Overidentification in Regular Models

Xiaohong Chen

Yale University

Andres Santos

UC San Diego

March 9, 2016

Starting Point

 $Y = h_P(Z) + \epsilon$

where h_P is nonparametric, and $E[\epsilon|W] = 0$ for an available instrument W.

 $Y = h_P(Z) + \epsilon$

where h_P is nonparametric, and $E[\epsilon|W] = 0$ for an available instrument W.

Identification is well understood, is equivalent to a unique solution in h to $E[Y|W] = E[h(Z)|W] \label{eq:equivalence}$

 $Y = h_P(Z) + \epsilon$

where h_P is nonparametric, and $E[\epsilon|W] = 0$ for an available instrument W.

Identification is well understood, is equivalent to a unique solution in \boldsymbol{h} to

E[Y|W] = E[h(Z)|W]

Overidentification

- Original Question: Is this model overidentified or just identified?
- Broader Question: What do we actually mean by "overidentified"?

• How do we characterize "overidentification"?

Koopmans & Reiersøl, 1950.

• "This particular specification will be called observationally restrictive if the set of all distribution functions of observed variables generated by the structures is a proper subset of the set of all distribution functions."

Koopmans & Reiersøl, 1950.

• "This particular specification will be called observationally restrictive if the set of all distribution functions of observed variables generated by the structures is a proper subset of the set of all distribution functions."

• "A frequent case of an observationally restrictive specification is that where a parameter ... is restricted [by the structure] to a prescribed value. In this case, the specification in question has been called overidentifying."

Koopmans & Reiersøl, 1950.

• "This particular specification will be called observationally restrictive if the set of all distribution functions of observed variables generated by the structures is a proper subset of the set of all distribution functions."

• "A frequent case of an observationally restrictive specification is that where a parameter ... is restricted [by the structure] to a prescribed value. In this case, the specification in question has been called overidentifying."

Comments

- First definition: Discussed in context of potential refutability.
- But authors warn, not sufficient for testability (Romano, 2004).
- Second definition: Related to estimation and Hausman test.
- But "overidentifying" stronger than "observationally restrictive".

Is "overidentification" a useful concept?

Yes

- Word "overidentification" often associated with testability of the model. Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).
- Word "overidentification" also associated with efficient estimation. Plug in Estimators: Newey (1994), Powell (1994).
 Two Stage: Newey & Powell (1999), Ackerberg et. al. (2014).

Is "overidentification" a useful concept?

Yes

- Word "overidentification" often associated with testability of the model. Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).
- Word "overidentification" also associated with efficient estimation. Plug in Estimators: Newey (1994), Powell (1994).
 Two Stage: Newey & Powell (1999), Ackerberg et. al. (2014).

But

- What do we do in nonparametric IV model?
 - \Rightarrow Need precise definition of "overidentification" for general models.
 - \Rightarrow Should be intrinsically linked to testing and efficiency.

Overidentification in GMM

Let $\Theta \subseteq \mathbf{R}^{d_{\beta}}$, $X_i \in \mathbf{R}^{d_x}$, $\rho : \mathbf{R}^{d_x} \times \mathbf{R}^{d_{\beta}} \to \mathbf{R}^{d_{\rho}}$ with $d_{\beta} \leq d_{\rho}$ and suppose $\int \rho(X_i, \beta(P)) dP = 0 .$

Overidentification

- When is an overidentification test available? When $d_{\rho} > d_{\beta}$.
- When are efficiency considerations relevant? When $d_{\rho} > d_{\beta}$.
- Overidentification $\iff d_{\rho} > d_{\beta}$.

Counting

- Counting intuition a widely used notion of overidentification.
- Stronger than "observationally restrictive".
- Not helpful in nonparametric instrumental variables.

Aim of Paper

The Literature

- The term overidentification is used in different ways in the literature.
- What is the precise definition that captures these ideas?

Aim of Paper

The Literature

- The term overidentification is used in different ways in the literature.
- What is the precise definition that captures these ideas?

Our Answer

- Introduce a simple condition we call local overidentification.
- Show it is equivalent to existence of more efficient estimators.
- Show it is equivalent to local testability of the model.

Implications

- Establish intrinsic link between efficiency and testability.
- Apply to conditional moment restrictions models.
- Apply to two stage and plug-in estimators.

