Asymptotically Efficient Estimation of Models Defined by Convex Moment Inequalities

Hiroaki Kaido Boston University Andres Santos UC San Diego

The Model

Consider $X \sim P_0$ with $X \in \mathcal{X} \subseteq \mathbf{R}^{d_X}$, $\theta \in \Theta \subset \mathbf{R}^{d_{\theta}}$ and restriction:

$$F(\int m(x,\theta)dP_0(x)) \le 0$$

where $m: \mathcal{X} \times \Theta \to \mathbf{R}^{d_m}$ and $F: \mathbf{R}^{d_m} \to \mathbf{R}^{d_F}$ are known functions.

Under Identification

- Semiparametric efficiency bound may exist.
- Possible to construct efficient estimator.

Partial Identification

- What does semiparametric efficiency bound mean?
- Is there an efficient estimator?

 $\label{eq:suppose Y is unobserved, $Y_L \leq Y \leq Y_U$ almost surely and $\theta_0 = E[Y]$.}$ Identified set: $[E[Y_L], E[Y_U]]$ Natural Estimator: $[\bar{Y}_L, \bar{Y}_U]$

Efficiency

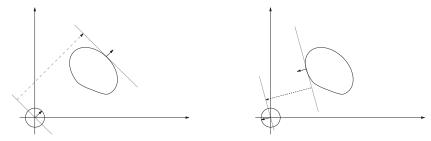
- Set-estimator is built from an efficient estimator of the boundary.
- Easy to characterize boundary as function of *P*₀.

In General Model

• Think of efficient estimation of the boundary of the set.

... but how do we characterize boundary as a function of P_0 ?

Each boundary point can be identified by its supporting hyperplane:



Supporting Hyperplane

- Each boundary point is contained in a tangent hyperplane to set.
- Intuition: Tangent hyperplanes trace out the boundary of the set.

Goal: Construct an efficient estimator for the "support function".

Manski & Tamer (2002): Let $Y \in \mathbf{R}$ be unobservable and satisfy:

 $Y = Z'\theta_0 + \epsilon \; ,$

where $E[\epsilon|Z] = 0$ and $Z \in \mathbf{R}^{d_{\theta}}$ has discrete support $\mathcal{Z} \equiv \{z_1, \dots, z_K\}$.

If (Y_L, Y_U) are observable and $Y_L \leq Y \leq Y_U$ almost surely, then:

 $\Theta_0 = \{\theta \in \mathbf{R}^{d_\theta} : E[Y_L|Z] - Z'\theta \le 0 \text{ and } Z'\theta - E[Y_U|Z] \le 0\}$

Comments

- Constraints are linear (convex) in θ , implies Θ_0 is convex.
- Challenging to think of $\partial \Theta_0$ as function of distribution of (Y_L, Y_U, Z) .

 $\Theta_0 = \{\theta \in \mathbf{R}^{d_\theta} : E[Y_L|Z] - Z'\theta \le 0 \text{ and } Z'\theta - E[Y_U|Z] \le 0\}$

Role of m_L : Let $x \equiv (y_L, y_U, z)$, use $m_L(x)$ to pick moments we need.

$$\int m_L(x)dP_0(x) = \begin{pmatrix} (E[Y_L1\{Z=z_1\}], \dots, E[Y_L1\{Z=z_K\}])' \\ (E[Y_U1\{Z=z_1\}], \dots, E[Y_U1\{Z=z_K\}])' \\ (P(Z=z_1), \dots, P(Z=z_K))' \end{pmatrix}$$

Role of F_L : Use F_L function to construct expressions we require:

$$F_L(\int m_L(x)dP_0(x)) = \begin{pmatrix} -(E[Y_L|Z=z_1],\dots,E[Y_L|Z=z_K])' \\ (E[Y_U|Z=z_1],\dots,E[Y_U|Z=z_K])' \end{pmatrix}$$

Combining: Set $A \equiv (-z_1, \dots, -z_K, z_1, \dots z_K)'$, $m(x, \theta) = (\theta' A', m_L(x)')'$, $F(\int m(x, \theta) dP_0(x)) = A\theta - F_L(\int m_L(x) dP_0(x))$

Example 2

Pakes (2010): Agent chooses $Z \in \mathbf{R}^{d_Z}$ from $\mathcal{Z} \equiv \{z_1, \ldots, z_K\}$ to maximize:

 $E[\pi(Y, Z, \theta_0)|\mathcal{F}]$

where Y is observable variable and \mathcal{F} is the agent's information set.

A common specification is $\pi(Y, Z, \theta_0) = \psi(Y, Z) - Z'\theta_0$, which implies:

 $\Theta_0 = \{\theta \in \mathbf{R}^{d_\theta} : E[((\psi(Y, z_j) - \psi(Y, z_i)) - (z_j - z_i)'\theta) | \{Z^* = z_i\}] \le 0\}$

where Z^* is the agent's observed optimal decision.

