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The Model

Consider X ∼ P0 with X ∈ X ⊆ RdX , θ ∈ Θ ⊂ Rdθ and restriction:

F (

∫
m(x, θ)dP0(x)) ≤ 0

where m : X ×Θ→ Rdm and F : Rdm → RdF are known functions.

Under Identification
• Semiparametric efficiency bound may exist.
• Possible to construct efficient estimator.

Partial Identification
• What does semiparametric efficiency bound mean?
• Is there an efficient estimator?
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Basic Example

Suppose Y is unobserved, YL ≤ Y ≤ YU almost surely and θ0 = E[Y ].

Identified set: [E[YL], E[YU ]] Natural Estimator: [ȲL, ȲU ]

Efficiency
• Set-estimator is built from an efficient estimator of the boundary.
• Easy to characterize boundary as function of P0.

In General Model
• Think of efficient estimation of the boundary of the set.

... but how do we characterize boundary as a function of P0?
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Under Convexity

Each boundary point can be identified by its supporting hyperplane:

Supporting Hyperplane
• Each boundary point is contained in a tangent hyperplane to set.
• Intuition: Tangent hyperplanes trace out the boundary of the set.

Goal: Construct an efficient estimator for the “support function”.
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Example 1

Manski & Tamer (2002): Let Y ∈ R be unobservable and satisfy:

Y = Z ′θ0 + ε ,

where E[ε|Z] = 0 and Z ∈ Rdθ has discrete support Z ≡ {z1, . . . zK}.

If (YL, YU ) are observable and YL ≤ Y ≤ YU almost surely, then:

Θ0 = {θ ∈ Rdθ : E[YL|Z]− Z ′θ ≤ 0 and Z ′θ − E[YU |Z] ≤ 0}

Comments
• Constraints are linear (convex) in θ, implies Θ0 is convex.
• Challenging to think of ∂Θ0 as function of distribution of (YL, YU , Z).

Andres Santos UCSD



Example 1

Θ0 = {θ ∈ Rdθ : E[YL|Z]− Z ′θ ≤ 0 and Z ′θ − E[YU |Z] ≤ 0}

Role of mL: Let x ≡ (yL, yU , z), use mL(x) to pick moments we need.∫
mL(x)dP0(x) =

 (E[YL1{Z = z1}], . . . , E[YL1{Z = zK}])′
(E[YU1{Z = z1}], . . . , E[YU1{Z = zK}])′

(P (Z = z1), . . . , P (Z = zK))′


Role of FL: Use FL function to construct expressions we require:

FL(

∫
mL(x)dP0(x)) =

(
−(E[YL|Z = z1], . . . , E[YL|Z = zK ])′

(E[YU |Z = z1], . . . , E[YU |Z = zK ])′

)

Combining: Set A ≡ (−z1, . . . ,−zK , z1, . . . zK)′, m(x, θ) = (θ′A′,mL(x)′)′,

F (

∫
m(x, θ)dP0(x)) = Aθ − FL(

∫
mL(x)dP0(x))
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Example 2

Pakes (2010): Agent chooses Z ∈ RdZ from Z ≡ {z1, . . . , zK} to maximize:

E[π(Y, Z, θ0)|F ]

where Y is observable variable and F is the agent’s information set.

A common specification is π(Y, Z, θ0) = ψ(Y,Z)− Z ′θ0, which implies:

Θ0 = {θ ∈ Rdθ : E[((ψ(Y, zj)− ψ(Y, zi))− (zj − zi)′θ)1{Z∗ = zi}] ≤ 0}

where Z∗ is the agent’s observed optimal decision.

Comments
• Identified set is convex and determined by linear inequalities in θ.
• Requires assumptions on agent’s beliefs.
• ψ assumed known, though often separately estimated.
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Example 3

Luttmer (1996): Under power utility and market frictions, modified Euler:

E[
1

1 + ρ
Y −γZ − P ] ≤ 0

with Y future/present consumption, Z ∈ RdZ asset payoff and P prices.

Comments
• Constraints strictly convex if Z ≥ 0 and Z > 0 with positive probability.
• Resulting identified set for (ρ, γ) is convex.
• Big Caveat: Our efficiency bound is for i.i.d. data.
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General Outline

Preliminaries
• Background: support functions and efficiency.
• Linear constraints and regularity.