2 Specification Testing

4 Conditional Moment Models

Chen & Santos. March 9, 2016.

We assume data consists of i.i.d. sample $\{X_i\}_{i=1}^n$, $X_i \in \mathbf{R}^{d_x}$, and $X_i \sim P$.

We assume data consists of i.i.d. sample $\{X_i\}_{i=1}^n$, $X_i \in \mathbf{R}^{d_x}$, and $X_i \sim P$.

Definition: A model \mathbf{P} is a subset of the set of distributions on \mathbf{R}^{d_x} .

We assume data consists of i.i.d. sample $\{X_i\}_{i=1}^n$, $X_i \in \mathbf{R}^{d_x}$, and $X_i \sim P$.

Definition: A model \mathbf{P} is a subset of the set of distributions on \mathbf{R}^{d_x} .

Definition: A "path" $t \mapsto P_{t,g}$ with $P_{t,g}$ a probability measure on \mathbf{R}^{d_x} and

$$\lim_{t \to 0} \int [\frac{1}{t} (dP_{t,g}^{1/2} - dP^{1/2}) - \frac{1}{2} g dP^{1/2}]^2 = 0 \; .$$

The function $g : \mathbf{R}^{d_x} \to \mathbf{R}$ is referred to as the "score" of the path $t \mapsto P_{t,g}$.

Comments

- $t \mapsto P_{t,g}$ is a smooth correctly specified likelihood $(P_{0,g} = P)$.
- As usual, score g has mean zero and finite second moment.
- Only feature will matter to us is the score g.

$$L_0^2 \equiv \{g: \int g dP = 0 \text{ and } \int g^2 dP < \infty\}$$

Possible to show for any $g \in L_0^2$ we can find a path $t \mapsto P_{t,g}$ with score g. Intuition: $\int g dP = 0$ is only restriction following from $P_{t,g}$ a measure.

$$L_0^2 \equiv \{g: \int g dP = 0 \text{ and } \int g^2 dP < \infty\}$$

Possible to show for any $g \in L^2_0$ we can find a path $t \mapsto P_{t,g}$ with score g. Intuition: $\int g dP = 0$ is only restriction following from $P_{t,g}$ a measure.

Question: What about information contained in model when $P \in \mathbf{P}$?

$$L_0^2 \equiv \{g: \int g dP = 0 \text{ and } \int g^2 dP < \infty\}$$

Possible to show for any $g \in L_0^2$ we can find a path $t \mapsto P_{t,g}$ with score g. Intuition: $\int g dP = 0$ is only restriction following from $P_{t,g}$ a measure.

Question: What about information contained in model when $P \in \mathbf{P}$?

• The tangent space is the set of scores that "agree" with the model ${\bf P}$

 $\overline{T}(P) \equiv \mathsf{cl}\{g \in L^2_0 : g \text{ is score of some } t \mapsto P_{t,g} \in \mathbf{P}\}$

$$L_0^2 \equiv \{g: \int g dP = 0 \text{ and } \int g^2 dP < \infty\}$$

Possible to show for any $g \in L^2_0$ we can find a path $t \mapsto P_{t,g}$ with score g. Intuition: $\int g dP = 0$ is only restriction following from $P_{t,g}$ a measure.

Question: What about information contained in model when $P \in \mathbf{P}$?

- The tangent space is the set of scores that "agree" with the model P $\overline{T}(P) \equiv \mathsf{cl}\{q \in L_0^2 : q \text{ is score of some } t \mapsto P_{t,q} \in \mathbf{P}\}$
- The orthocomplement of $\bar{T}(P)$ are scores that "disagree" with ${f P}$

$$\bar{T}(P)^{\perp} \equiv \{g \in L^2_0 : \int gfdP = 0 \text{ for all } f \in \bar{T}(P)\}$$

Note: $\bar{T}(P)$ and $\bar{T}(P)^{\perp}$ decompose the set of all possible scores.

Chen & Santos. March 9, 2016.

