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Starting Point

Yth(Z)*FE

where hp is nonparametric, and E[e|WW] = 0 for an available instrument W.

Identification is well understood, is equivalent to a unique solution in i to

E[Y|W] = E[n(Z)|W]

Overidentification
¢ Original Question: Is this model overidentified or just identified?
e Broader Question: o What do we actually mean by “overidentified”?
o How do we characterize “overidentification”?
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First Definition?

Koopmans & Reiersgl, 1950.

e “This particular specification will be called observationally
restrictive if the set of all distribution functions of
observed variables generated by the structures is a proper
subset of the set of all distribution functions.”
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First Definition?

Koopmans & Reiersgl, 1950.

e “This particular specification will be called observationally
restrictive if the set of all distribution functions of
observed variables generated by the structures is a proper
subset of the set of all distribution functions.”

e “A frequent case of an observationally restrictive
specification is that where a parameter ... is restricted [by
the structure] to a prescribed value. In this case, the
specification in question has been called overidentifying.”

Comments
e First definition: Discussed in context of potential refutability.
e But authors warn, not sufficient for testability (Romano, 2004).
e Second definition: Related to estimation and Hausman test.
e But “overidentifying” stronger than “observationally restrictive”.
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Is “overidentification” a useful concept?

Yes

e Word “overidentification” often associated with testability of the model.
Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).

e Word “overidentification” also associated with efficient estimation.
Plug in Estimators: Newey (1994), Powell (1994).
Two Stage: Newey & Powell (1999), Ackerberg et. al. (2014).
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Is “overidentification” a useful concept?

Yes

e Word “overidentification” often associated with testability of the model.
Examples: Chesher (2003), Matzkin (2003), Florens et. al. (2007).

e Word “overidentification” also associated with efficient estimation.
Plug in Estimators: Newey (1994), Powell (1994).
Two Stage: Newey & Powell (1999), Ackerberg et. al. (2014).

But

e What do we do in nonparametric IV model?
= Need precise definition of “overidentification” for general models.
= Should be intrinsically linked to testing and efficiency.
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Overidentification in GMM

Let©® C R%, X; € R%, p: R% x R% — R% with dg < d, and suppose

[ oxiseyir=o.

Overidentification
e When is an overidentification test available? When d, > d;.
e When are efficiency considerations relevant? When d, > dg.
¢ Overidentification <= d, > dg.

Counting
e Counting intuition a widely used notion of overidentification.
e Stronger than “observationally restrictive”.
¢ Not helpful in nonparametric instrumental variables.
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Aim of Paper

The Literature
e The term overidentification is used in different ways in the literature.
e What is the precise definition that captures these ideas?

Chen & Santos. March 9, 2016. ucsD



Aim of Paper

The Literature
e The term overidentification is used in different ways in the literature.
e What is the precise definition that captures these ideas?

Our Answer
e Introduce a simple condition we call local overidentification.
e Show it is equivalent to existence of more efficient estimators.
e Show it is equivalent to local testability of the model.

Implications

e Establish intrinsic link between efficiency and testability.
e Apply to conditional moment restrictions models.
e Apply to two stage and plug-in estimators.
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@ Local Overidentification
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Setup

We assume data consists of i.i.d. sample {X;}" ;, X; € R%, and X; ~ P.
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Setup

We assume data consists of i.i.d. sample {X;}" ;, X; € R%, and X; ~ P.
Definition: A model P is a subset of the set of distributions on R%:.
Definition: A “path” t — P, , with P, , a probability measure on R¢ and

: 1 1/2 1/2 1 1/212 _

%5% [t(dPt,g —dP/*) — diP “=0.

The function g : R4 — R is referred to as the “score” of the path t — P, ,.

Comments
e t — P, , is a smooth correctly specified likelihood (P , = P).
e As usual, score g has mean zero and finite second moment.
e Only feature will matter to us is the score g.
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Space of Distributions
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Space of Distributions

Py g
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Space of Distributions
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Tangent Space

ng{g;/gdpz()and /g%lp<oo}

Possible to show for any g € L2 we can find a path ¢ — P, , with score g.
Intuition: [ gdP = 0 is only restriction following from P, , a measure.
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ng{g;/gdpz()and /deP<oo}

Possible to show for any g € L2 we can find a path ¢ — P, , with score g.
Intuition: [ gdP = 0 is only restriction following from P, , a measure.