Efficiency
• Characterizing sources of irregularity.
• Semiparametric efficiency bound for support function.
• Show “plug-in” estimator is in fact efficient.

Confidence Regions
• Construct bootstrap procedure.
• Establish validity of confidence regions.
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Support Function

Let Sdθ ≡ {p ∈ Rdθ : ‖p‖ = 1} and K be a convex compact set.

The support function of K is then pointwise defined (on Sdθ ) by:

ν(p,K) ≡ sup
k∈K
〈p, k〉

K

ν(p,K)

Sdθ
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Support Function

Let C(Sdθ ) be the space of bounded continuous functions on Sdθ .

⇒ Every convex compact K is associated with a unique function in C(Sdθ).

Theorem (Hörmander) For any two convex compact, K1 and K2:

dH(K1,K2) = sup
p∈Sdθ

|ν(p,K1)− ν(p,K2)|

where dH(K1,K2) is the Hausdorff distance between the sets K1 and K2.

Norm Equality
• Relationship allows for inference; Beresteanu & Molinari (2008).
• Equipping C(Sdθ ) with ‖ · ‖∞ implies embedding is isometric.
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Identified Set

Θ0(Q) ≡ {θ ∈ Θ : F (

∫
m(x, θ)dQ(x)) ≤ 0}

In turn, we can map Θ0(Q) into its support function p 7→ ν(p,Θ0(Q)) by:

ν(p,Θ0(Q)) = sup
θ∈Θ
{〈p, θ〉 s.t. F (

∫
m(x, θ)dQ(x)) ≤ 0}

Support Function
• Relatively simple dependence on Q (unlike ∂Θ0(Q)).
• ⇒With parametric model for P0, could estimate by MLE.
• But note ν(·,Θ0(Q)) ∈ C(Sdθ ) is an infinite dimensional parameter.
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Efficiency in C(Sdθ)

Finite Dimensional Setting
• Model P, parameter ρ : P→ R, want to estimate ρ(P0) efficiently.
• Compute tangent space Ṗ, derivative ρ̇, and project ρ̇ onto Ṗ.

Problem: For us, ρ(P0) = ν(·,Θ0(P0)) which is in C(Sdθ ).
Key: Tangent space remains the same, but differentiability changes...

Definition: For a model P, parameter ρ : P→ C(Sdθ ) is pathwise weak
differentiable at P0 ∈ P if there is continuous linear operator ρ̇ : Ṗ→ C(Sdθ ):

lim
η→0
|
∫
Sdθ
{ρ(Pη)(p)− ρ(P0)(p)

η
− ρ̇(Ṗ0)(p)}dB(p)| = 0

for any finite Borel measure B and submodel η 7→ Pη passing through P0.
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Convolution Theorem

Theorem (Háyek, LeCam) Under regularity conditions, if ρ : P→ C(Sdθ ) is
pathwise weak differentiable at P0 and Tn

L→ G is a regular estimator, then:

G L
= G0 + ∆0

for a unique Gaussian process G0 and tight Borel r.v. ∆0 with ∆0 ⊥ G0.

Comments
• Since parameter is in C(Sdθ ), estimator {Tn} converges in C(Sdθ ).
• Gaussian process G0 does not depend on {Tn}, “noise term” ∆0 does.

Intuition: Every regular estimator converges to G0 plus noise ∆0 ...

⇒ An estimator is efficient if it converges in distribution to G0
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Semiparametric Efficiency

Characterize Law of G0

• Finite dimensions: G0 is multivariate normal; report covariance matrix.
• In infinite dimensions ... find covariance kernel of G0.

Definition: The inverse information covariance functional for ρ(P0) is:

I−1(p1, p2) ≡ Cov{G0(p1),G0(p2)}

Objectives
• Compute tangent space for P (must state assumptions on P0).
• Establish ρ(P0) = ν(·,Θ0(P0)) is weakly pathwise differentiable.

