Overidentification in Regular Models

Xiaohong Chen
Yale University

Andres Santos
UC San Diego

March 9, 2016
Starting Point

\[Y = h_P(Z) + \epsilon \]

where \(h_P \) is nonparametric, and \(E[\epsilon|W] = 0 \) for an available instrument \(W \).
Y = h_P(Z) + \epsilon

where \(h_P \) is nonparametric, and \(E[\epsilon|W] = 0 \) for an available instrument \(W \).

Identification is well understood, is equivalent to a unique solution in \(h \) to

\[
E[Y|W] = E[h(Z)|W]
\]
Starting Point

\[Y = h_P(Z) + \epsilon \]

where \(h_P \) is nonparametric, and \(E[\epsilon|W] = 0 \) for an available instrument \(W \).

Identification is well understood, is equivalent to a unique solution in \(h \) to

\[E[Y|W] = E[h(Z)|W] \]

Overidentification

- Original Question: Is this model overidentified or just identified?
- Broader Question:
 - What do we actually mean by “overidentified”?
 - How do we characterize “overidentification”?
First Definition?

Koopmans & Reiersøl, 1950.

• “This particular specification will be called observationally restrictive if the set of all distribution functions of observed variables generated by the structures is a proper subset of the set of all distribution functions.”
Koopmans & Reiersøl, 1950.

• “This particular specification will be called **observationally restrictive** if the set of all distribution functions of observed variables generated by the structures is a proper subset of the set of all distribution functions.”

• “A frequent case of an observationally restrictive specification is that where a parameter ... is restricted [by the structure] to a prescribed value. In this case, the specification in question has been called **overidentifying**.”
Koopmans & Reiersøl, 1950.

• “This particular specification will be called observationally restrictive if the set of all distribution functions of observed variables generated by the structures is a proper subset of the set of all distribution functions.”

• “A frequent case of an observationally restrictive specification is that where a parameter ... is restricted [by the structure] to a prescribed value. In this case, the specification in question has been called overidentifying.”

Comments

• First definition: Discussed in context of potential refutability.
• But authors warn, not sufficient for testability (Romano, 2004).
• Second definition: Related to estimation and Hausman test.
• But “overidentifying” stronger than “observationally restrictive”.
Is “overidentification” a useful concept?

Yes

- Word “overidentification” often associated with testability of the model. Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).

Is “overidentification” a useful concept?

Yes

- Word “overidentification” often associated with testability of the model. Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).

But

- What do we do in nonparametric IV model? ⇒ Need precise definition of “overidentification” for general models. ⇒ Should be intrinsically linked to testing and efficiency.
Overidentification in GMM

Let $\Theta \subseteq \mathbb{R}^{d_\beta}$, $X_i \in \mathbb{R}^{d_x}$, $\rho : \mathbb{R}^{d_x} \times \mathbb{R}^{d_\beta} \rightarrow \mathbb{R}^{d_\rho}$ with $d_\beta \leq d_\rho$ and suppose

$$\int \rho(X_i, \beta(P)) dP = 0 .$$

Overidentification

- When is an overidentification test available? When $d_\rho > d_\beta$.
- When are efficiency considerations relevant? When $d_\rho > d_\beta$.
- Overidentification $\iff d_\rho > d_\beta$.

Counting

- Counting intuition a widely used notion of overidentification.
- Stronger than “observationally restrictive”.
- Not helpful in nonparametric instrumental variables.

Chen & Santos. March 9, 2016.
Aim of Paper

The Literature

- The term overidentification is used in different ways in the literature.
- What is the precise definition that captures these ideas?
Aim of Paper

The Literature

- The term overidentification is used in different ways in the literature.
- What is the precise definition that captures these ideas?

Our Answer

- Introduce a simple condition we call local overidentification.
- Show it is equivalent to existence of more efficient estimators.
- Show it is equivalent to local testability of the model.

Implications

- Establish intrinsic link between efficiency and testability.
- Apply to conditional moment restrictions models.
- Apply to two stage and plug-in estimators.
1 Local Overidentification

2 Specification Testing

3 Estimation

4 Conditional Moment Models
We assume data consists of i.i.d. sample $\{X_i\}_{i=1}^n$, $X_i \in \mathbb{R}^{d_x}$, and $X_i \sim P$.
Setup

We assume data consists of i.i.d. sample \(\{X_i\}_{i=1}^n \), \(X_i \in \mathbb{R}^{d_x} \), and \(X_i \sim P \).