Question: What about information contained in model when P € P?
e The tangent space is the set of scores that “agree” with the model P

T(P)=cl{g € Lj : gis score of some t — P, , € P}

Chen & Santos. March 9, 2016. ucsD



Tangent Space

ng{g;/gdpz()and /deP<oo}
Possible to show for any g € L2 we can find a path ¢ — P, , with score g.
Intuition: [ gdP = 0 is only restriction following from P, , a measure.
Question: What about information contained in model when P € P?
e The tangent space is the set of scores that “agree” with the model P

T(P)=cl{g € Lj : gis score of some t — P, , € P}
e The orthocomplement of T'(P) are scores that “disagree” with P

T(P)r={geL?: /gfdP =0forall f € T(P)}

Note: T(P) and T(P)+ decompose the set of all possible scores.

Chen & Santos. March 9, 2016. ucsD



P = All Distributions
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Informative P
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Local Overidentification

Assumption (R)
o {Xi}i,isiid. with X; ~ P, = . for some path P, , with ;, , = P € P.
e T(P)islinear—i.e.if g, f € T(P), a,b € R, thenag+bf € T(P).
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Local Overidentification

Assumption (R)
o {Xi}i,isiid. with X; ~ P, = . for some path P, , with ;, , = P € P.
e T(P)islinear—i.e.if g, f € T(P), a,b € R, thenag+bf € T(P).

Main Definition
e If T(P) = L3 then we say P is locally just identified by P.
e If T(P) ¢ L3 then we say P is locally overidentified by P.

Intuition
e P s justidentified < P locally consistent with any parametric model.
e P is overidentified < P restricts possible parametric specifications.

Note: Reduces to traditional definition in GMM context.
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@ Specification Testing
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Setup

Hy:PeP H1P¢P
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Setup

Hy:PeP H1P¢P

We consider tests ¢,, : {X;}_; — [0, 1] with well defined limiting local power

lim QS,, g = T(9)

n—oo

for X; ~ Py o and with P, = = Q. P1/m,, the product measure.

Comments
e Note limiting power depends only on g — this is not an assumption.
e Mild conditions guarantee 7 exists when ¢,, = 1{T,, > ¢1_4}.
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(Re)interpreting Test

Local size control demands that for any submodel ¢ — P; , € P we have

@ = Jim [ 6,07, 7, <

Equivalently, 7(g) < o forany g € T(P) —i.e. g “looks like” from submodel.
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(Re)interpreting Test

Local size control demands that for any submodel ¢t — P, , € P we have
m(g) = lim [ ¢ndPy) & <«

n—0o0

Equivalently, 7(g) < o forany g € T(P) —i.e. g “looks like” from submodel.

Notation
e Let 17 (g) denote projection of g into T'(P) (in L2).
e Let I1;. (g) denote projection of g into T(P)~ (in L3).

Note: For any g € L2 we have g = IIr(g) + . (g).
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(Re)interpreting Test

Hy:Tpi(g)=0 Hy :Tpi(g) #0
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(Re)interpreting Test

Hy : pi(g) =0 Hy :pi(g) #0

Formally
e Let {¢7}1{"  be orthonormal basis for T(P).
o Let {y} }17% be orthonormal basis for T'(P)*.
e Let Q, be distribution of (Y, Z) = ({Yi}7,, {Z,}{™ ) on Rr x Rér=

Yy ~ N(/gq/;,{dp,n for1 <k <dr

Zy ~ N(/gq/zf;dP, )for1 <k <dp:
Intuition: (Y, Z) is a “noisy” signal of the unknown score g.
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(Re)interpreting Test

Theorem Let Assumption R hold, and ¢,, satisfy forany ¢t — P, , ¢ P

m(g) = lim [ ¢ndPy) o <«
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(Re)interpreting Test

Theorem Let Assumption R hold, and ¢,, satisfy forany ¢t — P, , ¢ P

m(g) = lim [ ¢ndPy) o <«

Then there is a level e test ¢ : (Y, Z) — [0, 1] of the null hypothesis

Hy:Tpi(g)=0 Hy :Tpi(g) #0
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(Re)interpreting Test