⇒ First need to understand possible sources of irregularity...
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Differentiability Problems

• Suppose X = (X(1), X(2)), and X ∼ P0 with E[X(1)] > 0 and E[X(2)] > 0

F (

∫
m(x, θ)dP0(x)) =


∫

(x(1)θ1 + x(2)θ2 −K)dP0(x)
−θ2

−θ1

• Consider a submodel η 7→ Pη passing through P0 and satisfying:∫
x(1)dPη(x) = E[X(1)](1 + η)

∫
x(2)dPη(x) = E[X(2)]

Comments
• Identified set is a triangle in positive orthant.
• What happens if we point p ∈ Sdθ at flat face of Θ0(P0)?
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Differentiability Problems
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Differentiability Problems

Formally: If p̄ = s̄/‖s‖ for s̄ = (E[X(1)], E[X(2)]), then along η 7→ Pη,

ν(p̄,Θ0(Pη)) =

{
K
‖s̄‖ if η ≥ 0

K
‖s̄‖

E[X(1)]
(E[X(1)]+η)

if η < 0

Implications
• When dθ > 1, slope of linear constraints should not depend on P0.
• This is not a problem for strictly convex constraints.
• Not a problem in discussed examples.

Next Goal
• Restrict P0, F , m so η 7→ ν(·,Θ0(Pη)) is differentiable.
• Derive semiparametric efficiency bound and efficient estimator.
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Model Details

Problem: Linear constraints may cause support function to be irregular.

Approach: Group constraints into linear and strictly convex ...

For m(x, θ): Let mS : X ×Θ→ RdmS , mL : X → RdmL , A a dFL × dθ matrix.

m(x, θ) ≡ (mS(x, θ)′,mL(x)′, θ′A′)′

For F (v): Let FS : RdmS → RdFS and FL : RdmL → RdFL , let:

F (

∫
m(x, θ)dP0(x)) =

(
FS(

∫
mS(x, θ)dP0(x))

Aθ − FL(
∫
mL(x)dP0(x))

)
where θ 7→ F

(i)
S (
∫
mS(x, θ)dP0(x)) is strictly convex for 1 ≤ i ≤ dFS .
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Key Assumptions

Assumptions (A)
(i) Θ0(P0) is contained in the interior of Θ (relative to Rdθ ).
(ii) There exists a θ0 ∈ Θ such that F (E[m(X, θ0)]) < 0.
(iii) θ 7→ m(x, θ) is differentiable (but not necessarily in x).
(iv) At each θ ∈ ∂Θ0(P0) number of active constraints ≤ dθ.

Discussion
• A(i) largely notation. May impose ‖θ‖2 ≤ B or θ(i) ≥ C through F,m.
• A(ii) With moment equalities may lose convexity.
• A(iii) Allows discontinuous functions of x (e.g. 1{Xi = x}).
• A(iv) analogue to intersection bounds (Hirano & Porter (2009)).

Key: A(ii)-A(iv) implied by linear independence requirement.
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Lagrangian Representation

ν(p,Θ0(P0)) = sup
θ∈Θ
{〈p, θ〉 s.t. F (

∫
m(x, θ)dP0(x)) ≤ 0}

= sup
θ∈Θ
{〈p, θ〉+ λ(p, P0)′F (

∫
m(x, θ)dP0(x))}

Intuition
• Each boundary point of Θ0(P0) is a maximizer for some p ∈ Sdθ .
• λ(p, P0) reflects importance of constraints in keeping you inside Θ0(P0).

Reveals Dependence on Pη

⇒ Move along submodel η 7→ Pη ⇒ Changes moment inequalities

⇒ Effect on set depends on constraint importance in shaping ∂Θ0(Pη).
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Efficiency Bound

Notation:
• H(θ) ≡ ∇F (E[m(X, θ)]).
• Ω(θ1, θ2) ≡ E[(m(X, θ1)− E[m(X, θ1)])(m(X, θ2)− E[m(X, θ2)])′].
• θ∗ : Sdθ → Θ such that θ∗(p) ∈ arg maxθ∈Θ0(P0)〈p, θ〉 for all p ∈ Sdθ .