$\mathbf{P} = \text{All Distributions}$

$\mathbf{P} = \text{All Distributions}$

P = AII Distributions

$\mathbf{P} = \text{All Distributions}$

Local Overidentification

Assumption (R)

- $\{X_i\}_{i=1}^n$ is i.i.d. with $X_i \sim P_{1/\sqrt{n},g}$ for some path $P_{t,g}$ with $P_{0,g} = P \in \mathbf{P}$.
- $\overline{T}(P)$ is linear i.e. if $g, f \in \overline{T}(P), a, b \in \mathbf{R}$, then $ag + bf \in \overline{T}(P)$.

Assumption (R)

- $\{X_i\}_{i=1}^n$ is i.i.d. with $X_i \sim P_{1/\sqrt{n},g}$ for some path $P_{t,g}$ with $P_{0,g} = P \in \mathbf{P}$.
- $\overline{T}(P)$ is linear i.e. if $g, f \in \overline{T}(P), a, b \in \mathbf{R}$, then $ag + bf \in \overline{T}(P)$.

Main Definition

- If $\overline{T}(P) = L_0^2$ then we say P is locally just identified by **P**.
- If $\overline{T}(P) \subsetneq L_0^2$ then we say *P* is locally overidentified by **P**.

Intuition

- P is just identified \Leftrightarrow **P** locally consistent with any parametric model.
- P is overidentified \Leftrightarrow **P** restricts possible parametric specifications.

Note: Reduces to traditional definition in GMM context.

Local Overidentification

2 Specification Testing

4 Conditional Moment Models

Chen & Santos. March 9, 2016.
Setup

$H_0: P \in \mathbf{P} \qquad \qquad H_1: P \notin \mathbf{P}$

$$H_0: P \in \mathbf{P}$$
 $H_1: P \notin \mathbf{P}$

We consider tests $\phi_n : \{X_i\}_{i=1}^n \to [0,1]$ with well defined limiting local power

$$\lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \equiv \pi(g)$$

for $X_i \sim P_{1/\sqrt{n},g}$ and with $P_{1/\sqrt{n},g}^n \equiv \bigotimes_{i=1}^n P_{1/\sqrt{n},g}$ the product measure.

Comments

- Note limiting power depends only on g this is not an assumption.
- Mild conditions guarantee π exists when $\phi_n = 1\{T_n > c_{1-\alpha}\}$.

Local size control demands that for any submodel $t \mapsto P_{t,g} \in \mathbf{P}$ we have

$$\pi(g) = \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \leq \alpha$$

Equivalently, $\pi(g) \leq \alpha$ for any $g \in \overline{T}(P)$ – i.e. g "looks like" from submodel.

Local size control demands that for any submodel $t \mapsto P_{t,g} \in \mathbf{P}$ we have

$$\pi(g) = \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \leq \alpha$$

Equivalently, $\pi(g) \leq \alpha$ for any $g \in \overline{T}(P)$ – i.e. g "looks like" from submodel.

Notation

- Let $\Pi_T(g)$ denote projection of g into $\overline{T}(P)$ (in L_0^2).
- Let $\Pi_{T^{\perp}}(g)$ denote projection of g into $\overline{T}(P)^{\perp}$ (in L_0^2).

Note: For any $g \in L^2_0$ we have $g = \Pi_T(g) + \Pi_{T^{\perp}}(g)$.

$$H_0: \Pi_{T^{\perp}}(g) = 0$$
 $H_1: \Pi_{T^{\perp}}(g) \neq 0$

$$H_0: \Pi_{T^{\perp}}(g) = 0 \qquad \qquad H_1: \Pi_{T^{\perp}}(g) \neq 0$$

Formally

- Let $\{\psi_k^T\}_{k=1}^{d_T}$ be orthonormal basis for $\bar{T}(P)$.
- Let $\{\psi_k^{\perp}\}_{k=1}^{d_{T^{\perp}}}$ be orthonormal basis for $\bar{T}(P)^{\perp}$.
- Let Q_g be distribution of $(Y, Z) \equiv (\{Y_k\}_{k=1}^{d_T}, \{Z_k\}_{k=1}^{d_{T^{\perp}}})$ on $\mathbf{R}^{d_T} \times \mathbf{R}^{d_{T^{\perp}}}$

$$\begin{split} Y_k &\sim N(\int g \psi_k^T dP, 1) \text{ for } 1 \leq k \leq d_T \\ Z_k &\sim N(\int g \psi_k^\perp dP, 1) \text{ for } 1 \leq k \leq d_{T^\perp} \end{split}$$

Intuition: (Y, Z) is a "noisy" signal of the unknown score g.