Comments

- Identified set is convex and determined by linear inequalities in θ .
- Requires assumptions on agent's beliefs.
- ψ assumed known, though often separately estimated.

Example 3

Luttmer (1996): Under power utility and market frictions, modified Euler:

$$E[\frac{1}{1+\rho}Y^{-\gamma}Z - P] \le 0$$

with Y future/present consumption, $Z \in \mathbf{R}^{d_Z}$ asset payoff and P prices.

Comments

- Constraints strictly convex if $Z \ge 0$ and Z > 0 with positive probability.
- Resulting identified set for (ρ, γ) is convex.
- Big Caveat: Our efficiency bound is for i.i.d. data.

General Outline

Preliminaries

- · Background: support functions and efficiency.
- Linear constraints and regularity.

Efficiency

- Characterizing sources of irregularity.
- Semiparametric efficiency bound for support function.
- Show "plug-in" estimator is in fact efficient.

Confidence Regions

- Construct bootstrap procedure.
- Establish validity of confidence regions.

Partial Identification

Manski & Tamer (2002), Manski (2003), Imbens & Manski (2004), Chernozhukov, Hong & Tamer (2007), Romano & Shaikh (2008, 2010), Stoye (2009), Bontemps, Magnac & Maurin (2007), Beresteanu & Molinari (2008), Beresteanu, Molinari & Molchanov (2009), Kaido (2010).

Moment Inequalities

Andrews & Jia (2008), Menzel (2009), Rosen (2009), Andrews & Soares (2010), Bugni (2010), Canay (2010), Pakes (2010).

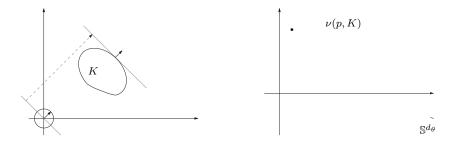
Efficiency and Regularity

Chamberlain (1987, 1992), Brown & Newey (1998), Newey (2004), Ai & Chen (2009), Chen & Pouzo (2009), Hirano & Porter (2009), Chernozhukov, Lee & Rosen (2009), Song (2010).

3 Confidence Regions

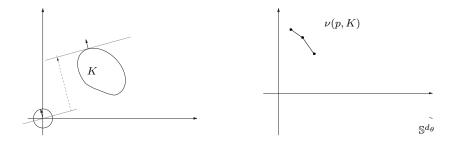
Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



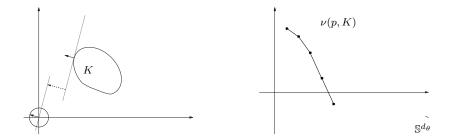
Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



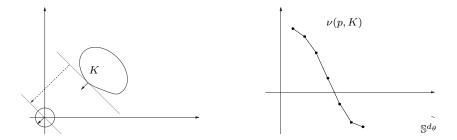
Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



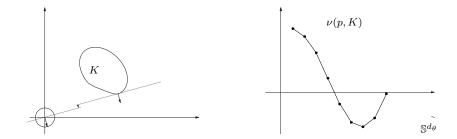
Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



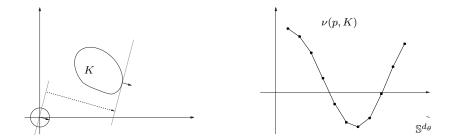
Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



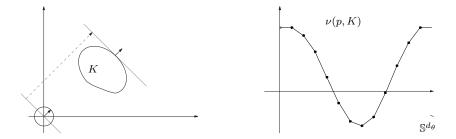
Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



Let $\mathbb{S}^{d_{\theta}} \equiv \{p \in \mathbf{R}^{d_{\theta}} : \|p\| = 1\}$ and K be a convex compact set.

The support function of *K* is then pointwise defined (on $\mathbb{S}^{d_{\theta}}$) by:



Let $\mathcal{C}(\mathbb{S}^{d_{\theta}})$ be the space of bounded continuous functions on $\mathbb{S}^{d_{\theta}}$.

 \Rightarrow Every convex compact *K* is associated with a unique function in $\mathcal{C}(\mathbb{S}^{d\theta})$.

Theorem (Hörmander) For any two convex compact, K_1 and K_2 :

$$d_H(K_1, K_2) = \sup_{p \in \mathbb{S}^{d_\theta}} |\nu(p, K_1) - \nu(p, K_2)|$$

where $d_H(K_1, K_2)$ is the Hausdorff distance between the sets K_1 and K_2 .

Norm Equality

- Relationship allows for inference; Beresteanu & Molinari (2008).
- Equipping $\mathcal{C}(\mathbb{S}^{d_{\theta}})$ with $\|\cdot\|_{\infty}$ implies embedding is isometric.

$$\Theta_0(Q) \equiv \{\theta \in \Theta : F(\int m(x,\theta)dQ(x)) \le 0\}$$

In turn, we can map $\Theta_0(Q)$ into its support function $p \mapsto \nu(p, \Theta_0(Q))$ by:

$$\nu(p,\Theta_0(Q)) = \sup_{\theta \in \Theta} \ \{ \langle p,\theta \rangle \text{ s.t. } F(\int m(x,\theta) dQ(x)) \leq 0 \}$$

Support Function

- Relatively simple dependence on Q (unlike $\partial \Theta_0(Q)$).
- \Rightarrow With parametric model for P_0 , could estimate by MLE.
- But note $\nu(\cdot, \Theta_0(Q)) \in \mathcal{C}(\mathbb{S}^{d_\theta})$ is an infinite dimensional parameter.