Definition: A model \(\mathcal{P} \) is a subset of the set of distributions on \(\mathbb{R}^{d_x} \).
Setup

We assume data consists of i.i.d. sample \(\{X_i\}_{i=1}^n \), \(X_i \in \mathbb{R}^{d_x} \), and \(X_i \sim P \).

Definition: A model \(P \) is a subset of the set of distributions on \(\mathbb{R}^{d_x} \).

Definition: A “path” \(t \mapsto P_{t,g} \) with \(P_{t,g} \) a probability measure on \(\mathbb{R}^{d_x} \) and

\[
\lim_{t \to 0} \int \left[\frac{1}{t} (dP_{1/2}^1 - dP_{1/2}^2) - \frac{1}{2} gdP^{1/2} \right]^2 = 0.
\]

The function \(g : \mathbb{R}^{d_x} \to \mathbb{R} \) is referred to as the “score” of the path \(t \mapsto P_{t,g} \).

Comments

- \(t \mapsto P_{t,g} \) is a smooth correctly specified likelihood \((P_{0,g} = P) \).
- As usual, score \(g \) has mean zero and finite second moment.
- Only feature will matter to us is the score \(g \).
Space of Distributions
Space of Distributions
Space of Distributions

\[P_{t,g} \]

\[P \]

\[0 \rightarrow t \]
Space of Distributions
Tangent Space

\[L_0^2 \equiv \{ g : \int g dP = 0 \text{ and } \int g^2 dP < \infty \} \]

Possible to show for any \(g \in L_0^2 \) we can find a path \(t \mapsto P_{t,g} \) with score \(g \).

Intuition: \(\int g dP = 0 \) is only restriction following from \(P_{t,g} \) a measure.
Tangent Space

\[L^2_0 \equiv \{ g : \int gdP = 0 \text{ and } \int g^2 dP < \infty \} \]

Possible to show for any \(g \in L^2_0 \) we can find a path \(t \mapsto P_{t,g} \) with score \(g \).

Intuition: \(\int gdP = 0 \) is only restriction following from \(P_{t,g} \) a measure.

Question: What about information contained in model when \(P \in \mathbb{P} \)?
Tangent Space

\[L_0^2 \equiv \{ g : \int g dP = 0 \text{ and } \int g^2 dP < \infty \} \]

Possible to show for any \(g \in L_0^2 \) we can find a path \(t \mapsto P_{t,g} \) with score \(g \).

Intuition: \(\int g dP = 0 \) is only restriction following from \(P_{t,g} \) a measure.

Question: What about information contained in model when \(P \in \mathcal{P} \)?

- The **tangent space** is the set of scores that “agree” with the model \(\mathcal{P} \)

\[\tilde{T}(P) \equiv \text{cl}\{ g \in L_0^2 : g \text{ is score of some } t \mapsto P_{t,g} \in \mathcal{P} \} \]
Tangent Space

\[L^2_0 \equiv \{ g : \int g dP = 0 \text{ and } \int g^2 dP < \infty \} \]

Possible to show for any \(g \in L^2_0 \) we can find a path \(t \mapsto P_{t,g} \) with score \(g \).

Intuition: \(\int g dP = 0 \) is only restriction following from \(P_{t,g} \) a measure.

Question: What about information contained in model when \(P \in \mathcal{P} \)?

- The tangent space is the set of scores that “agree” with the model \(\mathcal{P} \)
 \[\overline{T}(P) \equiv \text{cl}\{ g \in L^2_0 : g \text{ is score of some } t \mapsto P_{t,g} \in \mathcal{P} \} \]

- The orthocomplement of \(\overline{T}(P) \) are scores that “disagree” with \(\mathcal{P} \)
 \[\overline{T}(P)^\perp \equiv \{ g \in L^2_0 : \int g f dP = 0 \text{ for all } f \in \overline{T}(P) \} \]

Note: \(\overline{T}(P) \) and \(\overline{T}(P)^\perp \) decompose the set of all possible scores.
\[P = \text{All Distributions} \]
\(P = \text{All Distributions} \)
\(P = \text{All Distributions} \)
\(P = \text{All Distributions} \)
Informative P
Informative P
Informative P
Informative P
Informative P
Local Overidentification