Theorem Let Assumption R hold, and ¢,, satisfy forany ¢t — P, , ¢ P

m(g) = lim [ ¢ndPy) o <«

Then there is a level e test ¢ : (Y, Z) — [0, 1] of the null hypothesis
Hy:Tpi(g)=0 Hy :Tpi(g) #0

based on a single observation (Y, Z) such that for any path ¢t — P, ,

n—oo

m(g) = lim ondPl) g = /¢ng
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(Re)interpreting Test

Theorem Let Assumption R hold, and ¢,, satisfy forany ¢t — P, , € P

w(g) = lim [ 6,dP, 7, <

n—roo
Then there is a level e test ¢ : (Y, Z) — [0, 1] of the null hypothesis
Hy:Tpi(g)=0 Hy :Tpi(g) #0

based on a single observation (Y, Z) such that for any path ¢t — P, ,

m(g) = lim (;SndP”ﬁg /¢ng

n—oo

Comments
e Specification tests examine if g agrees with P based on signal (Y, 2).
e J-test corresponds to a Wald test on “signals” Z from T(P)>.
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Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Chen & Santos. March 9, 2016. ucsD



Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Chen & Santos. March 9, 2016. ucsD



Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Assumption (B)
e There is a known subset F = {f;}{7, C T(P)* C L2.
e The set F satisfies ", f2dP < oo.

Note: Common tests implicitly estimate F
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Overidentification and Testing

Implication: If P is locally just identified by P, then P is locally untestable.

Key Question: If P is locally overidentified by P, then is P locally testable?

Assumption (B)
e There is a known subset F = {f;}{7, C T(P)* C L2.
e The set F satisfies ", f2dP < oo.

Note: Common tests implicitly estimate F

Gn

1 n 1 n /
(% ; fi(X5), .., NG ; Fan (X))

~ 7 “signal” from T'(P)*
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Overidentification and Testing

Theorem (i) If Assumptions R and B hold, then for any path ¢t — P, , € P
Tim Pl (Gl > c1ma) =

where ¢;_, is 1 — « quantile of ||Ggl|.
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Overidentification and Testing

Theorem (i) If Assumptions R and B hold, then for any path ¢t — P, , € P
hm f/fg(HGnH >Clg) =

where ¢, _, is 1 — a quantile of |Gy ||. (i) If instead t — P; , satisfies

.. . 1/2 1/2 2
imint gof n [ 14017 — aF} >0

and in addition F is such that cl{lin{F}} = T(P)*, then it also follows that

hmlanl/fq(HGnH >C_q) >
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Overidentification and Testing

Theorem (i) If Assumptions R and B hold, then for any path ¢t — P, , € P
hm f/fg(HGnH >Clg) =

where ¢, _, is 1 — a quantile of |Gy ||. (i) If instead t — P; , satisfies

.. . 1/2 1/2 2
llrbrglgclleréan/[dQ dPl/f q} >0

and in addition F is such that cl{lin{F}} = T(P)*, then it also follows that
hmlanl/fq(HGnH >C_q) >

In Words: If P is locally overidentified by P, then P is locally testable.

= P is locally testable if and only if P is locally overidentified.
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@® Estimation
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Preview

Question: What are implications for estimation of local overidentification?

GMM Intuition: Weighting matrix not important under just identification.
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Preview

Question: What are implications for estimation of local overidentification?

GMM Intuition: Weighting matrix not important under just identification.

In General
e Regular estimators asymptotically equivalent under just identification.
e Asymptotically distinct estimators exist under over identification.

Comments
e Finite dimensional case follows from role of T'(P) (Newey, 1990).
e We require generalization to infinite dimensional for Hausman test.
e Will show “abstract” test can implemented through Hausman test.
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Multiple Estimators

Assumption (E)
e 0 : P — B is a known map with B a Banach space.
e There exists an asymptotically linear regular estimator 6, of 6(P).

Note: Restriction on parameter 6(P), not on model P.
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Multiple Estimators

Assumption (E)
e 0 : P — B is a known map with B a Banach space.
e There exists an asymptotically linear regular estimator 6, of 6(P).