Theorem: Under Assumption (A) and regularity conditions, we obtain:

I−1(p1, p2) = λ(p1, P0)′H(θ∗(p1))Ω(θ∗(p1), θ∗(p2))H(θ∗(p2))′λ(p2, P0)

In particular, efficiency bound for estimating ν(p̄,Θ0(P0)) at fixed p̄ is:

Var{λ(p̄, P0)′∇F (E[m(X, θ∗(p̄))])m(X, θ∗(p̄))}

i.e. “importance-weighted” linear combination of binding constraints.
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Proof Outline

Step 1: Establish restrictions on P0 do not affect tangent space Ṗ.

Step 2: Show that in a neighborhood of P0 (in the τ -topology) for all p ∈ Sdθ :

ν(p,Θ0(Q)) = sup
θ∈Θ
{〈p, θ〉+ λ(p,Q)′F (

∫
m(x, θ)dQ(x))}

Step 3: For s0(X) the score of η 7→ Pη, show pointwise in p ∈ Sdθ that:

∂

∂η
ν(p,Θ0(Pη))

∣∣∣
η=0

= λ(p, P0)′∇F (E[m(X, θ∗(p))])E[m(X, θ∗(p))s0(X)]

Step 4: Extend result to obtain weak pathwise derivative ρ̇ : Ṗ→ C(Sdθ ):

ρ̇(s0)(p) = λ(p, P0)′∇F (E[m(X, θ∗(p))])E[m(X, θ∗(p))s0(X)]
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Proof Outline (Regularity)

In General: For Λ(p, P0) (set of multipliers), Ξ(p, P0) (set of maximizers):

∂

∂η+
ν(p,Θ0(Pη)) = max

θ∗∈Ξ(p,P0)
min

λ∈Λ(p,P0)
λ′∇F (E[m(X, θ∗)])E[m(X, θ∗)s0(X)]

∂

∂η−
ν(p,Θ0(Pη)) = min

θ∗∈Ξ(p,P0)
max

λ∈Λ(p,P0)
λ′∇F (E[m(X, θ∗)])E[m(X, θ∗)s0(X)]

Intuition
• Multiple Lagrange multipliers implies some constraint is redundant.

⇒ Constraints are smooth in η 7→ Pη but relevant ones switch at P0

• Multiple maximizers implies you are on a “flat face” of identified set.
⇒ In constraint Aθ − FL(

∫
mL(x)dPη), θ∗ does not enter derivative
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Efficient Estimator

Intuition
• In simple example [E[YL], E[YU ]] we use plug-in estimator [ȲL, ȲU ].
• Tangent set Ṗ not restricted ... model is not overidentified.

⇒ Expect “plug-in” estimator to be semiparametrically efficient

Define: P̂n to be the empirical distribution (P̂n(x) = 1
n

∑
i 1{Xi = x}) and:

ν(p,Θ0(P̂n)) = sup
θ∈Θ
{〈p, θ〉 s.t. F (

1

n

n∑
i=1

m(Xi, θ)) ≤ 0}

= sup
θ∈Θ
{〈p, θ〉+ λ(p, P̂n)′F (

1

n

n∑
i=1

m(Xi, θ))}
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Efficient Estimator

Assumption (B): {Xi}ni=1 is an i.i.d. sample with Xi ∼ P0.

Theorem: Under Assumptions (A), (B) and regularity conditions:

• Part A: {ν(·,Θ0(P̂n))} is a regular estimator for ν(·,Θ0(P0)).

• Part B: Uniformly in p ∈ Sdθ we obtain the expansion:
√
n(ν(p,Θ0(P̂n))− ν(p,Θ0(P0)))

= λ(p, P0)′H(θ∗(p))
1√
n

n∑
i=1

{m(Xi, θ
∗(p))− E[m(X, θ∗(p))]}+ op(1)

• Part C: For G0 a mean zero tight Gaussian process on C(Sdθ ):

√
n(ν(·,Θ0(P̂n))− ν(·,Θ0(P0)))

L→ G0

where G0 satisfies Cov{G0(p1),G0(p2)} = I−1(p1, p2).
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Efficient Estimator

√
n(ν(p,Θ0(P̂n))− ν(p,Θ0(P0)))

= λ(p, P0)′H(θ∗(p))
1√
n

n∑
i=1

{m(Xi, θ
∗(p))− E[m(X, θ∗(p))]}+ op(1)

Lagrange Multipliers
• λ(·, Q) uniquely determined for all Q in a neighborhood of P0.
• λ(p,Q) is jointly continuous in (p,Q).
• Stochastic equicontinuity of the process is not obvious ...

