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IN THIS SUPPLEMENTAL MATERIAL, we include all proofs of results stated in
the main text, a more detailed discussion of the examples introduced in Sec-
tion 2.1, and the results of our Monte Carlo study. The proof of each main
result is contained in its own appendix, which also includes a discussion of the
strategy of proof and the role of the auxiliary results. The contents of the Sup-
plemental Material are organized as follows:

Appendix A: Contains the proof of Theorem 3.2 and required auxiliary re-
sults.

Appendix B: Contains the proofs of Theorems 4.1, 4.2, Corollary 4.1, and
required auxiliary results.

Appendix C: Contains the proof of Theorem 4.3 and required auxiliary re-
sults.

Appendix D: Contains the proofs of Theorems 5.1, 5.2, 5.3, and 5.4.
Appendix E: Contains the proof of Theorem 3.3, and a discussion of regu-

larity in the incomplete linear model.
Appendix F: Discusses our Assumptions in the context of Examples 2.1, 2.2,

2.3, and 2.4.
Appendix G: Reports the results of the Monte Carlo study.
For ease of reference, the following list includes notation and definitions that

will be used in the Appendix:
a� b a≤Mb for some constant M .
‖ · ‖F the Frobenius norm ‖A‖2

F ≡ trace{A′A}.
‖ · ‖o the operator norm for linear mappings.

M the set of Borel probability measures on X ⊆RdX .
Mμ for some μ ∈M, the set Mμ ≡ {P ∈M :P� μ}.

N(Q) a subset of M that contains Q in its interior.
N(ε�F�‖ · ‖) covering numbers of size ε for F under norm ‖ · ‖.
N[ ](ε�F�‖ · ‖) bracketing numbers of size ε for F under norm ‖ · ‖.

Si the arguments of θ 	→ F(i)
S (

∫
mS(x�θ)dP(x)).

Ξ(p�Q) the maximizers of supθ∈Θ〈p�θ〉 s.t. F(
∫
m(x�θ)dQ(x))≤ 0.

APPENDIX A: PROOF OF THEOREM 3.2

This appendix contains the proof of Theorem 3.2. Several of the auxiliary
results are stated in more generality than needed so that they may be employed
in the derivations in Theorems 4.1 and 4.3 as well.

The proof of Theorem 3.2 proceeds by verifying the conditions of Theo-
rem 5.2.1 in Bickel, Klassen, Ritov, and Wellner (1993), which requires two
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2 H. KAIDO AND A. SANTOS

key ingredients: (i) characterizing the tangent space at P , which we accom-
plish in Theorem A.1, and (ii) showing that Q 	→ ν(·�Θ0(Q)) is pathwise weak-
differentiable at P , which we verify in Theorem A.2. Before proceeding to the
formal derivation of these results, we provide an outline of the general struc-
ture of the proof.

TANGENT SPACE—Theorem A.1:
Step 1: Lemma A.16 establishes that if P is open relative to Mμ in the τ-
topology, then the tangent space must be unrestricted. Intuitively, if P is open
and P ∈ P, then all distributions Q close to P must also be in P. Therefore,
knowing that P ∈ P does not contain information that may be exploited in es-
timation.
Step 2: Theorem A.1 then follows from establishing that there is a neighbor-
hoodN(P) of P such that allQ ∈N(P) satisfy: (i) Assumption 3.6(i) (shown in
Corollary A.3), (ii) Assumption 3.6(ii) (by hypothesis), (iii) Assumption 3.6(iii)
(established in Lemma A.2), and (iv) Assumption 3.6(iv) (demonstrated in
Lemma A.8).

DIFFERENTIABILITY—Theorem A.2:
Step 1: Exploiting Lemma A.3, Lemma A.4 first shows that Θ0(P) has
nonempty interior. Corollary A.2 then extends this result to hold for all Q
in a neighborhood N(P) of P .
Step 2: Next, we note that since Θ0(Q) has nonempty interior for all Q ∈N(P),
the support function has a saddle point representation. This is shown in
Lemma A.9, which also establishes that the Lagrange multipliers are unique.
Step 3: Lemma A.14 then employs the saddle point representation, the enve-
lope theorem, and auxiliary Lemma A.10, to show that Q 	→ ν(p�Θ0(Q)) is
pathwise weak-differentiable at P for any p ∈ Sdθ .
Step 4: Finally, Theorem A.2 is shown by extending the pointwise result of
Lemma A.14. The arguments exploit the continuity of Lagrange multipliers
(Lemma A.12), and an auxiliary measurability result (Lemma A.13).

LEMMA A.1: Let f : X × Θ → R be a measurable function, bounded in
(x�θ) ∈ X × Θ and such that θ 	→ f (x�θ) is equicontinuous in x ∈ X . If As-
sumption 3.2 holds and {Qα}α∈A is a net in M with Qα→Q, then

lim sup
α

sup
θ∈Θ

∣∣∣∣
∫
f (x�θ)dQα(x)−

∫
f (x�θ)dQ(x)

∣∣∣∣= 0


PROOF: Fix ε > 0 and let Nδ(θ)≡ {θ̃ ∈Θ :‖θ− θ̃‖< δ}. By equicontinuity,
for every θ ∈Θ there is a δ(θ) with

sup
x∈X �θ̃∈Nδ(θ)(θ)

∣∣f (x�θ)− f (x� θ̃)∣∣< ε
(A.1)
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By compactness of Θ, there then exists a finite collection {θ1� 
 
 
 � θK} such that
{Nδ(θi)(θi)}Ki=1 covers Θ. Hence,

∣∣∣∣
∫
f (x�θ)dQα(x)−

∫
f (x�θ)dQ(x)

∣∣∣∣(A.2)

≤ 2ε+ max
1≤i≤K

∣∣∣∣
∫
f (x�θi)

(
dQα(x)− dQ(x)

)∣∣∣∣
for any θ ∈ Θ. Since ε is arbitrary and max1≤i≤K |

∫
f (x�θi)(dQα(x) −

dQ(x))| → 0 due to f being measurable and bounded for all θ, and Qα→Q
in the τ-topology, the claim of the lemma then follows from (A.2). Q.E.D.

LEMMA A.2: If Assumptions 3.2, 3.4(i)–(ii), and 3.5 hold, then it follows that,
for every P ∈ P, there is a neighborhood N(P)⊆M such that, for all Q ∈N(P),
{∫ m(x�θ)dQ(x)}θ∈Θ is compact and {∫ m(x�θ)dQ(x)}θ∈Θ ⊂ V0.

PROOF: First note that Assumption 3.4(i)–(ii) and the dominated conver-
gence theorem imply that, for any Q ∈M,

lim
θ1→θ2

∫
m(x�θ1)dQ(x)=

∫
m(x�θ2)dQ(x)
(A.3)

Thus, since Θ is closed by Assumption 3.2, result (A.3) implies that the
set R(Q) ≡ {∫ m(x�θ)dQ(x)}θ∈Θ is closed in Rdm . Moreover, R(Q) is also
bounded by Assumption 3.4(i), and hence we conclude that R(Q) is com-
pact, which establishes the first claim of the lemma. Defining R(P)δ ≡ {v ∈
Rdm : infṽ∈R(P) ‖v − ṽ‖ < δ}, it then follows from V0 being open by Assump-
tion 3.5, R(P) being compact, and Assumption 3.6(iii) that R(P)⊂ V0. Hence,
there exists a δ0 > 0 such that R(P)δ0 ⊂ V0, and the second claim of the
lemma then follows from Lemma A.1 implying there exists a N(P) such that
R(Q)⊆ R(P)δ0 for all Q ∈N(P). Q.E.D.

COROLLARY A.1: Let Assumptions 3.2, 3.4, 3.5 hold and P ∈ P. Then there
exists a neighborhoodN(P)⊆M such that F(

∫
m(x� ·)dQ(x)) :Θ→RdF is con-

tinuously differentiable for all Q ∈N(P), and in addition,

∇θ
{
F

(∫
m(x�θ)dQ(x)

)}

=∇F
(∫

m(x�θ)dQ(x)

)∫
∇θm(x�θ)dQ(x)
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PROOF: By Lemma A.2, there is a neighborhood N(P) ⊆ M such that∫
m(x�θ)dQ(x) ∈ V0 for all (θ�Q) ∈ Θ × N(P). For any Q ∈ N(P) and any

1≤ i≤ dF , Assumption 3.5 then allows us to conclude that

∇θ
{
F(i)

(∫
m(x�θ)dQ(x)

)}
(A.4)

=∇F(i)

(∫
m(x�θ)dQ(x)

)∫
∇θm(x�θ)dQ(x)�

where the exchange of order of integration and differentiation is warranted by
the mean value theorem, the dominated convergence theorem, and Assump-
tion 3.4(ii). Moreover, by Assumptions 3.4(i)–(iii) and 3.5(ii), we have

lim
θn→θ0

∇F(i)

(∫
m(x�θn)dQ(x)

)∫
∇θm(x�θn)dQ(x)(A.5)

=∇F(i)

(∫
m(x�θ0)dQ(x)

)∫
∇θm(x�θ0)dQ(x)

by the dominated convergence theorem for any θn�θ0 ∈Θ. The corollary then
follows from (A.4) and (A.5). Q.E.D.

LEMMA A.3: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. It then fol-
lows that, for every j ∈ {1� 
 
 
 � dθ} and every θ0 ∈Θ0(P), there exists a θA ∈Θ0(P)

satisfying θ(j)0 �= θ(j)A .

PROOF: The proof is by contradiction. Suppose θ0 ∈ Θ0(P) and that, for
some j̄ ∈ {1� 
 
 
 � dθ}, we have θ(j̄) = θ(j̄)0 for all θ ∈Θ0(P). Further define Ki ≡
{θ ∈Θ :F(i)(

∫
m(x�θ)dP(x))≤ 0} and, for any A⊆Θ, let

Πj̄{A} ≡
{
c ∈R : c = θ(j̄) for some θ ∈A}
(A.6)

Since Θ is convex and F(i)(
∫
m(x� ·)dP(x)) :Θ→R is convex by Assumptions

4.2(i), 3.6(ii), and P ∈ P, it follows that Ki and
⋂

i∈A(θ0�P)
Ki are convex. Thus,

F(i)(
∫
m(x�θ0)dP(x)) < 0 for all i ∈ {1� 
 
 
 � dF} \A(θ0�P) implies

{
θ
(j̄)
0

}=Πj̄

{ ⋂
i∈A(θ0�P)

Ki

}
�(A.7)

or otherwise there would be a θA ∈ Θ0(P) with θ
(j̄)
A �= θ

(j̄)
0 . Moreover,

Corollary A.1 and P ∈ P satisfying Assumption 3.6(iv) imply ∇θ{F(i)(
∫
m(x�
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θ0)dP(x))} �= 0 for all i ∈ A(θ0�P). Hence, for each i ∈ A(θ0�P), there is a
θi ∈Θ with

F(i)

(∫
m(x�θi)dP(x)

)
< 0(A.8)

due to θ0 ∈ Θo by P ∈ P satisfying Assumption 3.6(i). Let ι : A(θ0�P) →
{1� 
 
 
 �#A(θ0�P)} be a bijection and

k∗ ≡ inf
1≤k≤#A(θ0�P)

k :
{
Πj̄

{ ⋂
i:ι(i)≤k

Ki

}
= {

θ
(j̄)
0

}}
�(A.9)

where we note 2 ≤ k∗ ≤ #A(θ0�P) due to (A.7) and {Πj̄{Ki}}o �= ∅ for all i ∈
A(θ0�P) by (A.8). Next, define

K̄ ≡
⋂

i:ι(i)≤k∗−1

Ki� Ki∗ ≡Kι−1(k∗)
(A.10)

Since Πj̄{K̄} is not singleton valued, there exists a θA ∈ K̄ with θ
(j̄)
A �= θ

(j̄)
0 . It

follows that if θ̄ ∈ K̄ ∩Ki∗ , then θ̄ /∈Ko
i∗ , for otherwise cθA+ (1− c)θ̄ ∈ K̄ ∩Ki∗

for c ∈ (0�1) sufficiently small, contradicting (A.9). We therefore conclude that
K̄ ∩Ko

i∗ = ∅, and by Theorem 5.12.3 in Luenberger (1969) that there is a p∗ ∈
Sdθ such that

sup
θ∈Ki∗

〈
θ�p∗

〉≤ inf
θ∈K̄

〈
θ�p∗

〉

(A.11)

Further note that both the infimum and supremum in (A.11) are attained at
θ0, and that since P ∈ P must satisfy Assumption 3.6(iv), that {∇θ{F(i)(

∫
m(x�

θ0)dP(x))}}i∈A(θ0�P) are linearly independent by Corollary A.1. Thus, it follows
from Theorem 9.4.1 in Luenberger (1969) and θ0 ∈Θo by P ∈ P satisfying As-
sumption 3.6(i) that

0= p∗ + γ0∇θ
{
F(ι−1(k∗))

(∫
m(x�θ0)dP(x)

)}
�(A.12)

0= p∗ +
k∗−1∑
k=1

γk∇θ
{
F(ι−1(k))

(∫
m(x�θ0)dP(x)

)}
�

for some scalar γ0 �= 0 and vector (γ1� 
 
 
 � γk∗−1) �= 0. However, result (A.12)
and Corollary A.1 contradict P ∈ P satisfying Assumption 3.6(iv) and hence
the lemma follows. Q.E.D.
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LEMMA A.4: If Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P, then there
exists a θ0 ∈Θ such that

F(i)

(∫
m(x�θ0)dP(x)

)
< 0 for all 1≤ i≤ dF


PROOF: Let 2{1�


�dF } denote the power set of {1� 
 
 
 � dF} and note that
A(·�P) :Θ→ 2{1�


�dF }. Since A(·�P) has finite range, there exists a collection
{θj}Jj=1 with J <∞ and θj ∈Θ0(P) such that, for all θ ∈Θ0(P),

A(θ�P) ∈ {A(θj�P)
}J
j=1

(A.13)

Next, select weights {wj}Jj=1 such that wj > 0 and
∑

j wj = 1, and define θ0 ≡∑
j wjθj . By convexity, we obtain

F(i)

(∫
m(x�θ0)dP(x)

)
≤

J∑
j=1

wjF
(i)

(∫
m(x�θj)dP(x)

)
(A.14)

for any 1 ≤ i ≤ dF , which implies θ0 ∈ Θ0(P). Moreover, since wj > 0 for
all 1 ≤ j ≤ J, it also follows that F(i)(

∫
m(x�θ0)dP(x)) = 0 if and only if

F(i)(
∫
m(x�θj)dP(x))= 0 for all 1≤ j ≤ J. Thus, by (A.13), we conclude that

A(θ0�P)=
J⋂
j=1

A(θj�P)=
⋂

θ∈Θ0(P)

A(θ�P)
(A.15)

Next, we aim to show A(θ0�P) = ∅, which yields the claim of the lemma.
Toward this end, note that, for any 1 ≤ i ≤ dF , if j ∈ Si, then by Lemma A.3
there exists a θA ∈ Θ0(P) with θ(j)0 �= θ

(j)
A . Thus, by convexity of Θ and P ∈ P

satisfying Assumption 3.6(ii), we obtain that cθ0 + (1 − c)θA ∈ Θ0(P) for all
c ∈ (0�1), and

F(i)

(∫
m
(
x� cθ0 + (1− c)θA

)
dP(x)

)
< 0
(A.16)

Therefore, (A.15) and (A.16) imply that Si = ∅ for all i ∈ A(θ0�P), or equiv-
alently that only linear constraints can be active at θ0. Thus, Theorem 22.2 in
Rockafellar (1970) then yields that either (A.17) or (A.18) must hold:

F(i)

(∫
m(x�θL)dP(x)

)
< 0 for all i ∈ A(θ0�P) for some θL ∈Rdθ�(A.17)

∑
i∈A(θ0�P)

γi∇θ
{
F(i)

(∫
m(x�θ0)dP(x)

)}
= 0(A.18)

for scalars {γi} with sup
i∈A(θ0�P)

γi > 0
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However, (A.18) is not possible due to P ∈ P satisfying Assumption 3.6(iv),
and hence we conclude that (A.17) must hold. Finally, since F(i)(

∫
m(x�

θ0)dP(x)) < 0 for all i ∈ {1� 
 
 
 � dF} \ A(θ0�P) and θ0 ∈Θo due to P ∈ P sat-
isfying Assumption 3.6(i), we obtain that, for c ∈ (0�1) sufficiently close to 1,
F(i)(

∫
m(x� cθ0 + (1− c)θL)dP(x)) < 0 for all 1 ≤ i ≤ dF . Hence, (A.15) im-

plies A(θ0�P)= ∅ as desired, and the claim of the lemma follows. Q.E.D.

LEMMA A.5: Let Assumptions 3.2, 3.4(i)–(ii), 3.5, 4.2(i) hold and P ∈ P.
Then, there exists a neighborhood N(P) ⊆ M such that the mapping (θ�Q) 	→
F(
∫
m(x�θ)dQ(x)) is continuous at all (θ�Q) ∈Θ×N(P).

PROOF: Recall that, by Lemma A.2, there is N(P) ⊆ M such that
∫
m(x�

θ)dQ(x) ∈ V0 for all (θ�Q) ∈Θ×N(P). Next, let {θα�Qα}α∈A be a net such that
(θα�Qα)→ (θ0�Q0) ∈ Θ × N(P). Since m : X × Θ→ Rdm is bounded by As-
sumption 3.4(i), and θ 	→m(x�θ) is equicontinuous in x by Assumption 3.4(ii),
it follows from Lemma A.1 that

lim sup
α

sup
θ∈Θ

∥∥∥∥F
(∫

m(x�θ)dQα(x)

)
− F

(∫
m(x�θ)dQ0(x)

)∥∥∥∥= 0�(A.19)

due to F being uniformly continuous on V0 by Assumption 3.5(ii). Moreover,
since

∫
m(x�θ0)dQ0(x) ∈ V0, we have

F

(∫
m(x�θα)dQ0(x)

)
→ F

(∫
m(x�θ0)dQ0(x)

)
(A.20)

by Assumption 3.4(i)–(ii) and the dominated convergence theorem. Therefore,
results (A.19) and (A.20) imply that

F

(∫
m(x�θα)dQα(x)

)
→ F

(∫
m(x�θ0)dQ0(x)

)
�(A.21)

which establishes the continuity of (θ�Q)→ F(
∫
m(x�θ)dQ(x)) onΘ×N(P)

as claimed. Q.E.D.

COROLLARY A.2: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then,
there exists a θ0 ∈ Θ and a neighborhood N(P) ⊆ M such that F(i)(

∫
m(x�

θ0)dQ(x)) < 0 for all 1≤ i≤ dF and Q ∈N(P).

PROOF: The claim follows immediately from Lemma A.4 implying there
exists θ0 ∈ Θ such that F(i)(

∫
m(x�θ0)dP(x)) < 0 for all 1 ≤ i ≤ dF , and

Lemma A.5 implying Q 	→ F(
∫
m(x�θ0)dQ(x)) is continuous at Q = P .

Q.E.D.
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LEMMA A.6: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then there
isN(P)⊆M such thatΘ0(Q) �= ∅ is convex for all Q ∈N(P), and the correspon-
dence Q 	→Θ0(Q) is continuous at all Q ∈N(P).

PROOF: By Θ being convex, Corollary A.2, Assumption 4.2(i), and P ∈ P
satisfying Assumption 3.6(ii), there exists aN(P)⊆M and θ0 ∈Θ such that, for
all Q ∈ N(P) and 1 ≤ i ≤ dF , the functions F(i)(

∫
m(x� ·)dQ(x)) :Θ→ R are

convex, and F(i)(
∫
m(x�θ0)dQ(x)) < 0. Thus, in what follows, we letΘ0(Q) be

a convex set with nonempty interior. Moreover, by Lemma A.5, N(P) may be
chosen so that (θ�Q) 	→ F(

∫
m(x�θ)dQ(x)) is continuous on Θ×N(P).

We first establish that Q 	→ Θ0(Q) is lower hemicontinuous at any Q0 ∈
N(P). By Theorem 17.19 in Aliprantis and Border (2006), it suffices to show
that, for any θ∗ ∈Θ0(Q0) and net {Qα}α∈A with Qα→Q0, there exists a subnet
{Qαβ}β∈B and net {θβ}β∈B such that θβ ∈Θ0(Qαβ) for all β ∈B and θβ→ θ∗. If
θ∗ ∈Θo

0(Q0), then F(i)(
∫
m(x�θ∗)dQ0(x)) < 0 for all 1≤ i ≤ dF , and hence by

Lemma A.5 and Qα→Q0, there exists α0 such that θ∗ ∈Θ0(Qα) for all α≥ α0.
Therefore, defining B≡ {α ∈A :α≥ α0},Qαβ =Qβ, and setting θβ = θ∗, we ob-
tain that {Qαβ}β∈B is a subnet with θβ ∈Θ0(Qαβ) and trivially satisfies θβ→ θ∗.
Suppose, on the other hand, that θ∗ ∈ ∂Θ0(Q0). Since Θ0(Q0) is convex with
nonempty interior, there is a sequence θ̃k with θ̃k → θ∗ and θ̃k ∈ Θo

0(Q0) for
all k. By Lemma A.5, there then exists a α0�k such that θ̃k ∈ Θ0(Qα) for all
α ≥ α0�k. Let B ≡ A × N and, for any β = (α�k), let αβ = α̃ for some α̃ ∈ A

with α̃≥ α and α̃≥ α0�k and θβ = θ̃k. {Qαβ}β∈B is then a subnet of {Qα}α∈A with
θβ ∈Θ0(Qαβ) and θβ→ θ∗.

Next, we show that Q 	→Θ0(Q) is upper hemicontinuous at any Q0 ∈N(P).
By Theorem 17.16 in Aliprantis and Border (2006), it suffices to show that any
net {Qα�θα}α∈A such that Qα→Q0 and θα ∈Θ0(Qα) for all α ∈ A is such that
{θα}α∈A has a limit point θ∗ ∈Θ0(Q0). Compactness ofΘ, however, implies that
there exists a subnet {θαβ}β∈B such that θαβ → θ∗ for some θ∗ ∈Θ. Therefore,
since θαβ ∈Θ0(Qαβ) for all β ∈B, we obtain

0≥ F
(∫

m(x�θαβ)dQαβ(x)

)
→ F

(∫
m
(
x�θ∗

)
dQ0(x)

)
(A.22)

by Lemma A.5. Thus, θ∗ ∈ Θ0(Q0) and upper hemicontinuity is established.
Since, as argued, Q 	→ Θ0(Q) is also lower hemicontinuous, the claim of the
lemma immediately follows. Q.E.D.

COROLLARY A.3: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then,
there exists a neighborhood N(P) ⊆ M such that ∅ �= Θ0(Q) ⊂ Θo for all Q ∈
N(P).
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PROOF: Since θ 	→ F(
∫
m(x�θ)dP(x)) is continuous in θ ∈ Θ by Lemma

A.5, it follows that Θ0(P) is closed. Hence, since ∂Θ is closed as well and
Θ0(P)∩ ∂Θ= ∅ due to P ∈ P satisfying Assumption 3.6(i), we must have that

inf
θ1∈Θ0(P)

inf
θ2∈∂Θ

‖θ1 − θ2‖> 0
(A.23)

Therefore, there exists an open set U such that Θ0(P) ⊂ U ⊂ Θo. Since by
Lemma A.6 the correspondence Q 	→ Θ0(Q) is upper hemicontinuous at P ,
there then exists a N(P) ⊆ M such that, for all Q ∈ N(P), we have ∅ �=
Θ0(Q)⊂U ⊂Θo; see Definition 17.2 in Aliprantis and Border (2006). Q.E.D.

LEMMA A.7: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and define the
correspondence

Ξ(p�Q)≡ arg max
θ∈Θ

{
〈p�θ〉 s.t. F

(∫
m(x�θ)dQ(x)

)
≤ 0

}

(A.24)

Then there is N(P)⊆M with (p�Q) 	→Ξ(p�Q) nonempty, compact, and upper
hemicontinuous on Sdθ ×N(P).

PROOF: By Lemma A.6, there exists a N(P)⊆M such that Θ0(Q) �= ∅ and
Q 	→ Θ0(Q) is continuous on N(P). Since by Lemma A.5 the set Θ0(Q) ⊆ Θ
is closed, Assumption 3.2 implies Θ0(Q) is compact. Hence, Ξ(p�Q) is well
defined as the maximum is indeed attained for all (p�Q) ∈ Sdθ ×N(P). Con-
tinuity of Q 	→ Θ0(Q) and Theorem 17.31 in Aliprantis and Border (2006)
then imply (p�Q) 	→Ξ(p�Q) is compact valued and upper hemicontinuous.

Q.E.D.

LEMMA A.8: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then, there
exists a neighborhood N(P) ⊆ M so that {∇F(i)(

∫
m(x�θ)dQ(x))

∫ ∇θm(x�
θ)dQ(x)}i∈A(θ�Q) are linearly independent for all θ ∈Θ0(Q) and Q ∈N(P).

PROOF: The proof is by contradiction. Let NP be the neighborhood system
of P with direction V �W whenever V ⊆W , which forms a directed set. If the
lemma fails to hold, then, for A=NP , there exists a net {Qα�θα}α∈A such that
Qα → P , θα ∈ Θ0(Qα) and the vectors {∇F(i)(

∫
m(x�θα)dQα(x))

∫ ∇θm(x�
θα)dQα(x)}i∈A(θα�Qα) are not linearly independent for all α ∈ A. Since by
Lemma A.6 the correspondence Q 	→ Θ0(Q) is upper hemicontinuous in
a neighborhood of P , we may pass to a subnet {Qαβ�θαβ}β∈B such that
(Qαβ�θαβ)→ (P�θ∗) with θ∗ ∈ Θ0(P). Further note that for any index i ∈
Ac(θ∗�P), Lemma A.5 implies that

F(i)

(∫
m(x�θαβ)dQαβ(x)

)
→ F(i)

(∫
m
(
x�θ∗

)
dP(x)

)
< 0
(A.25)
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Therefore, there is a β0 such that, if β ≥ β0, then the constraints that are
inactive under (θ∗�P) are also inactive under (θαβ�Qαβ). Equivalently, for
β ≥ β0, A(θαβ�Qαβ) ⊆ A(θ∗�P), and hence, in establishing a contradiction,
it suffices to show {∇F(i)(

∫
m(x�θαβ)dQαβ(x))

∫ ∇θm(x�θαβ)dQαβ(x)}i∈A(θ∗�P)
are linearly independent for some β≥ β0.

Toward this end, notice that Assumption 3.4(ii)–(iii) and Lemma A.1 imply
that, uniformly in θ ∈Θ,∫

∇θm(x�θ)dQαβ(x)→
∫
∇θm(x�θ)dP(x)
(A.26)

Since ∇θm is uniformly bounded and continuous in θ, the dominated conver-
gence theorem and (A.26) yield∫

∇θm(x�θαβ)dQαβ(x)→
∫
∇θm

(
x�θ∗

)
dP(x)
(A.27)

Similarly, since v 	→ ∇F(v) is uniformly continuous on V0 by Assump-
tion 3.5(ii) and

∫
m(x�θαβ)dQαβ(x) ∈ V0 forβ sufficiently large by Lemma A.2,

Lemma A.1 applied to θ 	→m(x�θ) and result (A.27) yield

∇F
(∫

m(x�θαβ)dQαβ(x)

)∫
∇θm(x�θαβ)dQαβ(x)(A.28)

→∇F
(∫

m
(
x�θ∗

)
dP(x)

)∫
∇θm

(
x�θ∗

)
dP(x)


However, since P ∈ P satisfies Assumption 3.6(iv), the vectors {∇F(i)(
∫
m(x�

θ∗)dP(x))
∫ ∇θm(x�θ∗)dP(x)}i∈A(θ∗�P) are linearly independent, and hence by

(A.28), so must {∇F(i)(
∫
m(x�θαβ)dQαβ(x))

∫ ∇θm(x�θαβ)dQαβ(x)}i∈A(θ∗�P)
for β ≥ β1 and some β1 ∈B. Thus, the contradiction is established and the
claim of the lemma follows. Q.E.D.

LEMMA A.9: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then there
is a neighborhood N(P)⊆M such that, for all Q ∈N(P) and p ∈ Sdθ , there is a
unique λ(p�Q) ∈RdF satisfying

sup
θ∈Θ0(Q)

〈p�θ〉 = sup
θ∈Θ

{
〈p�θ〉 + λ(p�Q)′F

(∫
m(x�θ)dQ(x)

)}

(A.29)

PROOF: By Assumption 4.2(i), Corollary A.2, and P ∈ P satisfying Assump-
tion 3.6(ii), there is a N1(P)⊆M such that, for all Q ∈N1(P), there is a θ0 ∈Θ
with F(i)(

∫
m(x�θ0)dQ(x)) < 0 for all 1 ≤ i ≤ dF and F(i)(

∫
m(x� ·)dQ(x)) :
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Θ→R is convex for all 1≤ i≤ dF . Since Θ is compact and convex by Assump-
tion 3.2, the optimization problem

sup
θ∈Θ
〈p�θ〉 s.t. F

(∫
m(x�θ)dQ(x)

)
≤ 0(A.30)

satisfies the conditions of Corollary 28.2.1 in Rockafellar (1970) for all Q ∈
N1(P) and all p ∈ Sdθ . We can therefore conclude that the equality in (A.29)
holds for some λ(p�Q) ∈RdF .

Next, we show that there exists a N(P)⊆N1(P) such that λ(p�Q) is unique
for all p ∈ Sdθ and Q ∈ N(P). To this end, note that, by Lemma A.7 and
Corollary A.3, there exists a N2(P) ⊆ N1(P) such that Ξ(p�Q) as defined in
(A.24) satisfies ∅ �=Ξ(p�Q)⊆Θ0(Q)⊂Θo for all (p�Q) ∈ Sdθ ×N2(Q). The-
orem 8.3.1 in Luenberger (1969) then implies that any θ∗ ∈Ξ(p�Q) is also a
maximizer of the dual problem, and hence, for any θ∗ ∈Ξ(p�Q),

p′ + λ(p�Q)′∇F
(∫

m
(
x�θ∗

)
dQ(x)

)∫
∇θm

(
x�θ∗

)
dQ(x)= 0�(A.31)

by Corollary A.1 for all Q in some neighborhood N3(P) ⊆ N2(P). Result
(A.31) represents a linear equation in λ(p�Q) ∈ RdF . However, by the com-
plementary slackness conditions, λ(i)(p�Q)= 0, for any i ∈ Ac(θ∗�Q). There-
fore, the linear system in equation (A.31) can be reduced to dθ equations and
#A(θ∗�Q) unknowns. Furthermore, by Lemma A.8, there is a neighborhood
N(P)⊆N3(P) with {∇F(i)(

∫
m(x�θ∗)dQ(x))

∫ ∇θm(x�θ∗)dQ(x)}i∈A(θ∗�Q) lin-
early independent for all Q ∈N(P) and any θ∗ ∈Θ0(Q). Hence, we conclude
that, for any Q ∈N(P), the solution to equation (A.31) in λ(p�Q) ∈RdF satis-
fying (A.30) is unique and the claim of the lemma follows. Q.E.D.

LEMMA A.10: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and Ξ(p�Q)
be as in (A.24). Then, there exists a neighborhood N(P) ⊆ M such that, for
each (Q�p) ∈ N(P) × Sdθ and all 1 ≤ i ≤ dF , one of the following must hold:
(i) λ(i)(p�Q)= 0, or (ii) θ(j)1 = θ(j)2 for all j ∈ Si and all θ1� θ2 ∈Ξ(p�Q).

PROOF: Recall that we refer to the arguments of F(i)
S (

∫
mS(x� ·)dQ(x)) as

the coordinates of θ corresponding to indices in Si (as in (4)). By P ∈ P satis-
fying Assumption 3.6(ii) and Lemma A.7, there is a N(P) ⊆M such that, for
all Q ∈ N(P) and 1 ≤ i ≤ dF , the functions F(i)

S (
∫
mS(x� ·)dQ(x)) are strictly

convex in their arguments, and Ξ(p�Q) �= ∅ for all p ∈ Sdθ . To establish the
lemma, we aim to show that condition (i) must hold whenever (ii) fails. To this
end, suppose there exists a 1 ≤ i ≤ dF such that θ(j)1 �= θ(j)2 for some j ∈ Si and
θ1� θ2 ∈ Ξ(p�Q). Next, define θL = cθ1 + (1 − c)θ2 with c ∈ (0�1) and note
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θ
(j)
1 �= θ(j)2 and j ∈ Si, and P ∈ P satisfying Assumption 3.6(ii) imply

F(i)

(∫
m(x�θL)dQ(x)

)
(A.32)

< cF(i)

(∫
m(x�θ1)dQ(x)

)
+ (1− c)F(i)

(∫
m(x�θ2)dQ(x)

)
≤ 0�

where the second inequality follows from θ1� θ2 ∈ Θ0(Q). However, since
Θ is convex by Assumption 3.2, Θ0(Q) is convex as well and hence θL ∈
Θ0(Q). Since 〈p�θL〉 = c〈p�θ1〉 + (1− c)〈p�θ2〉, we must have θL ∈Ξ(p�Q),
and therefore (A.32) and the complementary slackness condition imply
λ(i)(p�Q)= 0, establishing the lemma. Q.E.D.