Finite Dimensional Setting

- Model P, parameter $\rho : \mathbf{P} \to \mathbf{R}$, want to estimate $\rho(P_0)$ efficiently.
- Compute tangent space $\dot{\mathbf{P}}$, derivative $\dot{\rho}$, and project $\dot{\rho}$ onto $\dot{\mathbf{P}}$.

Problem: For us, $\rho(P_0) = \nu(\cdot, \Theta_0(P_0))$ which is in $\mathcal{C}(\mathbb{S}^{d_\theta})$.

Key: Tangent space remains the same, but differentiability changes...

Definition: For a model **P**, parameter $\rho : \mathbf{P} \to \mathcal{C}(\mathbb{S}^{d_{\theta}})$ is pathwise weak differentiable at $P_0 \in \mathbf{P}$ if there is continuous linear operator $\dot{\rho} : \dot{\mathbf{P}} \to \mathcal{C}(\mathbb{S}^{d_{\theta}})$:

$$\lim_{\eta \to 0} |\int_{\mathbb{S}^{d_{\theta}}} \{ \frac{\rho(P_{\eta})(p) - \rho(P_{0})(p)}{\eta} - \dot{\rho}(\dot{P}_{0})(p) \} dB(p) | = 0$$

for any finite Borel measure B and submodel $\eta \mapsto P_{\eta}$ passing through P_0 .

Convolution Theorem

Theorem (Háyek, LeCam) Under regularity conditions, if $\rho : \mathbf{P} \to \mathcal{C}(\mathbb{S}^{d_{\theta}})$ is pathwise weak differentiable at P_0 and $T_n \xrightarrow{L} \mathbb{G}$ is a regular estimator, then:

 $\mathbb{G} \stackrel{L}{=} \mathbb{G}_0 + \Delta_0$

for a unique Gaussian process \mathbb{G}_0 and tight Borel r.v. Δ_0 with $\Delta_0 \perp \mathbb{G}_0$.

Comments

- Since parameter is in $\mathcal{C}(\mathbb{S}^{d_{\theta}})$, estimator $\{T_n\}$ converges in $\mathcal{C}(\mathbb{S}^{d_{\theta}})$.
- Gaussian process \mathbb{G}_0 does not depend on $\{T_n\}$, "noise term" Δ_0 does.

Intuition: Every regular estimator converges to \mathbb{G}_0 plus noise $\Delta_0 \dots$

 \Rightarrow An estimator is efficient if it converges in distribution to \mathbb{G}_0

Semiparametric Efficiency

Characterize Law of \mathbb{G}_0

- Finite dimensions: \mathbb{G}_0 is multivariate normal; report covariance matrix.
- In infinite dimensions ... find covariance kernel of \mathbb{G}_0 .

Definition: The inverse information covariance functional for $\rho(P_0)$ is:

 $I^{-1}(p_1, p_2) \equiv \mathsf{Cov}\{\mathbb{G}_0(p_1), \mathbb{G}_0(p_2)\}$

Objectives

- Compute tangent space for **P** (must state assumptions on *P*₀).
- Establish $\rho(P_0) = \nu(\cdot, \Theta_0(P_0))$ is weakly pathwise differentiable.

 \Rightarrow First need to understand possible sources of irregularity...

• Suppose $X = (X^{(1)}, X^{(2)})$, and $X \sim P_0$ with $E[X^{(1)}] > 0$ and $E[X^{(2)}] > 0$

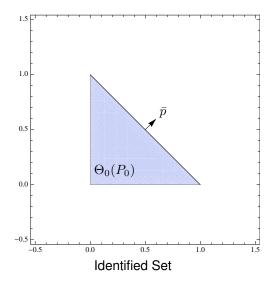
$$F(\int m(x,\theta)dP_0(x)) = \begin{cases} \int (x^{(1)}\theta_1 + x^{(2)}\theta_2 - K)dP_0(x) \\ -\theta_2 \\ -\theta_1 \end{cases}$$

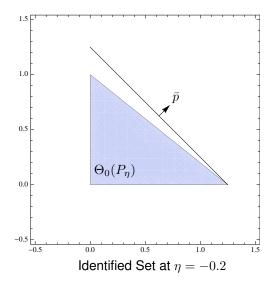
• Consider a submodel $\eta \mapsto P_{\eta}$ passing through P_0 and satisfying:

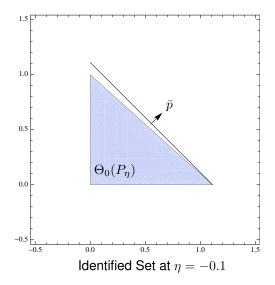
$$\int x^{(1)} dP_{\eta}(x) = E[X^{(1)}](1+\eta) \qquad \int x^{(2)} dP_{\eta}(x) = E[X^{(2)}]$$

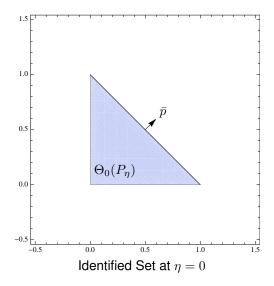
Comments

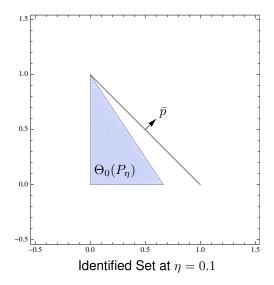
- Identified set is a triangle in positive orthant.
- What happens if we point $p \in \mathbb{S}^{d_{\theta}}$ at flat face of $\Theta_0(P_0)$?

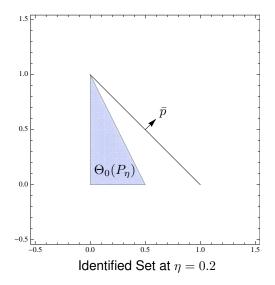












Formally: If $\bar{p} = \bar{s}/\|s\|$ for $\bar{s} = (E[X^{(1)}], E[X^{(2)}])$, then along $\eta \mapsto P_{\eta}$,

$$\nu(\bar{p},\Theta_0(P_\eta)) = \begin{cases} \frac{K}{\|\bar{s}\|} & \text{if } \eta \ge 0\\ \frac{K}{\|\bar{s}\|} \frac{E[X^{(1)}]}{(E[X^{(1)}]+\eta)} & \text{if } \eta < 0 \end{cases}$$

Implications

- When $d_{\theta} > 1$, slope of linear constraints should not depend on P_0 .
- This is not a problem for strictly convex constraints.
- Not a problem in discussed examples.

Next Goal

- Restrict P_0 , F, m so $\eta \mapsto \nu(\cdot, \Theta_0(P_\eta))$ is differentiable.
- Derive semiparametric efficiency bound and efficient estimator.

3 Confidence Regions

Model Details

Problem: Linear constraints may cause support function to be irregular. **Approach:** Group constraints into linear and strictly convex ...

For $m(x,\theta)$: Let $m_S : \mathcal{X} \times \Theta \to \mathbf{R}^{d_{m_S}}, m_L : \mathcal{X} \to \mathbf{R}^{d_{m_L}}, A \text{ a } d_{F_L} \times d_{\theta}$ matrix. $m(x,\theta) \equiv (m_S(x,\theta)', m_L(x)', \theta'A')'$

For F(v): Let $F_S : \mathbf{R}^{d_{m_S}} \to \mathbf{R}^{d_{F_S}}$ and $F_L : \mathbf{R}^{d_{m_L}} \to \mathbf{R}^{d_{F_L}}$, let:

$$F(\int m(x,\theta)dP_0(x)) = \begin{pmatrix} F_S(\int m_S(x,\theta)dP_0(x)) \\ A\theta - F_L(\int m_L(x)dP_0(x)) \end{pmatrix}$$

where $\theta \mapsto F_S^{(i)}(\int m_S(x,\theta)dP_0(x))$ is strictly convex for $1 \le i \le d_{F_S}$.

Assumptions (A)

- (i) $\Theta_0(P_0)$ is contained in the interior of Θ (relative to $\mathbf{R}^{d_{\theta}}$).
- (ii) There exists a $\theta_0 \in \Theta$ such that $F(E[m(X, \theta_0)]) < 0$.
- (iii) $\theta \mapsto m(x, \theta)$ is differentiable (but not necessarily in *x*).
- (iv) At each $\theta \in \partial \Theta_0(P_0)$ number of active constraints $\leq d_{\theta}$.

Discussion

- A(i) largely notation. May impose $\|\theta\|^2 \leq B$ or $\theta^{(i)} \geq C$ through F, m.
- A(ii) With moment equalities may lose convexity.
- A(iii) Allows discontinuous functions of x (e.g. $1{X_i = x}$).
- A(iv) analogue to intersection bounds (Hirano & Porter (2009)).

Key: A(ii)-A(iv) implied by linear independence requirement.

Lagrangian Representation

$$\begin{split} \nu(p,\Theta_0(P_0)) &= \sup_{\theta \in \Theta} \ \{ \langle p, \theta \rangle \text{ s.t. } F(\int m(x,\theta) dP_0(x)) \le 0 \} \\ &= \sup_{\theta \in \Theta} \ \{ \langle p, \theta \rangle + \lambda(p,P_0)' F(\int m(x,\theta) dP_0(x)) \} \end{split}$$

Intuition

- Each boundary point of Θ₀(P₀) is a maximizer for some p ∈ S^{d_θ}.
- $\lambda(p, P_0)$ reflects importance of constraints in keeping you inside $\Theta_0(P_0)$.