... but Lagrange multipliers and complementary slackness conditions
“smooth out” the process.
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Back in Θ ...

Note: {ν(·,Θ0(P̂n))} is identified with convex set Θ̂n = co{Θ0(P̂n)}.

Theorem Let Assumptions (A), (B) and regularity conditions hold.
(i) L : R+ → R+ is a nondecreasing continuous function
(ii) L(0) = 0 and L(a) ≤Maκ for some M,κ and all a ∈ R+

If {Kn} is a regular convex compact valued set estimator for Θ0(P0), then:

lim inf
n→∞

E[L(
√
ndH(Kn,Θ0(P0)))]

≥ lim sup
n→∞

E[L(
√
ndH(Θ̂n,Θ0(P0)))] = E[L(‖G0‖∞)]

Comments
• Lower bound holds without continuity of L, but attainment may not.
• Can be relaxed to L(a) ≤M exp(aκ) for limited values of κ.
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Bootstrap

Problem: How do we obtain consistent bootstrap for the distribution of G0?

Approach: Perturb estimator of influence function ...

Definition: For random weights {Wi}ni=1 define G∗n process pointwise by:

λ(p, P̂n)′∇F (
1

n

n∑
i=1

m(Xi, θ̂(p)))
1√
n

n∑
i=1

Wi{m(Xi, θ̂(p))−
1

n

n∑
i=1

m(Xi, θ̂(p))}

where θ̂ : Sdθ → Θ satisfies θ̂(p) ∈ arg maxθ∈Θ0(P̂n)〈p, θ〉 for all p ∈ Sdθ .

Why should this work?
• If Wi ⊥ Xi, expect to converge to efficient influence function.
• Law of G∗n conditional on {Xi}ni=1 (but not {Wi}ni=1) consistent for G0.
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Bootstrap

Assumption (C): W ⊥ X with E[W ] = 0, E[W 2] = 1 and E[|W |2+δ] <∞.

Theorem If Assumptions (A), (B), (C) and regularity conditions hold, then:

G∗n
L∗

→ G0

(in prob.), where L∗ denotes Law conditional on {Xi}ni=1 (but not {Wi}ni=1).

Comments:
• For example, W ∼ N(0, 1) or W Rademacher.
• No need to recompute support function or estimate covariance kernel.
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Critical Values

Let Ψ0 ⊆ Sdθ and Υ : R→ R. Critical values often are 1− α quantile of:

sup
p∈Ψ0

Υ(G0(p))

Example 1: Let Ψ0 = Sdθ and Υ(a) = |a|. We need quantiles of:

sup
p∈Ψ0

Υ(G0(p)) = sup
p∈Sdθ

|G0(p)|

Example 2: Let Ψ0 = Sdθ and Υ(a) = | − a|+. We need quantiles of:

sup
p∈Ψ0

Υ(G0(p)) = sup
p∈Sdθ

| −G0(p)|+
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Critical Values

Algorithm
Step 1: Compute ν(·,Θ0(P̂n)) to obtain p 7→ λ(p, P̂n) and p 7→ θ̂(p).

Step 2: Draw {Wi}ni=1 to construct G∗n.

Step 3: Given Hausdorff consistent estimate Ψ̂n for Ψ0 define:

ĉ1−α ≡ inf{c : P ( sup
p∈Ψ̂n

Υ(G∗n(p)) ≤ c |{Xi}ni=1) ≥ 1− α}

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

ĉ1−α
p→ c1−α
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One Sided Region

c
(1)
1−α ≡ inf{c : P ( sup

p∈Sdθ
| −G0(p)|+ ≤ c) ≥ 1− α}

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

lim
n→∞

P (Θ0(P0) ⊆ Θ̂
ĉ
(1)
1−α/

√
n

n ) = 1− α

Comments:

• Find Θ̂
ĉ
(1)
1−α/

√
n

n from its support function {ν(·,Θ0(P̂n)) + ĉ
(1)
1−α/

√
n}.

• Test inversion of H0 : K ⊆ Θ0(P0) using Tn(K) ≡
√
n
−→
d H(K, Θ̂n).