LEMMA A.11: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and λ(p�Q)
be as in (A.29). Then, there exists a N(P)⊆M such that ‖λ(p�Q)‖ is uniformly
bounded in (p�Q) ∈ Sdθ ×N(P).

PROOF: We establish the claim by contradiction. Let NP denote the neigh-
borhood system of P with direction V �W whenever V ⊆W , let N be the nat-
ural numbers, and note NP ×N then forms a directed set. If the claim is false,
then, setting A=NP×N and α= (V �k) ∈A, we may find a net {Qα�pα�θα}α∈A

such that, for all α ∈A,∥∥λ(pα�Qα)
∥∥> k� Qα ∈ V � pα ∈ Sdθ� θα ∈Ξ(pα�Qα)�(A.33)

whereΞ(p�Q) is as in (A.24). However, by: (i) (p�Q) 	→Ξ(p�Q) being upper
hemicontinuous and compact valued in a neighborhood of P , and (ii) Sdθ being
compact, we may pass to a subnet {Qαβ�pαβ�θαβ}β∈B such that

(
Qαβ�pαβ�θαβ�

∥∥λ(pαβ�Qαβ)
∥∥)→ (

P�p∗� θ∗�+∞)
(A.34)

for some
(
p∗� θ∗

) ∈ Sdθ ×Ξ(p∗�P)

Since the number of constraints is finite, there is a set of indices C ⊆ {1� 
 
 
 � dF}
such that, for every β0 ∈ B, there exists a β ≥ β0 with A(θαβ�Qαβ) =
C . Letting G ≡ B, we may then set αβγ = αβ̃ for some β̃ ≥ β satisfying
A(θα

β̃
�Qα

β̃
)= C . In this way, we obtain a subnet which, for simplicity, we de-

note {Qαγ�pαγ� θαγ }γ∈G, with

(
Qαγ�pαγ� θαγ �

∥∥λ(pαγ�Qαγ)
∥∥)→ (

P�p∗� θ∗�+∞)
�(A.35)

A(θαγ �Qαγ)= C ∀γ ∈G




EFFICIENT ESTIMATION OF MODELS 13

Next, let λC(pαγ�Qαγ) and ∇CF(
∫
m(x�θαγ)dQαγ(x)) respectively be the #C×

1 vector and #C × dm matrix that stack components of λ(pαγ�Qαγ) and
∇F(∫ m(x�θαγ)dQαγ(x)) whose indexes belong to C . Similarly, define

M(θαγ�Qαγ)≡∇CF

(∫
m(x�θαγ)dQαγ(x)

)∫
∇θm(x�θαγ)dQαγ(x)
(A.36)

By Lemma A.8, there is a γ0 such that M(θαγ�Qαγ)M(θαγ �Qαγ)
′ is invertible

for all γ ≥ γ0. Therefore, since by the complementary slackness conditions
λ(i)(pαγ �Qαγ)= 0 for all i /∈ C , we obtain from result (A.31) that

λC(pαγ �Qαγ)=−
(
M(θαγ�Qαγ)M(θαγ �Qαγ)

′)−1
M(θαγ�Qαγ)pαγ 
(A.37)

Additionally, since (θαγ �Qαγ)→ (θ∗�P) as in (A.34), we obtain from result
(A.28) and definition (A.36) that

M(θαγ�Qαγ)M(θαγ �Qαγ)
′ →M

(
θ∗�P

)
M
(
θ∗�P

)′

(A.38)

For a symmetric matrix Σ, let ξ(Σ) denote its smallest eigenvalue and note
ξ(M(θ∗�P)M(θ∗�P)′) > 2ε for some ε > 0 by P ∈ P satisfying Assump-
tion 3.6(iv). Since eigenvalues are continuous under ‖ · ‖F by Corollary III.2.6
in Bhatia (1997), we obtain from (A.38) that there is a γ1 ≥ γ0 ∈G such that,
for all γ ≥ γ1, we have

ξ
(
M(θαγ�Qαγ)M(θαγ �Qαγ)

′)> ε
(A.39)

Furthermore, since λ(i)(pαγ �Qαγ) = 0 for all i /∈ C , it follows that ‖λ(pαγ�
Qαγ)‖ = ‖λC(pαγ�Qαγ)‖ and hence

∥∥λ(pαγ�Qαγ)
∥∥= ∥∥λC(pαγ�Qαγ)

∥∥(A.40)

≤ ∥∥(M(θαγ�Qαγ)M(θαγ �Qαγ)
′)−1∥∥

o

× ∥∥M(θαγ�Qαγ)
∥∥
F
× ‖p‖

≤ ξ−1
(
M(θαγ�Qαγ)M(θαγ �Qαγ)

′)× sup
v∈V0

∥∥∇F(v)∥∥
F

× sup
(x�θ)∈X×Θ

∥∥∇θm(x�θ)∥∥F�
where the final inequality holds for all γ ≥ γ2 for some γ2 ∈ G with γ2 ≥ γ1

by Lemma A.2. However, (A.39), (A.40), and Assumptions 3.4(ii), 3.5(ii) im-
ply ‖λ(pαγ �Qαγ)‖ is uniformly bounded for all γ ≥ γ2, contradicting (A.35).

Q.E.D.
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LEMMA A.12: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and λ(p�Q)
be as in (A.29). Then, there exists a N(P)⊆M such that the function (p�Q) 	→
λ(p�Q) is continuous on (p�Q) ∈ Sdθ ×N(P).

PROOF: By Lemmas A.9 and A.11, there exists a N1(P) ⊆ M such that
λ(p�Q) is well defined, unique, and uniformly bounded for all (p�Q) ∈ Sdθ ×
N1(P). Therefore, lettingΛ≡ cl{λ(p�Q) : (p�Q) ∈ Sdθ×N1(P)}, it follows that
Λ is compact in RdF . By Lemma A.9 and Theorem 8.6.1 in Luenberger (1969),
we then have

λ(p�Q)= arg min
λ≥0

V (λ�p�Q)= arg min
λ∈Λ

V (λ�p�Q)�(A.41)

V (λ�p�Q)≡max
θ∈Θ

{
〈p�θ〉 + λ′F

(∫
m(x�θ)dQ(x)

)}



Since (θ�Q) 	→ F(
∫
m(x�θ)dQ(x)) is continuous on a neighborhood N(P)⊆

N1(P) by Lemma A.5, compactness ofΘ, and Theorem 17.31 in Aliprantis and
Border (2006) imply (λ�p�Q) 	→ V (λ�p�Q) is continuous onΛ×Sdθ×N(P).
Therefore, by (A.41), compactness of Λ and a second application of Theo-
rem 17.31 in Aliprantis and Border (2006), it follows that (p�Q) 	→ λ(p�Q) is
upper hemicontinuous on Sdθ ×N(P). However, since (p�Q) 	→ λ(p�Q) is a
singleton valued correspondence on Sdθ ×N(P) by Lemma A.9, we conclude
that it is, in fact, a continuous function. Q.E.D.

LEMMA A.13: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and Ξ(p�P)
be as in (A.24). Then, there exists a Borel measurable selector θ∗ : Sdθ →Θ with
θ∗(p) ∈Ξ(p�P) for all p ∈ Sdθ .

PROOF: By Lemma A.7, p 	→Ξ(p�P) is upper hemicontinuous in p ∈ Sdθ

and hence weakly measurable; see Definition 18.1 in Aliprantis and Border
(2006). Since p 	→Ξ(p�P) is nonempty and compact valued by Lemma A.7,
Theorem 18.13 in Aliprantis and Border (2006) implies there is a measurable
selector θ∗ : Sdθ →Θ and the lemma follows. Q.E.D.

LEMMA A.14: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold, and η 	→ hη be a curve
in S. Then, there is a neighborhood N ⊆R of 0 such that, for all η0 ∈N , p ∈ Sdθ ,
Ξ(p�Pη) as in (A.24), and λ(p�Pη) ∈RdF as in (A.29),

∂

∂η
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=η0

(A.42)

= 2λ(p�Pη0)
′∇F

(∫
m
(
x�θ∗

)
h2
η0
(x)dμ(x)

)

×
∫
m
(
x�θ∗

)
ḣη0(x)hη0(x)dμ(x) for any θ∗ ∈Ξ(p�Pη0)
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PROOF: For any 1 ≤ i ≤ dm and θ ∈ Θ, first observe that by rearranging
terms it follows that, for any η0,

∣∣∣∣
∫
m(i)(x�θ)

{
h2
η0
(x)− h2

η(x)− 2(η0 −η)hη0(x)ḣη0(x)
}
dμ(x)

∣∣∣∣(A.43)

=
∣∣∣∣
∫
m(i)(x�θ)

{(
hη(x)− hη0(x)

)2

+ 2hη0(x)
(
hη(x)− hη0(x)+ (η0 −η)ḣη0(x)

)}
dμ(x)

∣∣∣∣
= o(|η−η0|

)
�

where the final result holds bym being bounded by Assumption 3.4(i), Cauchy–
Schwarz, ‖hη−hη0‖2

L2
μ
=O(|η−η0|2), and ‖hη−hη0−(η−η0)ḣη0‖L2

μ
= o(|η−

η0|) due to η 	→ hη being Fréchet differentiable. Moreover, ‖hη − hη0‖L2
μ
=

o(1) implies Pη → Pη0 with respect to the total variation metric, and hence
also with respect to the τ-topology. Thus, for η0 in a neighborhood of zero,
result (A.43), Lemma A.2, and Assumption 3.5(i)–(ii) yield

∂

∂η
F

(∫
m(x�θ)h2

η(x)dμ(x)

)∣∣∣∣
η=η0

(A.44)

= 2∇F
(∫

m(x�θ)h2
η0
(x)dμ(x)

)

×
∫
m(x�θ)ḣη0(x)hη0(x)dμ(x)


Since η 	→ hη is continuously Fréchet differentiable, result (A.28) implies that
the derivative in (A.44) is continuous in η0 in a neighborhood of zero. There-
fore, Assumption 3.3 implying Assumption 4.2(i), Lemma A.9, and Corollary 5
in Milgrom and Segal (2002) imply η 	→ ν(p�Θ0(Pη)) is directionally differen-
tiable in a neighborhood of zero, with

∂

∂η+
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=η0

(A.45)

= max
θ∗∈Ξ(p�Pη0 )

2λ(p�Pη0)
′∇F

(∫
m
(
x�θ∗

)
h2
η0
(x)dμ(x)

)

×
∫
m
(
x�θ∗

)
ḣη0(x)hη0(x)dμ(x)�
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∂

∂η−
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=η0

(A.46)

= min
θ∗∈Ξ(p�Pη0 )

2λ(p�Pη0)
′∇F

(∫
m
(
x�θ∗

)
h2
η0
(x)dμ(x)

)

×
∫
m
(
x�θ∗

)
ḣη0(x)hη0(x)dμ(x)�

where ∂
∂η+ and ∂

∂η− denote right and left derivatives, respectively. Note, how-
ever, that by Lemma A.10, for all 1 ≤ i ≤ dF such that λ(i)(p�Pη0) �= 0, we
must have θ(j)1 = θ(j)2 for all j ∈ Si and all θ1� θ2 ∈Ξ(p�Pη0). Therefore, since
Aθ trivially does not depend on η, it follows from (3), (4), and results (A.44),
(A.45), and (A.46) that

∂

∂η+
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=η0

(A.47)

= max
θ∗∈Ξ(p�Pη0 )

∑
i:λ(i)(p�Pη0 ) �=0

λ(i)(p�Pη0)

× ∂

∂η
F(i)
S

(∫
m
(
x�θ∗

)
h2
η(x)dμ(x)

)∣∣∣∣
η=η0

= min
θ∗∈Ξ(p�Pη0 )

∑
i:λ(i)(p�Pη0 ) �=0

λ(i)(p�Pη0)

× ∂

∂η
F(i)
S

(∫
m
(
x�θ∗

)
h2
η(x)dμ(x)

)∣∣∣∣
η=η0

= ∂

∂η−
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=η0




Thus, the claim of the lemma follows from (A.45), (A.46), and (A.47).
Q.E.D.

LEMMA A.15: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold, and η 	→ hη be a curve
in S. Then:

(i) there is a neighborhood N ⊆ R of 0 such that ∂
∂η
ν(p�Θ0(Pη))|η=η0 is

bounded in (p�η0) ∈ Sdθ ×N , and
(ii) the function (p�η0) 	→ ∂

∂η
ν(p�Θ0(Pη))|η=η0 is continuous at all (p�η0) ∈

Sdθ ×N .
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PROOF: To establish the first claim, notice that, by Lemmas A.2, A.14, and
the Cauchy–Schwarz inequality,∣∣∣∣ ∂∂ην

(
p�Θ0(Pη)

)∣∣∣∣
η=η0

∣∣∣∣(A.48)

≤ 2
∥∥λ(p�Pη0)

∥∥× sup
v∈V0

∥∥∇F(v)∥∥
F

×
√
dm sup

(x�θ)∈X×Θ

∥∥m(x�θ)∥∥× ‖ḣη0‖L2
μ
× ‖hη0‖L2

μ
�

for η0 in a neighborhood of zero. Since ‖ḣη0‖L2
μ

is continuous in η0 due to
η 	→ hη being continuously Fréchet differentiable, it attains a finite maximum
in a neighborhood of zero. Thus, ‖ḣη0‖L2

μ
is uniformly bounded, and since

‖hη0‖L2
μ
= 1 for all η0, Lemma A.11, Assumptions 3.4(i), 3.5(ii), and (A.48)

establish the first claim of the lemma.
To establish the second claim, let (pn�ηn) → (p0�η0) and select θ∗n ∈

Ξ(pn�Pηn) for Ξ(p�Q) as in (A.24). Since ‖m(x�θ)‖ is uniformly bounded
by Assumption 3.4(i), we obtain, for any 1≤ i≤ dm, that

lim
n→∞

sup
θ∈Θ

∣∣∣∣
∫
m(i)(x�θ)

{
ḣηn(x)hηn(x)− ḣη0(x)hη0(x)

}
dμ(x)

∣∣∣∣(A.49)

≤ sup
(x�θ)∈X×Θ

∥∥m(x�θ)∥∥
× lim

n→∞
{‖ḣηn − ḣη0‖L2

μ
‖hηn‖L2

μ
+ ‖hηn − hη0‖L2

μ
‖ḣη0‖L2

μ

}
= 0�

due to the Cauchy–Schwarz inequality, η 	→ hη being continuously Fréchet
differentiable, and ‖hη‖L2

μ
= 1. Next, let {nk} be an arbitrary subsequence, and

note that since Lemma A.7 implies (p�η) 	→Ξ(p�Pη) is upper hemicontin-
uous provided η is in a neighborhood of zero, there is a further subsequence
{θ∗nkj } such that θ∗nkj → θ∗ for some θ∗ ∈Ξ(p0�Pη0). Along such a subsequence,

we obtain, from (A.28), (A.49), and the dominated convergence theorem,

lim
j→∞

∇F
(∫

m
(
x�θ∗nkj

)
h2
ηnkj

(x)dμ(x)

)
(A.50)

×
∫
m
(
x�θ∗nkj

)
ḣηnkj

(x)hηnkj
(x)dμ(x)

=∇F
(∫

m
(
x�θ∗

)
h2
η0
(x)dμ(x)

)∫
m
(
x�θ∗

)
ḣη0(x)hη0(x)dμ(x)
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Hence, by Lemmas A.12 and A.14 and result (A.50), the subsequence {nk} has
a further subsequence {nkj }, with

lim
j→∞

∂

∂η
ν
(
pnkj

�Θ0(Pη)
)∣∣∣∣
η=ηnkj

= ∂

∂η
ν
(
p0�Θ0(Pη)

)∣∣∣∣
η=η0


(A.51)

Therefore, since the subsequence {nk} was arbitrary, result (A.51) must also
hold with {n} in place of {nkj }. We conclude that (p�η0) 	→ ∂

∂η
ν(p�Θ0(Pη))|η=η0

is continuous, and the second claim of the lemma then follows. Q.E.D.

LEMMA A.16: Let Mμ ≡ {Q ∈ M :Q� μ}, Q ⊆ Mμ, and D ≡ {s ∈ L2
μ : s =√

dQ/dμ for some Q ∈ Q}. If Q is open relative to Mμ with respect to the τ-
topology, then, for every Q ∈Q, the tangent space of D at s =√

dQ/dμ is given by
Ḋ= {h ∈L2

μ :
∫
h(x)s(x)dμ(x)= 0}.

PROOF: The proof exploits a construction in Example 3.2.1 of Bickel et al.
(1993). Define

T≡
{
h ∈L2

μ :
∫
h(x)s(x)dμ(x)= 0

}
�(A.52)

and note that, by Proposition 3.2.3 in Bickel et al. (1993), we have Ḋ ⊆ T.
For the reverse inclusion, pick h ∈ T and let Ψ : R→ (0�∞) be continuously
differentiable, with Ψ(0) = Ψ ′(0) = 1 and Ψ , Ψ ′, and Ψ ′/Ψ bounded. For
s ≡√

dQ/dμ, define a parametric family of distributions to be pointwise given
by

h2
η(x)≡ b(η)s2(x)Ψ

(
2ηh(x)
s(x)

)
�(A.53)

b(η)≡
[∫

Ψ

(
2ηh(x)
s(x)

)
dQ(x)

]−1




Employing Proposition 2.1.1 in Bickel et al. (1993), it is straightforward to
verify that η 	→ hη is a curve in L2

μ such that h0 = s. Further note that since
Q is open relative to Mμ, there exists a neighborhood N(Q) ⊆ M in the τ-
topology such that N(Q)∩Mμ ⊆Q. Let Qη satisfy hη =

√
dQη/dμ and notice

that 2−1/2‖hη − s‖L2
μ

equals the Hellinger distance between Qη and Q. Since
convergence with respect to the Hellinger distance implies convergence with
respect to the τ-topology, it follows that there is a neighborhood N ⊆ R of 0
such that Qη ∈N(Q)∩Mμ ⊆Q for all η ∈N . We conclude η 	→ hη is a regular
parametric submodel. Moreover, by direct calculation, we also have

ḣ0(x)= 1
2
b(0)s2(x)Ψ ′(0)2h(x)

s(x)s(x)
+ 1

2
b′(0)s2(x)Ψ(0)

s(x)
= h(x)�(A.54)
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where we have exploited that, by the dominated convergence theorem, b′(0)=
2
∫
Ψ ′(0)h(x)s(x)dμ(x) = 0 due to h ∈ T. Hence, from (A.54) we conclude

that h ∈ Ḋ and therefore that T= Ḋ, which establishes the lemma. Q.E.D.

THEOREM A.1: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold and P ∈ P. Then, the
tangent space of S at s ≡√

dP/dμ is given by Ṡ= {h ∈ L2
μ :
∫
h(x)s(x)dμ(x)=

0}.
PROOF: The claim follows from Assumption 3.3 implying 4.2(i), Lemma

A.16, and Lemmas A.2, A.8, Corollary A.3, and P ∈ P satisfying Assump-
tion 3.6(ii) implying that P is open in Mμ ≡ {Q ∈M :Q� μ}. Q.E.D.

THEOREM A.2: If Assumptions 3.2, 3.3, 3.4, and 3.5 hold, then the map-
ping ρ : P→ C(Sdθ) pointwise defined by ρ(P) = ν(·�Θ0(P)) is pathwise weak-
differentiable at any P ∈ P. Moreover, for s ≡√

dP/dμ and λ(p�Q) as defined
in (A.29), the derivative ρ̇ : Ṡ→ C(Sdθ) satisfies

ρ̇(ḣ0)(p)= 2λ(p�P)′∇F
(∫

m
(
x�θ∗(p)

)
dP(x)

)

×
∫
m
(
x�θ∗(p)

)
ḣ0(x)s(x)dμ(x)�

where θ∗ : Sdθ → Θ is Borel measurable and satisfies θ∗(p) ∈ Ξ(p�P) (as in
(A.24)) for all p ∈ Sdθ .

PROOF: The existence of a Borel measurable θ∗ : Sdθ →Θ satisfying θ∗(p) ∈
Ξ(p�P) for all p ∈ Sdθ follows from Lemma A.13. Moreover, notice that in-
deed ρ̇(ḣ0) ∈ C(Sdθ) for all ḣ0 ∈ Ṡ as implied by Lemmas A.14 and A.15. We
next establish that ρ̇ : Ṡ→ C(Sdθ) is a continuous linear operator and then ver-
ify that it is indeed the derivative of ρ : P → C(Sdθ). Linearity is immediate,
while continuity follows by noting that, by the Cauchy–Schwarz inequality,

sup
‖ḣ0‖L2

μ
=1

∥∥ρ̇(ḣ0)
∥∥
∞(A.55)

≤ sup
‖ḣ0‖L2

μ
=1

sup
p∈S

dθ

{
2
∥∥λ(p�P)∥∥× sup

v∈V0

∥∥∇F(v)∥∥
F

×
√
dm sup

(x�θ)∈X×Θ

∥∥m(x�θ)∥∥× ‖ḣ0‖L2
μ
× ‖s‖L2

μ

}
<∞�

where we exploited P ∈ P satisfies Assumption 3.6(iii), Lemma A.11, Assump-
tions 3.4(i), 3.5(ii), and ‖s‖L2

μ
= 1.
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To show that ρ̇ : Ṡ→ C(Sdθ) is the weak derivative of ρ : P→ C(Sdθ) at P , we
need to establish that

lim
η0→0

∫
S
dθ

{
ν(p�Θ0(Pη0))− ν(p�Θ0(P))

η0
− ρ̇(ḣ0)(p)

}
dB(p)= 0(A.56)

for all curves η 	→ Pη in P with h0 = s and all finite Borel measures B on Sdθ .
However, by the mean value theorem,

lim
η0→0

∫
S
dθ

ν(p�Θ0(Pη0))− ν(p�Θ0(P))

η0
dB(p)(A.57)

= lim
η0→0

∫
S
dθ

∂

∂η
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=η̄(p�η0)

dB(p)

=
∫

S
dθ

∂

∂η
ν
(
p�Θ0(Pη)

)∣∣∣∣
η=0

dB(p)=
∫

S
dθ

ρ̇(ḣ0)(p)dB(p)�

where the first equality holds at each p for some η̄(p�η0) a convex combina-
tion of η0 and 0. The second equality in turn follows by Lemma A.15 justifying
the use of the dominated convergence theorem, while the final equality follows
by Lemma A.14 and the definition of ρ̇ : Ṡ→ C(Sdθ). Therefore, from (A.57),
(A.56) is established. Q.E.D.

PROOF OF THEOREM 3.2: We employ the framework in Chapter 5.2 in
Bickel et al. (1993). Let B ≡ C(Sdθ) and B∗ denote the set of finite Borel
measures on Sdθ , which by Corollary 14.15 in Aliprantis and Border (2006)
is the dual space of B. Let s ≡ √

dP/dμ and ρ : P → B be pointwise given
by ρ(P) ≡ ν(·�Θ0(P)), which has pathwise weak-derivative ρ̇ at P by Theo-
rem A.2. For p 	→ θ∗(p) as in Lemma A.13 and any B ∈ B∗, then let

ρ̇T (B)(x)≡
∫

S
dθ

2λ(p�P)′H
(
θ∗(p)

)
(A.58)

× {
m
(
x�θ∗(p)

)−E[m(Xi�θ
∗(p)

)]}
s(x)dB(p)


We first show that ρ̇T : B∗ → Ṡ is the adjoint of ρ̇ : Ṡ → B. Toward this end,
we establish that: (i) ρ̇T (B) is well defined for any B ∈ B∗, (ii) ρ̇T (B) ∈ Ṡ, and
finally (iii) ρ̇T is the adjoint of ρ̇.

By Assumption 3.4(ii), Lemma A.13, and Lemmas 4.51 and 4.52 in Aliprantis
and Border (2006), the function (x�p) 	→ m(x�θ∗(p)) is jointly measurable
and hence so is p 	→E[m(Xi�θ

∗(p))]. Similarly, p 	→H(θ∗(p)) is measurable
by continuity of θ 	→H(θ) (see (A.28)) and Lemma A.13, while p 	→ λ(p�P)
and x 	→ s(x) are trivially measurable by Lemma A.12 and s ∈ L2

μ. The joint
measurability of (p�x) 	→ (λ(p�P)�H(θ∗(p))�m(x�θ∗(p))�E[m(Xi�θ

∗(p))]�
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s(x)) in RdF × RdF×dm × Rdm × Rdm × R then follows from Lemma 4.49 in
Aliprantis and Border (2006), and hence

(p�x) 	→ 2λ(p�P)′H
(
θ∗(p)

){
m
(
x�θ∗(p)

)−E[m(Xi�θ
∗(p)

)]}
s(x)(A.59)

is jointly measurable by continuity of the composition. We conclude that ρ̇T (B)
is a well defined measurable function for all B ∈ B∗. Moreover, for |B| the total
variation of B, P ∈ P, Lemma A.11, and

∫
s2(x)dμ(x)= 1 imply

∫
X

(
ρ̇T (B)(x)

)2
dμ(x) ≤ sup

p∈S
dθ

16
∥∥λ(p�P)∥∥2 × sup

v∈V0

∥∥∇F(v)∥∥2

F
(A.60)

× sup
(x�θ)∈X×Θ

∥∥m(x�θ)∥∥2 × |B|(Sdθ)
<∞�

which verifies ρ̇T (B) ∈L2
μ for all B ∈ B∗. Similarly, since s2 = dP/dμ, exchang-

ing the order of integration yields

∫
X
ρ̇T (B)(x)s(x)dμ(x)(A.61)

= 2
∫

X

∫
S
dθ

λ(p�P)′H
(
θ∗(p)

)
× {

m
(
x�θ∗(p)

)−E[m(Xi�θ
∗(p)

)]}
dB(p)dP(x)

= 0


Therefore, by Theorem A.1 and (A.61), we conclude that ρ̇T (B) ∈ Ṡ for all
B ∈ B∗. In addition, we note that since∫

S
dθ

ρ̇(h)(p)dB(p)=
∫

X
h(x)ρ̇T (B)(x)dμ(x)(A.62)

by Theorem A.1 implying
∫
h(x)s(x)dμ(x) = 0 for any h ∈ Ṡ, we conclude

that ρ̇T : B∗ → Ṡ is the adjoint of ρ̇ : Ṡ→ B.
Finally, note that Theorem A.1, Theorem A.2, and Theorem 5.2.1 in Bickel

et al. (1993) yield

Cov
(∫

S
dθ

G(p)dB1(p)�

∫
S
dθ

G(q)dB2(q)

)
(A.63)

= 1
4

∫
X
ρ̇T (B1)(x)ρ̇

T (B2)(x)dμ(x)
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=
∫

S
dθ

∫
S
dθ

λ(p�P)′H
(
θ∗(p)

)
Ω
(
θ∗(p)�θ∗(q)

)
×H(θ∗(q))′λ(q�P)dB1(p)dB2(q)

for anyB1�B2 ∈ B∗, with the second equality following from s2 = dP/dμ and re-
versing the order of integration. Letting B1 and B2 equal the degenerate prob-
ability measures at p1 and p2 in (A.63) then concludes the proof. Q.E.D.

APPENDIX B: PROOFS OF THEOREMS 4.1, 4.2 AND COROLLARY 4.1

In this appendix, we establish Theorems 4.1 and 4.2. The proofs of Theo-
rem 4.2 and Corollary 4.1 are self contained. The proof of Theorem 4.1, how-
ever, requires multiple steps, which we outline below.
Step 1: We first establish that P̂n is consistent for P under the τ-topology
(Lemma B.5), and that each neighborhood in the τ-topology contains a convex
open set (Lemma B.2), which will enable us to employ the mean value theo-
rem.
Step 2: Lemma B.3 shows that the support function is appropriately differen-
tiable at P , which will enable us to establish that

√
n
{
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
)}

=√nλ(p� P̂n�τ0(p))
′∇F

(∫
m
(
x� θ̃(p)

)
dP̂n�τ0(p)(x)

)

×
∫
m
(
x� θ̃(p)

)(
dP̂n(x)− dP(x)

)

by the mean value theorem, where P̂n�τ = τP̂n + (1− τ)P , τ0 : Sdθ →[0�1], and
θ̃(p) ∈Ξ(p� P̂n�τ0(p)) for all p ∈ Sdθ .
Step 3: In Lemma B.8, we exploit equicontinuity (Lemma B.1) to further show
that, uniformly in p ∈ Sdθ ,

√
nλ(p�P)′∇F

(∫
m
(
x� θ̃(p)

)
dP̂n�τ0(p)(x)

)

×
∫
m
(
x� θ̃(p)

)(
dP̂n(x)− dP(x)

)

=√nλ(p�P)′∇F
(∫

m
(
x�θ∗(p)

)
dP(x)

)

×
∫
m
(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)+ op(1)�
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where θ∗(p) ∈Ξ(p�P). A key complication is that Ξ(p�P) and Ξ(p� P̂n�τ0(p))
may not be singleton valued. This problem is addressed employing Lemmas
B.4 and B.7.
Step 4: Lemma B.9 then verifies Theorem 4.1(ii) using Steps 1, 2, and 3, and
continuity of Q 	→ λ(p�Q). Theorem 4.1(iii) is immediate from Lemma B.9
and Lemma B.10, which shows stochastic equicontinuity.

LEMMA B.1: Let {Wi�Xi}ni=1 be an i.i.d. sample with Wi ∈R independent of Xi

and E[W 2
i ]<∞, and define F ≡ {f : X ×R→ R : f (x�w)=wm(x�θ)�θ ∈Θ}.

If Assumptions 3.2 and 3.4(ii) hold, then F is Donsker.

PROOF: For any θ1� θ2 ∈ Θ, the Cauchy–Schwarz inequality and the mean
value theorem imply that

sup
x∈X

∣∣w(m(i)(x�θ1)−m(i)(x�θ2)
)∣∣(B.1)

≤ sup
(x�θ)∈X×Θ

∥∥∇θm(x�θ)∥∥F × ‖θ1 − θ2‖ × |w| =G(w)‖θ1 − θ2‖�

where the equality holds for G(w) ≡M|w| for some constant M due to As-
sumption 3.4(ii). It follows that the class F is Lipschitz in θ ∈Θ and therefore,
by Theorem 2.7.11 in van der Vaart and Wellner (1996), we conclude that

N[ ]
(
2ε‖G‖L2�F�‖ · ‖L2

)≤N(ε�Θ�‖ · ‖)
(B.2)

LettingD= diam(Θ) and u= ε/2‖G‖L2 , a change of variables and result (B.2)
then allow us to conclude that∫ ∞

0

√
logN[ ]

(
ε�F�‖ · ‖L2

)
dε(B.3)

= 2‖G‖L2

∫ ∞

0

√
logN[ ]

(
2u‖G‖L2�F�‖ · ‖L2

)
du

≤ 2‖G‖L2

∫ ∞

0

√
N
(
u�Θ�‖ · ‖)du

≤ 2‖G‖L2

∫ D

0

√
dθ log(D/u)du <∞�

where the final inequality holds due to N(u�Θ�‖ · ‖) ≤ (diam(Θ)/u)dθ . Since
‖G‖2

L2 =M2E[W 2
i ]<∞, the claim of the lemma then follows from result (B.3)

and Theorem 2.5.6 in van der Vaart and Wellner (1996). Q.E.D.