Reveals Dependence on P_{η}

- \Rightarrow Move along submodel $\eta \mapsto P_{\eta} \Rightarrow$ Changes moment inequalities
- \Rightarrow Effect on set depends on constraint importance in shaping $\partial \Theta_0(P_\eta)$.

Notation:

- $H(\theta) \equiv \nabla F(E[m(X, \theta)]).$
- $\Omega(\theta_1, \theta_2) \equiv E[(m(X, \theta_1) E[m(X, \theta_1)])(m(X, \theta_2) E[m(X, \theta_2)])'].$
- $\theta^* : \mathbb{S}^{d_{\theta}} \to \Theta$ such that $\theta^*(p) \in \arg \max_{\theta \in \Theta_0(P_0)} \langle p, \theta \rangle$ for all $p \in \mathbb{S}^{d_{\theta}}$.

Theorem: Under Assumption (A) and regularity conditions, we obtain:

 $I^{-1}(p_1, p_2) = \lambda(p_1, P_0)' H(\theta^*(p_1)) \Omega(\theta^*(p_1), \theta^*(p_2)) H(\theta^*(p_2))' \lambda(p_2, P_0)$

In particular, efficiency bound for estimating $\nu(\bar{p}, \Theta_0(P_0))$ at fixed \bar{p} is: $Var\{\lambda(\bar{p}, P_0)' \nabla F(E[m(X, \theta^*(\bar{p}))])m(X, \theta^*(\bar{p}))\}$

i.e. "importance-weighted" linear combination of binding constraints.

Notation:

- $H(\theta) \equiv \nabla F(E[m(X, \theta)]).$
- $\Omega(\theta_1, \theta_2) \equiv E[(m(X, \theta_1) E[m(X, \theta_1)])(m(X, \theta_2) E[m(X, \theta_2)])'].$
- $\theta^* : \mathbb{S}^{d_{\theta}} \to \Theta$ such that $\theta^*(p) \in \arg \max_{\theta \in \Theta_0(P_0)} \langle p, \theta \rangle$ for all $p \in \mathbb{S}^{d_{\theta}}$.

Theorem: Under Assumption (A) and regularity conditions, we obtain:

$$I^{-1}(p_1, p_2) = \lambda(p_1, P_0)' E[m(X, \theta^*(p_1))m(X, \theta^*(p_2))']\lambda(p_2, P_0)$$

In particular, efficiency bound for estimating $\nu(\bar{p}, \Theta_0(P_0))$ at fixed \bar{p} is: $Var\{\lambda(\bar{p}, P_0)'m(X, \theta^*(\bar{p}))\}$

i.e. "importance-weighted" linear combination of binding constraints.

Proof Outline

Step 1: Establish restrictions on P_0 do not affect tangent space $\dot{\mathbf{P}}$.

Step 2: Show that in a neighborhood of P_0 (in the τ -topology) for all $p \in \mathbb{S}^{d_\theta}$: $\nu(p, \Theta_0(Q)) = \sup_{\theta \in \Theta} \{ \langle p, \theta \rangle + \lambda(p, Q)' F(\int m(x, \theta) dQ(x)) \}$ **Step 3:** For $s_0(X)$ the score of $\eta \mapsto P_\eta$, show pointwise in $p \in \mathbb{S}^{d_\theta}$ that:

 $\frac{\partial}{\partial \eta} \nu(p, \Theta_0(P_\eta)) \Big|_{\eta=0} = \lambda(p, P_0)' \nabla F(E[m(X, \theta^*(p))]) E[m(X, \theta^*(p))s_0(X)]$

Step 4: Extend result to obtain weak pathwise derivative $\dot{\rho} : \dot{\mathbf{P}} \to \mathcal{C}(\mathbb{S}^{d_{\theta}})$:

 $\dot{\rho}(s_0)(p) = \lambda(p, P_0)' \nabla F(E[m(X, \theta^*(p))]) E[m(X, \theta^*(p))s_0(X)]$

Proof Outline (Regularity)

In General: For $\Lambda(p, P_0)$ (set of multipliers), $\Xi(p, P_0)$ (set of maximizers):

$$\frac{\partial}{\partial \eta_{+}}\nu(p,\Theta_{0}(P_{\eta})) = \max_{\theta^{*}\in\Xi(p,P_{0})}\min_{\lambda\in\Lambda(p,P_{0})}\lambda'\nabla F(E[m(X,\theta^{*})])E[m(X,\theta^{*})s_{0}(X)]$$
$$\frac{\partial}{\partial \eta_{-}}\nu(p,\Theta_{0}(P_{\eta})) = \min_{\theta^{*}\in\Xi(p,P_{0})}\max_{\lambda\in\Lambda(p,P_{0})}\lambda'\nabla F(E[m(X,\theta^{*})])E[m(X,\theta^{*})s_{0}(X)]$$

Intuition

- Multiple Lagrange multipliers implies some constraint is redundant.
 ⇒ Constraints are smooth in η ↦ P_η but relevant ones switch at P₀
- Multiple maximizers implies you are on a "flat face" of identified set. \Rightarrow In constraint $A\theta - F_L(\int m_L(x)dP_\eta)$, θ^* does not enter derivative

Intuition

- In simple example $[E[Y_L], E[Y_U]]$ we use plug-in estimator $[\bar{Y}_L, \bar{Y}_U]$.
- Tangent set $\dot{\mathbf{P}}$ not restricted ... model is not overidentified.