Theorem Let Assumption R hold, and ϕ_n satisfy for any $t \mapsto P_{t,g} \in \mathbf{P}$

$$\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \le \alpha$$

Theorem Let Assumption R hold, and ϕ_n satisfy for any $t \mapsto P_{t,g} \in \mathbf{P}$

$$\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \leq \alpha$$

Then there is a level α test $\phi : (Y, Z) \rightarrow [0, 1]$ of the null hypothesis

 $H_0: \Pi_{T^{\perp}}(g) = 0$ $H_1: \Pi_{T^{\perp}}(g) \neq 0$

Theorem Let Assumption R hold, and ϕ_n satisfy for any $t \mapsto P_{t,g} \in \mathbf{P}$

$$\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \leq \alpha$$

Then there is a level α test $\phi : (Y, Z) \rightarrow [0, 1]$ of the null hypothesis

$$H_0: \Pi_{T^{\perp}}(g) = 0 \qquad \qquad H_1: \Pi_{T^{\perp}}(g) \neq 0$$

based on a single observation (Y, Z) such that for any path $t \mapsto P_{t,g}$

$$\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n = \int \phi dQ_g$$

Theorem Let Assumption R hold, and ϕ_n satisfy for any $t \mapsto P_{t,g} \in \mathbf{P}$

$$\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n \leq \alpha$$

Then there is a level α test $\phi : (Y, Z) \rightarrow [0, 1]$ of the null hypothesis

$$H_0: \Pi_{T^{\perp}}(g) = 0 \qquad \qquad H_1: \Pi_{T^{\perp}}(g) \neq 0$$

based on a single observation (Y, Z) such that for any path $t \mapsto P_{t,g}$

$$\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g}^n = \int \phi dQ_g$$

Comments

- Specification tests examine if g agrees with **P** based on signal (Y, Z).
- *J*-test corresponds to a Wald test on "signals" *Z* from $\overline{T}(P)^{\perp}$.

Implication: If P is locally just identified by P, then P is locally untestable.

Implication: If P is locally just identified by \mathbf{P} , then \mathbf{P} is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Implication: If P is locally just identified by \mathbf{P} , then \mathbf{P} is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Assumption (B)

- There is a known subset $\mathcal{F} = \{f_k\}_{k=1}^{d_F} \subseteq \overline{T}(P)^{\perp} \subseteq L_0^2$.
- The set \mathcal{F} satisfies $\sum_{k=1}^{d_F} f_k^2 dP < \infty$.

Note: Common tests implicitly estimate ${\mathcal F}$

Implication: If *P* is locally just identified by **P**, then **P** is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Assumption (B)

- There is a known subset $\mathcal{F} = \{f_k\}_{k=1}^{d_F} \subseteq \overline{T}(P)^{\perp} \subseteq L_0^2$.
- The set \mathcal{F} satisfies $\sum_{k=1}^{d_F} f_k^2 dP < \infty$.

Note: Common tests implicitly estimate ${\mathcal F}$

$$\mathbb{G}_n \equiv \underbrace{\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n f_1(X_i), \dots, \frac{1}{\sqrt{n}}\sum_{i=1}^n f_{d_F}(X_i)\right)'}_{\approx Z \text{ "signal" from } \bar{T}(P)^{\perp}}$$

Theorem (i) If Assumptions R and B hold, then for any path $t \mapsto P_{t,g} \in \mathbf{P}$

 $\lim_{n \to \infty} P^n_{1/\sqrt{n},g}(\|\mathbb{G}_n\| > c_{1-\alpha}) = \alpha$

where $c_{1-\alpha}$ is $1-\alpha$ quantile of $\|\mathbb{G}_0\|$.