Assumption (R)

- \(\{X_i\}_{i=1}^n \) is i.i.d. with \(X_i \sim P_{1/\sqrt{n},g} \) for some path \(P_{t,g} \) with \(P_{0,g} = P \in \mathcal{P} \).
- \(\overline{T}(P) \) is linear – i.e. if \(g, f \in \overline{T}(P) \), \(a, b \in \mathbb{R} \), then \(ag + bf \in \overline{T}(P) \).
Local Overidentification

Assumption (R)

• \{X_i\}^{n}_{i=1} is i.i.d. with \(X_i \sim P_{1/\sqrt{n}, g}\) for some path \(P_{t,g}\) with \(P_{0,g} = P \in \mathcal{P}\).
• \(\bar{T}(P)\) is linear – i.e. if \(g, f \in \bar{T}(P)\), \(a, b \in \mathbb{R}\), then \(ag + bf \in \bar{T}(P)\).

Main Definition

• If \(\bar{T}(P) = L^2_0\) then we say \(P\) is locally just identified by \(\mathcal{P}\).
• If \(\bar{T}(P) \subsetneq L^2_0\) then we say \(P\) is locally overidentified by \(\mathcal{P}\).

Intuition

• \(P\) is just identified \(\Leftrightarrow\) \(P\) locally consistent with any parametric model.
• \(P\) is overidentified \(\Leftrightarrow\) \(P\) restricts possible parametric specifications.

Note: Reduces to traditional definition in GMM context.
1 Local Overidentification

2 Specification Testing

3 Estimation

4 Conditional Moment Models
Setup

\[H_0 : P \in \mathbf{P} \quad H_1 : P \notin \mathbf{P} \]
Setup

\[H_0 : P \in P \quad H_1 : P \notin P \]

We consider tests \(\phi_n : \{X_i\}_{i=1}^n \to [0, 1] \) with well defined limiting local power

\[
\lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n}, g} = \pi(g)
\]

for \(X_i \sim P_{1/\sqrt{n}, g} \) and with \(P_{1/\sqrt{n}, g} = \bigotimes_{i=1}^n P_{1/\sqrt{n}, g} \) the product measure.

Comments

- Note limiting power depends only on \(g \) – this is not an assumption.
- Mild conditions guarantee \(\pi \) exists when \(\phi_n = 1\{T_n > c_{1-\alpha}\} \).
(Re)interpreting Test

Local size control demands that for any submodel \(t \mapsto P_{t,g} \in P \) we have

\[
\pi(g) = \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g} \leq \alpha
\]

Equivalently, \(\pi(g) \leq \alpha \) for any \(g \in \bar{T}(P) \) – i.e. \(g \) “looks like” from submodel.
Local size control demands that for any submodel \(t \mapsto P_{t,g} \in \mathbf{P} \) we have

\[
\pi(g) = \lim_{n \to \infty} \int \phi_n dP^n \sqrt{1/\sqrt{n}},g \leq \alpha
\]

Equivalently, \(\pi(g) \leq \alpha \) for any \(g \in \bar{T}(P) \) – i.e. \(g \) “looks like” from submodel.

Notation

- Let \(\Pi_T(g) \) denote projection of \(g \) into \(\bar{T}(P) \) (in \(L^2_0 \)).
- Let \(\Pi_{T \perp}(g) \) denote projection of \(g \) into \(\bar{T}(P)\perp \) (in \(L^2_0 \)).

Note: For any \(g \in L^2_0 \) we have \(g = \Pi_T(g) + \Pi_{T \perp}(g) \).
(Re)interpreting Test
(Re)interpreting Test
(Re)interpreting Test
(Re)interpreting Test

\[\Pi_{T_{\perp}}(g) \]

\[\Pi_T(g) \]

\[P_{t,g} \]

\[P \]
(Re)interpreting Test

\[H_0 : \Pi_{T\perp}(g) = 0 \quad \quad H_1 : \Pi_{T\perp}(g) \neq 0 \]
(Re)interpreting Test

\[H_0 : \Pi_{T^\perp}(g) = 0 \quad H_1 : \Pi_{T^\perp}(g) \neq 0 \]

