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Starting Point

Y = hP (Z) + ε

where hP is nonparametric, and E[ε|W ] = 0 for an available instrument W .

Identification is well understood, is equivalent to a unique solution in h to

E[Y |W ] = E[h(Z)|W ]

Overidentification
• Original Question: Is this model overidentified or just identified?
• Broader Question: ◦What do we actually mean by “overidentified”?

◦ How do we characterize “overidentification”?
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First Definition?

Koopmans & Reiersøl, 1950.

• “This particular specification will be called observationally

restrictive if the set of all distribution functions of

observed variables generated by the structures is a proper

subset of the set of all distribution functions.”

• “A frequent case of an observationally restrictive

specification is that where a parameter ... is restricted [by

the structure] to a prescribed value. In this case, the

specification in question has been called overidentifying.”

Comments
• First definition: Discussed in context of potential refutability.
• But authors warn, not sufficient for testability (Romano, 2004).
• Second definition: Related to estimation and Hausman test.
• But “overidentifying” stronger than “observationally restrictive”.
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Is “overidentification” a useful concept?

Yes

• Word “overidentification” often associated with testability of the model.
Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).

• Word “overidentification” also associated with efficient estimation.
Plug in Estimators: Newey (1994), Powell (1994).
Two Stage: Newey & Powell (1999), Ackerberg et. al. (2014).

But

• What do we do in nonparametric IV model?
⇒ Need precise definition of “overidentification” for general models.
⇒ Should be intrinsically linked to testing and efficiency.
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Overidentification in GMM

Let Θ ⊆ Rdβ , Xi ∈ Rdx , ρ : Rdx ×Rdβ → Rdρ with dβ ≤ dρ and suppose∫
ρ(Xi, β(P ))dP = 0 .

Overidentification
• When is an overidentification test available? When dρ > dβ .
• When are efficiency considerations relevant? When dρ > dβ .
• Overidentification⇐⇒ dρ > dβ .

Counting
• Counting intuition a widely used notion of overidentification.
• Stronger than “observationally restrictive”.
• Not helpful in nonparametric instrumental variables.
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Aim of Paper

The Literature
• The term overidentification is used in different ways in the literature.
• What is the precise definition that captures these ideas?

Our Answer
• Introduce a simple condition we call local overidentification.
• Show it is equivalent to existence of more efficient estimators.
• Show it is equivalent to local testability of the model.

Implications

• Establish intrinsic link between efficiency and testability.
• Apply to conditional moment restrictions models.
• Apply to two stage and plug-in estimators.
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1 Local Overidentification

2 Specification Testing

3 Estimation

4 Conditional Moment Models
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Setup

We assume data consists of i.i.d. sample {Xi}ni=1, Xi ∈ Rdx , and Xi ∼ P .

Definition: A model P is a subset of the set of distributions on Rdx .

Definition: A “path” t 7→ Pt,g with Pt,g a probability measure on Rdx and

lim
t→0

∫
[
1

t
(dP

1/2
t,g − dP 1/2)− 1

2
gdP 1/2]2 = 0 .

The function g : Rdx → R is referred to as the “score” of the path t 7→ Pt,g.

Comments
• t 7→ Pt,g is a smooth correctly specified likelihood (P0,g = P ).
• As usual, score g has mean zero and finite second moment.
• Only feature will matter to us is the score g.
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Space of Distributions
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Tangent Space

L2
0 ≡ {g :

∫
gdP = 0 and

∫
g2dP <∞}

Possible to show for any g ∈ L2
0 we can find a path t 7→ Pt,g with score g.

Intuition:
∫
gdP = 0 is only restriction following from Pt,g a measure.

Question: What about information contained in model when P ∈ P?

• The tangent space is the set of scores that “agree” with the model P

T̄ (P ) ≡ cl{g ∈ L2
0 : g is score of some t 7→ Pt,g ∈ P}

• The orthocomplement of T̄ (P ) are scores that “disagree” with P

T̄ (P )⊥ ≡ {g ∈ L2
0 :

∫
gfdP = 0 for all f ∈ T̄ (P )}

Note: T̄ (P ) and T̄ (P )⊥ decompose the set of all possible scores.
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Local Overidentification

Assumption (R)

• {Xi}ni=1 is i.i.d. with Xi ∼ P1/
√
n,g for some path Pt,g with P0,g = P ∈ P.

• T̄ (P ) is linear – i.e. if g, f ∈ T̄ (P ), a, b ∈ R, then ag + bf ∈ T̄ (P ).

Main Definition
• If T̄ (P ) = L2

0 then we say P is locally just identified by P.
• If T̄ (P )  L2

0 then we say P is locally overidentified by P.

Intuition
• P is just identified⇔ P locally consistent with any parametric model.
• P is overidentified⇔ P restricts possible parametric specifications.