Theorem (i) If Assumptions R and B hold, then for any path $t \mapsto P_{t,g} \in \mathbf{P}$

 $\lim_{n \to \infty} P_{1/\sqrt{n},g}^n(\|\mathbb{G}_n\| > c_{1-\alpha}) = \alpha$

where $c_{1-\alpha}$ is $1-\alpha$ quantile of $\|\mathbb{G}_0\|$. (ii) If instead $t \mapsto P_{t,g}$ satisfies

$$\liminf_{n \to \infty} \inf_{Q \in \mathbf{P}} n \int [dQ^{1/2} - dP_{1/\sqrt{n},g}^{1/2}]^2 > 0$$

and in addition \mathcal{F} is such that $cl\{lin\{\mathcal{F}\}\} = \overline{T}(P)^{\perp}$, then it also follows that

$$\liminf_{n \to \infty} P^n_{1/\sqrt{n},g}(\|\mathbb{G}_n\| > c_{1-\alpha}) > \alpha$$

Theorem (i) If Assumptions R and B hold, then for any path $t \mapsto P_{t,g} \in \mathbf{P}$

 $\lim_{n \to \infty} P_{1/\sqrt{n},g}^n(\|\mathbb{G}_n\| > c_{1-\alpha}) = \alpha$

where $c_{1-\alpha}$ is $1-\alpha$ quantile of $\|\mathbb{G}_0\|$. (ii) If instead $t \mapsto P_{t,g}$ satisfies

$$\liminf_{n \to \infty} \inf_{Q \in \mathbf{P}} n \int [dQ^{1/2} - dP_{1/\sqrt{n},g}^{1/2}]^2 > 0$$

and in addition \mathcal{F} is such that $cl\{lin\{\mathcal{F}\}\} = \overline{T}(P)^{\perp}$, then it also follows that

$$\liminf_{n \to \infty} P^n_{1/\sqrt{n},g}(\|\mathbb{G}_n\| > c_{1-\alpha}) > \alpha$$

In Words: If *P* is locally overidentified by **P**, then **P** is locally testable. \Rightarrow **P** is locally testable if and only if *P* is locally overidentified. Local Overidentification

2 Specification Testing

4 Conditional Moment Models

Chen & Santos. March 9, 2016.

Preview

Question: What are implications for estimation of local overidentification? **GMM Intuition:** Weighting matrix not important under just identification.

Preview

Question: What are implications for estimation of local overidentification? **GMM Intuition:** Weighting matrix not important under just identification.

In General

- Regular estimators asymptotically equivalent under just identification.
- Asymptotically distinct estimators exist under over identification.

Comments

- Finite dimensional case follows from role of $\overline{T}(P)$ (Newey, 1990).
- We require generalization to infinite dimensional for Hausman test.
- Will show "abstract" test can implemented through Hausman test.

Assumption (E)

- $\theta : \mathbf{P} \to \mathbf{B}$ is a known map with \mathbf{B} a Banach space.
- There exists an asymptotically linear regular estimator $\hat{\theta}_n$ of $\theta(P)$.

Note: Restriction on parameter $\theta(P)$, not on model **P**.

Assumption (E)

- $\theta : \mathbf{P} \to \mathbf{B}$ is a known map with \mathbf{B} a Banach space.
- There exists an asymptotically linear regular estimator $\hat{\theta}_n$ of $\theta(P)$.

Note: Restriction on parameter $\theta(P)$, not on model **P**.

Theorem Let Assumptions R and E hold.

(i) If P is locally just identified and $\tilde{\theta}_n$ is regular and asymptotically linear

 $\sqrt{n}\{\hat{\theta}_n - \tilde{\theta}_n\} = o_p(1) \text{ (in } \mathbf{B})$

Assumption (E)

- $\theta : \mathbf{P} \to \mathbf{B}$ is a known map with \mathbf{B} a Banach space.
- There exists an asymptotically linear regular estimator $\hat{\theta}_n$ of $\theta(P)$.

Note: Restriction on parameter $\theta(P)$, not on model **P**.

Theorem Let Assumptions R and E hold.

(i) If *P* is locally just identified and $\tilde{\theta}_n$ is regular and asymptotically linear

$$\sqrt{n}\{\hat{\theta}_n - \tilde{\theta}_n\} = o_p(1) \text{ (in B)}$$

(ii) If *P* is locally overidentified, there is regular asymptotically linear $\tilde{\theta}_n$

$$\sqrt{n}\{\hat{\theta}_n - \tilde{\theta}_n\} \xrightarrow{L} \Delta \neq 0 \text{ (in B)}$$

Multiple Estimators

In Words: *P* is locally overidentified if and only if efficiency matters.

Multiple Estimators

In Words: P is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if P is locally testable.