Formally

- Let \(\{\psi_k^T\}_{k=1}^{d_T} \) be orthonormal basis for \(T(P) \).
- Let \(\{\psi_k^\perp\}_{k=1}^{d_{T^\perp}} \) be orthonormal basis for \((T(P))^\perp \).
- Let \(Q_g \) be distribution of \((Y, Z) \equiv (\{Y_k\}_{k=1}^{d_T}, \{Z_k\}_{k=1}^{d_{T^\perp}}) \) on \(\mathbb{R}^{d_T} \times \mathbb{R}^{d_{T^\perp}} \)

\[Y_k \sim N(\int g\psi_k^T dP, 1) \text{ for } 1 \leq k \leq d_T \]

\[Z_k \sim N(\int g\psi_k^\perp dP, 1) \text{ for } 1 \leq k \leq d_{T^\perp} \]

Intuition: \((Y, Z) \) is a “noisy” signal of the unknown score \(g \).
(Re)interpreting Test

Theorem Let Assumption R hold, and \(\phi_n \) satisfy for any \(t \mapsto P_{t,g} \in \mathbf{P} \)

\[
\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP^n_{1/\sqrt{n},g} \leq \alpha
\]
(Re)interpreting Test

Theorem Let Assumption R hold, and \(\phi_n \) satisfy for any \(t \mapsto P_{t,g} \in \mathbf{P} \)

\[
\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g} \leq \alpha
\]

Then there is a level \(\alpha \) test \(\phi : (Y, Z) \to [0, 1] \) of the null hypothesis

\[
H_0 : \Pi_{T\perp}(g) = 0 \quad \quad H_1 : \Pi_{T\perp}(g) \neq 0
\]
(Re)interpreting Test

Theorem Let Assumption R hold, and \(\phi_n \) satisfy for any \(t \mapsto P_{t,g} \in \mathcal{P} \)

\[
\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_n^{1/\sqrt{n,g}} \leq \alpha
\]

Then there is a level \(\alpha \) test \(\phi : (Y,Z) \to [0,1] \) of the null hypothesis

\[
H_0 : \Pi_{T\perp}(g) = 0 \quad \quad H_1 : \Pi_{T\perp}(g) \neq 0
\]

based on a single observation \((Y,Z)\) such that for any path \(t \mapsto P_{t,g} \)

\[
\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_n^{1/\sqrt{n,g}} = \int \phi dQ_g
\]
(Re)interpreting Test

Theorem Let Assumption R hold, and ϕ_n satisfy for any $t \mapsto P_{t,g} \in \mathcal{P}$

$$
\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g} \leq \alpha
$$

Then there is a level α test $\phi : (Y, Z) \to [0, 1]$ of the null hypothesis

$$
H_0 : \Pi_{T\perp}(g) = 0 \quad \quad H_1 : \Pi_{T\perp}(g) \neq 0
$$

based on a single observation (Y, Z) such that for any path $t \mapsto P_{t,g}$

$$
\pi(g) \equiv \lim_{n \to \infty} \int \phi_n dP_{1/\sqrt{n},g} = \int \phi dQ_g
$$

Comments

- Specification tests examine if g agrees with \mathcal{P} based on signal (Y, Z).
- J-test corresponds to a Wald test on “signals” Z from $\bar{T}(P)\perp$.
Overidentification and Testing

Implication: If \(P \) is locally just identified by \(P \), then \(P \) is locally untestable.
Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?
Implication: If P is locally just identified by \mathbf{P}, then \mathbf{P} is locally untestable.

Key Question: If P is locally overidentified by \mathbf{P}, then is \mathbf{P} locally testable?

Assumption (B)
- There is a known subset $\mathcal{F} = \{f_k\}_{k=1}^{d_F} \subseteq \overline{T}(P) \perp \subseteq L_0^2$.
- The set \mathcal{F} satisfies $\sum_{k=1}^{d_F} f_k^2 dP < \infty$.

Note: Common tests implicitly estimate \mathcal{F}
Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Assumption (B)
- There is a known subset $F = \{ f_k \}_{k=1}^{d_F} \subseteq \bar{T}(P) \perp \subseteq L_0^2$.
- The set F satisfies $\sum_{k=1}^{d_F} f_k^2 dP < \infty$.