 \Rightarrow Expect "plug-in" estimator to be semiparametrically efficient

Define: \hat{P}_n to be the empirical distribution ($\hat{P}_n(x) = \frac{1}{n} \sum_i 1\{X_i = x\}$) and:

$$\begin{split} \nu(p,\Theta_0(\hat{P}_n)) &= \sup_{\theta \in \Theta} \{ \langle p, \theta \rangle \text{ s.t. } F(\frac{1}{n} \sum_{i=1}^n m(X_i, \theta)) \le 0 \} \\ &= \sup_{\theta \in \Theta} \{ \langle p, \theta \rangle + \lambda(p, \hat{P}_n)' F(\frac{1}{n} \sum_{i=1}^n m(X_i, \theta)) \} \end{split}$$

Efficient Estimator

Assumption (B): $\{X_i\}_{i=1}^n$ is an i.i.d. sample with $X_i \sim P_0$.

Theorem: Under Assumptions (A), (B) and regularity conditions:

- Part A: $\{\nu(\cdot, \Theta_0(\hat{P}_n))\}$ is a regular estimator for $\nu(\cdot, \Theta_0(P_0))$.
- Part B: Uniformly in $p \in \mathbb{S}^{d_{\theta}}$ we obtain the expansion:

$$\begin{split} \sqrt{n}(\nu(p,\Theta_0(\hat{P}_n)) - \nu(p,\Theta_0(P_0))) \\ &= \lambda(p,P_0)' H(\theta^*(p)) \frac{1}{\sqrt{n}} \sum_{i=1}^n \{m(X_i,\theta^*(p)) - E[m(X,\theta^*(p))]\} + o_p(1) \end{split}$$

• Part C: For \mathbb{G}_0 a mean zero tight Gaussian process on $\mathcal{C}(\mathbb{S}^{d_{\theta}})$:

$$\sqrt{n}(\nu(\cdot,\Theta_0(\hat{P}_n))-\nu(\cdot,\Theta_0(P_0))) \stackrel{L}{\to} \mathbb{G}_0$$

where \mathbb{G}_0 satisfies $\mathsf{Cov}\{\mathbb{G}_0(p_1), \mathbb{G}_0(p_2)\} = I^{-1}(p_1, p_2).$

Andres Santos

$$\begin{split} \sqrt{n}(\nu(p,\Theta_0(\hat{P}_n)) - \nu(p,\Theta_0(P_0))) \\ &= \lambda(p,P_0)' H(\theta^*(p)) \frac{1}{\sqrt{n}} \sum_{i=1}^n \{m(X_i,\theta^*(p)) - E[m(X,\theta^*(p))]\} + o_p(1) \end{split}$$

Lagrange Multipliers

- $\lambda(\cdot, Q)$ uniquely determined for all Q in a neighborhood of P_0 .
- $\lambda(p,Q)$ is jointly continuous in (p,Q).
- Stochastic equicontinuity of the process is not obvious ...

... but Lagrange multipliers and complementary slackness conditions "smooth out" the process. Note: $\{\nu(\cdot, \Theta_0(\hat{P}_n))\}$ is identified with convex set $\hat{\Theta}_n = co\{\Theta_0(\hat{P}_n)\}$.

Theorem Let Assumptions (A), (B) and regularity conditions hold. (i) $L : \mathbf{R}_+ \to \mathbf{R}_+$ is a nondecreasing continuous function (ii) L(0) = 0 and $L(a) \le Ma^{\kappa}$ for some M, κ and all $a \in \mathbf{R}_+$

If $\{K_n\}$ is a regular convex compact valued set estimator for $\Theta_0(P_0)$, then: $\liminf_{n \to \infty} E[L(\sqrt{n}d_H(K_n, \Theta_0(P_0)))]$ $\geq \limsup_{n \to \infty} E[L(\sqrt{n}d_H(\hat{\Theta}_n, \Theta_0(P_0)))] = E[L(\|\mathbb{G}_0\|_{\infty})]$

Comments

- Lower bound holds without continuity of L, but attainment may not.
- Can be relaxed to $L(a) \leq M \exp(a\kappa)$ for limited values of κ .

Bootstrap

Problem: How do we obtain consistent bootstrap for the distribution of \mathbb{G}_0 ? **Approach:** Perturb estimator of influence function ...