Multiple Estimators

In Words: *P* is locally overidentified if and only if efficiency matters.

 ${\it P}$ is locally overidentified if and only if ${\bf P}$ is locally testable.

Efficiency matters if and only if P is locally testable.

In Words: *P* is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if \mathbf{P} is locally testable.

Efficiency matters if and only if P is locally testable.

Implications

- GMM link between efficiency and testing not coincidental.
- Efficiency literature can be exploited to determine when P is testable.
- \Rightarrow Semiparametric models are locally testable (Ai & Chen, 2003).

Local Overidentification

2 Specification Testing

4 Conditional Moment Models

Chen & Santos. March 9, 2016.

Question: So is the nonparametric IV model locally overidentified?

Goal: Use results from efficiency literature to answer (Ai & Chen, 2012).

Question: So is the nonparametric IV model locally overidentified? **Goal:** Use results from efficiency literature to answer (Ai & Chen, 2012).

For X = (Y, Z, W) with $Y \in \mathbf{R}^{d_y}$, $Z \in \mathbf{R}^{d_z}$, $W \in \mathbf{R}^{d_w}$, and $\rho : \mathbf{R}^{d_y+1} \to \mathbf{R}$ $E[\rho(Y, h_P(Z))|W] = 0$

for some unknown function $h_P: \mathbf{R}^{d_z} \to \mathbf{R}$ satisfying $\int h_P^2 dP < \infty$.

Examples

- (NPIV) $E[Y h_P(Z)|W] = 0$ maps to $\rho(Y, h(Z)) = Y h(Z)$.
- (NPQIV) $P(Y \le h_P(Z)|W) = \tau$ maps to $\rho(Y, h(Z)) = 1\{Y \le h(Z)\} \tau$.

Setup

 $m(W,h)\equiv E[\rho(Y,h(Z))|W]$

 $m(W,h)\equiv E[\rho(Y,h(Z))|W]$

Think of $m(W, \cdot)$ as map $m: L^2_Z \to L^2_W$ and assume differentiability in that

$$abla m(W, h_P)[s] \equiv rac{\partial}{\partial \tau} m(W, h_P + \tau s) \Big|_{\tau=0}$$
$m(W,h)\equiv E[\rho(Y,h(Z))|W]$

Think of $m(W, \cdot)$ as map $m: L^2_Z \to L^2_W$ and assume differentiability in that

$$abla m(W, h_P)[s] \equiv rac{\partial}{\partial \tau} m(W, h_P + \tau s) \Big|_{\tau=0}$$

Consider derivative as a map $\nabla m(W, h_P) : L^2_Z \to L^2_W$ and denote its range

$$\mathcal{R} \equiv \{f \in L^2_W : f = \nabla m(W, h_P)[s] \text{ for some } s \in L^2_Z\}$$

Setup

NPIV Example

- Here, m(W, h) = E[Y h(Z)|W].
- Which implies $\nabla m(W, h_P)[s] = -E[s(Z)|W]$, and therefore

$$\mathcal{R} = \{ f \in L^2_W : f(W) = E[s(Z)|W] \text{ for some } s \in L^2_Z \}$$

Setup

NPIV Example

- Here, m(W, h) = E[Y h(Z)|W].
- Which implies $\nabla m(W, h_P)[s] = -E[s(Z)|W]$, and therefore

$$\mathcal{R} = \{ f \in L^2_W : f(W) = E[s(Z)|W] \text{ for some } s \in L^2_Z \}$$

NPQIV Example

- Here, $m(W, h) = P(Y \le h(Z)|W) \tau$.
- Which implies $\nabla m(W, h_P)[s] = E[f_{Y|Z,W}(h_P(Z)|Z, W)s(Z)|W]$, and

 $\mathcal{R} = \{ f \in L^2_W : f(W) = E[f_{Y|Z,W}(h_P(Z)|Z,W)s(Z)|W] \text{ for some } s \in L^2_Z \}$

Theorem Under regularity conditions, P is locally just identified if and only if

Theorem Under regularity conditions, P is locally just identified if and only if

 $\bar{\mathcal{R}} = L^2_W$

Relation to GMM

 $E[\rho(X,\beta(P))] = 0 \qquad \qquad E[\rho(Y,h_P(Z))|W] = 0$

Theorem Under regularity conditions, P is locally just identified if and only if

Theorem Under regularity conditions, P is locally just identified if and only if

Theorem Under regularity conditions, P is locally just identified if and only if

Alternative Characterization

 $\bar{\mathcal{R}} = L_W^2$ if and only if $\{0\} = \{s \in L_W^2 : \nabla m(W, h_P)^*[s] = 0\}$

where $\nabla m(W, h_P) : L^2_W \to L^2_Z$ is the adjoint of $\nabla m(W, h_P) : L^2_Z \to L^2_W$.