Note: Common tests implicitly estimate F

$$\mathbb{G}_n \equiv \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} f_1(X_i), \ldots, \frac{1}{\sqrt{n}} \sum_{i=1}^{n} f_{d_F}(X_i) \right)'$$

$$\approx Z \text{ “signal” from } \bar{T}(P) \perp$$
Overidentification and Testing

Theorem (i) If Assumptions R and B hold, then for any path \(t \mapsto P_{t,g} \in \mathcal{P} \)

\[
\lim_{n \to \infty} P_{1/\sqrt{n},g}(\|G_n\| > c_{1-\alpha}) = \alpha
\]

where \(c_{1-\alpha} \) is \(1 - \alpha \) quantile of \(\|G_0\| \).
Theorem (i) If Assumptions R and B hold, then for any path $t \mapsto P_{t,g} \in \mathcal{P}$

$$\lim_{n \to \infty} P^n_{1/\sqrt{n},g}(\|G_n\| > c_{1-\alpha}) = \alpha$$

where $c_{1-\alpha}$ is $1 - \alpha$ quantile of $\|G_0\|$. (ii) If instead $t \mapsto P_{t,g}$ satisfies

$$\liminf_{n \to \infty} \inf_{Q \in \mathcal{P}} n \int [dQ^{1/2} - dP^{1/2}_{1/\sqrt{n},g}]^2 > 0$$

and in addition \mathcal{F} is such that $\text{cl}\{\text{lin}\{\mathcal{F}\}\} = \bar{T}(P)^\perp$, then it also follows that

$$\liminf_{n \to \infty} P^n_{1/\sqrt{n},g}(\|G_n\| > c_{1-\alpha}) > \alpha$$
Overidentification and Testing

Theorem (i) If Assumptions R and B hold, then for any path $t \mapsto P_{t,g} \in \mathcal{P}$

$$\lim_{n \to \infty} P_n^{1/\sqrt{n},g} (\|G_n\| > c_{1-\alpha}) = \alpha$$

where $c_{1-\alpha}$ is $1 - \alpha$ quantile of $\|G_0\|$. (ii) If instead $t \mapsto P_{t,g}$ satisfies

$$\lim\inf_{n \to \infty} \inf_{Q \in \mathcal{P}} n \int [dQ^{1/2} - dP_n^{1/\sqrt{n},g}]^2 > 0$$

and in addition \mathcal{F} is such that $\text{cl}\{\text{lin}\{\mathcal{F}\}\} = \overline{T}(P)^\perp$, then it also follows that

$$\lim\inf_{n \to \infty} P_n^{1/\sqrt{n},g} (\|G_n\| > c_{1-\alpha}) > \alpha$$

In Words: If P is locally overidentified by \mathcal{P}, then \mathcal{P} is locally testable.

\Rightarrow \mathcal{P} is locally testable if and only if P is locally overidentified.
Local Overidentification

Specification Testing

Estimation

Conditional Moment Models
Question: What are implications for estimation of local overidentification?

GMM Intuition: Weighting matrix not important under just identification.
Question: What are implications for estimation of local overidentification?

GMM Intuition: Weighting matrix not important under just identification.

In General
- Regular estimators asymptotically equivalent under just identification.
- Asymptotically distinct estimators exist under over identification.

Comments
- Finite dimensional case follows from role of $\tilde{T}(P)$ (Newey, 1990).
- We require generalization to infinite dimensional for Hausman test.
- Will show “abstract” test can implemented through Hausman test.
Multiple Estimators

Assumption (E)

- $\theta : \mathcal{P} \to \mathcal{B}$ is a known map with \mathcal{B} a Banach space.
- There exists an asymptotically linear regular estimator $\hat{\theta}_n$ of $\theta(\mathcal{P})$.

Note: Restriction on parameter $\theta(\mathcal{P})$, not on model \mathcal{P}.

Theorem

Let Assumptions R and E hold.

(i) If \mathcal{P} is locally just identified and $\tilde{\theta}_n$ is regular and asymptotically linear

$$\sqrt{n} \left\{ \hat{\theta}_n - \tilde{\theta}_n \right\} = o_p(1) \quad (\text{in } \mathcal{B})$$

(ii) If \mathcal{P} is locally overidentified, there is regular asymptotically linear $\tilde{\theta}_n$

$$\sqrt{n} \left\{ \hat{\theta}_n - \tilde{\theta}_n \right\} \overset{L}{\to} \Delta \neq 0 \quad (\text{in } \mathcal{B})$$
Multiple Estimators

Assumption (E)
- \(\theta : \mathcal{P} \rightarrow \mathcal{B} \) is a known map with \(\mathcal{B} \) a Banach space.
- There exists an asymptotically linear regular estimator \(\hat{\theta}_n \) of \(\theta(P) \).