LEMMA B.2: For any neighborhoodN(P)⊆M, there is a convex neighborhood
N ′(P)⊆M with N ′(P)⊆N(P).
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PROOF: Let Ms denote the set of signed, finite, countably additive Borel
measures on X endowed with the τ-topology. Note that M ⊂ Ms and that
Ms is a topological vector space. For F the set of bounded scalar valued
measurable functions on X and every (f� ν) ∈ F × Ms, define pf : Ms → R
by pf(ν) = |

∫
f dν|. The set of functionals {pf }f∈F is then a family of semi-

norms on Ms that, by Lemma 5.76(2) in Aliprantis and Border (2006), gener-
ates the τ-topology. Therefore, Theorem 5.73 in Aliprantis and Border (2006)
establishes that (Ms� τ) is a locally convex topological vector space. More-
over, by Lemma 2.53 in Aliprantis and Border (2006), the τ-topology in M
is the relative topology on M induced by (Ms� τ). Hence, letting No(P) de-
note the interior of N(P) (relative to M), we obtain that No(P)=Ns(P) ∩M
for some open set Ns(P) ⊆ Ms. However, since (Ms� τ) is locally convex,
there exists an open (in Ms) convex neighborhood of P with N ′

s(P) ⊆ Ns(P).
Defining N ′(P)=N ′

s(P) ∩M, we obtain the desired result by convexity of M.
Q.E.D.

LEMMA B.3: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold and P ∈ P. For any Q ∈
M, define Qτ ≡ τQ+ (1− τ)P and Ξ(p�Q) as in (A.24). Then, there is N(P)⊆
M such that, for all (Q�p�τ0) ∈N(P)× Sdθ × [0�1],

∂

∂τ
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

= λ(p�Qτ0)
′∇F

(∫
m
(
x�θ∗

)
dQτ0(x)

)

×
∫
m
(
x�θ∗

)(
dQ(x)− dP(x)) for any θ∗ ∈Ξ(p�Qτ0)


PROOF: First observe that, by Lemma B.2, we may without loss of generality
assume neighborhoods are convex. Hence, ifQ ∈N(P), thenQτ ∈N(P) for all
τ ∈ [0�1]. Since τ 	→ F(

∫
m(x�θ)dQτ(x)) is continuously differentiable in τ in

a neighborhood of P by Lemma A.2 and Assumption 3.5, Lemma A.9 and
Corollary 5 in Milgrom and Segal (2002) imply that, for Q in a neighborhood
of P , the function τ 	→ ν(p�Θ0(Qτ)) is directionally differentiable, with

∂

∂τ+
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

(B.4)

= max
θ∗∈Ξ(p�Qτ0 )

λ(p�Qτ0)
′∇F

(∫
m
(
x�θ∗

)
dQτ0(x)

)

×
∫
m
(
x�θ∗

)(
dQ(x)− dP(x))�
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∂

∂τ−
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

(B.5)

= min
θ∗∈Ξ(p�Qτ0 )

λ(p�Qτ0)
′∇F

(∫
m
(
x�θ∗

)
dQτ0(x)

)

×
∫
m
(
x�θ∗

)(
dQ(x)− dP(x))�

where ∂
∂τ+ and ∂

∂τ− denote the right and left derivatives, respectively. By
Lemma A.10, however, for every 1≤ i≤ dF such that λ(i)(p�Qτ0) �= 0, we must
have θ(j)1 = θ(j)2 for all j ∈ Si and θ1� θ2 ∈Ξ(p�Qτ0). Therefore, since Aθ does
not depend on τ, we immediately can conclude from (3), (4), and results (B.4)
and (B.5) that

∂

∂τ+
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

(B.6)

= max
θ∗∈Ξ(p�Qτ0 )

∑
i:λ(i)(p�Qτ0 ) �=0

λ(i)(p�Qτ0)

× ∂

∂τ
F(i)
S

(∫
mS

(
x�θ∗

)
dQτ(x)

)∣∣∣∣
τ=τ0

= min
θ∗∈Ξ(p�Qτ0 )

∑
i:λ(i)(p�Qτ0 ) �=0

λ(i)(p�Qτ0)

× ∂

∂τ
F(i)
S

(∫
mS

(
x�θ∗

)
dQτ(x)

)∣∣∣∣
τ=τ0

= ∂

∂τ−
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0




Therefore, we conclude from (B.6) that (B.4) and (B.5) agree, and the lemma
follows. Q.E.D.

LEMMA B.4: LetN(P)⊆M be a neighborhood of P and Γ : Sdθ×N(P)→Rk

be an upper hemicontinuous correspondence. Then, for every ε > 0, there exists a
δ > 0 and neighborhood N ′(P)⊆N(P) such that

sup
‖p−p̃‖<δ

sup
Q∈N ′(P)

sup
γ∈Γ (p�Q)

inf
γ̃∈Γ (p̃�P)

‖γ− γ̃‖< ε


PROOF: Fix ε > 0, and, for any ζ > 0 and (p�Q) ∈ Sdθ × N(P), let
Γ ζ(p�Q)≡ {γ ∈Rk : infγ̃∈Γ (p�Q) ‖γ− γ̃‖< ζ}, and Nζ(p)≡ {p̃ ∈ Sdθ :‖p− p̃‖<
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ζ}. Since the correspondence Γ : Sdθ ×N(P)→ Rk is upper hemicontinuous,
for each p ∈ Sdθ there is a ζ(p) > 0 and a neighborhood N(P|p) of P in M
such that

Γ (p̃�Q)⊆ Γ ε/2(p�P)(B.7)

for all (p̃�Q) ∈Nζ(p)(p)×N(P|p). Since {Nζ(p)/2(p)}p∈S
dθ is an open cover of

Sdθ , by compactness, there exists a finite set {pi}Ki=1 such that {Nζ(pi)/2(pi)}Ki=1

is a subcover for Sdθ . Further let N ′(P) ≡ N(P) ∩ {⋂K

i=1N(P|pi)}, and set
δ≡min1≤i≤K ζ(pi)/2. Then note that if p ∈Nζ(pi)/2(pi) and ‖p− p̃‖< δ, then
p� p̃ ∈Nζ(pi)(pi). Therefore, since all p ∈ Sdθ satisfy p ∈Nζ(pi)/2(pi) for some
1≤ i≤K and N ′(P)⊆N(P|pi) for all 1≤ i≤K, we obtain

sup
‖p−p̃‖<δ

sup
Q∈N ′(P)

sup
γ∈Γ (p�Q)

inf
γ̃∈Γ (p̃�P)

‖γ− γ̃‖(B.8)

≤ max
1≤i≤K

sup
p�p̃∈Nζ(pi)(pi)

sup
Q∈N(P|pi)

sup
γ∈Γ (p�Q)

inf
γ̃∈Γ (p̃�P)

‖γ− γ̃‖

≤ max
1≤i≤K

sup
γ∈Γ ε/2(pi�P)

inf
γ̃∈Γ (pi�P)

2‖γ− γ̃‖< ε�

where in the second inequality we employed (B.7) and the third inequality
follows by definition of Γ ε/2(p�P). Q.E.D.

LEMMA B.5: Let Assumption 3.1 hold and P∗ denote inner probability. Then
for every neighborhood N(P)⊆M,

lim inf
n→∞

P∗
(
P̂n ∈N(P)

)= 1


PROOF: The empirical measure P̂n is not measurable in M with respect to
the Borel σ-field generated by the τ-topology, which is why we employ inner
probabilities; see Chapter 6.2 in Dembo and Zeitouni (1998). Let F denote
the set of scalar bounded measurable functions on X and, for every (f� ν) ∈
F ×M, define pf : M → R by pf(ν) ≡

∫
f (x)dν(x). Since the τ-topology is

the coarsest topology making ν 	→ pf(ν) continuous for all f ∈ F , it follows
that, for arbitrary but finite K, {Ui}Ki=1 open sets in R, and {fi}Ki=1 ∈ F , the sets
of the form

K⋂
i=1

{
Q ∈M :pfi(Q) ∈Ui

}
(B.9)

constitute a base for the τ-topology. Thus, since P is in the interior of N(P),
there exist an integer K0, a finite collection {fi}K0

i=1, and an ε > 0 such that
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⋂K0
i=1{Q ∈M : | ∫ fi(x)(dP(x)− dQ(x))| ≤ ε} ⊆N(P). Hence,

lim inf
n→∞

P∗
(
P̂n ∈N(P)

)
(B.10)

≥ lim inf
n→∞

P

(
max

1≤i≤K0

∣∣∣∣
∫
fi(x)

(
dP̂n(x)− dP(x)

)∣∣∣∣≤ ε
)

= 1�

where the final equality follows from the law of large numbers since each fi is
bounded. Q.E.D.

LEMMA B.6: If Assumptions 3.2, 3.4(i)–(ii), 3.5 hold and P ∈ P, then there
exists a neighborhood N(P) ⊆ M of P such that, for any 1 ≤ i ≤ dF and any
θ� θ̃ ∈Θ satisfying θ(j) = θ̃(j) for all j ∈ Si, it follows that

∇F(i)
S

(∫
mS(x�θ)dQ(x)

)
mS(x0� θ)

=∇F(i)
S

(∫
mS(x� θ̃)dQ(x)

)
mS(x0� θ̃)

for all (Q�x0) ∈N(P)× X 


PROOF: By Lemma A.2, there is a neighborhood N(P) ⊆M such that the
set R(Q) ≡ {∫ m(x�θ)dQ(x)}θ∈Θ is compact and satisfies R(Q) ⊂ V0 for all
Q ∈N(P). Letting R(Q)δ ≡ {v ∈Rdm : infṽ∈R(Q) ‖v− ṽ‖< δ}, it follows from V0

being open by Assumption 3.5 that, for eachQ ∈N(P), there exists a δ0(Q) > 0
such that R(Q)δ0(Q) ⊂ V0. Moreover, by Assumption 3.4(i), there exists anM <
∞ such that ‖m(x�θ)‖ ≤M for all (x�θ) ∈ X ×Θ. Hence, we obtain that if c ∈
R satisfies |1− c| < δ0(Q)/M , then {c ∫ m(x�θ)dQ(x)}θ∈Θ ⊆ R(Q)δ0(Q) ⊂ V0.
Therefore, Assumption 3.5(i) implies that, for any Q ∈N(P), 1 ≤ i ≤ dF , and
θ� θ̃ ∈Θ with θ(j) = θ̃(j) for all j ∈ Si,

∇F(i)
S

(∫
mS(x�θ)dQ(x)

)∫
mS(x�θ)dQ(x)(B.11)

= ∂

∂c

{
F(i)
S

(
c

∫
mS(x�θ)dQ(x)

)}∣∣∣∣
c=1

= ∂

∂c

{
F(i)
S

(
c

∫
mS(x� θ̃)dQ(x)

)}∣∣∣∣
c=1

=∇F(i)
S

(∫
mS(x� θ̃)dQ(x)

)∫
mS(x� θ̃)dQ(x)
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Next, for any x0 ∈ X , let Dx0 ∈ M denote the probability measure satis-
fying Dx0(Xi = x0) = 1 and define Mτ(Q�Dx0) ≡ (1 − τ)Q + τDx0 . Since
Mτ(Q�Dx0)→ Q in the total variation metric as τ→ 0, it follows from Q ∈
N(P) andN(P) being open, that there is a τ0 > 0 such thatQ′ ≡Mτ0(Q�Dx0) ∈
N(P). Thus, Lemma B.2 implies Mτ(Q�Q

′) ∈ N(P) for all τ ∈ [0�1], and
hence, for any 1≤ i≤ dF and θ� θ̃ ∈Θ with θ(j) = θ̃(j) for all j ∈ Si,

τ0∇F(i)
S

(∫
mS(x�θ)dQ(x)

)∫
mS(x�θ)

(
dDx0(x)− dQ(x)

)
(B.12)

= ∂

∂τ

{
F(i)
S

(∫
mS(x�θ)dMτ

(
Q�Q′)(x))}∣∣∣∣

τ=0

= ∂

∂τ

{
F(i)
S

(∫
mS(x� θ̃)dMτ

(
Q�Q′)(x))}∣∣∣∣

τ=0

= τ0∇F(i)
S

(∫
mS(x� θ̃)dQ(x)

)∫
mS(x� θ̃)

(
dDx0(x)− dQ(x)

)



Therefore, the claim of the lemma follows from τ0 > 0 and results (B.11) and
(B.12). Q.E.D.

LEMMA B.7: Let Assumptions 3.2, 3.4, 3.5, and 4.2(i) hold, P ∈ P, Ξ(p�P)
be as in (A.24), and θ∗ : Sdθ →Θ satisfy θ∗(p) ∈Ξ(p�P) for all p ∈ Sdθ . Then,
for each p ∈ Sdθ , there exists a map Πp :Θ→Rdθ such that

∥∥θ∗(p)−Πpθ
∥∥≤ inf

θ̃∈Ξ(p�P)

√
dθ‖θ̃− θ‖(B.13)

for all θ ∈ Θ. In addition, there is a neighborhood N(P) ⊆M such that, for all
(p�Q�x0� θ) ∈ Sdθ ×N(P)× X ×Θ,

λ(p�P)′∇FS
(∫

mS(x�θ)dQ(x)

)
mS(x0� θ)(B.14)

= λ(p�P)′∇FS
(∫

mS(x�Πpθ)dQ(x)

)
mS(x0�Πpθ)


PROOF: We first construct the map Πp :Θ→ Rdθ . To this end, for each p ∈
Sdθ , we define the set

I(p)≡
⋃

i:λ(i)(p�P) �=0

Si�(B.15)
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and for any θ ∈Θ, let Πp :Θ→ Rdθ satisfy (Πpθ)
(j) = θ∗(p)(j) if j /∈ I(p), and

(Πpθ)
(j) = θ(j) if j ∈ I(p). Then,∥∥θ∗(p)−Πpθ

∥∥ ≤ max
j∈I(p)

√
dθ
∣∣θ∗(p)(j) − (Πpθ)

(j)
∣∣(B.16)

≤ inf
θ̃∈Ξ(p�P)

√
dθ‖θ̃− θ‖�

where the first inequality follows from θ∗(p)(j) = (Πpθ)
(j) for all j /∈ I(p),

while the second inequality is the result of θ∗(p)(j) = θ̃(j) for all θ̃ ∈Ξ(p�P)
and j ∈ I(p) by Lemma A.10, and θ(j) = (Πpθ)

(j) for all j ∈ I(p). Moreover,
since for all 1 ≤ i ≤ dF such that λ(i)(p�P) �= 0 we have (Πpθ)

(j) = θ(j) for all
j ∈ Si, it follows from Lemma B.6 that there exists a neighborhood N(P)⊆M
such that, for all (p�Q�x0� θ) ∈ Sdθ ×N(P)× X ×Θ,

λ(p�P)′∇FS
(∫

mS(x�θ)dQ(x)

)
mS(x0� θ)(B.17)

=
∑

i:λ(i)(p�P) �=0

λ(i)(p�P)∇F(i)
S

(∫
mS(x�Πpθ)dQ(x)

)
mS(x0�Πpθ)

= λ(p�P)′∇FS
(∫

mS(x�Πpθ)dQ(x)

)
mS(x0�Πpθ)


Therefore, the claims of the lemma follow from results (B.16) and (B.17).
Q.E.D.

LEMMA B.8: Let {Wi�Xi}ni=1 be i.i.d. with Wi ∈ R independent of Xi and
E[W 2

i ] <∞. Define P̂n�τ ≡ τP̂n + (1 − τ)P for any τ ∈ [0�1] and Ξ(p�Q) as
in (A.24). If Assumptions 3.1, 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and PW and
P̂W
n are the population and empirical measures of (Xi�Wi), then, uniformly in
(p�τ) ∈ Sdθ × [0�1] and θ ∈Ξ(p� P̂n�τ),

√
nλ(p�P)′∇FS

(∫
mS(x�θ)dP̂n�τ(x)

)
(B.18)

×
∫
wmS(x�θ)

(
dP̂W

n (x�w)− dPW (x�w)
)

=√nλ(p�P)′∇FS
(∫

mS

(
x�θ∗(p)

)
dP(x)

)

×
∫
wmS

(
x�θ∗(p)

)(
dP̂W

n (x�w)− dPW (x�w)
)+ op(1)�

where θ∗ : Sdθ →Θ is a Borel measurable mapping that satisfies θ∗(p) ∈Ξ(p�P)
for all p ∈ Sdθ .
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PROOF: If N(P) ⊆ M is convex and P̂n ∈ N(P), then P̂n�τ ∈ N(P) for all
τ ∈ [0�1]. Therefore, by Lemmas A.2, A.7, B.2, and B.5, we obtain that, with
inner probability tending to 1, {∫ m(x�θ)dP̂n�τ}θ∈Θ ⊂ V0 and Ξ(p� P̂n�τ) is well
defined for all (p�τ) ∈ Sdθ ×[0�1]. Next, let Πp :Θ→Rdθ be as in Lemma B.7,
and note that, by (B.13),

sup
p∈S

dθ

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥Πpθ− θ∗(p)
∥∥(B.19)

≤ sup
p∈S

dθ

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

inf
θ̃∈Ξ(p�P)

√
dθ‖θ− θ̃‖ = op(1)�

where the final result follows from Lemmas A.7, B.2, and B.5, and Lemma B.4
applied with Γ (p�Q) =Ξ(p�Q). Moreover, since θ∗(p) ∈ Θ0(P) for all p ∈
Sdθ , results (A.23) and (B.19) further imply that

lim inf
n→∞

P
(
Πpθ ∈Θ for all θ ∈Ξ(p� P̂n�τ) and (p�τ) ∈ Sdθ×[0�1])= 1
(B.20)

Furthermore, by Lemmas B.2, B.5, and B.7, the map Πp : Θ→ Rdθ satisfies,
uniformly in (p�τ�θ) ∈ Sdθ × [0�1] ×Θ,

√
nλ(p�P)′∇FS

(∫
mS(x�θ)dP̂n�τ(x)

)
(B.21)

×
∫
wmS(x�θ)

(
dP̂W

n (x�w)− dPW (x�w)
)

=√nλ(p�P)′∇FS
(∫

mS(x�Πpθ)dP̂n�τ(x)

)

×
∫
wmS(x�Πpθ)

(
dP̂W

n (x�w)− dPW (x�w)
)+ op(1)


Next, observe that by Lemmas A.2, B.2, and B.5, it follows that, for V0 as in
Assumption 3.5, we have

lim inf
n→∞

P

(∫
m(x�θ)dP̂n�τ(x) ∈ V0 for all (θ� τ) ∈Θ× [0�1]

)
= 1
(B.22)

Assumption 3.2 and (A.3) imply E[mS(Xi� ·)] is uniformly continuous, and
hence, by (B.19), (B.20), and Lemma B.1,

sup
p∈S

dθ

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥∥∥
∫
mS(x�Πpθ)dP̂n�τ(x)(B.23)

−
∫
mS

(
x�θ∗(p)

)
dP(x)

∥∥∥∥
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≤ sup
p∈S

dθ

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥∥∥
∫ (

mS(x�Πpθ)−mS

(
x�θ∗(p)

))
dP(x)

∥∥∥∥
+ op(1)

= op(1)

Thus, ∇F being uniformly continuous on V0 by Assumption 3.5(ii), (B.20),
(B.22), (B.23), and Lemma A.11 imply

sup
p∈S

dθ

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∣∣∣∣λ(p�P)′
(
∇FS

(∫
mS(x�Πpθ)dP̂n�τ(x)

)
(B.24)

−∇FS
(∫

mS

(
x�θ∗(p)

)
dP(x)

))∣∣∣∣= op(1)

In addition, also observe that Lemma B.1 allows us to conclude that

sup
θ∈Θ

√
n

∥∥∥∥
∫
wm(x�θ)

(
dP̂W

n (x�w)− dPW (x�w)
)∥∥∥∥=Op(1)
(B.25)

Therefore, from results (B.20), (B.24), and (B.25), we obtain that, uniformly in
(p�τ) ∈ Sdθ × [0�1] and θ ∈Ξ(p� P̂n�τ),

√
nλ(p�P)′∇FS

(∫
mS(x�Πpθ)dP̂n�τ(x)

)
(B.26)

×
∫
wmS(x�Πpθ)

(
dP̂W

n (x�w)− dPW (x�w)
)

=√nλ(p�P)′∇FS
(∫

mS

(
x�θ∗(p)

)
dP(x)

)

×
∫
wmS(x�Πpθ)

(
dP̂W

n (x�w)− dPW (x�w)
)+ op(1)


To conclude, we note that (B.19), (B.20), and Lemma B.1 imply that, for
some deterministic sequence δn ↓ 0,

sup
p∈S

dθ

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

√
n

∥∥∥∥
∫
w
(
mS(x�Πpθ)(B.27)

−mS

(
x�θ∗(p)

))(
dP̂W

n (x�w)− dPW (x�w)
)∥∥∥∥

≤ sup
‖θ1−θ2‖<δn

√
n

∥∥∥∥
∫
w
(
mS(x�θ1)
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−mS(x�θ2)
)(
dP̂W

n (x�w)− dPW (x�w)
)∥∥∥∥+ op(1)

= op(1)

Moreover, note that since P ∈ P satisfies Assumption 3.6(iii), it follows
from Lemma A.11 and Assumption 3.5(ii) that ‖λ(p�P)′∇FS(

∫
mS(x�

θ∗(p))dP(x))‖ is uniformly bounded in p ∈ Sdθ . Hence, by (B.27) and Cauchy–
Schwarz,

√
nλ(p�P)′∇FS

(∫
mS

(
x�θ∗(p)

)
dP(x)

)
(B.28)

×
∫
wmS(x�Πpθ)

(
dP̂W

n (x�w)− dPW (x�w)
)

=√nλ(p�P)′∇FS
(∫

mS

(
x�θ∗(p)

)
dP(x)

)

×
∫
wmS

(
x�θ∗(p)

)(
dP̂W

n (x�w)− dPW (x�w)
)
�

uniformly in (p�τ) ∈ Sdθ × [0�1] and θ ∈Ξ(p� P̂n�τ). The lemma then follows
from (B.21), (B.26), and (B.28). Q.E.D.

LEMMA B.9: Let Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 hold, P ∈ P, and Ξ(p�P)
be as in (A.24). Then,

sup
p∈S

dθ

∣∣∣∣√n
{(
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
))− λ(p�P)′H(θ∗(p))

×
∫
m
(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)}∣∣∣∣= op(1)�
where θ∗ : Sdθ →Θ is a Borel measurable mapping satisfying θ∗(p) ∈Ξ(p�P) for
all p ∈ Sdθ .

PROOF: For every τ ∈ [0�1], define P̂n�τ ≡ τP̂n + (1 − τ)P and notice that
P̂n�0 = P and P̂n�1 = P̂n. Employing the mean value theorem, which is valid by
Lemmas B.2, B.3, and B.5, we can then conclude that, uniformly in p ∈ Sdθ ,

√
n
{
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
)}

(B.29)

=√nλ(p� P̂n�τ0(p))
′∇F

(∫
m
(
x� θ̃(p)

)
dP̂n�τ0(p)(x)

)

×
∫
m
(
x� θ̃(p)

)(
dP̂n(x)− dP(x)

)+ op(1)
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for some τ0 : Sdθ → (0�1) and θ̃ : Sdθ →Θ such that θ̃(p) ∈Ξ(p� P̂n�τ0(p)) for all
p ∈ Sdθ . Next, fix ε > 0 and note that by Lemmas A.9 and A.12, there exists a
neighborhood N(P) ⊆M such that the correspondence (p�Q) 	→ λ(p�Q) is
upper hemicontinuous and singleton valued for all (p�Q) ∈ Sdθ ×N(P). Ap-
plying Lemmas B.2 and B.4 with Γ (p�Q) = λ(p�Q) then implies that there
exists a convex neighborhood N ′(P)⊆N(P)⊆M such that

sup
p∈S

dθ

sup
Q∈N ′(P)

∥∥λ(p�Q)− λ(p�P)∥∥< ε
(B.30)

SinceN ′(P) is convex, P̂n ∈N ′(P) implies P̂n�τ ∈N ′(P) for all τ ∈ [0�1]. There-
fore, we are able to conclude that

lim inf
n→∞

P
(

sup
p∈S

dθ

sup
τ∈[0�1]

∥∥λ(p� P̂n�τ)− λ(p�P)∥∥< ε)(B.31)

≥ lim inf
n→∞

P
(
P̂n ∈N ′(P)

)= 1�

where the final equality follows from Lemma B.5. Thus, result (B.22) and As-
sumption 3.5(ii), result (B.25) applied with the random variable Wi = 1 almost
surely, and results (B.29) and (B.31) in turn imply, uniformly in p ∈ Sdθ ,

√
n
{
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
)}

(B.32)

=√nλ(p�P)′∇F
(∫

m
(
x� θ̃(p)

)
dP̂n�τ0(p)(x)

)

×
∫
m
(
x� θ̃(p)

)(
dP̂n(x)− dP(x)

)+ op(1)
=√nλ(p�P)′∇F

(∫
m
(
x�θ∗(p)

)
dP(x)

)

×
∫
m
(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)+ op(1)�
where the second equality follows from (3) and

∫
Aθ(dP̂n(x) − dP(x)) = 0

for all θ ∈Θ, and Lemma B.8 applied with the random variable Wi = 1 almost
surely. Q.E.D.

LEMMA B.10: Let Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 hold, P ∈ P, Ξ(p�P) be
as in (A.24), and θ∗ : Sdθ →Θ satisfy θ∗(p) ∈Ξ(p�P) for all p ∈ Sdθ . Then the
following class is Donsker in C(Sdθ):

F ≡ {
f : X →R :

f (x)= λ(p�P)′H(θ∗(p))m(x�θ∗(p)) for some p ∈ Sdθ
}
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PROOF: For notational simplicity, let HS(θ) ≡ ∇FS(
∫
mS(x�θ)dP(x)),

H(i)
S (θ)≡∇F(i)

S (
∫
mS(x�θ)dP(x)), and

Gn(p)≡
√
nλ(p�P)′H

(
θ∗(p)

)∫
m
(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)

(B.33)

We first note that since λ(·�P), m, and H(·) are bounded by Lemma A.11, As-
sumption 3.4(i), Assumption 3.5(ii), and P ∈ P satisfying Assumption 3.6(iii),
it follows from the central limit theorem that, for any p ∈ Sdθ ,

Gn(p)
L→N

(
0�σ2(p)

)
�(B.34)

where σ2(p) ≡ Var(λ(p�P)′H(θ∗(p))m(Xi�θ
∗(p))). Moreover, also observe

that since
∫
Aθ(dP̂n(x)− dP(x))= 0,

Gn(p)=
√
nλ(p�P)′HS

(
θ∗(p)

)∫
mS

(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)
(B.35)

=√n
∑

i:λ(i)(p�P) �=0

λ(i)(p�P)H(i)
S

(
θ∗(p)

)

×
∫
mS

(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)



Thus, result (B.35) and Lemmas A.10 and B.6 imply Gn(p) is independent
of how θ∗(p) ∈ Ξ(p�P) is selected, and hence so is the asymptotic variance
σ2(p).

Note that, in (B.34), it was argued that Gn(p) is bounded in p ∈ Sdθ , while
identical arguments to those in (A.50)–(A.51) show p 	→ Gn(p) is continu-
ous with probability 1. Hence, Gn ∈ C(Sdθ) almost surely, and to establish the
lemma we only need to show the asymptotic uniform equicontinuity of Gn.
Equivalently, we aim to show

sup
‖p−p̃‖<δn

∣∣Gn(p)−Gn(p̃)
∣∣= op(1)�(B.36)

for any sequence δn ↓ 0. First observe that compactness of Sdθ and Lemma A.12
imply λ(·�P) : Sdθ → RdF is uniformly continuous. Therefore, by Assump-
tion 3.5(ii), P ∈ P satisfying Assumption 3.6(iii), and result (B.25),

sup
‖p−p̃‖<δn

√
n

∣∣∣∣(λ(p�P)− λ(p̃�P))′HS

(
θ∗(p̃)

)
(B.37)

×
∫
mS

(
x�θ∗(p̃)

)(
dP̂n(x)− dP(x)

)∣∣∣∣
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≤ sup
‖p−p̃‖<δn

∥∥λ(p�P)− λ(p̃�P)∥∥× sup
v∈V0

∥∥∇F(v)∥∥
F

× sup
θ∈Θ

∥∥∥∥√n
∫
m(x�θ)

(
dP̂n(x)− dP(x)

)∥∥∥∥
= op(1)


Hence, by results (B.35) and (B.37), we obtain by Lemma B.7 that, for some
mapping Πp :Θ→Rdθ satisfying (B.14),

sup
‖p−p̃‖<δn

∣∣Gn(p)−Gn(p̃)
∣∣(B.38)

≤ sup
‖p−p̃‖<δn

√
n

∣∣∣∣λ(p�P)′
∫ (

HS

(
θ∗(p)

)
mS

(
x�θ∗(p)

)−HS

(
θ∗(p̃)

)

×mS

(
x�θ∗(p̃)

))(
dP̂n(x)− dP(x)

)∣∣∣∣+ op(1)
= sup

‖p−p̃‖<δn

√
n

∣∣∣∣λ(p�P)′
∫ (

HS

(
θ∗(p)

)
mS

(
x�θ∗(p)

)−HS

(
Πpθ

∗(p̃)
)

×mS

(
x�Πpθ

∗(p̃)
))(
dP̂n(x)− dP(x)

)∣∣∣∣+ op(1)

Moreover, it also follows from Πp :Θ→ Rdθ satisfying condition (B.13), and
Lemmas A.7 and B.4, that

sup
‖p−p̃‖<δn

∥∥θ∗(p)−Πpθ
∗(p̃)

∥∥(B.39)

≤ sup
‖p−p̃‖<δn

sup
θ̃∈Ξ(p̃�P)

inf
θ∈Ξ(p�P)

√
dθ‖θ− θ̃‖ = o(1)


Therefore, results (A.23) and (B.39) imply that, for δn sufficiently small,
Πpθ

∗(p̃) ∈ Θ for all p̃�p ∈ Sdθ with ‖p̃ − p‖ < δn. Hence, from (B.38) and
(B.39) we conclude that, for some sequence γn→ 0 depending on δn,

sup
‖p−p̃‖<δn

∣∣Gn(p)−Gn(p̃)
∣∣(B.40)

≤ sup
p∈S

dθ

sup
‖θ−θ̃‖<γn

√
n

∣∣∣∣λ(p�P)′

×
∫ (

HS(θ)mS(x�θ)−HS(θ̃)mS(x� θ̃)
)(
dP̂n(x)− dP(x)

)∣∣∣∣
+ op(1)�
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where θ� θ̃ are restricted to lie in Θ. However, note
∫
m(x� ·)dP(x) :Θ→ Rdm

is uniformly continuous by (A.3) and Assumption 3.2, and therefore Assump-
tion 3.5(ii) and P ∈ P satisfying Assumption 3.6(iii) imply θ 	→ HS(θ) is uni-
formly continuous. Therefore, λ(·�P) being bounded by Lemma A.11 and re-
sult (B.25) imply

sup
p∈S

dθ

sup
‖θ−θ̃‖<γn

√
n

∣∣∣∣λ(p�P)′(HS(θ)−HS(θ̃)
)

(B.41)

×
∫
mS(x� θ̃)

(
dP̂n(x)− dP(x)

)∣∣∣∣
≤ sup

p∈S
dθ

∥∥λ(p�P)∥∥× sup
‖θ−θ̃‖<γn

∥∥HS(θ)−HS(θ̃)
∥∥
F

× sup
θ∈Θ

∥∥∥∥√n
∫
m(x�θ)

(
dP̂n(x)− dP(x)

)∥∥∥∥
= op(1)


In turn, it also follows from HS(θ) being uniformly bounded in θ ∈ Θ due to
it being continuous and Assumption 3.2, Lemma A.11 implying ‖λ(p�P)‖ is
uniformly bounded in p ∈ Sdθ , and Lemma B.1, that

sup
p∈S

dθ

sup
‖θ−θ̃‖<γn

√
n

∣∣∣∣λ(p�P)′HS(θ)(B.42)

×
∫ (

mS(x�θ)−mS(x� θ̃)
)(
dP̂n(x)− dP(x)

)∣∣∣∣
≤ sup

p∈S
dθ

∥∥λ(p�P)∥∥× sup
θ∈Θ

∥∥HS(θ)
∥∥
F

× sup
‖θ−θ̃‖<γn

∥∥∥∥√n
∫ (

mS(x�θ)−mS(x� θ̃)
)(
dP̂n(x)− dP(x)

)∥∥∥∥
= op(1)


Hence, we conclude from (B.40), (B.41), and (B.42) that (B.36) holds, which
establishes the asymptotic uniform equicontinuity ofGn. In turn, because Sdθ is
totally bounded under ‖ · ‖, the process Gn is asymptotically tight in C(Sdθ) by
Theorem 1.5.7 in van der Vaart and Wellner (1996). The lemma then follows
from the convergence of the marginals and Theorem 1.5.4, Addendum 1.5.8,
and Theorem 1.3.10 in van der Vaart and Wellner (1996). Q.E.D.
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PROOF OF THEOREM 4.1: By Lemma B.9, {ν(·�Θ0(P̂n))} has an influence
function ψ : X → C(Sdθ) given by

ψ(x)≡ λ(·�P)′H(θ∗(·)){m(x�θ∗(·))−E[m(Xi�θ
∗(·))]}�(B.43)

where θ∗ : Sdθ → Θ with θ∗(p) ∈ Ξ(p�P), which establishes (ii). By Theo-
rem 3.2, x 	→ ψ(x) is the efficient influence function, and hence regularity of
{ν(·�Θ0(P̂n))} follows from Lemma B.10 and Theorem 18.1 in Kosorok (2008),
which establishes (i). The stated convergence in distribution is then immediate
from Lemmas B.9 and B.10, while the limiting process having the efficient co-
variance kernel is a direct result of the characterization of I−1(p1�p2) obtained
in Theorem 3.2, which establishes (iii). Q.E.D.