Note: Reduces to traditional definition in GMM context.
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1 Local Overidentification

2 Specification Testing

3 Estimation

4 Conditional Moment Models
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Setup

H0 : P ∈ P H1 : P /∈ P

We consider tests φn : {Xi}ni=1 → [0, 1] with well defined limiting local power

lim
n→∞

∫
φndP

n
1/
√
n,g ≡ π(g)

for Xi ∼ P1/
√
n,g and with Pn

1/
√
n,g
≡
⊗n

i=1 P1/
√
n,g the product measure.

Comments
• Note limiting power depends only on g – this is not an assumption.
• Mild conditions guarantee π exists when φn = 1{Tn > c1−α}.
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(Re)interpreting Test

Local size control demands that for any submodel t 7→ Pt,g ∈ P we have

π(g) = lim
n→∞

∫
φndP

n
1/
√
n,g ≤ α

Equivalently, π(g) ≤ α for any g ∈ T̄ (P ) – i.e. g “looks like” from submodel.

Notation
• Let ΠT (g) denote projection of g into T̄ (P ) (in L2

0).
• Let ΠT⊥(g) denote projection of g into T̄ (P )⊥ (in L2

0).

Note: For any g ∈ L2
0 we have g = ΠT (g) + ΠT⊥(g).
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(Re)interpreting Test

H0 : ΠT⊥(g) = 0 H1 : ΠT⊥(g) 6= 0

Formally

• Let {ψTk }
dT
k=1 be orthonormal basis for T̄ (P ).

• Let {ψ⊥k }
d
T⊥
k=1 be orthonormal basis for T̄ (P )⊥.

• Let Qg be distribution of (Y,Z) ≡ ({Yk}dTk=1, {Zk}
d
T⊥
k=1 ) on RdT ×Rd

T⊥

Yk ∼ N(

∫
gψTk dP, 1) for 1 ≤ k ≤ dT

Zk ∼ N(

∫
gψ⊥k dP, 1) for 1 ≤ k ≤ dT⊥

Intuition: (Y,Z) is a “noisy” signal of the unknown score g.
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(Re)interpreting Test

Theorem Let Assumption R hold, and φn satisfy for any t 7→ Pt,g ∈ P

π(g) ≡ lim
n→∞

∫
φndP

n
1/
√
n,g ≤ α

Then there is a level α test φ : (Y, Z)→ [0, 1] of the null hypothesis

H0 : ΠT⊥(g) = 0 H1 : ΠT⊥(g) 6= 0

based on a single observation (Y, Z) such that for any path t 7→ Pt,g

π(g) ≡ lim
n→∞

∫
φndP

n
1/
√
n,g =

∫
φdQg

Comments
• Specification tests examine if g agrees with P based on signal (Y, Z).
• J-test corresponds to a Wald test on “signals” Z from T̄ (P )⊥.
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Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Assumption (B)
• There is a known subset F = {fk}dFk=1 ⊆ T̄ (P )⊥ ⊆ L2

0.

• The set F satisfies
∑dF
k=1 f

2
kdP <∞.

Note: Common tests implicitly estimate F

Gn ≡ (
1√
n

n∑
i=1

f1(Xi), . . . ,
1√
n

n∑
i=1

fdF (Xi))
′

︸ ︷︷ ︸
≈ Z “signal” from T̄ (P )⊥
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Overidentification and Testing

Theorem (i) If Assumptions R and B hold, then for any path t 7→ Pt,g ∈ P

lim
n→∞

Pn1/
√
n,g(‖Gn‖ > c1−α) = α

where c1−α is 1− α quantile of ‖G0‖.

(ii) If instead t 7→ Pt,g satisfies

lim inf
n→∞

inf
Q∈P

n

∫
[dQ1/2 − dP 1/2

1/
√
n,g

]2 > 0

and in addition F is such that cl{lin{F}} = T̄ (P )⊥, then it also follows that

lim inf
n→∞

Pn1/
√
n,g(‖Gn‖ > c1−α) > α

In Words: If P is locally overidentified by P, then P is locally testable.

⇒ P is locally testable if and only if P is locally overidentified.
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1 Local Overidentification

2 Specification Testing

3 Estimation

4 Conditional Moment Models
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Preview

Question: What are implications for estimation of local overidentification?

GMM Intuition: Weighting matrix not important under just identification.

In General
• Regular estimators asymptotically equivalent under just identification.
• Asymptotically distinct estimators exist under over identification.

Comments
• Finite dimensional case follows from role of T̄ (P ) (Newey, 1990).
• We require generalization to infinite dimensional for Hausman test.
• Will show “abstract” test can implemented through Hausman test.
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Multiple Estimators

Assumption (E)
• θ : P→ B is a known map with B a Banach space.
• There exists an asymptotically linear regular estimator θ̂n of θ(P ).

Note: Restriction on parameter θ(P ), not on model P.

Theorem Let Assumptions R and E hold.

(i) If P is locally just identified and θ̃n is regular and asymptotically linear
√
n{θ̂n − θ̃n} = op(1) (in B)

(ii) If P is locally overidentified, there is regular asymptotically linear θ̃n
√
n{θ̂n − θ̃n}

L→ ∆ 6= 0 (in B)
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Multiple Estimators

In Words: P is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if P is locally testable.