Note: Restriction on parameter \(\theta(P) \), not on model \(\mathcal{P} \).

Theorem Let Assumptions R and E hold.

(i) If \(\mathcal{P} \) is locally just identified and \(\tilde{\theta}_n \) is regular and asymptotically linear

\[\sqrt{n}\{\hat{\theta}_n - \tilde{\theta}_n\} = o_p(1) \text{ (in } \mathcal{B}) \]
Multiple Estimators

Assumption (E)

- \(\theta : \mathcal{P} \rightarrow \mathcal{B} \) is a known map with \(\mathcal{B} \) a Banach space.
- There exists an asymptotically linear regular estimator \(\hat{\theta}_n \) of \(\theta(\mathcal{P}) \).

Note: Restriction on parameter \(\theta(\mathcal{P}) \), not on model \(\mathcal{P} \).

Theorem Let Assumptions R and E hold.

(i) If \(\mathcal{P} \) is locally just identified and \(\tilde{\theta}_n \) is regular and asymptotically linear

\[
\sqrt{n}\{\hat{\theta}_n - \tilde{\theta}_n\} = o_p(1) \quad (\text{in } \mathcal{B})
\]

(ii) If \(\mathcal{P} \) is locally overidentified, there is regular asymptotically linear \(\tilde{\theta}_n \)

\[
\sqrt{n}\{\hat{\theta}_n - \tilde{\theta}_n\} \overset{L}{\rightarrow} \Delta \neq 0 \quad (\text{in } \mathcal{B})
\]
Multiple Estimators

In Words: P is locally overidentified if and only if efficiency matters.
Multiple Estimators

In Words: P is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if P is locally testable.

Implications

- GMM link between efficiency and testing not coincidental.
- Efficiency literature can be exploited to determine when P is testable.

 ⇒ Semiparametric models are locally testable (Ai & Chen, 2003).
In Words: P is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if P is locally testable.

Efficiency matters if and only if P is locally testable.
Multiple Estimators

In Words:
P is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if P is locally testable.

Efficiency matters if and only if P is locally testable.

Implications

- **GMM link** between efficiency and testing not coincidental.
- **Efficiency literature** can be exploited to determine when P is testable.
- \Rightarrow **Semiparametric models** are locally testable (Ai & Chen, 2003).
1 Local Overidentification

2 Specification Testing

3 Estimation

4 Conditional Moment Models
Setup

Question: So is the nonparametric IV model locally overidentified?

Goal: Use results from efficiency literature to answer (Ai & Chen, 2012).
Question: So is the nonparametric IV model locally overidentified?

Goal: Use results from efficiency literature to answer (Ai & Chen, 2012).

For $X = (Y, Z, W)$ with $Y \in \mathbb{R}^{d_y}$, $Z \in \mathbb{R}^{d_z}$, $W \in \mathbb{R}^{d_w}$, and $\rho : \mathbb{R}^{d_y+1} \rightarrow \mathbb{R}$

$$E[\rho(Y, h_P(Z))|W] = 0$$

for some unknown function $h_P : \mathbb{R}^{d_z} \rightarrow \mathbb{R}$ satisfying $\int h_P^2 dP < \infty$.

Examples

- (NPIV) $E[Y - h_P(Z)|W] = 0$ maps to $\rho(Y, h(Z)) = Y - h(Z)$.
- (NPQIV) $P(Y \leq h_P(Z)|W) = \tau$ maps to $\rho(Y, h(Z)) = 1\{Y \leq h(Z)\} - \tau$.
Setup

\[m(W, h) \equiv E[\rho(Y, h(Z))|W] \]
Setup

\[m(W, h) \equiv E[\rho(Y, h(Z))|W] \]

Think of \(m(W, \cdot) \) as map \(m : L^2_Z \to L^2_W \) and assume differentiability in that

\[\nabla m(W, h_P)[s] \equiv \frac{\partial}{\partial \tau} m(W, h_P + \tau s) \big|_{\tau=0} \]
Setup

\[m(W, h) \equiv E[\rho(Y, h(Z))]|W] \]