PROOF OF THEOREM 4.2: SinceL : C(Sdθ)→R+ is a subconvex function and
{Tn} is a regular estimator, we obtain from Theorems A.1, A.2 and Proposi-
tion 5.2.1 in Bickel et al. (1993) that

lim inf
n→∞

E
[
L
(√
n
{
Tn − ν

(·�Θ0(P)
)})]≥ E[L(G0)

]

(B.44)

Next, we aim to show that {E[L(√n{ν(·�Θ0(P̂n)) − ν(·�Θ0(P))})]} attains
the lower bound. Toward this end, define

Gn(p)≡
√
n
{
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
)}
�(B.45)

and note Gn ∈ C(Sdθ) almost surely. Since L is continuous on D0 ⊆ C(Sdθ) and
P(G0 ∈D0)= 1, Theorem 4.1 and Theorem 1.3.6 in van der Vaart and Wellner
(1996) imply L(Gn)

L→ L(G0) (in R). Hence, since a 	→ a ∧ C is continuous
and bounded on R for any constant C > 0, the Portmanteau theorem yields

lim sup
C↑∞

lim sup
n→∞

∣∣E[L(Gn)∧C
]−E[L(G0)∧C

]∣∣= 0
(B.46)

Moreover, L(G0) ≤ M0 + M1‖G0‖κ∞ by hypothesis, and therefore Proposi-
tion A.2.3 in van der Vaart and Wellner (1996) yields E[L(G0)] ≤ M0 +
M1E[‖G0‖κ∞]<∞. Therefore, by the monotone convergence theorem,

lim sup
C↑∞

∣∣E[L(G0)
]−E[L(G0)∧C

]∣∣= 0
(B.47)

By Assumption 3.5(ii) and Lemmas A.2, A.11, and B.2, there exists a con-
vex neighborhood N(P) ⊆ M such that: (i) ∇F(∫ m(x�θ)dQ(x)) is uni-
formly bounded in (θ�Q) ∈ Θ×N(P); (ii) λ(p�Q) is uniformly bounded on
(p�Q) ∈ Sdθ ×N(P); and (iii) the conditions of Lemma B.3 are satisfied for all
Q ∈N(P). For every τ ∈ [0�1], define P̂n�τ ≡ τP̂n + (1− τ)P , and note that if
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P̂n ∈N(P), then (B.29) holds, so that uniformly in p ∈ Sdθ ,

Gn = Δ̃n�(B.48)

Δ̃n(p)≡ λ(p� P̂n�τ0(p))
′∇F

(∫
m
(
x� θ̃(p)

)
dP̂n�τ0(p)(x)

)

×
∫ √

nm
(
x� θ̃(p)

)(
dP̂n(x)− dP(x)

)
�

for some τ0 : Sdθ → (0�1) and θ̃ : Sdθ → Θ with θ̃(p) ∈ Ξ(p� P̂n�τ0(p)) for
Ξ(p�Q) as in (A.24) (and set Δ̃n = 0 if P̂n /∈ N(P)). By compactness of Θ,
definition of N(P), and m being bounded by Assumption 3.4(i), we must have

max
{‖Gn‖∞�‖Δ̃n‖∞

}≤√nC0�(B.49)

for some C0 > 0. Therefore, L(f) ≤M0 +M1‖f‖κ∞ for all f ∈ C(Sdθ), (B.48)
holding if P̂n ∈N(P), and (B.49) yield

lim sup
n→∞

∣∣E[L(Gn)
]−E[L(Δ̃n)

]∣∣(B.50)

≤ lim sup
n→∞

2
(
M0 +M1C

κ
0 n

κ/2
)
P
(
P̂n /∈N(P)

)



However, as shown in (B.10), there exist a finite collection {fj}K0
j=1 of bounded

functions and an ε > 0 such that {Q ∈ M : max1≤j≤K0 |
∫
fj(x)(dQ(x) −

dP(x))| ≤ ε} ⊆N(P). Therefore, (B.50) and Bernstein’s inequality imply

lim sup
n→∞

∣∣E[L(Gn)
]−E[L(Δ̃n)

]∣∣(B.51)

≤ 2
(
M0 +M1C

κ
0

)
× lim sup

n→∞

K0∑
j=1

nκ/2P

(∣∣∣∣
∫
fj(x)

(
dP̂n(x)− dP(x)

)∣∣∣∣> ε
)

= 0


From result (B.51) and applying Cauchy–Schwarz and Markov’s inequalities,
we can then conclude that

lim sup
n→∞

∣∣E[L(Gn)
]−E[L(Gn)∧C

]∣∣(B.52)

= lim sup
n→∞

∣∣E[L(Δ̃n)
]−E[L(Δ̃n)∧C

]∣∣
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≤ lim sup
n→∞

E
[
L(Δ̃n)1

{
L(Δ̃n) > C

}]≤ lim sup
n→∞

1
C
E
[
L2(Δ̃n)

]



By construction of N(P), there exists a compact set C ⊂ Rdm such that
λ(p�Q)′∇F(∫ m(x�θ)dQ(x)) ∈ C for all (p�θ�Q) ∈ Sdθ × Θ × N(P). Let
G ≡ {g : X → R :g(x) = c′m(x�θ) for some (c�θ) ∈ C × Θ}, and note that
by Assumption 3.4(i) and compactness of C, there exists a C1 > 0 such that
supx∈X |g(x)| ≤ C1 for all g ∈ G . Moreover, for any (c1� θ1) ∈ C × Θ and
(c2� θ2) ∈C×Θ, we also obtain, by Assumption 3.4(i)–(ii), that

sup
x∈X

∣∣c′1m(x�θ1)− c′2m(x�θ2)
∣∣(B.53)

≤
{

sup
(x�θ)∈X×Θ

∥∥m(x�θ)∥∥+ sup
(x�θ)∈X×Θ

∥∥∇θm(x�θ)∥∥F × sup
c∈C
‖c‖

}
× {‖c1 − c2‖ + ‖θ1 − θ2‖

}
�

and hence the class G is Lipschitz in (θ� c) ∈Θ×C. Letting ‖ · ‖ + ‖ · ‖ denote
the sum of the Euclidean norms on Rdθ and Rdm , we then obtain, by Theo-
rem 2.7.11 in van der Vaart and Wellner (1996), that

N[ ]
(
2εC1�G�‖ · ‖∞

)≤N(ε�Θ×C�‖ · ‖ + ‖ · ‖)� ε−(dm+dθ)
(B.54)

Consequently, since Δ̃n = 0 whenever P̂n /∈N(P), the inequality L(f) ≤M0 +
M1‖f‖κ∞ for all f ∈ C(Sdθ) implies

lim sup
n→∞

E
[
L2(Δ̃n)

]
(B.55)

≤ lim sup
n→∞

{
2M2

0 + 2M2
1E
[‖Δ̃n‖2κ

∞
]}

≤ lim sup
n→∞

{
2M2

0 + 2M2
1E

[
sup
g∈G

∣∣∣∣∣ 1√
n

n∑
i=1

{
g(Xi)−E

[
g(Xi)

]}∣∣∣∣∣
2κ]}

� 2M2
0 +

(∫ 1

0

√
1+ logN[ ]

(
εC1�G�‖ · ‖∞

)
dε

)2κ

�

where the third inequality follows from Theorem 2.14.1 in van der Vaart and
Wellner (1996). Combining results (B.52), (B.54), and (B.55), we can finally
obtain

lim sup
C↑∞

lim sup
n→∞

∣∣E[L(Gn)
]−E[L(Gn)∧C

]∣∣(B.56)

≤ lim sup
C↑∞

lim sup
n→∞

1
C
E
[
L2(Δn)

]= 0
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The claim of the theorem then follows from results (B.46), (B.47), and
(B.56). Q.E.D.

PROOF OF COROLLARY 4.1: For any convex, compact valued set Kn, Corol-
lary 1.10 in Li, Ogura, and Kreinovich (2002) implies that

√
ndH

(
Kn�Θ0(P)

)=√n∥∥ν(·�Kn)− ν
(·�Θ0(P)

)∥∥
∞�(B.57)

and in particular
√
ndH(Θ̂n�Θ0(P)) = √

n‖ν(·�Θ0(P̂n)) − ν(·�Θ0(P))‖∞.
Therefore, the claim of the corollary follows if we can verify the conditions
of Theorem 4.2 under the loss function L̄ : C(Sdθ)→ R+ given by L̄(f ) =
L(‖f‖∞). To this end, note L̄(f ) = L(‖f‖∞) = L(‖ − f‖∞) = L̄(−f ). More-
over, since L : R+ → R+ is subconvex, it follows that 0 = L(0) ≤ L(a), and
hence if L(a)= c, then, by convexity of {a :L(a)≤ c}, we must have L(λa)≤ c
for all λ ∈ [0�1]. In particular, it follows that L : R+ → R+ is nondecreasing.
Therefore, if L̄(f1)≤ c and L̄(f2)≤ c, then

L̄
(
λf1 + (1− λ)f2

)= L(∥∥λf1 + (1− λ)f2

∥∥
∞
)

(B.58)

≤ L(λ‖f1‖∞ + (1− λ)‖f2‖∞
)≤ c�

where the first inequality follows from L being nondecreasing, and the second
by subconvexity of L. It follows from (B.58) that L̄ : C(Sdθ)→R+ is subconvex.
The other conditions on L̄ have been directly assumed, and the claim of the
corollary follows from Theorem 4.2. Q.E.D.

APPENDIX C: PROOF OF THEOREM 4.3

The proof of Theorem 4.3 proceeds by: (i) deriving the semiparametric effi-
ciency bound, and (ii) establishing that {ν|C(·�Θ0(P̂n))} attains the bound. The
efficiency bound is derived in Theorem C.1, after verifying that ν|C(·�Θ0(P))
is pathwise weak-differentiable (Lemma C.4) and characterizing the tangent
space (Lemma C.3). A key challenge in the latter is showing that P satisfying
Assumption 4.1 does not affect the tangent space (Lemma C.2). The fact that
{ν|C(·�Θ0(P̂n))} attains the efficiency bound follows readily after characterizing
its influence function (Lemma C.6).

Some of the derivations in this appendix are similar to those in Appendices
A and B. For conciseness, we provide more succinct derivations but include
references to previous instances where analogous arguments were employed.

LEMMA C.1: Let SL ≡ {s ∈ L2
μ : s = √

dP/dμ for some P ∈ PL}, and As-
sumptions 3.2, 3.4, 3.5, and 4.2(i) hold. If η 	→ hη is a curve in SL, then there
is a neighborhood N ⊆ R of 0 such that, for all (p�η0) ∈ C × N , (p�η0) 	→
∂
∂η
ν(p�Θ0(Pη))|η=η0 exists, satisfies (A.42), and is both bounded and continuous

on C×N .
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PROOF: First note that PL ⊆ P implies SL ⊆ S. Therefore, there is a neigh-
borhoodN1 ⊆R of 0 such that (A.45) and (A.46) hold for all (p�η0) ∈ Sdθ×N1.
Since for any (p�η0) ∈C×N1, Ξ(p�Pη0) is a singleton due to Pη0 ∈ PL, it fol-
lows that (A.45) and (A.46) equal each other and hence ∂

∂η
ν(p�Θ0(Pη))|η=η0

exists and is given by (A.42) for all (p�η0) ∈ C × N1. The existence of a
neighborhood N2 ⊆ N1 such that (p�η0) 	→ ∂

∂η
ν(p�Θ0(Pη))|η=η0 is uniformly

bounded in (p�η0) ∈C×N2 then follows from (A.48), Lemmas A.2 and A.11,
and Assumptions 3.4(i) and 3.5(ii).

To establish continuity, note that Lemmas A.7 and A.12 imply there is
a neighborhood N ⊆ N2 ⊆ R such that (p�η0) 	→ λ(p�Pη0) and (p�η0) 	→
Ξ(p�Pη0) are continuous and upper hemicontinuous, respectively, on (p�
η0) ∈ Sdθ × N . Next, let (p0�η0) ∈ C × N and {(pn�ηn)}∞n=1 be a sequence
such that (pn�ηn)→ (p0�η0) and (pn�ηn) ∈C×N for all n. Since (pn�Pηn) ∈
C × PL for all 0 ≤ n <∞, Ξ(pn�Pηn) = {θ∗n} for some θ∗n ∈ Θ and, by upper
hemicontinuity, θ∗n→ θ∗0 with Ξ(p0�Pη0)= {θ∗0}. Result (A.50) and continuity
of (p�P) 	→ λ(p�P) then imply

lim
n→∞

∂

∂η
ν
(
pn�Θ0(Pη)

)∣∣∣∣
η=ηn

= ∂

∂η
ν
(
p0�Θ0(Pη)

)∣∣∣∣
η=η0

�(C.1)

due to ∂
∂η
ν(p�Θ0(Pη))|η=ηn satisfying (A.42) for all integer 0≤ n <∞. Q.E.D.

LEMMA C.2: If Assumptions 3.2, 3.4, 3.5, 4.2 hold and C is compact, then the
following set is open in M:

ML ≡
{
P ∈M : Assumptions 3.6(i)–(iv) and 4.1 hold

}

(C.2)

PROOF: The proof is by contradiction. Suppose there exists a P ∈ML such
that N(P)� ML for all neighborhoods N(P)⊆M of P . Let NP be the neigh-
borhood system of P with direction V �W whenever V ⊆W , and recall that
Lemmas A.2 and A.8, Corollary A.3, and P ∈ML satisfying Assumption 3.6(ii)
imply that the set of P ∈ M satisfying Assumptions 3.6(i)–(iv) is open in M.
Therefore, if the lemma is false, then, for A=NP , there is a net {Qα}α∈A with
Qα→ P such that, for each α ∈ A: (i) Qα satisfies Assumption 3.6(i)–(iv), and
(ii) there is a pα ∈ C with Ξ(pα�Qα) (as in (A.24)) not a singleton. Further-
more, by arguing as in (A.13)–(A.15), there is a θα ∈Ξ(pα�Qα) with

A(θα�Qα)=
⋂

θ∈Ξ(pα�Qα)
A(θ�Qα)
(C.3)

By compactness of C, finiteness of the number of constraints, and Lemma A.7,
we can then pass to a subnet {Qαβ�pαβ�θαβ}β∈B such that, for some (p∗� θ∗) ∈
C×Ξ(p∗�P) and a fixed set C ⊆ {1� 
 
 
 � dF},

(Qαβ�pαβ�θαβ)→
(
P�p∗� θ∗

)
and A(θαβ�Qαβ)= C ∀β ∈B
(C.4)
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Next, note that Assumption 4.2(ii) implies we can partition {1� 
 
 
 � dF}
into IL ≡ {i : Si = ∅} and IS ≡ {i : Si = {1� 
 
 
 � dθ}}. Since Assumption 3.2
and Qαβ satisfying Assumption 3.6(ii) imply Ξ(pαβ�Qαβ) is convex and
F(i)(

∫
m(x� ·)dQαβ(x)) :Θ→ R is strictly convex for all i ∈ IS , Ξ(pαβ�Qαβ)

being nonsingleton and (C.3) yield

C ⊆ IL
(C.5)

Hence, by the complementary slackness condition, λ(i)(pαβ�Qαβ) = 0 for all
i ∈ IS . Since Theorem 8.3.1 in Luenberger (1969) implies θαβ is a maximizer of
(A.29), we obtain from the first order conditions and Si = ∅, for all i ∈ IL,

FA

(∫
mA(x)dQαβ(x)

)′
λ(pαβ�Qαβ)=−pαβ�(C.6)

where we exploited θαβ ∈Θo due to Qαβ satisfying Assumption 3.6(i). Since by
construction, A(θαβ�Qαβ) = C , we may letλC(pαβ�Qαβ),F

C
A(
∫
mA(x)dQαβ(x)),

and FC
S (
∫
mS(x�θ)dQαβ(x)) respectively be the #C × 1 subvector of λ(pαβ�

Qαβ), #C × dθ submatrix of FA(
∫
mA(x)dQαβ(x)), and #C × 1 subvector of

FS(
∫
mS(x�θ)dQαβ(x)) that correspond to the constraints indexed by C . Since

λ(i)(pαβ�Qαβ)= 0 for all i /∈ C by (C.4), we then have

FC
A

(∫
mA(x)dP(x)

)′
λC(p∗�P)=−p∗�(C.7)

by results (C.4), (C.6), and Lemmas A.5 and A.12. Moreover, note that by
definition of C , we also obtain that

FC
A

(∫
mA(x)dQαβ(x)

)
θαβ =−FC

S

(∫
mS(x�θαβ)dQαβ(x)

)

(C.8)

Moreover, since Si = ∅ for all i ∈ C by (C.5), (C.8) is a linear equation in
θαβ , and by Qαβ /∈ ML satisfying Assumption 3.6(iv) we must have #C < dθ,
for otherwise (C.8) would have a unique solution in θ and (C.3) would imply
Ξ(pαβ�Qαβ) is a singleton. Thus, while (C.4), (C.8), and Lemma A.5 imply
C ⊆ A(θ∗�P), we may also conclude from #C < dθ and Ξ(p∗�P) being a sin-
gleton by (p∗�P) ∈C×ML, that we also have

A
(
θ∗�P

) \ C �= ∅
(C.9)

In what follows, we aim to establish a contradiction by showing that P will not
satisfy Assumption 3.6(iv) at the point θ∗ ∈Θ0(P). To this end, for notational
convenience we first define the sets

Ki ≡
{
θ ∈Θ :F(i)

(∫
m(x�θ)dP(x)

)
≤ 0

}
�(C.10)
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Ei ≡
{
θ ∈Θ :F(i)

(∫
m(x�θ)dP(x)

)
= 0

}



Next, note thatΞ(p∗�P)= {θ∗} and convexity of F(i)(
∫
m(x� ·)dP(x)) :Θ→R

for all 1≤ i≤ dF imply

{
θ∗
}= { ⋂

1≤i≤dF
Ki

}
∩ {θ ∈Θ :

〈
p∗� θ

〉= ν(p∗�Θ0(P)
)}

(C.11)

=
{ ⋂
i∈A(θ∗�P)

Ki

}
∩ {θ ∈Θ :

〈
p∗� θ

〉= ν(p∗�Θ0(P)
)}



Moreover, also note C ⊆ A(θ∗�P) implies FC
A(
∫
mA(x)dP(x))θ

∗ =
−FC

S (
∫
mS(x�θ

∗)dP(x)), and hence, by (C.7),

λC(p∗�P)′FC
S

(∫
mS

(
x�θ∗

)
dP(x)

)
= 〈
p∗� θ∗

〉= ν(p∗�Θ0(P)
)

(C.12)

Since Si = ∅ for all i ∈ C , results (C.7) and (C.12) imply {⋂i∈C Ei} ⊆ {θ ∈
Θ : 〈p∗� θ〉 = ν(p∗�Θ0(P))}, which yields

{
θ∗
}= { ⋂

i∈A(θ∗�P)\C

Ki

}
∩
{⋂
i∈C

Ei

}
�(C.13)

due to (C.9), (C.11), and Ei ⊆ Ki. Next, let ι : A(θ∗�P) \ C → {1� 
 
 
 �#A(θ∗�
P) \ C} be a bijection, and define

j∗ ≡ min
1≤j≤#A(θ∗�P)\C

j :
{ ⋂
i∈A(θ∗�P)\C:ι(i)≤j

Ki

}
∩
{⋂
i∈C

Ei

}
is a singleton�(C.14)

where we note j∗ is well defined by (C.13), and {⋂i∈C Ei} not being singleton
by #C < dθ and F(i)(

∫
m(x� ·)dP(x)) :Θ→ R being linear for all i ∈ C . Thus,

from (C.10), (C.14) and setting i∗ ≡ ι−1(j∗) ∈ A(θ∗�P), we conclude14

{
θ∗
}= arg min

θ∈Θ

{
F(i∗)

(∫
m(x�θ)dP(x)

)
s.t.(C.15)

θ ∈
{ ⋂
i:ι(i)≤j∗−1

Ki

}
∩
{⋂
i∈C

Ei

}}



14Here {⋂i∈∅Ki} ∩ {⋂i∈C Ei} should be understood to equal {⋂i∈C Ei}.



44 H. KAIDO AND A. SANTOS

However, since the constraint set is not a singleton, it follows that, for each i
such that ι(i) ≤ j∗ − 1, either F(i)(

∫
m(x�θ)dP(x)) is linear in θ (if i ∈ IL),

or F(i)(
∫
m(x�θi)dP(x)) < 0 for some θi ∈ {⋂i:ι(i)≤j∗−1Ki} ∩ {⋂i∈C Ei} (if i ∈

IS). It follows that (C.15) is an ordinary convex problem satisfying a primal
qualification constraint, and, by Theorem 28.2 in Rockafellar (1970), that there
exist Kuhn–Tucker vectors such that

{
θ∗
}= arg min

θ∈Θ

{
F(i∗)

(∫
m(x�θ)dP(x)

)
(C.16)

+
∑

i:ι(i)≤j∗−1

γiF
(i)

(∫
m(x�θ)dP(x)

)

+
∑
i∈C

πiF
(i)

(∫
m(x�θ)dP(x)

)}



Finally, we observe that since θ∗ ∈ Θ0(P) ⊆ Θo by Assumption 3.6(i), result
(C.16) and Corollary A.1 imply

−∇θF(i∗)
(∫

m
(
x�θ∗

)
dP(x)

)
(C.17)

=
∑

i:ι(i)≤j∗−1

γi∇θF(i)

(∫
m
(
x�θ∗

)
dP(x)

)

+
∑
i∈C

πi∇θF(i)

(∫
m
(
x�θ∗

)
dP(x)

)



Thus, we reach the desired contradiction that P ∈ ML violates Assump-
tion 3.6(iv). Q.E.D.

LEMMA C.3: If Assumptions 3.2, 3.4, 3.5, 4.2 hold, P ∈ PL, SL ≡ {h ∈L2
μ :h=√

dQ/dμ for some Q ∈ PL}, and C is compact, then the tangent space of SL at
s =√

dP/dμ is ṠL = {h ∈L2
μ :
∫
h(x)s(x)dμ(x)= 0}.

PROOF: The claim follows immediately from Lemmas A.16 and C.2.
Q.E.D.

LEMMA C.4: If Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and C is compact, then
the mapping ρL : PL → C(C) pointwise defined by ρL(P)= ν|C(·�Θ0(P)) is path-
wise weak-differentiable at any P ∈ PL. Moreover, for s ≡√

dP/dμ, λ(p�Q) (as
in (A.29)), and {θ∗(p)} =Ξ(p�P) (as in (A.24)), the derivative ρ̇L : ṠL → C(C)
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satisfies

ρ̇L(ḣ0)(p)= 2λ(p�P)′∇F
(∫

m
(
x�θ∗(p)

)
dP(x)

)

×
∫
m
(
x�θ∗(p)

)
ḣ0(x)s(x)dμ(x)


PROOF: First note ρ̇L(ḣ0) ∈ C(C) for any ḣ0 ∈ ṠL by Lemma C.1. In addition,
ρ̇L : ṠL → C(C) is linear, and bounded, since by Lemma A.11, P ∈ PL satisfying
Assumption 3.6(iii), and Assumptions 3.4(i) and 3.5(ii), we have

sup
‖ḣ0‖L2

μ
=1

sup
p∈C

∣∣ρ̇L(ḣ0)(p)
∣∣(C.18)

≤ sup
‖ḣ0‖L2

μ

sup
p∈C

{
2
∥∥λ(p�P)∥∥× sup

v∈V0

∥∥∇F(v)∥∥
F

×
√
dm sup

(x�θ)∈X×Θ

∥∥m(x�θ)∥∥× ‖ḣ0‖L2
μ
× ‖s‖L2

μ

}
<∞


Finally, note that for any curve η 	→ Pη in PL with h0 = s and all finite Borel
measures B on C, the mean value theorem, the dominated convergence theo-
rem, and Lemma C.1 allow us to conclude that

lim
η0→0

∫
C

{
ν(p�Θ0(Pη0))− ν(p�Θ0(P))

η0
− ρ̇L(ḣ0)(p)

}
dB(p)= 0(C.19)

(see (A.57)). Since (C.19) verifies ρ̇L : ṠL → C(C) is the weak-derivative of
ρL : PL → C(C), the lemma follows. Q.E.D.

THEOREM C.1: Let Assumptions 3.1, 3.2, 3.4, 3.5, 4.2 hold, P ∈ PL, and
C be compact. For each θ1� θ2 ∈ Θ, let H(θ1) and Ω(θ1� θ2) be as in The-
orem 3.2, {θ∗(p)} = Ξ(p�P) (as in (A.24)) and define ρL : PL → C(C) by
ρL(P) ≡ ν|C(·�Θ0(P)). The inverse information covariance functional for esti-
mating ρL(P) is then given by

I−1(p1�p2)= λ(p1�P)
′H
(
θ∗(p1)

)
Ω
(
θ∗(p1)�θ

∗(p2)
)

(C.20)

×H(θ∗(p2)
)′
λ(p2�P)


PROOF: As in the proof of Theorem 3.2, we closely follow Chapter 5.2 in
Bickel et al. (1993). Let B ≡ C(C) and B∗ denote the set of finite Borel mea-
sures on C, which, by Corollary 14.15 in Aliprantis and Border (2006), is the
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dual space of B. For s ≡√
dP/dμ, then define ρ̇TL : B∗ → ṠL pointwise by

ρ̇TL(B)(x)≡
∫

C

2λ(p�P)′H
(
θ∗(p)

)
(C.21)

× {
m
(
x�θ∗(p)

)−E[m(Xi�θ
∗(p)

)]}
s(x)dB(p)�

noting that the integrand is indeed measurable by arguing as in (A.59) and ex-
ploiting that p 	→ θ∗(p) is continuous on C due to Lemma A.7 and Ξ(p�P)
being a singleton for all p ∈C due to P ∈ PL. For any B ∈ B∗, let Γ (B) denote
the finite Borel measure on Sdθ given by Γ (B)(A) = B(A ∩ C) for any Borel
set A⊆ Sdθ . Noting that ρ̇TL(B)= ρ̇T (Γ (B)), it then follows from Lemma C.3
and results (A.60)–(A.62) that ρ̇TL : B∗ → ṠL is the adjoint of ρ̇L : ṠL → B. Lem-
mas C.3 and C.4 and Theorem 5.2.1 in Bickel et al. (1993) then establish the
theorem. Q.E.D.

LEMMA C.5: Let Assumptions 3.2, 3.4, 3.5, 4.2 hold, C be compact, P ∈ PL,
and Qτ ≡ τQ+ (1− τ)P for any Q ∈M. Then, there is a N(P)⊆M such that,
for all (Q�p�τ0) ∈N(P)×C× (0�1),

∂

∂τ
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

= λ(p�Qτ0)
′∇F

(∫
m
(
x�θ∗

)
dQτ0(x)

)

×
∫
m
(
x�θ∗

)(
dQ(x)− dP(x)) where

{
θ∗
}=Ξ(p�Qτ0)


PROOF: By Lemmas B.2 and C.2, there is a N(P) ⊆M that is convex and
contained in ML (as in (C.2)). Hence, if Q ∈N(P)⊆ML, then Qτ ∈ML for all
τ ∈ (0�1), which, together with Assumption 3.5, Lemma A.9, and Corollary 5 in
Milgrom and Segal (2002), imply that, for any (Q�p) ∈N(P)×C, the function
τ 	→ ν(p�Θ0(Qτ)) is directionally differentiable with right and left derivatives
given by

∂

∂τ+
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

(C.22)

= max
θ∗∈Ξ(p�Qτ0 )

λ(p�Qτ0)
′∇F

(∫
m
(
x�θ∗

)
dQτ0(x)

)

×
∫
m
(
x�θ∗

)(
dQ(x)− dP(x))�
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∂

∂τ−
ν
(
p�Θ0(Qτ)

)∣∣∣∣
τ=τ0

(C.23)

= min
θ∗∈Ξ(p�Qτ0 )

λ(p�Qτ0)
′∇F

(∫
m
(
x�θ∗

)
dQτ0(x)

)

×
∫
m
(
x�θ∗

)(
dQ(x)− dP(x))

(see also (B.4)–(B.5)). However, since Qτ0 ∈ N(P) ⊆ML for all τ0 ∈ (0�1), it
follows that, for any p ∈C, the correspondence Ξ(p�Qτ0) is singleton valued.
We conclude (C.22) and (C.23) agree, and the lemma follows. Q.E.D.

LEMMA C.6: Let Assumptions 3.1, 3.2, 3.4, 3.5, 4.2 hold, C be compact, P ∈
PL, and {θ∗(p)} =Ξ(p�P). Then,

sup
p∈C

∣∣∣∣√n
{(
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
))− λ(p�P)′H(θ∗(p))

×
∫
m
(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)}∣∣∣∣= op(1)

PROOF: By Lemma B.2, we may restrict attention to convex neighborhoods,

so that if P̂n ∈N(P), then P̂n�τ ≡ τP̂n+(1−τ)P ∈N(P) for all τ ∈ [0�1]. Hence,
Lemmas A.7 and B.5 imply Ξ(p� P̂n�τ) is well defined for all τ ∈ [0�1] with
probability tending to 1. Moreover, since P ∈ PL implies Ξ(p�P) is singleton
valued for all p ∈C, we obtain

lim inf
n→∞

P
(

sup
p∈C

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥θ− θ∗(p)∥∥> ε)= 0(C.24)

for any ε > 0, due to Lemmas A.7, B.4, and B.5. Thus, since p 	→ λ(p�P) and
p 	→H(θ∗(p)) are uniformly bounded on C by Lemma A.11, Assumption 3.5,
and P ∈ PL satisfying Assumption 3.6(iii), we obtain

sup
p∈C

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥∥∥√nλ(p�P)′H(θ∗(p))(C.25)

×
∫ (

m(x�θ)−m(x�θ∗(p)))(dP̂n(x)− dP(x))
∥∥∥∥= op(1)

due to result (C.24) and Lemma B.1 (see also (B.27)–(B.28)). Additionally,
since Θ is compact, result (A.3) implies θ 	→ ∫

m(x�θ)dP(x) is uniformly con-
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tinuous on Θ, and we therefore obtain from Lemma B.1 that (see also (B.23)):

sup
p∈C

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥∥∥
∫
m(x�θ)dP̂n�τ(x)−

∫
m
(
x�θ∗(p)

)
dP(x)

∥∥∥∥(C.26)

= op(1)


Further note that ∇F(∫ m(x�θ)dP(x)) is uniformly bounded in θ ∈Θ by As-
sumption 3.5 and P ∈ PL satisfying Assumption 3.6(iii), while λ(p�P) is uni-
formly bounded on C by Lemma A.11. Therefore, v 	→ ∇F(v) being uniformly
continuous on V0 by Assumption 3.5(ii), together with Lemmas A.2 and B.5
and results (B.31) and (C.26), yield

sup
p∈C

sup
τ∈[0�1]

sup
θ∈Ξ(p�P̂n�τ)

∥∥∥∥λ(p� P̂n�τ)′∇F
(∫

m(x�θ)dP̂n�τ(x)

)
(C.27)

− λ(p�P)′∇F
(∫

m
(
x�θ∗(p)

)
dP(x)

)∥∥∥∥= op(1)

Finally, employing the mean value theorem, which is valid by Lemmas B.2,
B.5, and C.5, we obtain uniformly in p ∈ C that, for some τ0 : C→ (0�1) and
θ̃ : C→Θ with θ̃(p) ∈Ξ(p� P̂n�τ0(p)) for all p ∈C,

√
n
{
ν
(
p�Θ0(P̂n)

)− ν(p�Θ0(P)
)}

(C.28)

=√nλ(p� P̂n�τ0(p))
′∇F

(∫
m
(
x� θ̃(p)

)
dP̂n�τ0(p)(x)

)

×
∫
m
(
x� θ̃(p)

)(
dP̂n(x)− dP(x)

)+ op(1)
=√nλ(p�P)′H(θ∗(p))∫ m

(
x�θ∗(p)

)(
dP̂n(x)− dP(x)

)+ op(1)�
where the second equality follows from results (B.25), (C.25), and (C.27).