Note: Restriction on parameter 6(P), not on model P.

Theorem Let Assumptions R and E hold.
(i) If P is locally just identified and 6,, is regular and asymptotically linear

\/ﬁ{én - én} =0p(1) (inB)
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Multiple Estimators

Assumption (E)
e 0 : P — B is a known map with B a Banach space.
e There exists an asymptotically linear regular estimator 6, of 6(P).

Note: Restriction on parameter 6(P), not on model P.

Theorem Let Assumptions R and E hold.
(i) If P is locally just identified and 6,, is regular and asymptotically linear

\/ﬁ{én - én} =0p(1) (inB)

(ii) If P is locally overidentified, there is regular asymptotically linear 6,,

Vi, — 0.} 5 A#0 (inB)
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Multiple Estimators

In Words: P is locally overidentified if and only if efficiency matters.
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Multiple Estimators

In Words: P is locally overidentified if and only if efficiency matters.

P is locally overidentified if and only if P is locally testable.

Efficiency matters if and only if P is locally testable.

Implications
e GMM link between efficiency and testing not coincidental.
e Efficiency literature can be exploited to determine when P is testable.
e = Semiparametric models are locally testable (Ai & Chen, 2003).
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@ Conditional Moment Models
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Setup

Question: So is the nonparametric IV model locally overidentified?

Goal: Use results from efficiency literature to answer (Ai & Chen, 2012).
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Setup

Question: So is the nonparametric IV model locally overidentified?

Goal: Use results from efficiency literature to answer (Ai & Chen, 2012).

For X = (Y, Z,W)withY e R%, Z ¢ R%=, W € R%,and p: R¥»! - R

Blp(Y, hp(2))[W] = 0

for some unknown function hp : R4 — R satisfying [ h%,dP < .
Examples

e (NPIV) E[Y — hp(Z)|W] =0maps to p(Y,h(Z)) =Y — h(Z).
e (NPQIV) P(Y < hp(Z)|W) = 7 maps to p(Y, h(Z)) HY <h(Z)}—r.
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Setup

m(W, h) = Elp(Y, h(Z))|W]

Chen & Santos. March 9, 2016. ucsD



Setup

m(W, h) = Elp(Y, h(Z))|W]

Think of m(W,-) as map m : L% — L%, and assume differentiability in that

3}
Vm(W, hp)[s] = Em(VV7 hp +7s) Y
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Setup

m(W, h) = Elp(Y, h(Z))|W]

Think of m(W,-) as map m : L% — L%, and assume differentiability in that

3}
Vm(W, hp)[s] = Em(VV7 hp +7s) T

=0

Consider derivative as a map Vim(W, hp) : L3 — L3, and denote its range

R={feL} :f=Vm(W,hp)[s| for some s e L%}
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Setup

NPIV Example
e Here, m(W,h) = E[Y — h(Z)|W].
e Which implies Vim(W, hp)[s] = —E[s(Z)|W], and therefore

R={feL¥ : f(W)=E[s(Z)|W]for some s € L%}
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Setup

NPIV Example
e Here, m(W,h) = E[Y — h(Z)|W].
e Which implies Vim(W, hp)[s] = —E[s(Z)|W], and therefore

R={feL¥ : f(W)=E[s(Z)|W]for some s € L%}

NPQIV Example
e Here, m(W,h) = P(Y < h(Z)|W) — .
e Which implies Vin(W, hp)[s] = E[fy|zw(hp(Z)|Z,W)s(Z)|W], and

R={f€Ly: fW)=E[fyzwhp(Z)|Z,W)s(Z)|W] for some s € L}}
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Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

R =L
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Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

R =L

Relation to GMM

E[p(X. B(P))] = 0 Elp(Y, he(2))/W] = 0
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Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

R =L
Relation to GMM
Elp(X,B(P))] =0 Elp(Y,hp(Z))[W] =0
Vs E[p(X,B(P))] VE[p(Y,hp(Z))|W]
Maps: R% to R L% to L3,
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Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

R =L
Relation to GMM
Elp(X,5(P))] =0 Elp(Y, hp(Z))|W] =0
Vs E[p(X,B(P))] VE[p(Y,hp(Z))|W]
Maps: R to R% L% to L,
JustID: Mapisonto (dg =d,) Map is “onto” (R = L%,)
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Local Overidentification

Theorem Under regularity conditions, P is locally just identified if and only if

Relation to GMM
Elp(X,8(P))] =0

Vs E[p(X, 5(P))]

Maps: R4 to R%
JustID:  Mapis onto (dg = d),)

Over ID: Not onto (ds < d,)

Chen & Santos. March 9, 2016.

