ T. To

conclude, we then let ω�(τ)≡ 1{τ= τ�} and note G
ω�

0 (τ
�)∼N(0� ∫ s2

τ� dP). Furthermore,
since

∫
s2
τ� dP > 0 because

∫
gsτ� dP > 0, and ‖Gω�

0 ∨ 0‖∞ = max{G0(τ
�)�0} almost surely,

it follows that cω�1−α > 0 provided α ∈ (0� 1
2). We may then exploit result (C.33) since cω�1−α >

0, and employ
∫
gsτ� dP > 0 to obtain

lim
n→∞

P1/
√
n�g

(∥∥Ĝω�

n ∨ 0
∥∥

∞ > c
ω�

1−α
)= P(G0

(
τ�
)+ ∫ gsτ� dP > c

ω�

1−α

)
>α� (C.38)

which establishes the second claim of the theorem. Q.E.D.

PROOF OF THEOREM 5.4: Let R(τ�)≡ {λsτ� : λ≥ 0} which is a closed convex cone and
set R(τ�)− to be the polar cone of R(τ�), which satisfies

R
(
τ�
)− =

{
g ∈L2

0(P) :
∫
gsτ� dP ≤ 0

}
� (C.39)

In addition, for any g ∈L2
0(P), we letΠR(g) andΠR−(g) denote the metric projections of

g onto R(τ�) and R(τ�)−, respectively, and we note by direct calculation that

ΠR

(
f −

∫
f dP

)
= β(f� τ�)× sτ� (C.40)

for any f ∈L2(P). Moreover, by Proposition 46.5.4 in Zeidler (1984), it also follows that

1√
n

n∑
i=1

{
f (Xi)−

∫
f dP

}

= 1√
n

n∑
i=1

{{
ΠR−

(
f −

∫
f dP

)}
(Xi)+β(f� τ�)sτ�(Xi)

}
�

(C.41)

where
∫
ΠR−(f − ∫ f dP)β(f� τ�)sτ� dP = 0. Let Δg ≡ ∫ ΠR(f − ∫ f dP)gdP . Then we

obtain from results (C.40) and (C.41), Assumption 5.2(i), and Theorem 3.10.12 in van der
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Vaart and Wellner (1996) that, for any path t �→ Pt�g ∈M, we have(
1√
n

n∑
i=1

{
f (Xi)−

∫
f dP

}
�β
(
f� τ�

)
Ĝn

(
τ�
))

Ln�g→
(
GR +GR− +

∫
fgdP�GR +Δg

)
�

(C.42)

where (GR�GR−) are independent normals with Var{GR + GR−} = Var{f (Xi)} and
Var{GR} = ‖β(f�τ�)sτ�‖2

P�2. Moreover, for any bounded f : X → R, Lemma F.1 (in the
Supplemental Material) implies∣∣∣∣√n

∫
f (dP1/

√
n�g − dP)−

∫
fgdP

∣∣∣∣= o(1) (C.43)

for any path t �→ Pt�g ∈ M. Therefore, results (C.42) and (C.43), the definition of
μ̂n(f� τ

�), and the continuous mapping theorem allow us to conclude that

√
n

{
μ̂n
(
f� τ�

)− ∫ f dP1/
√
n�g

}
Ln�g→ GR− + min{GR�−Δg} ≡ Zg� (C.44)

which implies μ̂n(f� τ�) indeed satisfies (56). We next aim to show that (61) holds for any
path t �→ Pt�g ∈ P provided

∫
f sτ� dP > 0, which implies β(f�τ�) > 0. We thus assume

β(f�τ�) 
= 0, and note this implies Var{GR} > 0. Hence, since G0 = GR + GR− by results
(C.1) and (C.42), we can exploit the definition of Zg in (C.44) to obtain, for any t > 0, that

P
(|Zg| ≤ t)= P(|G0| ≤ t�GR ≤ −Δg

)+ P(|GR− −Δg| ≤ t�GR >−Δg
)

= P(|G0| ≤ t
)+ P(|GR− −Δg| ≤ t�GR >−Δg

)
− P(|G0| ≤ t�GR >−Δg

)
�

(C.45)

Let σ2
R− ≡ Var{GR−}, and note that σ2

R− > 0 since f and sτ� are linearly independent.
For � the c.d.f. of a standard normal random variable, we can then conclude from G0 =
GR +GR− and the independence of GR and GR− that

P
(|GR− −Δg| ≤ t|GR +Δg > 0

)=�( t +Δg
σR−

)
−�

(−t +Δg
σR−

)
�

P
(|G0| ≤ t|GR +Δg > 0

)=E[�( t −GR

σR−

)
−�

(−t −GR

σR−

)
|GR >−Δg

]
�

(C.46)

We note that the function Ft(a) ≡ �((t − a)/σR−) − �((−t − a)/σR−) is decreasing in
a ∈ [0�∞) whenever t ≥ 0. Since sτ� ∈ T̄ (P)−, we have Δg ≡ ∫ {ΠR(f − ∫ f dP)}gdP ≤ 0
whenever g ∈ T̄ (P). It follows from (C.46) that, for any g ∈ T̄ (P), we have

P
(|Zg| ≤ t)>P(|G0| ≤ t

)
for all t > 0� (C.47)

Thus, since Ψ(b) = Ψ(|b|), Ψ(b) ≥ Ψ(b′) whenever |b| ≥ |b′|, and Ψ is nonconstant,
result (C.47) implies

E
[
Ψ(Zg)

]
<E

[
Ψ(G0)

]
� (C.48)
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Since (C.48) holds for any g ∈ T̄ (P), we then obtain from (C.44) and Definition 5.1(iii)
that

lim sup
n→∞

EP1/
√
n�g

[
Ψ

(√
n

{
μ̂n
(
f� τ�

)− ∫ f dP1/
√
n�g

})]
=E[Ψ(Zg)]<E[Ψ(G0)

]
(C.49)

for any path t �→ Pt�g ∈ P, which together with (C.2) establishes (61). Q.E.D.
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