Efficiency matters if and only if P is locally testable.

Implications
• GMM link between efficiency and testing not coincidental.
• Efficiency literature can be exploited to determine when P is testable.
• ⇒ Semiparametric models are locally testable (Ai & Chen, 2003).
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Setup

Question: So is the nonparametric IV model locally overidentified?

Goal: Use results from efficiency literature to answer (Ai & Chen, 2012).

For X = (Y,Z,W ) with Y ∈ Rdy , Z ∈ Rdz , W ∈ Rdw , and ρ : Rdy+1 → R

E[ρ(Y, hP (Z))|W ] = 0

for some unknown function hP : Rdz → R satisfying
∫
h2
P dP <∞.

Examples
• (NPIV) E[Y − hP (Z)|W ] = 0 maps to ρ(Y, h(Z)) = Y − h(Z).
• (NPQIV) P (Y ≤ hP (Z)|W ) = τ maps to ρ(Y, h(Z)) = 1{Y ≤ h(Z)} − τ .
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Setup

m(W,h) ≡ E[ρ(Y, h(Z))|W ]

Think of m(W, ·) as map m : L2
Z → L2

W and assume differentiability in that

∇m(W,hP )[s] ≡ ∂

∂τ
m(W,hP + τs)

∣∣∣
τ=0

Consider derivative as a map ∇m(W,hP ) : L2
Z → L2

W and denote its range

R ≡ {f ∈ L2
W : f = ∇m(W,hP )[s] for some s ∈ L2

Z}
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Setup

NPIV Example
• Here, m(W,h) = E[Y − h(Z)|W ].
• Which implies ∇m(W,hP )[s] = −E[s(Z)|W ], and therefore

R = {f ∈ L2
W : f(W ) = E[s(Z)|W ] for some s ∈ L2

Z}

NPQIV Example
• Here, m(W,h) = P (Y ≤ h(Z)|W )− τ .
• Which implies ∇m(W,hP )[s] = E[fY |Z,W (hP (Z)|Z,W )s(Z)|W ], and

R = {f ∈ L2
W : f(W ) = E[fY |Z,W (hP (Z)|Z,W )s(Z)|W ] for some s ∈ L2

Z}
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Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

R̄ = L2
W

Relation to GMM

E[ρ(X,β(P ))] = 0 E[ρ(Y, hP (Z))|W ] = 0

∇βE[ρ(X,β(P ))]︸ ︷︷ ︸ ∇E[ρ(Y, hP (Z))|W ]︸ ︷︷ ︸
Maps: Rdβ to Rdρ L2

Z to L2
W

Just ID: Map is onto (dβ = dρ) Map is “onto” (R̄ = L2
W )

Over ID: Not onto (dβ < dρ) Not onto (R̄  L2
W )
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Local Overidentification

Alternative Characterization

R̄ = L2
W if and only if {0} = {s ∈ L2

W : ∇m(W,hP )∗[s] = 0}

where ∇m(W,hP ) : L2
W → L2

Z is the adjoint of ∇m(W,hP ) : L2
Z → L2

W .

NPIV Example
• Here, ∇m(W,hP )∗[s] = −E[s(W )|Z].
• Therefore, in NPIV P is locally just identified by P if and only if

E[s(W )|Z] = 0 implies s(W ) = 0 for all s ∈ L2
W

NPQIV Example
• Similarly, in NPQIV P is locally just identified by P if and only if

E[fY |Z,W (hP (Z)|Z,W )s(W )|Z] = 0 implies s(W ) = 0 for all s ∈ L2
W
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Discussion

Exogenous Models

• Suppose W = (Z, V ) and that ρ(W,h(Z)) is differentiable in h.
• Then, it follows that P is locally just identified if and only if

P (E[V ] = V ) = 1 and P (E[∇hρ(Y, hP (Z))|Z] 6= 0) = 1

Efficiency Implications

• Parameters θ such as average derivatives, consumer surplus, etc.

⇒ Plug-in typically efficient under “exogeneity” (Newey, 1994).

⇒ Plug-in need not be efficient under “endogeneity” (Ai & Chen, 2012).

• Two stage estimation problems θ(P ) = arg maxθ E[q(X, θ, hP (Z))].

⇒ Two stage efficient under “exogeneity” (Ackerberg et al. 2014).

⇒ Two stage estimation need not be efficient under “endogeneity”.
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Conclusion

Local Overidentification

• Is model locally consistent with any parametric model?
• Abstracts from counting “parameters” and “restrictions”.
• Partial generalization to nonregular models.

Refutability and Efficiency
• Intrinsic link between refutability and efficiency.
• Generalizes connection present in GMM to regular models.

Conditional Moment Models
• Simple characterization by exploiting efficiency literature.
• Implications for plug-in and two stage estimation.
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