Think of \(m(W, \cdot) \) as map \(m : L^2_Z \to L^2_W \) and assume differentiability in that

\[\nabla m(W, h_P)[s] \equiv \frac{\partial}{\partial \tau} m(W, h_P + \tau s) \bigg|_{\tau=0} \]

Consider derivative as a map \(\nabla m(W, h_P) : L^2_Z \to L^2_W \) and denote its range

\[\mathcal{R} \equiv \{ f \in L^2_W : f = \nabla m(W, h_P)[s] \text{ for some } s \in L^2_Z \} \]
NPIV Example

- Here, \(m(W, h) = E[Y - h(Z)|W] \).
- Which implies \(\nabla m(W, h_P)[s] = -E[s(Z)|W] \), and therefore

\[
\mathcal{R} = \{ f \in L^2_W : f(W) = E[s(Z)|W] \text{ for some } s \in L^2_Z \}
\]
Setup

NPIV Example

- Here, \(m(W, h) = E[Y - h(Z)|W] \).
- Which implies \(\nabla m(W, h_P)[s] = -E[s(Z)|W] \), and therefore

\[
\mathcal{R} = \{ f \in L^2_W : f(W) = E[s(Z)|W] \text{ for some } s \in L^2_Z \}
\]

NPQIV Example

- Here, \(m(W, h) = P(Y \leq h(Z)|W) - \tau \).
- Which implies \(\nabla m(W, h_P)[s] = E[f_{Y|Z,W}(h_P(Z)|Z, W)s(Z)|W] \), and

\[
\mathcal{R} = \{ f \in L^2_W : f(W) = E[f_{Y|Z,W}(h_P(Z)|Z, W)s(Z)|W] \text{ for some } s \in L^2_Z \}
\]
Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

$$\bar{\mathcal{R}} = L^2_W$$
Local Overidentification

Theorem Under regularity conditions, \(P \) is locally just identified if and only if

\[
\bar{\mathcal{R}} = L^2_W
\]

Relation to GMM

\[
E[\rho(X, \beta(P))] = 0 \quad E[\rho(Y, h_P(Z))|W] = 0
\]
Local Overidentification

Theorem Under regularity conditions, \(P \) is locally just identified if and only if

\[
\bar{R} = L_{W}^{2}
\]

Relation to GMM

\[
E[\rho(X, \beta(P))] = 0 \quad E[\rho(Y, h_{P}(Z)|W] = 0
\]

\[
\nabla_{\beta}E[\rho(X, \beta(P))] \quad \nabla E[\rho(Y, h_{P}(Z)|W]
\]

Maps:

\[
\mathbb{R}^{d_{\beta}} \text{ to } \mathbb{R}^{d_{\rho}} \quad L_{Z}^{2} \text{ to } L_{W}^{2}
\]
Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

$$\bar{R} = L^2_W$$

Relation to GMM

$$E[\rho(X, \beta(P))] = 0 \quad E[\rho(Y, h_P(Z))|W] = 0$$

$$\nabla_\beta E[\rho(X, \beta(P))] \quad \nabla E[\rho(Y, h_P(Z))|W]$$

Maps: \mathbb{R}^{d_β} to \mathbb{R}^{d_ρ}

L^2_Z to L^2_W

Just ID: Map is onto ($d_\beta = d_\rho$) Map is “onto” ($\bar{R} = L^2_W$)
Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

$$\bar{\mathcal{R}} = L^2_W$$

Relation to GMM

$$E[\rho(X, \beta(P))] = 0 \quad E[\rho(Y, h_P(Z))|W] = 0$$

$$\nabla_{\beta} E[\rho(X, \beta(P))] \quad \nabla E[\rho(Y, h_P(Z))|W]$$

Maps:

- $\mathbb{R}^{d_{\beta}}$ to $\mathbb{R}^{d_{\rho}}$
- L^2_Z to L^2_W

Just ID:

- Map is onto ($d_{\beta} = d_{\rho}$)
- Map is “onto” ($\bar{\mathcal{R}} = L^2_W$)

Over ID:

- Not onto ($d_{\beta} < d_{\rho}$)
- Not onto ($\bar{\mathcal{R}} \not\subset L^2_W$)
Local Overidentification