• Duality first exploited in Beresteanu & Molinari (2008).
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Two Sided Region

c
(2)
1−α ≡ inf{c : P ( sup

p∈Sdθ
|G0(p)| ≤ c) ≥ 1− α}

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

lim
n→∞

P (Θ̂
−ĉ(2)1−α/

√
n

n ⊆ Θ0(P0) ⊆ Θ̂
ĉ
(2)
1−α/

√
n

n ) = 1− α

Comments:
• Provides uniform confidence interval for ∂Θ0(P0).
• Test inversion of H0 : K = Θ0(P0) using Tn(K) ≡

√
ndH(K, Θ̂n).
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Region for Parameter

inf
θ∈Θ0(P0)

lim inf
n→∞

P (θ ∈ Pn) ≥ 1− α

Standard Approach: Build Pn through test inversion of hypothesis:

H0 : θ ∈ Θ0(P0) H1 : θ /∈ Θ0(P0)

Test Statistic: Use the efficient estimator to test this null hypothesis by:

Hn(θ) ≡
√
n
−→
d H({θ}, Θ̂n)
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Region for Parameter

Definition: Let M(θ) be set of maximizers of p 7→ {ν(p, {θ})− ν(p,Θ0(P0))}.

c1−α(θ) ≡ inf{c : P ( sup
p∈M(θ)

| −G0(p)|+ ≤ c) ≥ 1− α}

Note: Bootstrap with Hausdorff consistent estimate for M(θ) (Kaido 2010).

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

inf
θ∈Θ0(P0)

lim inf
n→∞

P (θ ∈ P̂n) ≥ 1− α

where the confidence region is given by P̂n ≡ {θ ∈ Θ : Hn(θ) ≤ ĉ1−α(θ)}.
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Local Power

Power Functions
• Let πn(Pη; θ0) be probability test rejects H0 : θ0 ∈ Θ0(Pη) when X ∼ Pη.
• Denote π∗n(Pη; θ0) for test that rejects when Hn(θ0) > ĉ1−α(θ0).

Goal: Compare power functions along local parametric submodels.

Definition: For θ0 ∈ ∂Θ0(P0) let H(θ0) be set of submodels with:

1 If η ≤ 0 then θ0 ∈ Θ0(Pη).
2 If η > 0 then θ0 /∈ Θ0(Pη).
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Local Path

Θ0(P0)

θ0•

Identified Set and point θ0
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = −0.4
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = −0.3
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = −0.2
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = −0.1
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = 0
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = 0.1
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = 0.2
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = 0.3
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Local Path

Θ0(Pη)

θ0•

Identified Set at η = 0.4
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Local Power

Theorem: Let Assumptions (A), (B), (C) and regularity conditions hold and

lim sup
n→∞

πn(Pη/
√
n; θ0) ≤ α

for every Pη ∈ H(θ0) and η < 0. If M(θ0) = {p0}, then for any Pη ∈ H(θ0)

lim sup
n→∞

πn(Pη/
√
n; θ0) ≤ lim

n→∞
π∗n(Pη/

√
n; θ0) = 1−Φ

(
z1−α − η

E[l̃(X)s0(X)]√
E[G2

0(p0)]

)
where s0(x) is the score of η 7→ Pη and l̃(x) = −λ(p0, P0)′H(θ0)m(x, θ0).

Comments:
• Applies to θ0 not at kink of boundaries.
• Pη ∈ H(θ0) if and only if E[l̃(X)s0(X)] > 0.
• Weak “size control” requirement ... locality of semiparametric efficiency.
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Subvectors

Suppose Θ = Θ1 ×Θ2 with Θ1 ⊂ Rdθ1 , Θ2 ⊂ Rdθ2 and θ = (θ1, θ2).

Θ0,M (P0) ≡ {θ1 ∈ Θ1 : (θ1, θ2) ∈ Θ0(P0) for some θ2 ∈ Θ2}

Key: For p1 ∈ Sdθ1 and (p1, p2) = p ∈ Sdθ1+dθ2 , it follows that:

ν(p1,Θ0,M (P0)) = sup
θ1∈Θ0,M (P0)

〈p1, θ1〉

= sup
(θ1,θ2)∈Θ0(P0)

{〈p1, θ1〉+ 〈0, θ2〉} = ν((p1, 0),Θ0(P0))

⇒ The efficient estimator for ν(·,Θ0,M (P0)) is just ν((·, 0),Θ0(P̂n)).