Definition: For random weights $\{W_i\}_{i=1}^n$ define G_n^* process pointwise by:

$$\lambda(p, \hat{P}_n)' \nabla F(\frac{1}{n} \sum_{i=1}^n m(X_i, \hat{\theta}(p))) \frac{1}{\sqrt{n}} \sum_{i=1}^n W_i\{m(X_i, \hat{\theta}(p)) - \frac{1}{n} \sum_{i=1}^n m(X_i, \hat{\theta}(p))\}$$

where $\hat{\theta} : \mathbb{S}^{d_{\theta}} \to \Theta$ satisfies $\hat{\theta}(p) \in \arg \max_{\theta \in \Theta_0(\hat{P}_n)} \langle p, \theta \rangle$ for all $p \in \mathbb{S}^{d_{\theta}}$.

Why should this work?

- If $W_i \perp X_i$, expect to converge to efficient influence function.
- Law of G_n^* conditional on $\{X_i\}_{i=1}^n$ (but not $\{W_i\}_{i=1}^n$) consistent for \mathbb{G}_0 .

Assumption (C): $W \perp X$ with E[W] = 0, $E[W^2] = 1$ and $E[|W|^{2+\delta}] < \infty$.

Theorem If Assumptions (A), (B), (C) and regularity conditions hold, then:

 $G_n^* \xrightarrow{L^*} \mathbb{G}_0$

(in prob.), where L^* denotes Law conditional on $\{X_i\}_{i=1}^n$ (but not $\{W_i\}_{i=1}^n$).

Comments:

- For example, $W \sim N(0, 1)$ or W Rademacher.
- No need to recompute support function or estimate covariance kernel.

Let $\Psi_0 \subseteq \mathbb{S}^{d_{\theta}}$ and $\Upsilon : \mathbf{R} \to \mathbf{R}$. Critical values often are $1 - \alpha$ quantile of:

 $\sup_{p\in\Psi_0}\Upsilon(\mathbb{G}_0(p))$

Example 1: Let $\Psi_0 = \mathbb{S}^{d_{\theta}}$ and $\Upsilon(a) = |a|$. We need quantiles of:

 $\sup_{p \in \Psi_0} \Upsilon(\mathbb{G}_0(p)) = \sup_{p \in \mathbb{S}^{d_\theta}} |\mathbb{G}_0(p)|$

Example 2: Let $\Psi_0 = \mathbb{S}^{d_{\theta}}$ and $\Upsilon(a) = |-a|_+$. We need quantiles of:

$$\sup_{p\in\Psi_0}\Upsilon(\mathbb{G}_0(p)) = \sup_{p\in\mathbb{S}^{d_\theta}}|-\mathbb{G}_0(p)|_+$$

Critical Values

Algorithm

Step 1: Compute $\nu(\cdot, \Theta_0(\hat{P}_n))$ to obtain $p \mapsto \lambda(p, \hat{P}_n)$ and $p \mapsto \hat{\theta}(p)$. **Step 2:** Draw $\{W_i\}_{i=1}^n$ to construct G_n^* .

Step 3: Given Hausdorff consistent estimate $\hat{\Psi}_n$ for Ψ_0 define:

$$\hat{c}_{1-\alpha} \equiv \inf\{c : P(\sup_{p \in \hat{\Psi}_n} \Upsilon(G_n^*(p)) \le c \ | \{X_i\}_{i=1}^n) \ge 1-\alpha\}$$

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

 $\hat{c}_{1-\alpha} \xrightarrow{p} c_{1-\alpha}$

One Sided Region

$$c_{1-\alpha}^{(1)} \equiv \inf\{c: P(\sup_{p \in \mathbb{S}^{d_{\theta}}} | - \mathbb{G}_0(p)|_+ \le c) \ge 1 - \alpha\}$$

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

$$\lim_{n \to \infty} P(\Theta_0(P_0) \subseteq \hat{\Theta}_n^{\hat{c}_{1-\alpha}^{(1)}/\sqrt{n}}) = 1 - \alpha$$

Comments:

- Find $\hat{\Theta}_n^{\hat{c}_{1-\alpha}^{(1)}/\sqrt{n}}$ from its support function $\{\nu(\cdot,\Theta_0(\hat{P}_n)) + \hat{c}_{1-\alpha}^{(1)}/\sqrt{n}\}.$
- Test inversion of $H_0: K \subseteq \Theta_0(P_0)$ using $T_n(K) \equiv \sqrt{n} \overrightarrow{d}_H(K, \hat{\Theta}_n)$.
- Duality first exploited in Beresteanu & Molinari (2008).