Q.E.D.

PROOF OF THEOREM 4.3: We first show the class F ≡ {f : X → R : f (x) =
λ(p�P)′H(θ∗(p))m(x�θ∗(p)) for some p ∈ C} is Donsker in C(C). To this
end, note that p 	→ λ(p�P)′H(θ∗(p)) and p 	→ θ∗(p) are continuous in p ∈C
due to Lemmas A.7 and A.12, result (A.3), Assumption 3.5, and P ∈ PL satisfy-
ing Assumption 3.6(iii). Thus, it follows from Assumption 3.4(i)–(ii) that f ∈ F
are uniformly bounded, and that the empirical process belongs to C(C). Con-
vergence of the marginals is then immediate, while, for any sequence δn ↓ 0,
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we obtain

sup
p1�p2∈C:‖p1−p2‖≤δn

∣∣∣∣√n
∫ (

m
(
x�θ∗(p1)

)
(C.29)

−m(x�θ∗(p2)
))(
dP̂n(x)− dP(x)

)∣∣∣∣= op(1)�
due to Lemma B.1 and continuity of p 	→ θ∗(p) on C. The class F being
Donsker then follows from (C.29), Lemma B.1, and p 	→ λ(p�P)′H(θ∗(p))
being uniformly continuous and bounded on C by compactness. Theorem 18.1
in Kosorok (2008) and Lemma C.6 then imply {ν|C(·�Θ0(P̂n))} is a regular esti-
mator of ν|C(·�Θ0(P)). The theorem then follows from the influence function
of {ν|C(·�Θ0(P̂n))} being efficient by Lemma C.6 and Theorem C.1. Q.E.D.

APPENDIX D: PROOFS OF THEOREMS 5.1, 5.2, 5.3, AND 5.4

The proofs of all theorems in this section are self contained, and do not
require auxiliary lemmas or results.

PROOF OF THEOREM 5.1: For any metric space (D�‖ · ‖D), let BLM(D) de-
note the set of Lipschitz real functions on D whose absolute value and Lips-
chitz constant are bounded by M . To establish the theorem, it then suffices to
show

sup
f∈BL1(C(Sdθ ))

∣∣E[f (G∗
n

)|{Xi}ni=1

]−E[f (G0)
]∣∣= op(1)�(D.1)

due to Theorem 1.12.4 in van der Vaart and Wellner (1996). Toward this end,
note that Lemma B.1 implies that

sup
p∈S

dθ

∥∥∥∥√n
∫
w

{
m
(
x� θ̂(p)

)− ∫
m
(
x� θ̂(p)

)
dP̂n(x)

}
dP̂W

n (x�w)

∥∥∥∥(D.2)

≤ sup
θ∈Θ

∥∥∥∥√n
∫
wm(x�θ)dP̂W

n (x�w)

∥∥∥∥
+ sup

(x�θ)∈(X×Θ)

∥∥m(x�θ)∥∥× ∣∣∣∣√n
∫
wdP̂W

n (x�w)

∣∣∣∣
=Op(1)�

due to Wi ⊥ Xi, E[Wi] = 0 by Assumption 5.1(ii), and (x�θ) 	→ m(x�θ)
being uniformly bounded by Assumption 3.4(i). Next, let Πp :Θ→ Rdθ be
as in Lemma B.7, and note that Lemmas B.5 and B.7 imply, uniformly in
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p ∈ Sdθ ,

λ(p�P)′∇FS
(∫

mS

(
x� θ̂(p)

)
dP̂n(x)

)∫
mS

(
x� θ̂(p)

)
dP̂n(x)(D.3)

= λ(p�P)′∇FS
(∫

mS

(
x�Πpθ̂(p)

)
dP̂n(x)

)

×
∫
mS

(
x�Πpθ̂(p)

)
dP̂n(x)+ op(1)

= λ(p�P)′∇FS
(∫

mS

(
x�θ∗(p)

)
dP(x)

)

×
∫
mS

(
x�Πpθ̂(p)

)
dP̂n(x)+ op(1)

= λ(p�P)′∇FS
(∫

mS

(
x�θ∗(p)

)
dP(x)

)

×
∫
mS

(
x�θ∗(p)

)
dP(x)+ op(1)�

where the second equality follows from (B.20), Assumption 3.4(i), and (B.24),
while the third equality results from Lemma A.11, Assumption 3.5(ii), P ∈ P
satisfying Assumption 3.6(iii), and result (B.23). Therefore, results (B.31), As-
sumption 3.5(ii), Lemmas A.2 and B.5, and result (D.2) yield, uniformly in
p ∈ Sdθ ,

√
nλ(p� P̂n)

′∇F
(∫

m
(
x� θ̂(p)

)
dP̂n(x)

)
(D.4)

×
∫
w

{
m
(
x� θ̂(p)

)− ∫
m
(
x� θ̂(p)

)
dP̂n(x)

}
dP̂W

n (x�w)

=√nλ(p�P)′∇F
(∫

m
(
x� θ̂(p)

)
dP̂n(x)

)

×
∫
w

{
m
(
x� θ̂(p)

)− ∫
m
(
x� θ̂(p)

)
dP̂n(x)

}
dP̂W

n (x�w)

+ op(1)

=√nλ(p�P)′∇F
(∫

m
(
x�θ∗(p)

)
dP(x)

)

×
∫
w

{
m
(
x�θ∗(p)

)− ∫
m
(
x�θ∗(p)

)
dP(x)

}
dP̂W

n (x�w)

+ op(1)�
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where the second equality follows from Aθ− ∫
AθdP̂n(x)= 0, E[Wi] = 0 and

Wi ⊥ Xi by Assumption 5.1, Lemma B.8, and result (D.3). Next, define the
process Ḡ∗

n to be pointwise given by

Ḡ∗
n(p)≡

√
nλ(p�P)′H

(
θ∗(p)

)
(D.5)

×
∫
w

{
m
(
x�θ∗(p)

)− ∫
m
(
x�θ∗(p)

)
dP(x)

}
dP̂W

n (x�w)�

and note that arguments identical to those in (A.50)–(A.51) imply that
Ḡ∗

n ∈ C(Sdθ) almost surely. Since all f ∈ BL1(C(Sdθ)) are bounded and
have Lipschitz constant less than or equal to 1, for any η > 0, we must
have

sup
f∈BL1(C(Sdθ ))

∣∣E[f (Ḡ∗
n

)− f (G∗
n

)|{Xi}ni=1

]∣∣(D.6)

≤ ηP(∥∥Ḡ∗
n −G∗

n

∥∥
∞ ≤ η|{Xi}ni=1

)+ 2P
(∥∥Ḡ∗

n −G∗
n

∥∥
∞ >η|{Xi}ni=1

)



However, from (D.4), it follows that P(‖Ḡ∗
n −G∗

n‖∞ >η|{Xi}ni=1)= op(1), and
hence, since η in (D.6) is arbitrary,

sup
f∈BL1(C(Sdθ ))

∣∣E[f (G∗
n

)|{Xi}ni=1

]−E[f (Ḡ∗
n

)|{Xi}ni=1

]∣∣= op(1)
(D.7)

To conclude, we note that by Lemma B.10 and Theorem 2.9.6 in van der Vaart
and Wellner (1996), we have

sup
f∈BL1(C(Sdθ ))

∣∣E[f (Ḡ∗
n

)|{Xi}ni=1

]−E[f (G0)
]∣∣= op(1)�(D.8)

and therefore results (D.7) and (D.8) verify (D.1), which establishes the claim
of the theorem. Q.E.D.

PROOF OF THEOREM 5.2: Let Ḡ∗
n be defined as in (D.5) and note that, by

(D.4), ‖Ḡ∗
n −G∗

n‖∞ = op(1) unconditionally. Define a mapping Γ : C(Sdθ)→
C(Sdθ) pointwise by Γ (f ) = Υ ◦ f . The continuous mapping theorem then
yields ∣∣∣sup

p∈Ψ̂n
Υ
(
G∗

n(p)
)− sup

p∈Ψ̂n
Υ
(
Ḡ∗

n(p)
)∣∣∣(D.9)

≤ sup
p∈S

dθ

∣∣Υ (G∗
n(p)

)−Υ (Ḡ∗
n(p)

)∣∣
= ∥∥Γ (G∗

n

)− Γ (Ḡ∗
n

)∥∥
∞ = op(1)
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Next, let p̂∗ ∈ arg maxp∈Ψ̂n Υ (Ḡ
∗
n(p)), which is well defined by Assump-

tion 5.2(ii) and continuity of p 	→ Ḡ∗
n(p). Letting ΠΨ0p̂

∗ denote the projec-
tion of p̂∗ onto Ψ0 and noting ‖p̂∗ −ΠΨ0p̂

∗‖ ≤ dH(Ψ̂n�Ψ0), we can then ob-
tain

sup
p∈Ψ̂n

Υ
(
Ḡ∗

n(p)
)− sup

p∈Ψ0

Υ
(
Ḡ∗

n(p)
)

(D.10)

≤ Υ (Ḡ∗
n

(
p̂∗
))−Υ (Ḡ∗

n

(
ΠΨ0p̂

∗))
≤ sup
‖p−p̃‖≤dH(Ψ̂n�Ψ0)

∣∣Υ (Ḡ∗
n(p)

)−Υ (Ḡ∗
n(p̃)

)∣∣

Similarly, by analogous manipulations to the term supp∈Ψ0

Υ(Ḡ∗
n(p)) −

supp∈Ψ̂n Υ (Ḡ
∗
n(p)), we can conclude

∣∣∣sup
p∈Ψ̂n

Υ
(
Ḡ∗

n(p)
)− sup

p∈Ψ0

Υ
(
Ḡ∗

n(p)
)∣∣∣(D.11)

≤ sup
‖p−p̃‖≤dH(Ψ̂n�Ψ0)

∣∣Υ (Ḡ∗
n(p)

)−Υ (Ḡ∗
n(p̃)

)∣∣

By Assumption 5.1, Lemma B.10, and Theorem 2.9.2 in van der Vaart and
Wellner (1996), Ḡ∗

n

L→ Ḡ (unconditionally) for some tight Gaussian process
Ḡ in C(Sdθ). Therefore, it follows that supp∈S

dθ |Ḡ∗
n(p)| is asymptotically tight

in R. Next, fix η > 0, ε > 0, and note there then is a constant K > 0 such
that

lim sup
n→∞

P
(

sup
p∈S

dθ

∣∣Ḡ∗
n(p)

∣∣>K)<η
(D.12)

By Assumption 5.2(i), Υ : R → R is continuous and hence uniformly con-
tinuous on [−K�K]. Therefore, there is a δ0 > 0 such that |Υ(a1) −
Υ(a2)| < ε whenever |a1 − a2| < δ0 with a1� a2 ∈ [−K�K]. Hence, we then
obtain

lim sup
n→∞

P
(

sup
‖p−p̃‖≤dH(Ψ̂n�Ψ0)

∣∣Υ (Ḡ∗
n(p)

)−Υ (Ḡ∗
n(p̃)

)∣∣> ε)(D.13)

≤ lim sup
n→∞

P
(

sup
‖p−p̃‖≤dH(Ψ̂n�Ψ0)

∣∣Ḡ∗
n(p)− Ḡ∗

n(p̃)
∣∣> δ0

)

+ lim sup
n→∞

P
(

sup
p∈S

dθ

∣∣Ḡ∗
n(p)

∣∣>K)
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Moreover, since the process p 	→ Ḡ∗
n(p) is asymptotically tight in C(Sdθ) by

Lemma 1.3.8 in van der Vaart and Wellner (1996), it then follows that there
exists a γ0 > 0 such that

lim sup
n→∞

P
(

sup
‖p−p̃‖≤dH(Ψ̂n�Ψ0)

∣∣Ḡ∗
n(p)− Ḡ∗

n(p̃)
∣∣> δ0

)
(D.14)

≤ lim sup
n→∞

P
(

sup
‖p−p̃‖≤γ0

∣∣Ḡ∗
n(p)− Ḡ∗

n(p̃)
∣∣> δ0

)

+ lim sup
n→∞

P
(
dH(Ψ̂n�Ψ0) > γ0

)
<η�

due to dH(Ψ̂n�Ψ0)= op(1) by hypothesis. Since ε, η were arbitrary, combining
(D.9)–(D.14), we then obtain

sup
p∈Ψ̂n

Υ
(
G∗

n(p)
)= sup

p∈Ψ0

Υ
(
Ḡ∗

n(p)
)+ op(1)
(D.15)

Therefore, for BL1(R) as in (D.1), arguing as in (D.7), and using Theorem 5.1
and Theorem 10.8 in Kosorok (2008):

sup
f∈BL1(R)

∣∣∣E[f(sup
p∈Ψ̂n

Υ
(
G∗

n(p)
))∣∣{Xi}ni=1

]
−E

[
f
(

sup
p∈Ψ0

Υ
(
G0(p)

))]∣∣∣(D.16)

≤ sup
f∈BL1(R)

∣∣∣E[f(sup
p∈Ψ0

Υ
(
Ḡ∗

n(p)
))∣∣{Xi}ni=1

]

−E
[
f
(

sup
p∈Ψ0

Υ
(
G0(p)

))]∣∣∣+ op(1)
= op(1)


To conclude, observe that result (D.16) together with Lemma 10.11 in
Kosorok (2008) imply that

P
(

sup
p∈Ψ̂n

Υ
(
G∗

n(p)
)≤ t∣∣{Xi}ni=1

)
= P

(
sup
p∈Ψ0

Υ
(
G0(p)

)≤ t)+ op(1)(D.17)

for all t ∈ R that are continuity points of the cdf of supp∈Ψ0
Υ(G0(p)). More-

over, since c1−α is itself a continuity point, for any ε > 0 there is an ε̃≤ ε such
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that c1−α ± ε̃ are also continuity points and, in addition,

P
(

sup
p∈Ψ0

Υ
(
G0(p)

)≤ c1−α− ε̃
)
< 1−α< P

(
sup
p∈Ψ0

Υ
(
G0(p)

)≤ c1−α+ ε̃
)
�(D.18)

due to the cdf of supp∈Ψ0
Υ(G0(p)) being strictly increasing at c1−α. To con-

clude, define the event

An ≡
{
P
(

sup
p∈Ψ̂n

Υ
(
G∗

n(p)
)≤ c1−α − ε̃|{Xi}ni=1

)
(D.19)

< 1− α< P
(

sup
p∈Ψ̂n

Υ
(
G∗

n(p)
)≤ c1−α + ε̃|{Xi}ni=1

)}
�

and observe that since c1−α ± ε̃ are continuity points of the cdf of
supp∈Ψ0

Υ(G0(p)), result (D.17) yields that

lim inf
n→∞

P
(|ĉ1−α − c1−α| ≤ ε

)≥ lim inf
n→∞

P(An)= 1�(D.20)

which establishes the claim of the theorem. Q.E.D.

PROOF OF THEOREM 5.3: Since support functions are continuous, it fol-
lows that M̂n(θ) ⊆ Sdθ is closed and bounded and therefore compact. More-
over, by Theorem 17.31 in Aliprantis and Border (2006), M(θ) is nonempty
and compact valued, while Theorem 4.1 and Corollary 1.10 in Li, Ogura, and
Kreinovich (2002) imply that

dH
(
Θ0(P)� Θ̂n

)=Op

(
n−1/2

)

(D.21)

In turn, result (D.21) and Lemma B.10 in Kaido (2012) yield dH(M̂n(θ)�
M(θ)) = op(1). Therefore, Assumption 5.2 is satisfied with M(θ) = Ψ0 and
M̂n(θ)= Ψ̂n. Moreover, by Theorem 11.1 in Davydov, Lifshits, and Smorodina
(1998), the cdf of supp∈M(θ) |−G0(p)|+ is continuous and strictly increasing ex-
cept possibly at zero. However, since M(θ) is nonempty and Var{G0(p0)}> 0
for some p0 ∈M(θ) by hypothesis, we obtain that

P
(

sup
p∈M(θ)

∣∣−G0(p)
∣∣
+ ≤ 0

)
≤ P(−G0(p0)≤ 0

)= 0
5
(D.22)

Therefore, α < 0
5 implies that the cdf of supp∈M(θ) |−G0(p)|+ is continuous
and strictly increasing at c1−α(θ). By Theorem 5.2, it then follows that ĉ1−α(θ)=
c1−α(θ)+ op(1).
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Suppose θ ∈Θ0(P)
o. Then result (D.21) implies that, with probability tend-

ing to 1, θ ∈ Θ̂o
n. Therefore, Jn(θ)= 0 with probability tending to 1, and since

ĉ1−α(θ)
p→ c1−α(θ) > 0, we conclude that

lim inf
n→∞

P
(
Jn(θ)≤ ĉ1−α(θ)

)= 1
(D.23)

Suppose, on the other hand, that θ ∈ ∂Θ0(P). Theorem 4.1 and Lemma B.9 in
Kaido (2012) then imply that

Jn(θ)
L→ sup

p∈M(θ)

∣∣−G0(p)
∣∣
+
(D.24)

Therefore, since ĉ1−α(θ)
p→ c1−α(θ) and the cdf of supp∈M(θ) |−G0(θ)|+ is con-

tinuous at c1−α(θ), (D.24) yields

lim
n→∞

P
(
Jn(θ)≤ ĉ1−α(θ)

)= P( sup
p∈M(θ)

∣∣−G0(p)
∣∣
+ ≤ c1−α(θ)

)
= 1− α�(D.25)

which establishes the claim of the theorem. Q.E.D.

PROOF OF THEOREM 5.4: We first study the behavior of {π∗n}. To this
end, define the functional ψ : C(Sdθ)→ R to be pointwise given by ψ(f) =
supp∈S

dθ {ν(p� {θ0}) − f (p)}, and the event An ≡ {co(Θ0(P̂n)) = Θ0(P̂n)}. By
Lemmas A.6 and B.5, P(Ac

n)= o(1), and hence by Theorem 11.14 in Kosorok
(2008), Pη/√n(Ac

n)= o(1). Therefore, we obtain

Jn(θ0)=max
{
ψ
(
ν
(·�Θ0(P̂n)

))
�0
}+ oPη/√n(1)�(D.26)

since Jn(θ0) = max{ψ(ν(·�Θ0(P̂n)))�0} whenever An occurs. Next, note that
by Lemma B.8 in Kaido (2012), the map ψ is Hadamard differentiable at
ν(·�Θ0(P)) with derivative ψ̇ : C(Sdθ)→R pointwise given by

ψ̇(f )=−f (p0)
(D.27)

Moreover, the Hadamard differentiability of ψ together with Theorem 4.1 and
Theorem 18.6 in Kosorok (2008) imply that {ψ(ν(·�Θ0(P̂n)))} is an efficient es-
timator forψ(ν(·�Θ0(P))) and hence it is regular. LetLη/

√
n denote the implied

law when Xi ∼ Pη/√n, and note that the functional delta method and regularity
then imply

√
n
{
ψ
(
ν
(·�Θ0(P̂n)

))−ψ(ν(·�Θ0(Pη/√n)
))} Lη/

√
n→ −G0(p0)
(D.28)

Since by Theorem 4.1 the estimator {ν(·�Θ0(P̂n))} is regular and asymptoti-
cally linear, Theorem 2.1 in van der Vaart (1991) implies η 	→ ν(·�Θ0(Pη)) is
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pathwise differentiable. Hence, by the chain rule, Theorem A.2, and (D.27),

∂

∂η
ψ
(
ν
(·�Θ0(Pη)

))∣∣∣∣
η=0

(D.29)

=−2
∫
λ(p0�P)

′H(θ0)m(x�θ0)ḣ0(x)h0(x)dμ(x)

= 2
∫
l̃(x)ḣ0(x)h0(x)dμ(x)�

where hη ≡
√
dPη/dμ and the final result holds by definition of l̃(x) and∫

ḣ0(x)h0(x)dμ(x)= 0. Therefore,
√
n
{
ψ
(
ν
(·�Θ0(P̂n)

))−ψ(ν(·�Θ0(P)
))}

(D.30)

Lη/
√
n→ −G0(p0)+η

∫
2l̃(x)ḣ0(x)h0(x)dμ(x)�

due to (D.28) and (D.29). Moreover, as shown in the proof of Theorem 5.3,
ĉ1−α(θ0)= c1−α(θ0)+ op(1) when Xi ∼ P and therefore, by Theorem 11.14 in
Kosorok (2008), also when Xi ∼ Pη/√n. Thus, exploiting result (D.26), we ob-
tain

lim
n→∞

Pη/√n
(
Jn(θ0) > ĉ1−α(θ0)

)
(D.31)

= lim
n→∞

Pη/√n
(
max

{
ψ
(
ν
(·�Θ0(P̂n)

))
�0
}
> c1−α(θ0)

)
= lim

n→∞
Pη/√n

(
ψ
(
ν
(·�Θ0(P̂n)

))
> c1−α(θ0)

)
= P

(
−G0(p0) > c1−α(θ0)− 2η

∫
l̃(x)ḣ0(x)h0(x)dμ(x)

)
�

where the second equality follows from c1−α(θ0) > 0 due to α< 0
5 and the last
equality is a result of (D.30). Thus (D.31) verifies that {π∗n} attains the bound
in (35). Moreover, if Pη ∈H(θ0), then by (D.29), we must have∫

l̃(x)ḣ0(x)h0(x)≥ 0
(D.32)

Therefore, results (D.31) and (D.32) imply that Jn(θ0) satisfies (34) as well.
We next establish that the upper bound in (35) holds using arguments in the

proof of Theorem 25.44 in van der Vaart (1999). Fix a Pη ∈ H(θ0) and η̄ > 0
for which we aim to show the bound, and pass to a subsequence {nk}∞k=1 with

lim sup
n→∞

πn(Pη̄/√n)= lim
k→∞

πnk(Pη̄/
√
nk)
(D.33)
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Further, let s̃(x)= 2l̃(x)h0(x) and r̃(x)= s̃(x)− ḣ0(x)〈s̃� ḣ0〉L2
μ
/‖ḣ0‖2

L2
μ
. Then,

notice that, by direct calculation, we can obtain that s̃ ∈ Ṡ, r̃ ∈ Ṡ, and 〈r̃� ḣ0〉L2
μ
=

0. Moreover, also observe that, by result (D.29), we have

〈s̃� ḣ0〉L2
μ
= ∂

∂η
ψ
(
ν
(·�Θ0(Pη)

))∣∣∣∣
η=0


(D.34)

Proceeding as in the proof of Lemma A.16, we next build an augmented model
by letting s ≡ √

dP/dμ, Ψ : R → (0�∞) be continuously differentiable, with
Ψ(0)=Ψ ′(0)= 1 and Ψ , Ψ ′, and Ψ ′/Ψ bounded, and defining

q2
η�γ(x)≡ b(η�γ)s2(x)Ψ

(
2
s(x)

{
ηḣ0(x)+ γr̃(x)

})
�(D.35)

b(η�γ)≡
[∫

Ψ

(
2
s(x)

{
ηḣ0(x)+ γr̃(x)

})
dP(x)

]−1




For Qη�γ satisfying qη�γ =
√
dQη�γ/dμ, using Proposition 2.1.1 in Bickel et al.

(1993), it is straightforward to verify that (η�γ) 	→ qη�γ is then a quadratic
mean differentiable model with q0�0 =

√
dP/dμ. Moreover, Lemmas A.2, A.8,

Corollary A.3, and P ∈ P satisfying Assumption 3.6(ii) imply that Qη�γ ∈ P for
all (η�γ) ∈N and N a suitably small neighborhood of (0�0) in R2. By Theo-
rems 12.2.3 and 13.4.1 in Lehmann and Romano (2005), it then follows that if
‖r̃‖2

L2
μ
�= 0, then there exists a further subsequence {nkj }∞j=1 such that

lim
j→∞

πnkj (Q(η�γ)/
√

nkj
)= π(η�γ)(D.36)

for all (η�γ) ∈N , and where π is the power function of a test in a limit exper-
iment that takes the form

Z ∼N
([

η
γ

]
� I−1

0

)
� I0 ≡

[
4‖ḣ0‖2

L2
μ

0
0 4‖r̃‖2

L2
μ

]

(D.37)

Next, we establish that the power function π corresponds to a test that con-
trols size for the hypothesis

H0 :η〈ḣ0� s̃〉L2
μ
+ γ〈r̃� s̃〉L2

μ
≤ 0� H1 :η〈ḣ0� s̃〉L2

μ
+ γ〈r̃� s̃〉L2

μ
> 0
(D.38)

Select any (η0�γ0) ∈R2 such that η0〈ḣ0� s̃〉L2
μ
+γ0〈r̃� s̃〉L2

μ
< 0 and define a path

t 	→ P̃t to be given by P̃t ≡ Q(−tη0�−tγ0). Notice that P̃t ∈ P for t small due to
Q(η�γ) ∈ P for all (η�γ) ∈N . Then, as in (D.34),

∂

∂t
ψ
(
ν
(·�Θ0(P̃t)

))∣∣∣∣
t=0

=−{η0〈ḣ0� s̃〉L2
μ
+ γ0〈r̃� s̃〉L2

μ

}
> 0�(D.39)
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and, in addition, since at t = 0, P̃0 = P , we have ψ(ν(·�Θ0(P̃0)))= 0 due to θ0 ∈
∂Θ0(P). Thus, from (D.39) we conclude P̃t ∈H(θ0) for t in a neighborhood of
zero. Noting Q(η0�γ0)/

√
n = P̃−1/

√
n, it follows from (34) and (D.36) that

π(η0�γ0)= lim
j→∞

πnkj (Q(η0�γ0)/
√

nkj
)= lim

j→∞
πnkj (P̃−1/

√
nkj
)(D.40)

≤ lim sup
n→∞

πn(P̃−1/
√
n)≤ α


Since (D.40) holds for any (η0�γ0) such that η0〈ḣ0� s̃〉L2
μ
+ γ0〈r̃� s̃〉L2

μ
< 0, con-

tinuity of the power function π implies it also holds for any (η0�γ0) with
η0〈ḣ0� s̃〉L2

μ
+γ0〈r̃� s̃〉L2

μ
= 0. We conclude that π corresponds to a test that con-

trols size in (D.38). Therefore, Proposition 15.2 in van der Vaart (1999) and s̃
being in the linear span of ḣ0 and r̃ yield

π(η0�γ0)≤ 1−!
(
z1−α −

η0〈ḣ0� s̃〉L2
μ
+ γ0〈r̃� s̃〉L2

μ

σ0

)
�(D.41)

σ2
0 ≡

〈ḣ0� s̃〉2L2
μ

4‖ḣ0‖2
L2
μ

+
〈r̃� s̃〉2

L2
μ

4‖r̃‖2
L2
μ

=
‖s̃‖2

L2
μ

4
�

for any (η0�γ0) such that η0〈ḣ0� s̃〉L2
μ
+ γ0〈r̃� s̃〉L2

μ
> 0. Furthermore, since both

η 	→√
dPη/dμ and η 	→√

dQη�0/dμ are Fréchet differentiable in L2
μ at η= 0

with derivative ḣ0, we also have that, for any η̄ > 0,

lim sup
n→∞

√
n‖hη̄/√n − qη̄/√n�0‖L2

μ
(D.42)

≤ lim sup
n→∞

√
n

{∥∥∥∥hη̄/√n − h0 − η̄√
n
ḣ0

∥∥∥∥
L2
μ

+
∥∥∥∥qη̄/√n�0 − h0 − η̄√

n
ḣ0

∥∥∥∥
L2
μ

}

= 0


Hence, by Theorem 13.1.4 in Lehmann and Romano (2005), Pn
η̄/
√
n

and Qn
η̄/
√
n�0

converge in total variation, and thus

lim
k→∞

πnk(Pη̄/
√
nk)= lim

k→∞
πnk(Qη̄/

√
nk�0)
(D.43)

To conclude, observe that since Pη ∈ H(θ0), result (D.34) implies that
〈ḣ0� s̃〉L2

μ
≥ 0. If 〈ḣ0� s̃〉L2

μ
> 0, then η̄ > 0 and results (D.33), (D.36), (D.41),
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and (D.43) establish that

lim sup
n→∞

πn(Pη̄/√n)= lim
j→∞

πnkj (Q(η̄�0)/
√

nkj
)= π(η̄�0)(D.44)

≤ 1−!
(
z1−α − 2η̄E[l̃(Xi)ḣ0(Xi)/h0(Xi)]√

E[G2
0(p0)]

)
�

where we have used σ2
0 = E[G2

0(p0)], s̃(x) = 2l̃(x)h0(x), and h2
0 = dP/dμ. If,

on the other hand, 〈ḣ0� s̃〉L2
μ
= 0, then

lim sup
n→∞

πn(Pη̄/√n)= lim
j→∞

πnkj (Q(η̄�0)/
√

nkj
)= π(η̄�0)(D.45)

≤ α= 1−!
(
z1−α − 2η̄× 0√

E[G2
0(p0)]

)
�

due to (D.33), (D.36), (D.43) together with η̄〈ḣ0� s̃〉L2
μ
+ 0 × 〈r̃� s̃〉L2

μ
= 0 and

π controlling size in (D.38). Recall that we assumed ‖r̃‖L2
μ
�= 0 in obtain-

ing (D.37), and hence the theorem follows from (D.44) and (D.45) whenever
‖r̃‖L2

μ
�= 0. The case ‖r̃‖L2

μ
= 0 follows from the arguments in (D.36)–(D.43)

applied directly to Pη (rather than Qη�γ). Q.E.D.

APPENDIX E: PROOF OF THEOREM 3.3

As in the proof of Theorem 3.2, we establish Theorem 3.3 by verifying the
conditions of Theorem 5.2.1 in Bickel et al. (1993), which again requires us to:
(i) characterize the tangent space at P , and (ii) show that Q 	→ ν(·�Θ0�I(Q)) is
pathwise weak-differentiable at P . In this setting, however, both endeavors are
simpler. Lemma E.1 employs Lemma A.16 to characterize the tangent space,
while Lemma E.3 shows Q 	→ ν(p�Θ0�I(Q)) is pathwise weak-differentiable at
P , and Lemma E.4 extends the result to show pathwise weak-differentiability
of Q 	→ ν(·�Θ0�I(Q)).

Subsequent to the proof of Theorem 3.3, we briefly discuss the connection
between pathwise weak-differentiability in this setting, and in the moment in-
equalities model studied in Theorem 3.2.

LEMMA E.1: Let Assumption 3.7 hold, P ∈ PI, and SI ≡ {h ∈ L2
μ :h =√

dQ/dμ for some Q ∈ PI}. Then the tangent space of SI at s = √
dP/dμ is

ṠI = {h ∈L2
μ :
∫
h(x)s(x)dμ(x)= 0}.
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PROOF: Let P ∈ PI and ξ(
∫
vz′ dP(x)) denote the smallest singular value of

the matrix
∫
vz′ dP(x). Since X is compact by Assumption 3.7(i), it follows that

vz′ is bounded, and hence for any net {Qα}α∈A ⊂M with Qα→ P ,∫
vz′ dQα(x)→

∫
vz′ dP(x)
(E.1)

Thus, since ξ is continuous under the Frobenius norm (Bhatia (1997, p. 78))
it follows from P ∈ PI that there exists a neighborhood N(P) ⊆M such that
ξ(
∫
vz′ dQ(x)) > 0 for all Q ∈ N(P). We conclude that PI is open in Mμ ≡

{Q ∈M :Q� μ} and the claim follows from Lemma A.16. Q.E.D.

LEMMA E.2: Let Assumption 3.7 hold, and SI ≡ {h ∈ L2
μ :h = √

dQ/dμ for
some Q ∈ PI}. If η 	→ hη is a curve in SI and hη =

√
dPη/dμ, then there is a

neighborhood N ⊂R of zero, such that, for all η0 ∈N ,

∂

∂η
Σ(Pη)

−1

∣∣∣∣
η=η0

=−2Σ(Pη0)
−1

{∫
vz′ḣη0(x)hη0(x)dμ(x)

}
Σ(Pη0)

−1�(E.2)

and in addition, η0 	→ ∂
∂η
Σ(Pη)

−1|η=η0 is continuous and ‖ ∂
∂η
Σ(Pη)

−1|η=η0‖F is
uniformly bounded in η0 ∈N .