R =L

Elp(Y, hp(Z))|W] =0

VE[p(Y, hp(Z))|W]

L% to L3,
Map is “onto” (R = L%,)

Not onto (R & L%,)
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Local Overidentification

Alternative Characterization
R = L3, ifand only if {0} = {s € L%, : Vim(W, hp)*[s] = 0}

where Vm (W, hp) : L}, — L% is the adjoint of Vm(W, hp) : L% — L%,
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Local Overidentification

Alternative Characterization

R = L3, ifand only if {0} = {s € L%, : Vim(W, hp)*[s] = 0}
where Vm (W, hp) : L}, — L% is the adjoint of Vm(W, hp) : L% — L%,
NPIV Example

e Here, Vm(W, hp)*[s] = —E[s(W)|Z].
e Therefore, in NPIV P is locally just identified by P if and only if

E[s(W)|Z] = 0 implies s(W) =0 for all s € L},
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Local Overidentification

Alternative Characterization

R = L3, ifand only if {0} = {s € L%, : Vim(W, hp)*[s] = 0}
where Vm (W, hp) : L}, — L% is the adjoint of Vm(W, hp) : L% — L%,
NPIV Example

e Here, Vm(W, hp)*[s] = —E[s(W)|Z].
e Therefore, in NPIV P is locally just identified by P if and only if

E[s(W)|Z] = 0 implies s(W) =0 for all s € L},

NPQIV Example
e Similarly, in NPQIV P is locally just identified by P if and only if

Elfy|zw(hp(2)|Z,W)s(W)|Z] = 0 implies s(W) = 0 for all s € L},
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Discussion

Exogenous Models

e Suppose W = (Z,V) and that p(W, h(Z)) is differentiable in k.
e Then, it follows that P is locally just identified if and only if

P(E[V] = V) = 1 and P(E[Vap(Y. hp(2))|Z] £ 0) = 1
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Discussion

Exogenous Models

e Suppose W = (Z,V) and that p(W, h(Z)) is differentiable in k.
e Then, it follows that P is locally just identified if and only if

P(E[V] = V) = 1 and P(E[Vap(Y. hp(2))|Z] £ 0) = 1

Efficiency Implications
e Parameters 6 such as average derivatives, consumer surplus, etc.
= Plug-in typically efficient under “exogeneity” (Newey, 1994).
= Plug-in need not be efficient under “endogeneity” (Ai & Chen, 2012).
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Discussion

Exogenous Models
e Suppose W = (Z,V) and that p(W, h(Z)) is differentiable in k.
e Then, it follows that P is locally just identified if and only if

P(E[V] = V) = 1 and P(E[Vap(Y. hp(2))|Z] £ 0) = 1

Efficiency Implications
e Parameters 6 such as average derivatives, consumer surplus, etc.
= Plug-in typically efficient under “exogeneity” (Newey, 1994).
= Plug-in need not be efficient under “endogeneity” (Ai & Chen, 2012).

e Two stage estimation problems 6(P) = arg maxy E[q(X, 0, hp(Z))].
= Two stage efficient under “exogeneity” (Ackerberg et al. 2014).
= Two stage estimation need not be efficient under “endogeneity”.
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Conclusion

Local Overidentification
¢ Is model locally consistent with any parametric model?
e Abstracts from counting “parameters” and “restrictions”.
e Partial generalization to nonregular models.

Refutability and Efficiency
¢ Intrinsic link between refutability and efficiency.
e Generalizes connection present in GMM to regular models.

Conditional Moment Models

e Simple characterization by exploiting efficiency literature.
e Implications for plug-in and two stage estimation.

Chen & Santos. March 9, 2016. ucsD
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