⇒ All our results apply to the identified set Θ0,M as well.

Andres Santos UCSD



1 Preliminaries

2 Efficiency

3 Confidence Regions

4 Simulation Evidence

Andres Santos UCSD



Regression with Interval Outcome

• Let εi ∼ N(0, 1) and Yi (unobservable) be generated according to:

Yi = Z ′iθ0 + εi

where Zi = (1, Zi,2), Zi,2 uniform on K equally spaced points in [−5, 5].

• For Vi ∼ U [0, 0.2] independent of (Yi, Zi) create YLi ≤ Y ≤ YU,i by:

YL,i = Yi − C + ViZ
2
i

YU,i = Yi + C + ViZ
2
i

Design Parameters:
• C controls the diameter of the identified set (identification at C = 0).
• K controls severity of “intersection bounds” problem.
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Figure: Identified Set as a Function of C and K
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Expected Hausdorff Distance

Table: Average dH(Θ̂n,Θ0(P0))

C
K 0.1 0.5 1

n = 200 5 0.153 0.150 0.151
10 0.275 0.250 0.250
15 0.514 0.361 0.359

n = 500 5 0.094 0.094 0.094
10 0.177 0.155 0.155
15 0.360 0.218 0.219

n = 1, 000 5 0.066 0.066 0.066
10 0.130 0.109 0.109
15 0.201 0.154 0.154
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Expected Inner Hausdorff Distance

Table: Average ~dH(Θ̂n,Θ0(P0))

C
K 0.1 0.5 1

n = 200 5 0.137 0.144 0.144
10 0.106 0.105 0.108
15 0.308 0.045 0.047

n = 500 5 0.088 0.090 0.090
10 0.085 0.093 0.094
15 0.043 0.051 0.054

n = 1, 000 5 0.063 0.064 0.064
10 0.075 0.081 0.081
15 0.061 0.055 0.053
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Expected Outer Hausdorff Distance

Table: Average ~dH(Θ0(P0), Θ̂n)

C
K 0.1 0.5 1

n = 200 5 0.150 0.145 0.145
10 0.273 0.249 0.250
15 0.296 0.359 0.359

n = 500 5 0.092 0.090 0.090
10 0.185 0.154 0.154
15 0.360 0.218 0.219

n = 1, 000 5 0.064 0.064 0.064
10 0.130 0.108 0.108
15 0.185 0.154 0.154
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One Sided Confidence Interval

Table: Nominal Level 0.95

C
K 0.1 0.5 1

n = 200 5 0.946 0.944 0.942
10 0.988 0.915 0.900
15 0.995 0.896 0.824

n = 500 5 0.953 0.941 0.941
10 0.958 0.912 0.910
15 0.896 0.886 0.877

n = 1, 000 5 0.962 0.950 0.950
10 0.926 0.921 0.921
15 0.978 0.893 0.891

Andres Santos UCSD



Two Sided Confidence Interval

Table: Nominal Level 0.95

C
K 0.1 0.5 1

n = 200 5 0.958 0.945 0.943
10 0.996 0.953 0.936
15 0.909 0.948 0.886

n = 500 5 0.964 0.942 0.942
10 0.983 0.953 0.951
15 0.949 0.938 0.931

n = 1, 000 5 0.971 0.949 0.949
10 0.963 0.952 0.952
15 0.987 0.892 0.939
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Conclusion

Semiparametric Efficiency
• Proposed a notion of semiparametric efficiency.
• Characterized sources of irregularity in higher dimensions.
• Derived the semiparametric efficiency bound.

Efficient Estimation
• Showed “plug-in” estimator is efficient.
• Obtained consistent bootstrap procedure.
• Employed efficient estimator to construct confidence regions.

Challenges
• Efficiency is local concept, often more uniformity is desired.
• Sensitivity to “intersection bound” problems in higher dimensions?
• Different use of efficient estimator (Imbens & Manski (2004)).
• Other efficient estimators may “behave” better ... Sieve MLE? EL?
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