PROOF: Recall that if η 	→ U(η) is a square matrix valued function that
is invertible at η = η0, then ∂

∂η
U(η)−1|η=η0 = −U(η0)

−1 ∂
∂η
U(η)|η=η0U(η0)

−1.
Hence, since Pη ∈ PI implies Σ(Pη) is invertible, we obtain

∂

∂η
Σ(Pη)

−1

∣∣∣∣
η=η0

=−Σ(Pη0)
−1

{∫
2vz′ḣη0(x)hη0(x)dμ(x)

}
Σ(Pη0)

−1(E.3)

by exploiting that vz′ is bounded by Assumption 3.7(i), and arguing as in
(A.43). Moreover, since Pη0 ∈ PI by assumption, continuity ofη 	→ Σ(Pη)

−1 fol-
lows from (E.1) and ‖hη−hη0‖L2

μ
= o(1) implying Pη→ Pη0 in the τ-topology.

Since vz′ is uniformly bounded by Assumption 3.7(i), arguing as in (A.49)
in turn implies that

∫
2vz′ḣη0(x)hη0(x)dμ(x) is continuous in η0, and hence

the continuity of η0 	→ ∂
∂η
Σ(Pη)

−1|η=η0 follows from (E.3). To conclude, note
that ‖ ∂

∂η
Σ(Pη)

−1|η=0‖F <∞ due to ‖Σ(P0)
−1‖F <∞, zv′ being bounded, the

Cauchy–Schwarz inequality, ‖h0‖L2
μ
= 1, and ‖ḣ0‖L2

μ
<∞ because η 	→ hη is

Fréchet differentiable. Hence, since ‖ ∂
∂η
Σ(Pη)

−1|η=0‖F is finite, continuity im-
plies it must be uniformly bounded in a neighborhood of zero, and the lemma
follows. Q.E.D.

LEMMA E.3: Let Assumption 3.7 hold, and SI ≡ {h ∈ L2
μ :h = √

dQ/dμ for
some Q ∈ PI}. If η 	→ hη is a curve in SI and hη =

√
dPη/dμ, then there is a
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neighborhood N ⊂R of zero, such that, for all (p�η0) ∈ Sdθ ×N ,

∂

∂η
ν
(
p�Θ0�I(Pη)

)∣∣∣∣
η=η0

(E.4)

= 2
∫ {

ψν(p�x�Pη0)−ψΣ(p�x�Pη0)
}
ḣη0(x)hη0(x)dμ(x)�

where ψν and ψΣ are as defined in equations (16) and (17), respectively. In ad-
dition, N may be chosen so that (p�η0) 	→ ∂

∂η
ν(p�Θ0�I(Pη))|η=η0 is continuous

and uniformly bounded in (p�η0) ∈ Sdθ ×N .

PROOF: First note that since Pη ∈ PI, it follows that
∫
vz′ dPη(x) is invert-

ible, while Pη� μ and Assumption 3.7(ii) imply Pη(YL ≤ YU)= 1. Therefore,
Proposition 2 in Bontemps, Magnac, and Maurin (2012) implies that

ν
(
p�Θ0�I(Pη)

)
(E.5)

=
∫
p′Σ(Pη)−1v

(
yL + 1

{
p′Σ(Pη)−1v > 0

}
(yU − yL)

)
dPη(x)�

provided Pη(YL < YU) > 0, while direct calculation shows that (E.5) holds
when Pη(YL = YU) = 1, since then Θ0�I(Pη) = {Σ(Pη)−1

∫
vyL dPη(x)}. Let

γη(p�v)≡ p′Σ(Pη)−1v and note that if (pn�ηn)→ (p0�η0) with p0 ∈ Sdθ , then

μ
(
(yL� yU� v� z) : lim

n→∞
1
{
γηn(pn� v) > 0

}= 1
{
γη0(p0� v) > 0

})= 1�(E.6)

since (p�η) 	→ γη(p�v) is continuous, and μ((yL� yU� v� z) :p′0Σ(Pη0)
−1v =

0)= 0 by Assumption 3.7(iii). Moreover,

lim
n→∞

sup
p∈S

dθ

∣∣∣∣
∫
v(i)(yU − yL)1

{
γηn(p�v) > 0

}(
h2
ηn
(x)− h2

η0
(x)

)
dμ(x)

∣∣∣∣(E.7)

≤ sup
x∈X

2‖x‖2 × lim
n→∞

{‖hηn − hη0‖L2
μ
× ‖hηn + hη0‖L2

μ

}= 0�

for any 1 ≤ i ≤ dZ by compactness of X , the Cauchy–Schwarz inequality,
‖hη‖L2

μ
= 1 for all η, and η 	→ hη being Fréchet differentiable. Hence, com-

pactness of X , result (E.6), and the dominated convergence theorem imply

lim
n→∞

∫
v(yU − yL)1

{
γηn(p�v) > 0

}
h2
ηn
(x)dμ(x)(E.8)

=
∫
v(yU − yL)1

{
γη0(p�v) > 0

}
h2
η0
(x)dμ(x)
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Therefore, for any p ∈ Sdθ , we can conclude from (E.8) and η 	→ Σ(Pη)
−1 being

differentiable by Lemma E.2 that

lim
n→∞

1
|ηn −η0|

∫ (
γηn(p�v)− γη0(p�v)

)
(yU − yL)(E.9)

× 1
{
γηn(p�v) > 0

}
h2
ηn
(x)dμ(x)

= p′
{
∂

∂η
Σ(Pη)

−1

∣∣∣∣
η=η0

}

×
∫
v(yU − yL)1

{
γη0(p�v) > 0

}
h2
η0
(x)dμ(x)


Next, note that γη0(p�v)(yU − yL) is uniformly bounded by compactness of
Sdθ ×X , and hence, arguing as in (A.43),

lim
n→∞

1
|ηn −η0|

∫
γη0(p�v)(yU − yL)1

{
γηn(p�v) > 0

}
(E.10)

× (
h2
ηn
(x)− h2

η0
(x)− 2(ηn −η0)ḣη0(x)hη0(x)

)
dμ(x)= 0


Thus, results (E.6) and (E.10), compactness of X , and the dominated conver-
gence theorem yield

lim
n→∞

1
|ηn −η0|

∫
γη0(p�v)(yU − yL)(E.11)

× 1
{
γηn(p�v) > 0

}(
h2
ηn
(x)− h2

η0
(x)

)
dμ(x)

= 2
∫
γη0(p�v)(yU − yL)1

{
γη0(p�v) > 0

}
ḣη0(x)hη0(x)dμ(x)


In addition, Lemma E.2 and the mean value theorem imply that, for some
η̄n(x) between ηn and η0,

lim
n→∞

∣∣∣∣
∫
γη0(p�v)(yU − yL)(E.12)

× (
1
{
γηn(p�v) > 0

}− 1
{
γη0(p�v) > 0

})
h2
η0
(x)dμ(x)

∣∣∣∣
= lim

n→∞

∣∣∣∣
∫
γη0(p�v)(yU − yL)

×
(

1
{
γη0(p�v) > (η0 −ηn) ∂

∂η
γη(p�v)

∣∣∣∣
η=η̄n(x)

}
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− 1
{
γη0(p�v) > 0

})
h2
η0
(x)dμ(x)

∣∣∣∣
≤ lim

n→∞

∫ ∣∣γη0(p�v)(yU − yL)
∣∣

× 1
{∣∣γη0(p�v)

∣∣≤M|η0 −ηn|
}
h2
η0
(x)dμ(x)�

where the inequality holds for some M > 0 due to Lemma E.2 and compact-
ness of Sdθ × X implying ∂

∂η
γη(p�v)|η=η0 is uniformly bounded for η0 in a

neighborhood of zero. Therefore, from (E.12) we conclude

lim
n→∞

1
|ηn −η0|

∣∣∣∣
∫
γη0(p�v)(yU − yL)(E.13)

× (
1
{
γηn(p�v) > 0

}− 1
{
γη0(p�v) > 0

})
h2
η0
(x)dμ(x)

∣∣∣∣
≤ 2 sup

x∈X
‖x‖ × lim

n→∞
M

∫
1
{∣∣γη0(p�v)

∣∣≤M|η0 −ηn|
}
h2
η0
(x)dμ(x)

= 0�

where the final equality results from the monotone convergence theorem, and
μ((yL� yU� v� z) :p′Σ(Pη0)

−1v= 0)= 0 by Assumption 3.7(iii) and p′Σ(Pη0)
−1 �=

0. Finally, combining results (E.9), (E.11), and (E.13), we can obtain

∂

∂η

{∫
γη(p�v)(yU − yL)1

{
γη(p�v) > 0

}
h2
η(x)dμ(x)

}∣∣∣∣
η=η0

(E.14)

=
∫ (

p′
{
∂

∂η
Σ(Pη)

−1

∣∣∣∣
η=η0

}
vh2

η0
(x)+ 2γη0(p�v)ḣη0(x)hη0(x)

)

× (yU − yL)1
{
γη0(p�v) > 0

}
dμ(x)


Similarly, Lemma E.2, compactness of X , and arguing as in (E.9) and (E.11)
allow us to establish that

∂

∂η

{∫
γη(p�v)yLh

2
η(x)dμ(x)

}∣∣∣∣
η=η0

(E.15)

=
∫ (

p′
{
∂

∂η
Σ(Pη)

−1

∣∣∣∣
η=η0

}
vh2

η0
(x)

+ 2γη0(p�v)ḣη0(x)hη0(x)

)
yL dμ(x)
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Result (E.4) then follows from (E.14), (E.15), Lemma E.2, and the definitions
of ψν and ψΣ.

To establish continuity, let (pn�ηn)→ (p0�η0) ∈ Sdθ ×N . Results (E.6) and
(E.7) then imply that

lim
n→∞

∫
v(yU − yL)1

{
γηn(pn� v) > 0

}
h2
ηn
(x)dμ(x)(E.16)

=
∫
v(yU − yL)1

{
γη0(p0� v) > 0

}
h2
η0
(x)dμ(x)

by the dominated convergence theorem. Next, note that by compactness of X
and the Cauchy–Schwarz inequality,

lim
n→∞

∣∣∣∣
∫
v(i)(yU − yL)(E.17)

× 1
{
γηn(pn� v) > 0

}(
ḣηn(x)hηn(x)− ḣη0(x)hη0(x)

)
dμ(x)

∣∣∣∣
≤ 2 sup

x∈X
‖x‖2

× lim
n→∞

{‖ḣηn − ḣη0‖L2
μ
‖hηn‖L2

μ
+ ‖hηn − hη0‖L2

μ
‖ḣη0‖L2

μ

}
= 0�

since ‖hη‖L2
μ
= 1 for all η and η 	→ hη is continuously Fréchet differentiable.

Hence, we can conclude that

lim
n→∞

∫
v(yU − yL)1

{
γηn(pn� v) > 0

}
ḣηn(x)hηn(x)dμ(x)(E.18)

=
∫
v(yU − yL)1

{
γη0(p0� v) > 0

}
ḣη0(x)hη0(x)dμ(x)

by (E.6) and the dominated convergence theorem. Therefore, (E.14), (E.16),
(E.18), and Lemma E.2 yield

lim
n→∞

∂

∂η

{∫
γη(pn� v)(yU − yL)1

{
γη(pn� v) > 0

}
h2
η(x)dμ(x)

}∣∣∣∣
η=ηn

(E.19)

= ∂

∂η

{∫
γη(p0� v)(yU − yL)1

{
γη(p0� v) > 0

}
h2
η(x)dμ(x)

}∣∣∣∣
η=η0
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Similarly, employing the same arguments as in (E.16) and (E.18) together with
result (E.15), it is possible to show:

lim
n→∞

∂

∂η

{∫
γη(pn� v)yLh

2
η(x)dμ(x)

}∣∣∣∣
η=ηn

(E.20)

= ∂

∂η

{∫
γη(p0� v)yLh

2
η(x)dμ(x)

}∣∣∣∣
η=η0




Thus, continuity of (p�η0) 	→ ∂
∂η
ν(p�Θ0�I(Pη))|η=η0 follows from (E.5), (E.19),

and (E.20). Finally, note that since η 	→ hη is continuously Fréchet differ-
entiable, we may choose the neighborhood N ⊆ R so that ‖ḣη‖L2

μ
is uni-

formly bounded in η ∈ N . The Cauchy–Schwarz inequality then implies
| ∫ ḣη(x)hη(x)dμ(x)| ≤ ‖ḣη‖L2

μ
‖hη‖L2

μ
<∞ uniformly in η ∈ N . Therefore,

compactness of X × Sdθ , Lemma E.2, and results (E.5), (E.14), and (E.15) im-
ply ∂

∂η
ν(p�Θ0�I(Pη))|η=η0 is uniformly bounded in (p�η0) ∈ Sdθ ×N , and the

lemma follows. Q.E.D.

LEMMA E.4: Let Assumption 3.7 hold, and ρI : PI → C(Sdθ) be given by
ρI(P)≡ ν(·�Θ0�I(P)). Then ρI is pathwise weak-differentiable at any P ∈ PI, and
for s ≡√

dP/dμ, the derivative ρ̇I : ṠI → C(Sdθ) satisfies

ρ̇I(ḣ0)(p)= 2
∫ {

ψν(p�x�P)−ψΣ(p�x�P)
}
ḣ0(x)h0(x)dμ(x)�

where ψν and ψΣ are as defined in equations (16) and (17), respectively.

PROOF: We first note that Lemma E.3 implies ρ̇I(ḣ0) ∈ C(Sdθ) for any ḣ0 ∈
ṠI. In addition, ρ̇I is linear by inspection, while ψν(p�x�P) and ψΣ(p�x�P)
being uniformly bounded in (p�x) ∈ Sdθ ×X by Assumption 3.7(i) imply

sup
‖ḣ0‖L2

μ
=1

∥∥ρ̇I(ḣ0)
∥∥
∞ ≤ sup

(p�x)∈S
dθ×X

2
{∣∣ψν(p�x�P)

∣∣+ ∣∣ψΣ(p�x�P)
∣∣}(E.21)

× sup
‖ḣ0‖L2

μ
=1

{‖ḣ0‖L2
μ
× ‖h0‖L2

μ

}
<∞�

and hence ρ̇I is continuous as well. Moreover, for any finite Borel measure
B on Sdθ and curve η 	→ Pη ∈ PI with h0 = s, the mean value and dominated
convergence theorems together with Lemma E.3 yield

lim
η0→0

∫ {
ν(p�Θ0�I(Pη0))− ν(p�Θ0�I(P))

η0
− ρ̇I(ḣ0)(p)

}
dB(p)= 0(E.22)
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(see also (A.57)). Result (E.22) verifies that ρ̇I is the weak derivative of ρI , and
the lemma follows. Q.E.D.

PROOF OF THEOREM 3.3: As in the proof of Theorem 3.2, we let B≡ C(Sdθ)
and B∗ denote the set of finite Borel measures on Sdθ , which is the dual of B
by Corollary 14.15 in Aliprantis and Border (2006). Let ρI : PI → B be given
by ρI(P)≡ ν(·�Θ0�I(P)), which has weak derivative ρ̇I by Lemma E.4. For any
B ∈ B∗, then define

ρ̇TI (B)(x)≡ 2
∫

S
dθ

{
ψ(x�p�P)−E[ψ(Xi�p�P)

]}
s(x)dB(p)�(E.23)

where s ≡ √
dP/dμ, and the measurability of the integrand can be estab-

lished arguing as in (A.59). In what follows, we aim to show ρ̇TI : B∗ → ṠI is
the adjoint of ρ̇I : ṠI → B. To this end, note that ρ̇TI (B) ∈ L2

μ for any B ∈ B∗

since ψ(p�x�P)=ψν(p�x�P)−ψΣ(p�x�P) is uniformly bounded in (p�x) ∈
Sdθ ×X , as argued in (E.21). Moreover,

∫
X
ρ̇TI (B)(x)s(x)dμ(x)(E.24)

= 2
∫

S
dθ

∫
X

{
ψ(x�p�P)−E[ψ(Xi�p�P)

]}
dP(x)dB(p)= 0�

by exchanging the order of integration and exploiting that s2 = dP/dμ. Hence,
Lemma E.1 and (E.24) verify that ρ̇TI (B) ∈ ṠI for any B ∈ B∗. Finally, for any
ḣ0 ∈ ṠI and B ∈ B∗, we can use that

∫
ḣ0(x)s(x)dμ(x) = 0 by Lemma E.1,

exchange the order of integration, and exploit Lemma E.4 to obtain that∫
X
ρ̇TI (B)(x)ḣ0(x)dμ(x)=

∫
S
dθ

∫
X
ψ(x�p�P)ḣ0(x)s(x)dμ(x)dB(p)(E.25)

=
∫

S
dθ

ρ̇I(ḣ0)(p)dB(p)


From result (E.25), we conclude that ρ̇TI : B∗ → ṠI is indeed the adjoint of
ρ̇I : ṠI → B, and the theorem then follows from Theorem 5.2.1 in Bickel et
al. (1993). Q.E.D.

The principal challenge in establishing Theorem 3.3 is in verifying pathwise
weak-differentiability of the support function of the identified set. Differentia-
bility of the support function in particular implies that the scalar valued pa-
rameter Q 	→ ν(p0�Θ0�I(Q)) must be differentiable at every p0 ∈ Sdθ , which,
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by (15), is equivalent to

ν
(
p0�Θ0�I(Pη)

)
(E.26)

=
∫
p′0Σ(Pη)

−1v
(
yL + 1

{
p′0Σ(Pη)

−1v > 0
}
(yU − yL)

)
dPη(x)

being differentiable in η for any parametric submodel η 	→ Pη. Inspect-
ing (E.26), however, reveals that nondifferentiability at η = 0 may occur if
P(p′0Σ(P)

−1V = 0) > 0—a situation that is ruled out by Assumption 3.7(iii).
Interestingly, when V is a discrete random vector, the identified set Θ0�I(P)
has “flat” or “exposed” faces, and thep0 ∈ Sdθ such that P(p′0Σ(P)

−1V = 0) > 0
are precisely the p0 ∈ Sdθ that are orthogonal to these flat faces; see Bontemps,
Magnac, and Maurin (2012). In close connection to Remark 3.2, it is then pos-
sible to show that Q 	→ ν(p0�Θ0�I(Q)) is not pathwise weak-differentiable at
any such p0 by constructing a path η 	→ Pη that alters the slope of the exposed
face.

EXAMPLE E.1: Suppose Z = V = (1�W )′,W ∈ {−1�0�1}, and YL�YU ∈ Y ⊂
R with Y compact. Further letX = (YL�YU�V

′)′, X = Y ×Y ×{1}×{−1�0�1},
and μ ∈M satisfy Assumption 3.7(ii). The set of θ= (α�β)′ with

E[Ỹ − α−Wβ] = 0� E
[
W (Ỹ − α−Wβ)]= 0�(E.27)

for some Ỹ satisfying YL ≤ Ỹ ≤ YU , then constitutes the identified set under
P . Further suppose P is such that

P(W =−1)= P(W = 0)= P(W = 1)= 1
3
�(E.28)

for a ∈ {−1�0�1} and " ∈ {L�U} define EP[Y"|W = a] ≡ ∫
y"1{w = a}dP(x)/

P(W = a), and for simplicity let

EP[YL|W = 0] =EP[YU |W = 0] = 0
(E.29)

Let us consider a submodel satisfying EPη[Y"|W = a] = EP[Y"|W = a] for all
a ∈ {−1�0�1} and " ∈ {L�U}, and

Pη(W =−1)= 1
3
(1−η)�(E.30)

Pη(W = 0)= 1
3
(1+ 2η)�

Pη(W = 1)= 1
3
(1−η)
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Along the submodel η 	→ Pη, we can then obtain by direct calculation that the
identified set at Pη is given by

Θ0(Pη)(E.31)

=
{
θ ∈R2 : (i) EPη[YL|W =−1] ≤ 3

2
α

1−η −β≤ EPη[YU |W =−1]�

(ii) EPη[YL|W = 1] ≤ 3
2

α

1−η +β≤EPη[YU |W = 1]
}



Thus, Θ0(Pη) is a parallelogram with the slope of exposed faces depending on
η. As in Remark 3.2, η 	→ ν(p0�Θ0(Pη)) is not differentiable at η = 0 for an
appropriate choice of p0. For instance, for p0 = ( 3√

13
� 2√

13
), we obtain by (E.26)

ν
(
p0�Θ0(Pη)

)= 2−η√
13

E[YU |W = 1] − η√
13

(
E[YL|W =−1](E.32)

+E[YU −YL|W =−1]1{η< 0})�
which is not differentiable at η = 0 if E[YU − YL|W = −1] �= 0. Thus, η 	→
ν(p0�Θ0(Pη)) is not differentiable at η= 0 precisely at a p0 that is orthogonal
to one of the exposed faces of the identified set Θ0(P).

APPENDIX F: DISCUSSION OF EXAMPLES 2.1, 2.2, 2.3, AND 2.4

In this appendix, we revisit Examples 2.1, 2.2, 2.3, and 2.4 from the main text.
We map each example into our general framework, and examine Assumptions
3.2, 3.3, 3.4, 3.5, and 3.6 in their context.

EXAMPLE 2.1—Interval Censored Outcome:
In this example, X = (YL�YU�Z

′)′ and we let Y ⊆ R, Z = {z1� 
 
 
 � zK} with
K <∞, and X = Y × Y × Z . For M the set of Borel probability measures on
X and any Q ∈M such that Q(Z = zk) > 0, then denote, for " ∈ {L�U},

EQ[Y"|Z = zk] ≡

∫
y"1{Z = zk}dQ(x)∫
1{Z = zk}dQ(x)


(F.1)

For a parameter space Θ⊆ Rdθ and any Q ∈M, then recall that, in this exam-
ple, the identified set under Q is

Θ0(Q)≡
{
θ ∈Θ :EQ[YL|Z = zk] ≤ z′kθ≤ EQ[YU |Z = zk](F.2)

for all 1≤ k≤K}
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To map this setting into the framework of (2) and (3), we let 1Z(z) ≡ (1{z =
z1}� 
 
 
 �1{z = zK})′ and mS(x�θ)= (yL1Z(z)

′� yU1Z(z)
′�1Z(z)

′)′ for all θ ∈Θ.
Then define FS : R3K→R2K to be pointwise given by

F(i)
S (v)≡

⎧⎪⎪⎨
⎪⎪⎩

v(i)

v(2K+i)
� i= 1� 
 
 
 �K,

− v(i)

v(K+i)
� i=K + 1� 
 
 
 �2K.

(F.3)

If Q ∈ M satisfies Q(Z = zk) > 0 for some 1 ≤ k ≤ K, then (F.3) im-
plies F(k)

S (
∫
mS(x�θ)dQ(x)) = EQ[YL|Z = zk] and F(2k)

S (
∫
mS(x�θ)dQ(x)) =

−EQ[YU |Z = zk]. Hence, setting A= (−z1� 
 
 
 �−zK� z1� 
 
 
 � zK)
′, we obtain

Θ0(Q)=
{
θ ∈Θ :Aθ+ FS

(∫
mS(x�θ)dQ(x)

)
≤ 0

}

(F.4)

The following more primitive assumptions suffice for verifying Assumptions
3.2–3.6 in this example.

ASSUMPTION F.1: (i) Y is compact; (ii) Θ ≡ {θ ∈ Rdθ :‖θ‖2 ≤ B0} with B0 <
∞ satisfying C0B0 >K{supy∈Y y

2}, where C0 ≡ infp∈S
dθ

∑
k〈p�zk〉2; (iii) K ≥ dθ;

(iv) any subset C ⊆ Z with #C ≤ dθ is linearly independent.

ASSUMPTION F.2: (i) For some θ0 ∈Rdθ ,EP[YL|Z = zk] ≤ z′kθ0 ≤ EP[YU |Z =
zk] for all 1 ≤ k ≤ K; (ii) P(Z = zk) > 0 and EP[YL − YU |Z = zk] < 0 for all
1≤ k≤K; (iii) #A(θ�P)≤ dθ for all θ ∈Θ0(P).

Assumption F.1(i) imposes that YL and YU have compact support, which we
require to verify Assumption 3.4(i). Assumption F.1(ii) defines Θ to be a ball
of radius

√
B0, where B0 is chosen to ensure that Θ0(P) ⊂ Θo as required by

Assumption 3.6(i). Assumption F.1(iii)–(iv) imposes a linear independence re-
striction on the support points of Z, which together guarantee that Θ0(P) is
bounded. Assumption F.2 contains the main requirements on P . In particular,
Assumption F.2(i), which holds if the model is properly specified, guarantees
that Θ0(P) �= ∅. The requirement EP[YL − YU |Z = zk]< 0 ensures that there
is no θ ∈Θ0(P) such that EP[YL|Z = zk] = z′kθ= EP[YU |Z = zk], which would
violate Assumption 3.6(iv). Finally, Assumption F.2(iii) requires that the num-
ber of binding constraints at each θ ∈Θ0(P) be less than or equal to dθ, and,
together with Assumption F.1(iv), implies Assumption 3.6(iv). We note that
if K = dθ, then Assumption F.1(iv) and EP[YL − YU |Z = zk] < 0 imply that
Assumption F.2(iii) is automatically satisfied. In general, however, Assump-
tion F.2(iii) imposes additional requirements on P .

PROPOSITION F.1: In Example 2.1, Assumptions F.1 and F.2 imply Assump-
tions 3.2–3.6.
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PROOF: Assumption 3.2 is implied by Assumption F.1(ii). Further note that
since the 2K × dθ matrix A is known, Assumption 3.3 holds. Moreover, since
Y is compact by Assumption F.1(i), mS(x�θ) = (yL1Z(z)

′� yU1Z(z)
′�1Z(z)

′)′

is uniformly bounded in X × Θ and hence m(x�θ) = (mS(x�θ)
′� θ′A′)′ and

Θ being compact by Assumption F.1(ii) verify Assumption 3.4(i). In addition,
given the definition of mS(x�θ), Assumption 3.4(ii)–(iii) directly follows from

∇θm(x�θ)=∇θ
[
mS(x�θ)
Aθ

]
=
[

0
A

]

(F.5)

In order to verify Assumption 3.5, set 0 < ε0 < infk P(Z = zk), which is possi-
ble by Assumption F.2(ii), and M0 > 0 so that max{supy∈Y |y|�B0 supz∈Z ‖z‖}<
M0 <∞, which is possible by compactness of Y . Then defining

V0 ≡ (−M0�M0)
2K × (ε0�1)K × (−M0�M0)

2K�(F.6)

and noting that F(v) is differentiable unless v(i) = 0 for some 2K+ 1≤ i≤ 3K,
it follows that Assumption 3.5(i) holds. Moreover, since ∇F is continuous on
the closure of V0 and V0 is precompact, Assumption 3.5(ii) holds as well.

We next verify that P satisfies Assumption 3.6. First observe that Assump-
tion F.2(i) implies θ0 ∈ Θ0(P) and hence Θ0(P) �= ∅. Next, also note that if
θ ∈Θ0(P), then (F.2) implies that for, any 1≤ k≤K,∣∣z′kθ∣∣≤max

{∣∣EP[YL|Z = zk]
∣∣� ∣∣EP[YU |Z = zk]

∣∣}≤ sup
y∈Y
|y|
(F.7)

Furthermore, Assumption F.1(iii)–(iv) implies Rdθ = span{z1� 
 
 
 � zK}, and
hence C0 = infp∈S

dθ

∑
k〈p�zk〉2 > 0 by compactness of Sdθ . Therefore, since

θ/‖θ‖ ∈ Sdθ , we obtain from (F.7) that, for any θ ∈Θ0(P),

‖θ‖2C0 ≤ ‖θ‖2
K∑
k=1

〈
zk�

θ

‖θ‖
〉2

≤K sup
y∈Y

y2
(F.8)

It then follows from Assumption F.1(ii) that if θ ∈Θ0(P), then ‖θ‖2 < B0 and
hence Θ0(P)⊆Θo. However, since Θ0(P) is closed, we must have Θ0(P)⊂Θo,
which verifies Assumption 3.6(i).

Since mS(x�θ) = (yL1Z(z)
′� yU1Z(z)

′�1Z(z)
′)′ does not depend on θ, it fol-

lows that Si = ∅ for all 1 ≤ i ≤ 2K (see (4)), and hence Assumption 3.6(ii)
actually holds for all Q ∈M. In turn, by definitions of ε0 and M0, we also have∫
m(x�θ)dP(x) ∈ V0 for all θ ∈Θ and thus Assumption 3.6(iii) holds as well.

Finally, note that

∇F(i)

(∫
m(x�θ)dP(x)

)∫
∇θm(x�θ)dP(x)(F.9)

=
{−zi� if 1≤ i≤K�
+zi� if K + 1≤ i≤ 2K
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For notational simplicity, let P(θ) = {∇F(i)(
∫
m(x�θ)dP(x))

∫ ∇θm(x�
θ)dP(x)}i∈A(θ�P). Then note that since EP[YL − YU |Z = zk] < 0, it follows,
for 1 ≤ i ≤ K, that if i ∈ A(θ�P), then K + i /∈ A(θ�P)—or equivalently, if
−zi ∈ P(θ), then zi /∈ P(θ). Assumptions F.1(iv) and F.2(iii) then imply that
the elements of P(θ) are linearly independent for all θ ∈Θ0(P), which verifies
Assumption 3.6(iv). Q.E.D.

EXAMPLE 2.2—Discrete Choice:
The structure of this example is identical to that of Example 2.1, though the

notation is substantially more cumbersome. In this example, X = (Y ′�Z∗′)′,
and we let Y ⊆ RdY . Also recall Z∗ is assumed to have finite support Z =
{z1� 
 
 
 � zK} with K <∞. Set X = Y × Z , and let M denote the set of Borel
measures on X . For notational convenience, we also define Δ(y� zj� zk) ≡
ψ(y� zj)−ψ(y� zk) and the set V to be given by

V ≡ {z1 − z2� 
 
 
 � z1 − zK� z2 − z3� 
 
 
 � z2 − zK� 
 
 
 � zK−1 − zK}
(F.10)

For any Q ∈ M such that Q(Z∗ = zk) > 0, let EQ[Δ(Y�zj� zk)|Z∗ = zk] ≡∫
Δ(y� zj� zk)1{z∗ = zk}dQ(x)/

∫
1{z∗ = zk}dQ(x) (as in (F.1)), and note that

for a parameter space Θ, the identified set under Q ∈M in this example is

Θ0(Q)≡
{
θ ∈Θ :EQ

[
Δ(Y�zj� zk)|Z∗ = zk

]
(F.11)

+ (zj − zk)′θ≤ 0 for all zj �= zk
}



To identify (F.11) with the framework of (2) and (3), for each 1 ≤ k ≤ K, let
υk(y� z

∗) ∈RK−1 satisfy

υ
(j)
k

(
y� z∗

)= {
Δ(y� zj� zk)1

{
z∗ = zk

}
� 1≤ j < k,

Δ(y� zj+1� zk)1
{
z∗ = zk

}
� k≤ j ≤K − 1.

(F.12)

Then let υ(y� z∗) = (υ1(y� z
∗)′� 
 
 
 �υK(y� z∗)′)′, 1Z(z

∗) ≡ (1{z∗ = z1}� 
 
 
 �
1{z∗ = zK})′ and set mS(x�θ) ∈ RK2 to be given by mS(x�θ) = (υ(y� z∗)′�
1Z(z

∗)′)′. We can then define FS : RK2 →RK(K−1) to be pointwise given by

F(i)
S (v)=

v(i)

v(K(K−1)+!i/(K−1)") � i= 1� 
 
 
 �K(K − 1)�(F.13)

where !c" denotes the smallest integer k such that k ≥ c. Given these defini-
tions, if Q ∈M is such that Q(Z∗ = zk) > 0 and (K− 1)(k− 1)+ 1≤ i≤ (K −
1)k, then F(i)

S (
∫
mS(x�θ)dQ(x)) = EQ[Δ(Y�zj� zk)|Z∗ = zk] for some j �= k.