Alternative Characterization

 $\bar{\mathcal{R}} = L_W^2$ if and only if $\{0\} = \{s \in L_W^2 : \nabla m(W, h_P)^*[s] = 0\}$

where $\nabla m(W, h_P) : L^2_W \to L^2_Z$ is the adjoint of $\nabla m(W, h_P) : L^2_Z \to L^2_W$.

NPIV Example

- Here, $\nabla m(W, h_P)^*[s] = -E[s(W)|Z].$
- Therefore, in NPIV P is locally just identified by P if and only if

E[s(W)|Z] = 0 implies s(W) = 0 for all $s \in L^2_W$

Alternative Characterization

 $\bar{\mathcal{R}} = L_W^2$ if and only if $\{0\} = \{s \in L_W^2 : \nabla m(W, h_P)^*[s] = 0\}$

where $\nabla m(W, h_P) : L^2_W \to L^2_Z$ is the adjoint of $\nabla m(W, h_P) : L^2_Z \to L^2_W$.

NPIV Example

- Here, $\nabla m(W, h_P)^*[s] = -E[s(W)|Z].$
- Therefore, in NPIV P is locally just identified by ${f P}$ if and only if

E[s(W)|Z] = 0 implies s(W) = 0 for all $s \in L^2_W$

NPQIV Example

• Similarly, in NPQIV P is locally just identified by P if and only if

 $E[f_{Y|Z,W}(h_P(Z)|Z,W)s(W)|Z] = 0$ implies s(W) = 0 for all $s \in L^2_W$

Exogenous Models

- Suppose W = (Z, V) and that $\rho(W, h(Z))$ is differentiable in h.
- Then, it follows that P is locally just identified if and only if

P(E[V] = V) = 1 and $P(E[\nabla_h \rho(Y, h_P(Z))|Z] \neq 0) = 1$

Exogenous Models

- Suppose W = (Z, V) and that $\rho(W, h(Z))$ is differentiable in h.
- Then, it follows that P is locally just identified if and only if

P(E[V] = V) = 1 and $P(E[\nabla_h \rho(Y, h_P(Z))|Z] \neq 0) = 1$

Efficiency Implications

- Parameters θ such as average derivatives, consumer surplus, etc.
 - \Rightarrow Plug-in typically efficient under "exogeneity" (Newey, 1994).
 - \Rightarrow Plug-in need not be efficient under "endogeneity" (Ai & Chen, 2012).

Exogenous Models

- Suppose W = (Z, V) and that $\rho(W, h(Z))$ is differentiable in h.
- Then, it follows that P is locally just identified if and only if

P(E[V] = V) = 1 and $P(E[\nabla_h \rho(Y, h_P(Z))|Z] \neq 0) = 1$

Efficiency Implications

- Parameters θ such as average derivatives, consumer surplus, etc.
 - \Rightarrow Plug-in typically efficient under "exogeneity" (Newey, 1994).
 - \Rightarrow Plug-in need not be efficient under "endogeneity" (Ai & Chen, 2012).
- Two stage estimation problems $\theta(P) = \arg \max_{\theta} E[q(X, \theta, h_P(Z))].$
 - \Rightarrow Two stage efficient under "exogeneity" (Ackerberg et al. 2014).
 - \Rightarrow Two stage estimation need not be efficient under "endogeneity".

- Is model locally consistent with any parametric model?
- Abstracts from counting "parameters" and "restrictions".
- Partial generalization to nonregular models.

Refutability and Efficiency

- Intrinsic link between refutability and efficiency.
- Generalizes connection present in GMM to regular models.

Conditional Moment Models

- Simple characterization by exploiting efficiency literature.
- Implications for plug-in and two stage estimation.