Alternative Characterization

\[\mathcal{R} = L^2_W \] if and only if \(\{0\} = \{ s \in L^2_W : \nabla m(W, h_P)^*[s] = 0 \} \)

where \(\nabla m(W, h_P) : L^2_W \rightarrow L^2_Z \) is the adjoint of \(\nabla m(W, h_P) : L^2_Z \rightarrow L^2_W \).
Local Overidentification

Alternative Characterization

\[\bar{R} = L^2_W \text{ if and only if } \{0\} = \{s \in L^2_W : \nabla m(W, h_P)^*[s] = 0\} \]

where \(\nabla m(W, h_P) : L^2_W \to L^2_Z \) is the adjoint of \(\nabla m(W, h_P) : L^2_Z \to L^2_W \).

NPIV Example

- Here, \(\nabla m(W, h_P)^*[s] = -E[s(W)|Z] \).
- Therefore, in NPIV \(P \) is locally just identified by \(P \) if and only if

\[E[s(W)|Z] = 0 \text{ implies } s(W) = 0 \text{ for all } s \in L^2_W \]
Local Overidentification

Alternative Characterization

\[\mathcal{R} = L^2_W \text{ if and only if } \{0\} = \{s \in L^2_W : \nabla m(W, h_P)^*[s] = 0\} \]

where \(\nabla m(W, h_P) : L^2_W \to L^2_Z \) is the adjoint of \(\nabla m(W, h_P) : L^2_Z \to L^2_W \).

NPIV Example

- Here, \(\nabla m(W, h_P)^*[s] = -E[s(W)|Z] \).
- Therefore, in NPIV \(P \) is locally just identified by \(P \) if and only if

\[E[s(W)|Z] = 0 \text{ implies } s(W) = 0 \text{ for all } s \in L^2_W \]

NPQIV Example

- Similarly, in NPQIV \(P \) is locally just identified by \(P \) if and only if

\[E[f_{Y|Z,W}(h_P(Z)|Z, W)s(W)|Z] = 0 \text{ implies } s(W) = 0 \text{ for all } s \in L^2_W \]
Exogenous Models

- Suppose \(W = (Z, V) \) and that \(\rho(W, h(Z)) \) is differentiable in \(h \).
- Then, it follows that \(P \) is locally just identified if and only if

\[
P(E[V] = V) = 1 \text{ and } P(E[\nabla_h \rho(Y, h_P(Z))|Z] \neq 0) = 1
\]
Discussion

Exogenous Models

• Suppose $W = (Z, V)$ and that $\rho(W, h(Z))$ is differentiable in h.
• Then, it follows that P is locally just identified if and only if

$$P(E[V] = V) = 1 \text{ and } P(E[\nabla_h \rho(Y, h_P(Z))|Z] \neq 0) = 1$$

Efficiency Implications

• Parameters θ such as average derivatives, consumer surplus, etc.
 \Rightarrow Plug-in typically efficient under “exogeneity” (Newey, 1994).
 \Rightarrow Plug-in need not be efficient under “endogeneity” (Ai & Chen, 2012).
Discussion

Exogenous Models

- Suppose $W = (Z, V)$ and that $\rho(W, h(Z))$ is differentiable in h.
- Then, it follows that P is locally just identified if and only if

$$P(E[V] = V) = 1 \text{ and } P(E[\nabla_h \rho(Y, h_P(Z))|Z] \neq 0) = 1$$

Efficiency Implications

- Parameters θ such as average derivatives, consumer surplus, etc.
 - Plug-in typically efficient under “exogeneity” (Newey, 1994).
 - Plug-in need not be efficient under “endogeneity” (Ai & Chen, 2012).
- Two stage estimation problems $\theta(P) = \arg\max_{\theta} E[q(X, \theta, h_P(Z))]$.
 - Two stage efficient under “exogeneity” (Ackerberg et al. 2014).
 - Two stage estimation need not be efficient under “endogeneity”.

Chen & Santos. March 9, 2016.
Conclusion

Local Overidentification

- Is model locally consistent with any parametric model?
- Abstracts from counting “parameters” and “restrictions”.
- Partial generalization to nonregular models.

Refutability and Efficiency

- Intrinsic link between refutability and efficiency.
- Generalizes connection present in GMM to regular models.

Conditional Moment Models

- Simple characterization by exploiting efficiency literature.
- Implications for plug-in and two stage estimation.