Moreover, by setting A = ((z1 − z2)� 
 
 
 � (z1 − zK)� 
 
 
 � (zK − z1)� 
 
 
 � (zK −
zK−1))

′, we obtain

Θ0(Q)=
{
θ ∈Θ :Aθ+ FS

(∫
mS(x�θ)dQ(x)

)
≤ 0

}

(F.14)
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Given the identical structure of Examples 2.1 and 2.2, we can derive suf-
ficient conditions for Assumptions 3.2–3.6 by recasting Assumptions F.1 and
F.2 in the present context. A formal proof that Assumptions F.3 and F.4 im-
ply Assumptions 3.2–3.6 can be obtained by arguments identical to those of
Proposition F.1 and is therefore omitted.

ASSUMPTION F.3: (i) ψ : Y × Z → R is bounded; (ii) Θ ≡ {θ ∈ Rdθ :‖θ‖2 ≤
B0} with B0 <∞ satisfying 2C0B0 > K(K − 1){sup(y�z)∈Y×Z(ψ(y� z))

2}, where
C0 ≡ infp∈S

dθ

∑
v∈V〈p�v〉2; (iii) K(K− 1)≥ 2dθ; (iv) any subset C ⊆ V satisfying

#C ≤ dθ is linearly independent.

ASSUMPTION F.4: (i) For some θ0 ∈ Rdθ , EP[Δ(Y�zj� zk)|Z∗ = zk] + (zj −
zk)

′θ0 ≤ 0 for all zj �= zk ∈ Z ; (ii) P(Z∗ = zk) > 0 for all 1 ≤ k ≤ K;
(iii) EP[Δ(Y�zj� zk)|Z∗ = zj] �=EP[Δ(Y�zj� zk)|Z∗ = zk] for any 1≤ j < k≤K;
(iv) #A(θ�P)≤ dθ for all θ ∈Θ0(P).

Assumption F.3(i) guarantees m(x�θ) is bounded as required by Assump-
tion 3.4(i). As in Assumption F.1(ii),Θ⊂Rdθ is defined to be a sufficiently large
sphere to ensure thatΘ0(P)⊂Θo, as demanded by Assumption 3.6(i). The gra-
dient ∇F(i)(

∫
m(x�θ)dP(x))

∫ ∇θm(x�θ)dP(x) at each active constraint is of
the form (zj − zk) for some zj �= zk ∈ Z . Therefore, to ensure that Assump-
tion 3.6(iv) holds, we must rule out that a θ ∈Θ0(P) satisfies

E
[
Δ(Y�zj� zk)|Z∗ = zk

]+ (zj − zk)′θ(F.15)

= 0=E[Δ(Y�zk� zj)|Z∗ = zj
]+ (zk − zj)′θ�

which is guaranteed by Assumption F.4(iii). A consequence of Assump-
tion F.4(iii) is that whenZ∗ hasK points of support, it generatesK(K−1) con-
straints, of which at most K(K − 1)/2 can be active. For this reason, Assump-
tion F.3(iii) requiresK(K−1)/2≥ dθ, which, together with Assumption F.3(iv),
implies Θ0(P) is bounded. Assumption F.4(i) is satisfied if the model is prop-
erly specified and implies Θ0(P) �= ∅. Finally, Assumptions F.3(iv) and F.4(iv)
together provide a sufficient condition for Assumption 3.6(iv) to be satisfied.

REMARK F.1: The moment inequalities in (6) are a special case of a larger
system implied by the optimality condition in (5). In particular, for any F mea-
surable random variable V , equation (5) implies that, for any zj ∈ Z ,

E
[((
ψ(Y�zj)−ψ

(
Y�Z∗))+ (

zj −Z∗)′θ)g(V )]≤ 0�(F.16)

provided g(V ) ≥ 0 almost surely; see, for example, Ho (2009). Indeed, note
that (F.16) reduces to (6) by setting V = Z∗ and g(V ) = 1{Z∗ = zk}. Unlike
(6), however, it is not possible to write (F.16) as a linear inequality constraint
with known slope for a general g(V ). On the other hand, (F.16) does satisfy
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Assumption 4.2. Therefore, Theorem 4.3 implies that the “plug-in” estimator
is still efficient for estimating ν|C(·�Θ0(P)) for any C satisfying Assumption 4.1.

EXAMPLE 2.3—Pricing Kernel:
For this example, we set X = (Y�Z′�U ′)′ with Y ∈R, Z ∈RdZ , and U ∈RdZ ,

and hence X ⊆ R×RdZ ×RdZ . Recall θ= (ρ�γ)′ ∈ R2, and to ensure that the
identified set is bounded, we impose the constraints 0 ≤ ρ ≤ ρ̄ and 0 ≤ γ ≤ γ̄
for some γ̄ > 0 and ρ̄ > 0. Formally, for a parameter space Θ, the identified set
is given by

Θ0(Q)≡
{
θ ∈Θ :

∫ (
y−γz
1+ ρ − u

)
dQ(x)≤ 0 and θ ∈ [0� ρ̄] × [0� γ̄]

}

(F.17)

To map this example into (2) and (3), we let A, mS : X × Θ→ RdZ , and
FS : RdZ →RdZ+4 be given by

mS(x�θ)= y−γz
1+ ρ − u� FS(v)=

(
v′�−ρ̄�0�−γ̄�0

)′
�(F.18)

A′ =
[

0′dZ 1 −1 0 0
0′dZ 0 0 1 −1

]
�

where 0dZ stands for 0 ∈ RdZ . Given this notation, the constraints 1 ≤ i ≤ dZ
correspond to (7), while the restriction θ ∈ [0� ρ̄] × [0� γ̄] is imposed in the
constraints dZ + 1≤ i≤ dZ + 4. Therefore, we obtain the representation

Θ0(Q)=
{
θ ∈Θ :Aθ+ FS

(∫
mS(x�θ)dQ(x)

)
≤ 0

}

(F.19)

The following conditions are sufficient for verifying Assumptions 3.2–3.6 in
Example 2.3.

ASSUMPTION F.5: (i) X ⊆ [ε0�∞) × RdZ+ × RdZ for some ε0 > 0; (ii) X is
compact; (iii) Θ≡ [−1/2�2ρ̄] × [−1/2�2γ̄].

ASSUMPTION F.6: (i) E[Y−γZ1+ρ − U] ≤ 0 for some θ ∈ [0� ρ̄] × [0� γ̄];
(ii) P(Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ ; (iii) for all (ρ�γ)′ = θ ∈ Θ0(P), and
{i� j} ⊆ A(θ�P) with 1 ≤ i < j ≤ dZ + 2, E[Y−γ(Z(i) − πi�jZ

(j)) log(Y)] �= 0,
where πi�j =E[U(i)]/E[U(j)] if j ≤ dZ and πi�j = 0 otherwise; (iv) #A(θ�P)≤ 2
for all θ ∈Θ0(P).

Assumption F.5(i) requires Y , the ratio of future over current consump-
tion, to be bounded away from zero. Together with compactness of X × Θ,
Assumption F.5(i) ensures m : X ×Θ→ R2dZ+4 is bounded and differentiable,
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as required by Assumption 3.4. The constraint θ ∈ [0� ρ̄] × [0� γ̄] can be inter-
preted as imposing restrictions defining the parameter space of interest (see
Remark 3.4). However, our arguments require regularity of m in a neighbor-
hood of Θ0(P), and for this reason Assumption 3.6(i) further demands that we
may define a set Θ such that Θ0(P)⊂Θo. In this example, this is easily accom-
plished through Assumption F.5(iii); alternatively, for example, we could have
set Θ= [−δ� ρ̄+ δ] × [−δ� γ̄+ δ] for any 0< δ< 1. Assumption 3.6(i) implies
Θ0(P) �= 0, and is satisfied if the model is properly specified. In turn, Assump-
tion F.6(ii) is necessary for θ 	→ F(i)

S (
∫
mS(x�θ)dP(x)) to be strictly convex for

1≤ i≤ dZ . Finally, Assumption 3.6(iii)–(iv) is equivalent to Assumption 3.6(iv)
in this model. Unfortunately, unlike in the linear models of Examples 2.1 and
2.2, the gradients of constraints 1 ≤ i ≤ dZ depend on P , and as a result the
requirement on P is more complex.

PROPOSITION F.2: In Example 2.3, Assumptions F.5 and F.6 imply Assump-
tions 3.2–3.6.

PROOF: Assumption 3.2 is implied by Assumption F.5(iii), while Assump-
tion 3.3 has already been verified in (F.18) and (F.19). Moreover, since y ≥ ε0 >
0 for all x ∈ X and ρ≥−1/2 for all (ρ�γ)′ = θ ∈Θ, and X ×Θ is compact by
Assumption F.5(i)–(ii), it also follows that mS(x�θ) is uniformly bounded on
(x�θ) ∈ X ×Θ. Therefore, m(x�θ) = (mS(x�θ)

′� θ′A′)′ implies that Assump-
tion 3.4(i) also holds. Next, note by direct calculation that

∇θmS(x�θ)=
[
− y−γz
(1+ ρ)2

−y
−γ log(y)z
(1+ ρ)

]
�(F.20)

and hence since ρ ≥ −1/2 and y ≥ ε0 by Assumptions F.5(i) and F.5(iii), it
follows that (x�θ) 	→ ∇θmS(x�θ) is uniformly bounded in X × Θ. Assump-
tion 3.4(ii) then follows from∇θm(x�θ)= (∇θmS(x�θ)

′�A′)′. Moreover, (F.20)
further implies (θ�x) 	→ ∇θm(x�θ) is continuous on X ×Θ. However, by com-
pactness of X ×Θ, (θ�x) 	→ ∇θm(x�θ) is uniformly continuous, and therefore
θ 	→ ∇θm(x�θ) is equicontinuous in x ∈ X , verifying Assumption 3.4(iii). Fi-
nally, employing m(x�θ)= (mS(x�θ)

′� θ′A)′ and F(
∫
m(x�θ)dQ(x))=Aθ+

FS(
∫
mS(x�θ)dQ(x)), we obtain

∇F(v)=
[
IdZ

04�dZ




 IdZ+4

]
�(F.21)

where Ik denotes the k×k identity matrix, and 04�dZ is a 4×dZ matrix of zeroes.
From (F.21), it follows that Assumption 3.5(i)–(ii) holds with V0 =R2dZ+4.

To verify Assumption 3.6, first observe that Assumption F.2(i) directly im-
poses Θ0(P) �= ∅. Moreover, since Θ0(P) ⊆ [0� ρ̄] × [0� γ̄] ⊂ (−1/2�2ρ̄) ×
(−1/2�2γ̄) = Θo by Assumption F.5(iii), it follows that Assumption 3.6(i)
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holds. To verify Assumption 3.6(ii), first note that by (F.18), Si = {1�2} for
1 ≤ i ≤ dZ and Si = ∅ for dZ + 1 ≤ i ≤ dZ + 4. Thus, we need only show that
θ 	→ ∫

m(i)
S (x�θ)dQ(x) is strictly convex for all 1≤ i ≤ dZ and Q in a suitable

neighborhood of P . To this end, first exploit that ρ ≥ −1/2 for all (ρ�γ)′ ∈Θ
and y ≥ ε0 for all x ∈ X to deduce that

∇2
θm

(i)
S (x�θ)=

⎡
⎢⎢⎣

2y−γz(i)

(1+ ρ)3

y−γ log(y)z(i)

(1+ ρ)2

y−γ log(y)z(i)

(1+ ρ)2

y−γ log2(y)z(i)

(1+ ρ)

⎤
⎥⎥⎦ �(F.22)

for any (x�θ) ∈ X × Θ and 1 ≤ i ≤ dZ . By (F.22), ∇2
θm

(i)
S (x�θ) is positive

definite for any x ∈ X such that z(i) > 0. Hence, since z(i) ≥ 0 on X , and
m(i)

S (x�θ) = −u whenever z(i) = 0, we conclude that, for any λ ∈ (0�1) and
1≤ i≤ dZ ,∫

m(i)
S

(
x�λθ1 + (1− λ)θ2

)
dQ(x)(F.23)

< λ

∫
m(i)

S (x�θ1)dQ(x)+ (1− λ)
∫
m(i)

S (x�θ2)dQ(x)�

provided thatQ ∈M satisfiesQ(Z(i) > 0) > 0. However, by Assumption 3.6(ii),
P(Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ . Hence, for each 1 ≤ i ≤ dZ , there exists a
neighborhood Ni(P) ⊆M in the τ-topology such that Q(Z(i) > 0) > 0 for all
Q ∈ Ni(P). Therefore, by (F.23), Assumption 3.6(ii) then holds with N(P) =⋂

i Ni(P). In turn, Assumption 3.6(iii) trivially holds since V0 =R2dZ+4. Finally,
to verify Assumption 3.6(iv), first note

∇F
(∫

m(x�θ)dP(x)

)∫
∇θm(x�θ)dP(x)(F.24)

=

⎡
⎢⎢⎣

−
∫

y−γz′

(1+ ρ)2
dP(x) 1 −1 0 0

−
∫
y−γ log(y)z′

(1+ ρ) dP(x) 0 0 1 −1

⎤
⎥⎥⎦
′

by direct calculation and (F.21). Since P(Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ
and y ≥ ε0 > 0 for all x ∈ X , we must have E[Y−γZ(i)] > 0. Therefore,
∇F(i)(

∫
m(x�θ)dP(x))

∫ ∇θm(x�θ)dP(x) �= 0 for all 1 ≤ i ≤ dZ , and thus
{∇F(i)(

∫
m(x�θ)dP(x))

∫ ∇θm(x�θ)dP(x)}i∈A(θ�P) are linearly independent if
A(θ�P) is either empty or singleton valued. Hence, by Assumption 3.6(iv), we
need only consider the case A(θ�P) = {i� j} with i �= j. However, note that
if j ∈ {dZ + 3� dZ + 4}, then i ≤ dZ + 2 (since the dZ + 3 and dZ + 4 con-
straints cannot simultaneously bind), and, by (F.24) and E[Y−γZ(k)] > 0, As-
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sumption 3.6(iv) is satisfied. Finally, for the case 1 ≤ i < j ≤ dZ + 2, Assump-
tion 3.6(iv) follows by direct calculation, Assumption 3.6(iii), and exploiting
that if i ∈ A(θ�P) and i≤ dZ , then E[Y−γZ(i)] = (1+ ρ)E[U(i)]. Q.E.D.

EXAMPLE 2.4—Participation Constraint:
In order to write this example in the form of (2) and (3), let X =

(C�W �L�Z′)′ with (C�W �L) ∈ R3
+ and Z ∈ RdZ+ . We denote the parameter

θ= (α�β)′ ∈ R2 and we ensure Θ0(P) is bounded by imposing the constraints
0≤ α≤ ᾱ and 0≤ β≤ β̄ with ᾱ > 0 and β̄ > 0. For a parameter space Θ, then
define the identified set

Θ0(Q)(F.25)

≡
{
θ ∈Θ :

∫ (
w

c− α −
β

l

)
z dQ(x)≤ 0 and θ ∈ [0� ᾱ] × [0� β̄]

}



Further let mS(x�θ)= (z′w/(c − α)� z′/l)′ and define a (dZ + 4)× 2 matrix A
and FS : R2dZ →RdZ+4 by

F(i)
S (v)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(i)

v(dZ+i)
� if 1≤ i≤ dZ�

−ᾱ� if i= dZ + 1�
0� if i ∈ {dZ + 2� dZ + 4}�
−β̄� if i= dZ + 3�

(F.26)

A′ =
[

0′dZ 1 −1 0 0
−1′dZ 0 0 1 −1

]
�

where 1dZ is a vector of ones in RdZ , and recall that 0dZ denotes 0 ∈RdZ . Thus,
for 1≤ i≤ dZ , we obtain the constraint

F(i)

(∫
m(x�θ)dP(x)

)
=−β+ E[WZ(i)/(C − α)]

E[Z(i)/L] �(F.27)

while constraints dZ + 1 ≤ i ≤ dZ + 4 impose θ ∈ [0� ᾱ] × [0� β̄]. Given this
notation, we may then rewrite

Θ0(Q)=
{
θ ∈Θ :Aθ+ FS

(∫
mS(x�θ)dQ(x)

)
≤ 0

}

(F.28)

Assumptions F.7 and F.8 impose sufficient conditions for verifying Assump-
tions 3.2–3.6.

ASSUMPTION F.7: (i) X ⊆ [ε0�∞)× R+ × [ε1�+∞)× RdZ+ for some ε0 > ᾱ
and ε1 > 0; (ii) X is compact; (iii) Θ≡ [−δ0� ᾱ+ δ0] × [−δ0� β̄+ δ0] for some
0< δ0 < (ε0 − ᾱ).
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ASSUMPTION F.8: (i) E[( W
C−α − β

L
)Z] ≤ 0 for some θ ∈ [0� ᾱ] × [0� β̄];

(ii) P(W Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ ; (iii) for all (α�β)′ = θ ∈ Θ0(P),
and {i� j} ⊆ A(θ�P) with 1 ≤ i < j ≤ dZ , E[ W

(C−α)2 (Z
(i) − πi�jZ(j))] �= 0, where

πi�j =E[Z(i)L ]/E[Z
(j)

L
]; (iv) #A(θ�P)≤ 2 for all θ ∈Θ0(P).

In Assumptions F.7(i) and F.7(iii), we impose that C − α and L be bounded
away from zero, as required for m(x�θ) to be bounded and utility to re-
main finite (recall u(C�L) = log(C − α) + β log(L)). As in Example 2.3, in
Assumption F.7(iii) we define Θ to be an expansion of the parameter con-
straints θ ∈ [0� ᾱ] × [0� β̄]. Assumption F.8(i) ensures Θ0(P) �= ∅, while As-
sumption F.8(ii) is required so that constraints 1 ≤ i ≤ dZ are strictly convex
in α. Finally, Assumptions F.8(iii) and F.8(iv) are necessary and sufficient for
P to satisfy Assumption 3.6(iv) in this model. As in Example 2.3, the gradi-
ents of constraints 1 ≤ i ≤ dZ depend on P , which leads to a more complex
requirement than was necessary in Examples 2.1 and 2.2.

PROPOSITION F.3: In Example 2.4, Assumptions F.7 and F.8 imply Assump-
tions 3.2–3.6.

PROOF: Assumption 3.2 is implied by Assumption F.7(iii), while Assump-
tion 3.3 was already verified in (F.28). Moreover, compactness of X ×Θ im-
plies wz and z are uniformly bounded, while c ≥ ε0 > ᾱ + δ0 ≥ α and l ≥ ε1

imply (c − α)−1 and l−1 are uniformly bounded as well. Therefore, mS(x�θ)=
(z′w/(c − α)� z′/l)′ is uniformly bounded in (x�θ) ∈ X × Θ and hence so is
m(x�θ)= (mS(x�θ)

′� θ′A′)′, which verifies Assumption 3.4(i). Similarly,

∇θmS(x�θ)=
[ wz

(c− α)2
0dz

0dZ 0dZ

]
(F.29)

is also bounded, which, together with ∇θm(x�θ) = (∇θmS(x�θ)
′�A′)′, im-

plies Assumption 3.4(ii) holds as well. In turn, by compactness of X × Θ
and (F.29), (x�θ) 	→ ∇θm(x�θ) is uniformly continuous on X ×Θ and there-
fore θ 	→ ∇θm(x�θ) is equicontinuous in x ∈ X as demanded by Assump-
tion 3.4(iii). Next, let η0 < infk E[Z(k)/L] and note that we may set η0 > 0
due to Assumption F.8(ii) and P(W ≥ 0)= 1 by definition of X . Similarly, let
supX×Θ ‖m(x�θ)‖<M0, and note that since Assumption 3.4(ii) holds, we may
set M0 <∞. Then defining

V0 ≡ (−M0�M0)
dZ × (η0�M0)

dZ × (−M0�M0)
dZ+4�(F.30)

and noting that F(v) is differentiable unless v(i) = 0 for some dZ + 1≤ i≤ 2dZ ,
it follows that Assumption 3.5(i) holds. In addition, since ∇F is continuous on
the closure of V0 and such closure is compact, it follows that Assumption 3.5(ii)
holds as well.
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To verify that P satisfies Assumption 3.6, first note that by Assumptions
F.7(iii) and F.8(i), ∅ �=Θ0(P)⊆ [0� ᾱ]×[0� β̄] ⊂ (−δ0� ᾱ+δ0)×(−δ0� β̄+δ0)=
Θo, which verifies Assumption 3.6(i). Next observe Si = ∅ for dZ + 1 ≤ i ≤
dZ + 4, and Si = {1} for 1≤ i≤ dZ . Therefore, to show that Assumption 3.6(ii)
holds, it suffices to establish that

F(i)
S

(∫
m(x�θ)dQ(x)

)
=

∫
(wz(i)/(c − α))dQ(x)∫

(z(i)/ l)dQ(x)

(F.31)

is strictly convex in α for all Q in an appropriate neighborhood of P . However,
by Assumptions F.7(i) and F.8(ii), E[Z(i)/L]> 0 and E[WZ(i)]> 0, and there-
fore there exists a neighborhood Ni(P)⊆M such that

∫
(z(i)/ l)dQ(x) > 0 and∫

wz(i) dQ(x) > 0 for all Q ∈Ni(P). Letting N(P)=⋂
i Ni(P) and noting that

Q(C − α > 0) = 1 for all α ∈ [0� ᾱ] and Q ∈M by Assumption F.7(i), we ob-
tain that α 	→ F(i)

S (
∫
m(x�θ)dQ(x)) is indeed strictly convex for all Q ∈N(P),

thus verifying Assumption 3.6(ii). In turn, Assumption 3.6(iii) is also satisfied
by construction of V0 in (F.30) and definitions of η0 and M0. Finally, note that
by (F.29) and direct calculation,

∇F
(∫

m(x�θ)dP(x)

)∫
∇θm(x�θ)dP(x)(F.32)

=
⎡
⎣ E[WZ′/(C − α)2]

E[Z′/L] 1 −1 0 0

−1′dZ 0 0 1 −1

⎤
⎦
′




Hence, since E[WZ(i)/(C − α)] > 0 and E[Z(i)/L] > 0 for all α ∈ [0� ᾱ] and
1 ≤ i ≤ dZ by Assumptions F.7(i) and F.8(ii), (F.32) implies ∇F(i)(

∫
m(x�

θ)dP(x))
∫

∂
∂θ(j)

m(x�θ)dP(x) �= 0 for any 1 ≤ i ≤ dZ and j ∈ {1�2}. As a re-
sult, it follows that {∇F(i)(

∫
m(x�θ)dP(x))

∫ ∇θm(x�θ)dP(x)}i∈A(θ�P) are lin-
early independent whenever A(θ�P) is empty or a singleton, and also when
{i� j} = A(θ�P) with i < j and j ≥ dZ + 1. Therefore, by Assumption F.8(iv), to
verify Assumption 3.6(iv) it only remains to consider the case {i� j} = A(θ�P)
with j ≤ dZ . However, in this instance, {∇F(i)(

∫
m(x�θ)dP(x))

∫ ∇θm(x�
θ)dP(x)}i∈A(θ�P) are linearly independent by result (F.32), Assumption F.8(iv),
and direct calculation, and hence P satisfies Assumption 3.6(iv) as well.

Q.E.D.

APPENDIX G: SIMULATION EVIDENCE

In this appendix, we assess the finite sample performance of the efficient
estimator and illustrate its ease of implementation with a Monte Carlo exper-
iment based on Example 2.1. For comparison purposes, we also include the
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results of employing the uniformly valid procedures proposed in Andrews and
Soares (2010) and Bugni (2010).

For our design, we let Zi ≡ (Z(1)
i �Z

(2)
i )

′, where Z(1)
i = 1 is a constant and Z(2)

i

is uniformly distributed on a set Z2 of K equally spaced points on [−5�5]. For
a true parameter θ0 = (1�2)′, we then generate Yi according to

Yi =Z′
iθ0 + εi� i= 1� 
 
 
 � n�(G.1)

where εi is a standard normal random variable independent of Zi. We assume
Yi is unobservable, but create observable upper and lower bounds (YL�i�YU�i)
such that YL�i ≤ Yi ≤ YU�i almost surely. Specifically, we let

YL�i = Yi −C − Vi
(
Z(2)
i

)2
� i= 1� 
 
 
 � n�(G.2)

YU�i = Yi +C + Vi
(
Z(2)
i

)2
� i= 1� 
 
 
 � n�

where C > 0 and Vi is uniformly distributed on [0�0
2] independently of
(Yi�Z

′
i)
′. As discussed in Example 2.1, Θ0(P) consists of all θ ∈ Θ such that

E[YL�i|Zi] ≤ Z′
iθ ≤ E[YU�i|Zi] almost surely (see also (F.2)). All our reported

simulation results are based on 5000 replications.
Our Monte Carlo experiment is designed to examine the robustness of

the estimator to the two free parameters K and C. Since dF = 2K, the con-
stant K determines the number of constraints, while C controls the diameter
of the identified set, with point identification occurring at C = 0—see Fig-
ure 1. Throughout our simulation study, we will examine specifications with
C ∈ {0
1�0
5�1} and K ∈ {5�9�15}, with the latter corresponding to 10, 18, and
30 moment inequalities, respectively. Heuristically, high values ofK or low val-
ues of C yield specifications where P is closer to violating Assumption 3.6(iv).
In such instances, we therefore expect our asymptotic results to provide a less

FIGURE 1.—Identified set as a function of C and K.
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reliable approximation to finite sample distributions, while uniform procedures
should remain accurate.

We first compare the performance of the efficient set estimator Θ̂n =
co{Θ0(P̂n)} (see (20)) with that of

Θ̂n(τn)≡
{
θ ∈Θ :F(i)

(∫
m(x�θ)dP̂n(x)

)
≤ τn√

n
σ̂(i)
n(G.3)

for i= 1� 
 
 
 � dF

}
�

where (σ̂(i)
n )

2 is a consistent estimator for the asymptotic variance of constraint
number i.15

 Chernozhukov, Hong, and Tamer (2007) and Bugni (2010) showed
that Θ̂n(τn) is a consistent estimator for Θ0(P) under the Hausdorff metric
provided that τn/

√
n ↓ 0. Notice, in particular, that the efficient estimator Θ̂n

corresponds to setting τn = 0, and is therefore by construction always smaller
than Θ̂n(τn) whenever τn > 0. This is not necessarily a favorable property, how-
ever, since an estimator that is too small may perform poorly in terms of Haus-
dorff distance to Θ0(P). For example, in certain specifications, we find in many
replications that Θ̂n(τn) = ∅ for values of τn ∈ {0� log(log(n))}, in which case
the Hausdorff distance to Θ0(P) is set to equal infinity. Table I reports the
proportion of replications for which this event occurs in each specification. As
expected, the most problematic specifications are those with many moment
inequalities (K = 15) and Θ0(P) near point identification (C = 0
1).

TABLE I

PROPORTION OF SIMULATED SAMPLES WITH EMPTY SET ESTIMATORS

K = 5 K = 9 K = 15

Sample Size C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

Estimator Θ0(P̂n)
n= 200 – – – 0.201 – – 0.792 0.010 –
n= 500 – – – 0.035 – – 0.420 – –
n= 1000 – – – 0.003 – – 0.152 – –

Estimator Θ̂n(τn) With τn = log(log(n))
n= 200 – – – – – – 0.007 – –
n= 500 – – – – – – – – –
n= 1000 – – – – – – – – –

15In particular, for m̄n(θ) ≡
∫
m(x�θ)dP̂n(x), and Ω̂n(θ) ≡

∫
(m(x�θ) − m̄n(θ))(m(x�θ) −

m̄n(θ))
′ dP̂n(x), we let (σ̂(i)

n )
2 ≡ ∇F(i)(

∫
m(x�θ)dP̂n(x))Ω̂n(θ)∇F(i)(

∫
m(x�θ)dP̂n(x))

′. It is
easy to verify that σ̂(i)

n does not depend on θ.
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TABLE II

MEDIAN HAUSDORFF DISTANCE

K = 5 K = 9 K = 15

Estimator C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

n= 200
Efficient 0.131 0.132 0.132 0.232 0.208 0.209 Inf 0.332 0.332
τn = log(log(n)) 0.372 0.372 0.372 0.423 0.423 0.423 0.393 0.392 0.392
τn = log(n) 0.941 0.941 0.941 1.138 1.138 1.138 1.226 1.226 1.226
τn = n1/8 0.414 0.414 0.414 0.476 0.476 0.476 0.455 0.455 0.455
τn = n1/4 0.702 0.702 0.702 0.838 0.838 0.838 0.879 0.879 0.879

n= 500
Efficient 0.080 0.081 0.081 0.136 0.130 0.131 0.290 0.205 0.204
τn = log(log(n)) 0.251 0.251 0.251 0.316 0.316 0.316 0.315 0.315 0.315
τn = log(n) 0.692 0.692 0.692 0.890 0.890 0.890 1.021 1.021 1.021
τn = n1/8 0.285 0.285 0.285 0.362 0.362 0.362 0.371 0.371 0.371
τn = n1/4 0.542 0.542 0.542 0.696 0.696 0.696 0.783 0.783 0.783

n= 1000
Efficient 0.058 0.058 0.058 0.093 0.092 0.093 0.172 0.144 0.144
τn = log(log(n)) 0.185 0.185 0.185 0.244 0.244 0.244 0.257 0.257 0.257
τn = log(n) 0.537 0.537 0.537 0.713 0.713 0.713 0.841 0.841 0.841
τn = n1/8 0.216 0.216 0.216 0.285 0.285 0.285 0.308 0.308 0.308
τn = n1/4 0.447 0.447 0.447 0.592 0.592 0.592 0.690 0.690 0.690

Table II reports the median of the Hausdorff distance between the dif-
ferent set estimators and Θ0(P) across replications—see Remark G.1 for
computational details. We report median, rather than mean, Hausdorff
distance because dH(Θ̂n(τn)�Θ0(P)) is infinite in replications for which
Θ̂n(τn)= ∅. As expected, the median Hausdorff distance decreases with sam-
ple size across all specifications and choices of τn. Interestingly, for τn ∈
{log(log(n))� log(n)�n1/8� n1/4}, the performance of Θ̂n(τn) is completely in-
sensitive to the choice of C across all specifications, while the performance of
the efficient estimator is only sensitive to the value of C when many moment
inequalities are present (K = 15). In contrast, the median Hausdorff distance
of all estimators deteriorates as the number of moment inequalities increases.
Remarkably, across almost all specifications, the median Hausdorff distance is
monotonically increasing in τn, with the efficient estimator outperforming all
the alternative estimators.16 The notable exception is the specification K = 15,
C = 0
1, and n= 200, in which the median Hausdorff distance of the efficient
estimator is infinite due to Θ0(P̂n) being empty in over half the replications
(see Table I).

16Note that for all the values of n we consider, log(log(n)) < n1/8 < log(n) < n1/4.
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Next, we examine the performance of inferential procedures based on the
semiparametric efficient estimator and compare it to that of alternative meth-
ods that are asymptotically valid uniformly in P . To this end, we first consider
the construction of confidence regions Cn for the identified setΘ0(P) satisfying
the coverage requirement

lim inf
n→∞

P
(
Θ0(P)⊆ Cn

)≥ 1− α
(G.4)

Following the discussion in Example 5.1, we employ the efficient estimator to
obtain a confidence region satisfying (G.4) by using a construction proposed
in Beresteanu and Molinari (2008)—see Remark G.2 for computational de-
tails. Additionally, we also obtain confidence regions satisfying (G.4) by utiliz-
ing a criterion function based approach, as developed in Chernozhukov, Hong,
and Tamer (2007) and Bugni (2010). Specifically, defining the criterion func-
tion

Qn(θ)≡ max
1≤i≤dF

1
σ̂ (i)
n

(
F(i)

(∫
m(x�θ)dP̂n(x)

))
+
�(G.5)

we examine confidence regions of the form CSn(τn) ≡ {θ ∈ Θ :Qn(θ) ≤
ĉB1−α(τn)/

√
n}, where ĉB1−α(τn) is the critical value proposed in Bugni (2010)—

see Remark G.3. Employing the maximum, rather than the sum, across con-
straints in defining Qn implies CSn(τn) is a convex polygon, which greatly sim-
plifies our computations. All bootstrap procedures employed 200 replications
in computing critical values.

Table III reports the coverage probabilities of the different confidence re-
gions under alternative values of (n�K�C) for a nominal coverage of 0.95.
A confidence region based on the efficient estimator is considered to have
failed to cover Θ0(P) in any replication for which Θ0(P̂n) = ∅. Similarly, the
criterion based confidence region is considered to have failed to cover Θ0(P)

whenever Θ̂n(τn) = ∅—see Remark G.3. As in Table II, the performance of
the confidence region based on the efficient estimator is more sensitive to K
than to C. In specifications with 10 moment inequalities (K = 5), the actual
coverage is always close to its nominal level, while under 30 moment inequal-
ities (K = 15), size distortions upwards of 5% remain even for n= 1000. Un-
surprisingly, the most severe undercoverage occurs in specifications for which
Θ0(P̂n) = ∅ in a large number of replications (K = 15�C = 0
1). In contrast,
the criterion based confidence regions have actual coverage above the nominal
level for all specifications. The coverage probability is closest to the nominal
level under 10 moment inequalities (K = 5), but can be quite conservative for
larger values of the slackness parameter τn (τn ∈ {log(n)�n1/4}).

In Table IV, we report the median Hausdorff distance between the dif-
ferent confidence regions and the identified set Θ0(P). For specifications in
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TABLE III

SET CONFIDENCE REGION COVERAGE PROBABILITY—NOMINAL COVERAGE = 0
95

K = 5 K = 9 K = 15

Procedure C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

n= 200
Efficient 0.945 0.942 0.940 0.790 0.913 0.895 0.208 0.885 0.820
B. τn = log(log(n)) 0.980 0.984 0.986 0.990 0.992 0.992 0.989 0.997 0.998
B. τn = log(n) 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000
B. τn = n1/8 0.983 0.986 0.987 0.993 0.993 0.994 0.994 0.998 0.999
B. τn = n1/4 0.994 0.995 0.995 0.999 0.999 0.999 1.000 1.000 1.000

n= 500
Efficient 0.950 0.940 0.940 0.946 0.916 0.916 0.573 0.879 0.870
B. τn = log(log(n)) 0.967 0.972 0.978 0.983 0.982 0.982 0.986 0.988 0.990
B. τn = log(n) 0.994 0.993 0.995 0.999 0.999 0.998 1.000 1.000 1.000
B. τn = n1/8 0.971 0.975 0.979 0.987 0.984 0.986 0.990 0.991 0.991
B. τn = n1/4 0.989 0.989 0.990 0.998 0.998 0.997 0.999 1.000 1.000

n= 1000
Efficient 0.959 0.946 0.946 0.975 0.926 0.925 0.829 0.891 0.889
B. τn = log(log(n)) 0.969 0.971 0.979 0.983 0.981 0.980 0.981 0.983 0.982
B. τn = log(n) 0.991 0.993 0.994 0.998 0.998 0.997 1.000 1.000 0.999
B. τn = n1/8 0.970 0.973 0.981 0.987 0.984 0.983 0.985 0.986 0.986
B. τn = n1/4 0.989 0.989 0.992 0.997 0.996 0.994 0.999 0.999 0.998

which all confidence regions control size, the median Hausdorff distance of
the confidence region based on the efficient estimator is always smaller than
that of its competitors. These results suggest that while the criterion based
confidence regions can deliver uniform size control, they can also underper-
form when our asymptotic results provide an accurate approximation to finite
sample distributions. Finally, in Table V, we tabulate the median computa-
tion time in seconds for each confidence region. The computational time of all
approaches is small, but longest for the confidence region based on the effi-
cient estimator. It is worth noting that the Lagrange multipliers λ(p� P̂n) and
maximizers θ̂(p) needed to construct G∗

n(p) (as in (23)) are by-products of
computing ν(p�Θ0(P̂n)). As a result, simulating the distribution of G∗

n only re-
quires sampling {Wi}ni=1, which significantly reduces computation time relative
to a procedure that recomputes the support function in each bootstrap itera-
tion.

We further evaluate the size and power of the test based on Jn(θ) (see (28))
for the null hypothesis:

H0 :θ ∈Θ0(P)� H1 :θ /∈Θ0(P)
(G.6)
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TABLE IV

SET CONFIDENCE REGION MEDIAN HAUSDORFF DISTANCE—NOMINAL COVERAGE 0.95

K = 5 K = 9 K = 15

Procedure C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

n= 200
Efficient 0.439 0.430 0.430 0.639 0.502 0.498 Inf 0.542 0.524
B. τn = log(log(n)) 0.566 0.576 0.585 0.826 0.855 0.871 1.504 1.645 1.724
B. τn = log(n) 0.710 0.718 0.727 1.245 1.259 1.275 3.257 3.359 3.413
B. τn = n1/8 0.577 0.585 0.594 0.855 0.882 0.897 1.629 1.764 1.834
B. τn = n1/4 0.645 0.651 0.660 1.058 1.075 1.092 2.505 2.593 2.672

n= 500
Efficient 0.276 0.273 0.273 0.398 0.349 0.349 0.740 0.371 0.373
B. τn = log(log(n)) 0.328 0.334 0.344 0.468 0.481 0.488 0.580 0.600 0.609
B. τn = log(n) 0.384 0.387 0.392 0.597 0.603 0.608 0.862 0.876 0.883
B. τn = n1/8 0.332 0.339 0.347 0.478 0.490 0.496 0.600 0.618 0.626
B. τn = n1/4 0.366 0.369 0.374 0.551 0.557 0.562 0.759 0.773 0.779

n= 1000
Efficient 0.195 0.193 0.193 0.282 0.262 0.262 0.388 0.282 0.283
B. τn = log(log(n)) 0.226 0.227 0.237 0.326 0.335 0.341 0.394 0.405 0.411
B. τn = log(n) 0.257 0.258 0.261 0.389 0.392 0.394 0.514 0.519 0.523
B. τn = n1/8 0.228 0.230 0.239 0.333 0.341 0.345 0.404 0.414 0.419
B. τn = n1/4 0.250 0.252 0.254 0.372 0.376 0.378 0.480 0.485 0.489

In order to make size control nontrivial, we let θ be a boundary point ofΘ0(P).
In particular, for the vectors

θF ≡
(
ν
(
(1�0)�Θ0(P)

)
�0
)′
� θK ≡

(
0� ν

(
(0�1)�Θ0(P)

))′
�(G.7)

we consider the hypothesis testing problem in (G.6) when θ ∈ {θF�θK}. No-
tice that θF and θK are respectively points in a “flat face” and at a “kink”
of Θ0(P) for all values of (C�K) (see Figure 1). Thus, θF is supported by a
unique hyperplane while θK is supported by multiple hyperplanes, which im-
plies that Theorem 5.3 applies to the former but not the latter. For compar-
ison purposes, we also examine the performance of the generalized moment
selection procedure developed in Andrews and Soares (2010). Specifically,
for θ ∈ {θF�θK}, we consider a test that rejects the null hypothesis in (G.6)
whenever

√
nQn(θ) > ĉAS1−α(θ) for a bootstrap critical value ĉAS1−α(θ)—see Re-

mark G.4. Both procedures require a choice of slackness parameter (see (30)),
which we select from the set {log(log(n))� log(n)�n1/8� n1/4}.

Tables VI and VII report the actual size of tests of (G.6) for a nominal size
of 0.05 and θ ∈ {θF�θK}. For tests based on the efficient estimator, we consid-
ered the null hypothesis in (G.6) to be rejected in any replication for which
Θ0(P̂n) = ∅. The performance of the tests for (G.6) when θ = θF are similar
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TABLE V

MEDIAN CONFIDENCE REGION COMPUTATION TIME IN SECONDS

K = 5 K = 9 K = 15

Procedure C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

n= 200
Efficient 2.528 2.683 2.751 3.741 4.061 4.319 5.824 6.138 6.514
B. τn = log(log(n)) 1.997 1.946 1.917 2.308 2.436 2.535 3.023 3.342 3.501
B. τn = log(n) 1.925 1.890 1.907 2.434 2.492 2.545 3.311 3.431 3.495
B. τn = n1/8 1.995 1.944 1.917 2.335 2.455 2.546 3.086 3.368 3.519
B. τn = n1/4 1.976 1.923 1.921 2.421 2.503 2.572 3.281 3.452 3.542

n= 500
Efficient 2.577 2.691 2.730 3.805 4.191 4.493 5.867 6.397 6.839
B. τn = log(log(n)) 2.086 2.002 1.936 2.420 2.554 2.660 3.277 3.538 3.741
B. τn = log(n) 2.007 1.947 1.919 2.543 2.607 2.678 3.536 3.627 3.749
B. τn = n1/8 2.082 1.998 1.936 2.442 2.565 2.670 3.344 3.565 3.758
B. τn = n1/4 2.049 1.983 1.933 2.534 2.617 2.702 3.528 3.644 3.797

n= 1000
Efficient 2.587 2.649 2.654 3.758 4.203 4.484 5.742 6.383 6.952
B. τn = log(log(n)) 2.174 2.055 1.979 2.532 2.656 2.754 3.366 3.626 3.767
B. τn = log(n) 2.086 2.010 1.947 2.641 2.709 2.786 3.613 3.729 3.802
B. τn = n1/8 2.166 2.049 1.980 2.551 2.673 2.769 3.427 3.668 3.804
B. τn = n1/4 2.124 2.034 1.963 2.653 2.728 2.812 3.613 3.760 3.854

to those of the confidence regions for Θ0(P) (Table III). In particular, the test
based on the efficient estimator provides accurate size control under ten mo-
ment inequalities (K = 5), but can fail to do so under 30 moment inequalities
(K = 15). With the exception of those specifications in which Θ0(P̂n)= ∅ in a
significant number of replications, however, the size distortions are not as se-
vere as those in Table III. In contrast, the test of Andrews and Soares (2010)
always provides adequate size control, though it can sometimes be severely
conservative, for instance for K = 15 and C = 0
1. The patterns when θ = θK
are similar, though all tests have a weakly lower rejection rate than when
θ = θF in a majority of the specifications. As a result, for larger values of κn
(κn ∈ {log(n)�n1/4}), the test based on the efficient estimator delivers adequate
size control in all specifications except those for which Θ0(P̂n) = ∅ in a large
proportion of replications (see Table I).

In order to evaluate the local power of the proposed tests, we further test
(G.6) when θ is of the form

θ= θC + h√
n
θA�(G.8)
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TABLE VI

EMPIRICAL SIZE H0 :θF ∈Θ0(P) (ON FLAT FACE)—NOMINAL SIZE = 0
05

K = 5 K = 9 K = 15

Procedure C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

n= 200
Eff. κn = log(log(n)) 0.037 0.055 0.056 0.205 0.066 0.073 0.792 0.113 0.146
Eff. κn = log(n) 0.034 0.054 0.056 0.204 0.057 0.067 0.792 0.089 0.134
Eff. κn = n1/8 0.036 0.054 0.056 0.205 0.065 0.072 0.792 0.110 0.144
Eff. κn = n1/4 0.035 0.054 0.056 0.204 0.058 0.068 0.792 0.094 0.136

A.S. τn = log(log(n)) 0.040 0.040 0.039 0.012 0.016 0.015 0.004 0.006 0.007
A.S. τn = log(n) 0.011 0.017 0.019 0.006 0.008 0.009 0.003 0.004 0.004
A.S. τn = n1/8 0.039 0.039 0.039 0.012 0.014 0.014 0.003 0.006 0.007
A.S. τn = n1/4 0.018 0.024 0.026 0.007 0.011 0.011 0.003 0.004 0.005

n= 500
Eff. κn = log(log(n)) 0.040 0.052 0.052 0.045 0.053 0.053 0.421 0.090 0.093
Eff. κn = log(n) 0.034 0.052 0.052 0.040 0.047 0.047 0.420 0.076 0.082
Eff. κn = n1/8 0.039 0.052 0.052 0.044 0.052 0.052 0.420 0.089 0.092
Eff. κn = n1/4 0.035 0.052 0.052 0.040 0.048 0.048 0.420 0.079 0.084

A.S. τn = log(log(n)) 0.049 0.050 0.049 0.017 0.022 0.022 0.012 0.018 0.017
A.S. τn = log(n) 0.016 0.027 0.027 0.007 0.012 0.011 0.006 0.008 0.010
A.S. τn = n1/8 0.049 0.050 0.049 0.016 0.021 0.021 0.011 0.016 0.016
A.S. τn = n1/4 0.024 0.043 0.041 0.008 0.014 0.013 0.008 0.011 0.012

n= 1000
Eff. κn = log(log(n)) 0.048 0.049 0.049 0.054 0.056 0.056 0.189 0.105 0.105
Eff. κn = log(n) 0.038 0.049 0.049 0.020 0.054 0.054 0.154 0.082 0.083
Eff. κn = n1/8 0.030 0.048 0.048 0.011 0.048 0.048 0.152 0.070 0.071
Eff. κn = n1/4 0.037 0.048 0.048 0.017 0.054 0.054 0.154 0.080 0.081

A.S. τn = log(log(n)) 0.050 0.050 0.048 0.026 0.027 0.028 0.016 0.020 0.051
A.S. τn = log(n) 0.023 0.045 0.043 0.008 0.011 0.011 0.006 0.009 0.020
A.S. τn = n1/8 0.050 0.050 0.048 0.020 0.023 0.024 0.014 0.018 0.009
A.S. τn = n1/4 0.024 0.049 0.048 0.008 0.014 0.015 0.007 0.011 0.017

where θC ∈ {θF�θK}, and θA = (1�0)′ if θC = θF and θC = (0�1)′ otherwise.
It can be verified by direct calculation that h/

√
n = infθ̃∈Θ0(P)

‖θ − θ̃‖ when-
ever h ≥ 0, and hence h controls the distance of the local alternative to the
identified set. Tables VIII and IX report rejection probabilities for tests with
a nominal size of 0.05. We focus on specifications with K ∈ {5�9} so that both
tests provide adequate size control, and ignore specifications with n= 500 for
conciseness. Notice that results with h= 0 correspond to the actual size of the
test. For local deviations away from θ= θF (Table VIII), the test based on the
efficient estimator is more powerful than its competitors in almost all speci-
fications, and the pattern is robust to the choice of slackness parameters. In-
terestingly, all tests are more powerful in detecting local deviations away from
θ = θK (Table IX) than from θ = θF . However, in this instance, the tests are
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TABLE VII

EMPIRICAL SIZE H0 :θK ∈Θ0(P) (ON KINK)—NOMINAL SIZE = 0
05

K = 5 K = 9 K = 15

Procedure C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1 C = 0
1 C = 0
5 C = 1

n= 200
Eff. κn = log(log(n)) 0.028 0.044 0.062 0.214 0.056 0.090 0.796 0.110 0.149
Eff. κn = log(n) 0.024 0.005 0.024 0.206 0.017 0.017 0.793 0.046 0.046
Eff. κn = n1/8 0.028 0.039 0.057 0.213 0.050 0.080 0.795 0.098 0.137
Eff. κn = n1/4 0.025 0.013 0.037 0.208 0.025 0.035 0.793 0.060 0.073

A.S. τn = log(log(n)) 0.028 0.035 0.027 0.016 0.013 0.017 0.003 0.003 0.005
A.S. τn = log(n) 0.020 0.019 0.023 0.010 0.010 0.013 0.002 0.002 0.004
A.S. τn = n1/8 0.027 0.032 0.026 0.015 0.012 0.015 0.003 0.002 0.005
A.S. τn = n1/4 0.023 0.020 0.025 0.012 0.010 0.013 0.003 0.002 0.004

n= 500
Eff. κn = log(log(n)) 0.010 0.048 0.055 0.060 0.047 0.087 0.435 0.089 0.119
Eff. κn = log(n) 0.009 0.007 0.029 0.045 0.012 0.017 0.426 0.024 0.029
Eff. κn = n1/8 0.010 0.043 0.052 0.058 0.040 0.078 0.434 0.079 0.106
Eff. κn = n1/4 0.009 0.016 0.037 0.048 0.015 0.033 0.428 0.034 0.047

A.S. τn = log(log(n)) 0.026 0.045 0.029 0.023 0.020 0.028 0.018 0.016 0.017
A.S. τn = log(n) 0.020 0.017 0.024 0.013 0.010 0.019 0.011 0.011 0.013
A.S. τn = n1/8 0.026 0.044 0.028 0.022 0.019 0.026 0.017 0.015 0.017
A.S. τn = n1/4 0.023 0.023 0.024 0.016 0.011 0.020 0.012 0.012 0.015

n= 1000
Eff. κn = log(log(n)) 0.006 0.050 0.054 0.037 0.047 0.082 0.197 0.089 0.107
Eff. κn = log(n) 0.002 0.012 0.033 0.016 0.007 0.022 0.175 0.023 0.027
Eff. κn = n1/8 0.004 0.044 0.050 0.033 0.037 0.073 0.194 0.075 0.096
Eff. κn = n1/4 0.002 0.020 0.037 0.018 0.010 0.033 0.178 0.032 0.041

A.S. τn = log(log(n)) 0.029 0.053 0.038 0.024 0.024 0.030 0.025 0.017 0.061
A.S. τn = log(n) 0.022 0.020 0.023 0.013 0.011 0.018 0.012 0.010 0.024
A.S. τn = n1/8 0.026 0.052 0.033 0.022 0.021 0.028 0.022 0.015 0.016
A.S. τn = n1/4 0.022 0.035 0.023 0.016 0.012 0.019 0.014 0.011 0.022

also more sensitive to the choice of slackness parameters κn and τn. As a re-
sult, the power comparison of tests in detecting deviations away from θ= θK is
not as conclusive as in Table VIII.

In the results reported in Tables II–IV and VI–VII, the performance of
statistics based on the efficient estimator is always worst in specifications for
which Θ0(P̂n) = ∅ in a large number of replications. However, upon finding
Θ0(P̂n) = ∅, it is evident that our asymptotic approximation is inadequate; in
fact, the developed statistics cannot even be computed. For completeness, it is
therefore also important to examine the performance of these procedures con-
ditional on having found Θ0(P̂n) �= ∅. These results are reported in Table X.
Surprisingly, the procedures perform well, with our confidence intervals and
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TABLE VIII

EMPIRICAL POWER H0 :θF ∈Θ0(P) (ON FLAT FACE)—NOMINAL SIZE = 0
05

C = 0
5 C = 1

Procedure h= 0 h= 2
5 h= 5 h= 7
5 h= 10 h= 0 h= 2
5 h= 5 h= 7
5 h= 10

n= 200 and K = 5
Eff. κn = log(log(n)) 0.055 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. κn = log(n) 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. κn = n1/8 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. κn = n1/4 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996

A.S. τn = log(log(n)) 0.040 0.227 0.550 0.837 0.971 0.039 0.231 0.550 0.843 0.970
A.S. τn = log(n) 0.017 0.144 0.483 0.827 0.970 0.019 0.143 0.484 0.830 0.969
A.S. τn = n1/8 0.039 0.219 0.536 0.833 0.971 0.039 0.221 0.536 0.839 0.970
A.S. τn = n1/4 0.024 0.155 0.488 0.829 0.971 0.026 0.158 0.489 0.833 0.970

n= 200 and K = 9
Eff. κn = log(log(n)) 0.066 0.293 0.685 0.943 0.996 0.073 0.295 0.686 0.943 0.996
Eff. κn = log(n) 0.057 0.271 0.672 0.940 0.996 0.067 0.279 0.674 0.941 0.996
Eff. κn = n1/8 0.065 0.290 0.682 0.943 0.996 0.072 0.293 0.683 0.943 0.996
Eff. κn = n1/4 0.058 0.276 0.674 0.941 0.996 0.068 0.282 0.675 0.941 0.996

A.S. τn = log(log(n)) 0.016 0.074 0.225 0.488 0.744 0.015 0.072 0.232 0.494 0.745
A.S. τn = log(n) 0.008 0.045 0.186 0.447 0.728 0.009 0.049 0.190 0.455 0.727
A.S. τn = n1/8 0.014 0.071 0.222 0.486 0.743 0.014 0.068 0.229 0.491 0.744
A.S. τn = n1/4 0.011 0.059 0.207 0.470 0.735 0.011 0.058 0.209 0.473 0.736

n= 1000 and K = 5
Eff. κn = log(log(n)) 0.049 0.285 0.702 0.954 0.998 0.049 0.285 0.702 0.954 0.998
Eff. κn = log(n) 0.048 0.285 0.701 0.954 0.998 0.048 0.285 0.701 0.954 0.998
Eff. κn = n1/8 0.048 0.285 0.702 0.954 0.998 0.048 0.285 0.702 0.954 0.998
Eff. κn = n1/4 0.048 0.285 0.701 0.954 0.998 0.048 0.285 0.701 0.954 0.998

A.S. τn = log(log(n)) 0.050 0.295 0.709 0.952 0.998 0.048 0.294 0.708 0.954 0.997
A.S. τn = log(n) 0.045 0.223 0.566 0.884 0.988 0.043 0.221 0.567 0.884 0.988
A.S. τn = n1/8 0.050 0.295 0.709 0.952 0.997 0.048 0.294 0.708 0.954 0.997
A.S. τn = n1/4 0.049 0.282 0.645 0.903 0.988 0.048 0.282 0.646 0.904 0.988

n= 1000 and K = 9
Eff. κn = log(log(n)) 0.054 0.209 0.529 0.851 0.987 0.054 0.209 0.529 0.851 0.987
Eff. κn = log(n) 0.048 0.193 0.508 0.844 0.985 0.048 0.194 0.508 0.844 0.985
Eff. κn = n1/8 0.054 0.208 0.526 0.850 0.987 0.054 0.208 0.526 0.850 0.987
Eff. κn = n1/4 0.050 0.197 0.509 0.844 0.985 0.050 0.198 0.509 0.844 0.985

A.S. τn = log(log(n)) 0.027 0.109 0.333 0.679 0.926 0.028 0.112 0.332 0.680 0.927
A.S. τn = log(n) 0.011 0.072 0.256 0.600 0.894 0.011 0.071 0.255 0.595 0.892
A.S. τn = n1/8 0.023 0.106 0.330 0.676 0.921 0.024 0.107 0.329 0.675 0.922
A.S. τn = n1/4 0.014 0.081 0.269 0.604 0.895 0.015 0.082 0.269 0.601 0.894
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TABLE IX

EMPIRICAL POWER H0 :θK ∈Θ0(P) (ON KINK)—NOMINAL SIZE = 0
05

C = 0
5 C = 1

Procedure h= 0 h= 2
5 h= 5 h= 7
5 h= 10 h= 0 h= 2
5 h= 5 h= 7
5 h= 10

n= 200 and K = 5
Eff. κn = log(log(n)) 0.044 0.904 1.000 1.000 1.000 0.062 0.977 1.000 1.000 1.000
Eff. κn = log(n) 0.005 0.526 0.998 1.000 1.000 0.024 0.921 1.000 1.000 1.000
Eff. κn = n1/8 0.039 0.892 1.000 1.000 1.000 0.057 0.976 1.000 1.000 1.000
Eff. κn = n1/4 0.013 0.734 0.999 1.000 1.000 0.037 0.957 1.000 1.000 1.000

A.S. τn = log(log(n)) 0.035 0.784 1.000 1.000 1.000 0.027 0.896 1.000 1.000 1.000
A.S. τn = log(n) 0.019 0.751 1.000 1.000 1.000 0.023 0.891 1.000 1.000 1.000
A.S. τn = n1/8 0.032 0.781 1.000 1.000 1.000 0.026 0.896 1.000 1.000 1.000
A.S. τn = n1/4 0.020 0.762 1.000 1.000 1.000 0.025 0.896 1.000 1.000 1.000

n= 200 and K = 9
Eff. κn = log(log(n)) 0.056 0.665 0.986 1.000 1.000 0.090 0.895 1.000 1.000 1.000
Eff. κn = log(n) 0.017 0.346 0.963 0.999 1.000 0.017 0.577 0.995 1.000 1.000
Eff. κn = n1/8 0.050 0.632 0.985 1.000 1.000 0.080 0.872 0.999 1.000 1.000
Eff. κn = n1/4 0.025 0.457 0.976 0.999 1.000 0.035 0.711 0.997 1.000 1.000

A.S. τn = log(log(n)) 0.013 0.322 0.881 0.970 0.983 0.017 0.495 0.939 0.979 0.987
A.S. τn = log(n) 0.010 0.313 0.881 0.970 0.983 0.013 0.481 0.939 0.979 0.987
A.S. τn = n1/8 0.012 0.321 0.881 0.970 0.983 0.015 0.494 0.939 0.979 0.987
A.S. τn = n1/4 0.010 0.315 0.881 0.970 0.983 0.013 0.490 0.939 0.979 0.987

n= 1000 and K = 5
Eff. κn = log(log(n)) 0.050 0.937 1.000 1.000 1.000 0.054 0.961 1.000 1.000 1.000
Eff. κn = log(n) 0.012 0.811 1.000 1.000 1.000 0.033 0.931 1.000 1.000 1.000
Eff. κn = n1/8 0.044 0.934 1.000 1.000 1.000 0.050 0.960 1.000 1.000 1.000
Eff. κn = n1/4 0.020 0.864 1.000 1.000 1.000 0.037 0.944 1.000 1.000 1.000

A.S. τn = log(log(n)) 0.053 0.917 1.000 1.000 1.000 0.038 0.899 1.000 1.000 1.000
A.S. τn = log(n) 0.020 0.848 1.000 1.000 1.000 0.023 0.899 1.000 1.000 1.000
A.S. τn = n1/8 0.052 0.908 1.000 1.000 1.000 0.033 0.899 1.000 1.000 1.000
A.S. τn = n1/4 0.035 0.869 1.000 1.000 1.000 0.023 0.899 1.000 1.000 1.000

n= 1000 and K = 9
Eff. κn = log(log(n)) 0.047 0.601 0.995 1.000 1.000 0.082 0.944 1.000 1.000 1.000
Eff. κn = log(n) 0.007 0.303 0.979 1.000 1.000 0.022 0.661 1.000 1.000 1.000
Eff. κn = n1/8 0.037 0.547 0.993 1.000 1.000 0.073 0.935 1.000 1.000 1.000
Eff. κn = n1/4 0.010 0.331 0.983 1.000 1.000 0.033 0.780 1.000 1.000 1.000

A.S. τn = log(log(n)) 0.024 0.532 0.999 1.000 1.000 0.030 0.829 1.000 1.000 1.000
A.S. τn = log(n) 0.011 0.473 0.999 1.000 1.000 0.018 0.803 1.000 1.000 1.000
A.S. τn = n1/8 0.021 0.524 0.999 1.000 1.000 0.028 0.823 1.000 1.000 1.000
A.S. τn = n1/4 0.012 0.486 0.999 1.000 1.000 0.019 0.803 1.000 1.000 1.000
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TABLE X

STATISTICS CONDITIONAL ON Θ0(P̂n) �= ∅a

Specification Med. dH(Θ0(P̂n)�Θ0(P)) Θ0(P) CI Coverage θ0 on Flat Face Size θ0 on Kink Size

n= 200
K = 9, C = 0
1 0.200 0.989 0.005 0.016
K = 15, C = 0
1 0.250 0.998 0.000 0.017

n= 500
K = 9, C = 0
1 0.133 0.980 0.010 0.026
K = 15, C = 0
1 0.202 0.987 0.002 0.027

n= 200
K = 9, C = 0
1 0.093 0.978 0.017 0.034
K = 15, C = 0
1 0.157 0.978 0.003 0.054

aEmpirical size for tests of H0 :θ0 ∈Θ0(P) reported for κn = log(log(n)).

tests actually being conservative in such instances. We emphasize, however,
that there is no reason to expect the results of Table X to hold in generality.
Thus, special care should be taken in applying procedures based on the effi-
cient estimator whenever there is reason to doubt the relevance of Assump-
tion 3.6(iv).

REMARK G.1: Since each function θ 	→ F(i)(
∫
m(x�θ)dP̂n(x)) is linear for

all 1 ≤ i ≤ dF , the sets Θ̂n(τn) are convex polygons. Moreover, their support
functions are easily computable through the optimization problem17

ν
(
p� Θ̂n(τn)

)= sup
θ

〈p�θ〉 s.t.(G.9)

F(i)

(∫
m(x�θ)dP̂n(x)

)
≤ τn√

n
σ̂(i) for i= 1� 
 
 
 � dF


In our simulations, we approximate S2 by letting G be a 100 point grid of
[−π�π], and considering the vectors

p(γ)≡ (
sin(γ)� cos(γ)

)
(G.10)

for γ ∈ G . Exploiting (9), we then approximate dH(Θ̂n(τn)�Θ0(P)) by
maxγ∈G |ν(p(γ)� Θ̂n(τn))− ν(p(γ)�Θ0(P))|.

17This problem is easily solvable by standard packages. We employ the open software Matlab
toolboxes YALMIP and MPT, available at http://users.isy.liu.se/johanl/yalmip/ and http://control.
ee.ethz.ch/~mpt/.

http://users.isy.liu.se/johanl/yalmip/
http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~mpt/
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REMARK G.2: Because, in this context, all constraints are linear in θ, the
support function has the dual representation

ν
(
p�Θ0(P̂n)

)= min
w∈R

dF+

〈
w�FS

(∫
mS(x�θ)dP̂n(x)

)〉
s.t. A′w= p�(G.11)

whereA and v 	→ FS(v) are as defined in Example 2.1, andmS(x�θ) is constant
in θ ∈Θ (see (F.3)). Moreover, the minimizers of (G.11) are the Lagrange mul-
tipliers λ(p� P̂n) of the primal problem that defines ν(p�Θ0(P̂n)). Therefore,
by (23) and direct calculation, solving (G.11) suffices for computing the boot-
strap process G∗

n given by

G∗
n(p)=−λ(p� P̂n)′∇FS

(
1
n

n∑
i=1

mS(Xi�θ)

)
(G.12)

× 1√
n

n∑
i=1

Wi

{
mS(Xi�θ)− 1

n

n∑
i=1

mS(Xi�θ)

}



In our simulations, we draw Wi from the Rademacher distribution, that is,
P(Wi = 1)= P(Wi =−1)= 1/2, and we compute the critical value ĉ1−α as the
1− α quantile across bootstrap replications of

sup
γ∈G

max
{
G∗

n

(
p(γ)

)
�0
}
�(G.13)

where p(γ) and G are as in (G.10). The support function for the confidence
region Θ̂

ĉ1−α/
√
n

n (as in Example 5.1) is then given by ν(·� Θ̂n) + ĉ1−α/
√
n, and

hence we check whether Θ0(P)⊆ Θ̂ĉ1−α/
√
n

n by verifying that ν(p(γ)�Θ0(P)) ≤
ν(p(γ)� Θ̂n)+ ĉ1−α/

√
n for all γ ∈ G ; see also Beresteanu and Molinari (2008).

REMARK G.3: In order to compute ĉB1−α(τn), we draw samples {X∗
i }ni=1 from

{Xi}ni=1 with replacement, let P̂∗n denote the empirical measure induced by
{X∗

i }ni=1, and let (σ̂∗(i)n )2 be the corresponding estimate of the asymptotic vari-
ance of constraint number i. We then obtain ĉB1−α(τn) by computing the 1− α
quantile across bootstrap replications of

sup
θ∈Θ̂n(τn)

max
1≤i≤dF

{√
n

(
1
σ̂∗(i)n

F(i)

(∫
m(x�θ)dP̂∗n(x)

)
(G.14)

− 1
σ̂ (i)
n

F(i)

(∫
m(x�θ)dP̂n(x)

))
+
×ω(i)

n (θ)

}
�

where ω(i)
n (θ) ≡ 1{|F(i)(

∫
m(x�θ)dP̂n(x))| ≤ τnσ̂

(i)
n /
√
n}. Since CS(τn) is a

convex polygon, we compute its support function in a manner analogous to
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(G.9), and check whether Θ0(P)⊆ CS(τn) by verifying that ν(p(γ)�Θ0(P))≤
ν(p(γ)�CS(τn)) for all γ ∈ G , where p(γ) and G are as in (G.10).

REMARK G.4: Following the construction of ĉB1−α(τn), to obtain ĉAS1−α(θ)
we draw samples {X∗

i }ni=1 from {Xi}ni=1 with replacement, let P̂∗n denote
the empirical measure induced by {X∗

i }ni=1, and let (σ̂∗(i)n )2 be the corre-
sponding estimate of the asymptotic variance of constraint i. For ω(i)

n (θ) ≡
1{|F(i)(

∫
m(x�θ)dP̂n(x))| ≤ τnσ̂(i)

n /
√
n} and

Q∗
n(θ)≡ max

1≤i≤dF

{(
1
σ̂∗(i)n

F(i)

(∫
m(x�θ)dP̂∗n(x)

)
(G.15)

− 1
σ̂ (i)
n

F(i)

(∫
m(x�θ)dP̂n(x)

))
+
×ω(i)

n (θ)

}
�

we then let ĉAS1−α(θ) be the 1 − α quantile of
√
nQ∗

n(θ) across 200 bootstrap
replications.
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