Two Sided Region

$$c_{1-\alpha}^{(2)} \equiv \inf\{c : P(\sup_{p \in \mathbb{S}^{d_{\theta}}} |\mathbb{G}_0(p)| \le c) \ge 1-\alpha\}$$

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

$$\lim_{n \to \infty} P(\hat{\Theta}_n^{-\hat{c}_{1-\alpha}^{(2)}/\sqrt{n}} \subseteq \Theta_0(P_0) \subseteq \hat{\Theta}_n^{\hat{c}_{1-\alpha}^{(2)}/\sqrt{n}}) = 1 - \alpha$$

Comments:

- Provides uniform confidence interval for $\partial \Theta_0(P_0)$.
- Test inversion of $H_0: K = \Theta_0(P_0)$ using $T_n(K) \equiv \sqrt{n} d_H(K, \hat{\Theta}_n)$.

Region for Parameter

 $\inf_{\theta \in \Theta_0(P_0)} \liminf_{n \to \infty} P(\theta \in \mathcal{P}_n) \ge 1 - \alpha$

Standard Approach: Build \mathcal{P}_n through test inversion of hypothesis:

 $H_0: \theta \in \Theta_0(P_0) \qquad \qquad H_1: \theta \notin \Theta_0(P_0)$

Test Statistic: Use the efficient estimator to test this null hypothesis by:

 $H_n(\theta) \equiv \sqrt{n} \overrightarrow{d}_H(\{\theta\}, \hat{\Theta}_n)$

Region for Parameter

Definition: Let $\mathfrak{M}(\theta)$ be set of maximizers of $p \mapsto \{\nu(p, \{\theta\}) - \nu(p, \Theta_0(P_0))\}$.

$$c_{1-\alpha}(\theta) \equiv \inf\{c: P(\sup_{p \in \mathfrak{M}(\theta)} | - \mathbb{G}_0(p)|_+ \le c) \ge 1 - \alpha\}$$

Note: Bootstrap with Hausdorff consistent estimate for $\mathfrak{M}(\theta)$ (Kaido 2010).

Theorem: Under Assumptions (A), (B), (C) and regularity conditions:

$$\inf_{\theta \in \Theta_0(P_0)} \liminf_{n \to \infty} P(\theta \in \hat{\mathcal{P}}_n) \ge 1 - \alpha$$

where the confidence region is given by $\hat{\mathcal{P}}_n \equiv \{\theta \in \Theta : H_n(\theta) \leq \hat{c}_{1-\alpha}(\theta)\}.$

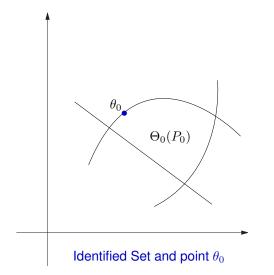
Power Functions

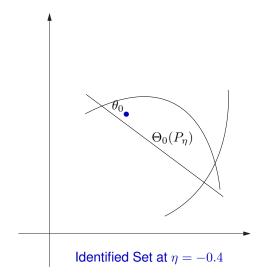
- Let $\pi_n(P_\eta; \theta_0)$ be probability test rejects $H_0: \theta_0 \in \Theta_0(P_\eta)$ when $X \sim P_\eta$.
- Denote $\pi_n^*(P_\eta; \theta_0)$ for test that rejects when $H_n(\theta_0) > \hat{c}_{1-\alpha}(\theta_0)$.

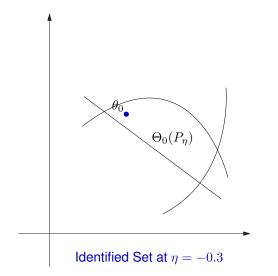
Goal: Compare power functions along local parametric submodels.

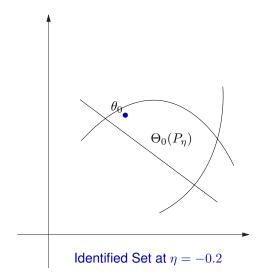
Definition: For $\theta_0 \in \partial \Theta_0(P_0)$ let $\mathbf{H}(\theta_0)$ be set of submodels with:

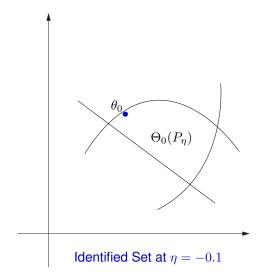
- 1 If $\eta \leq 0$ then $\theta_0 \in \Theta_0(P_\eta)$.
- **2** If $\eta > 0$ then $\theta_0 \notin \Theta_0(P_\eta)$.

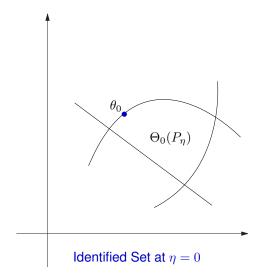


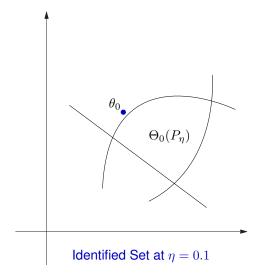


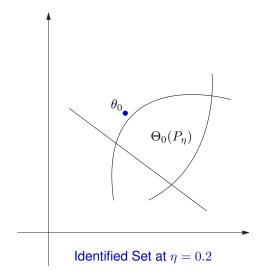


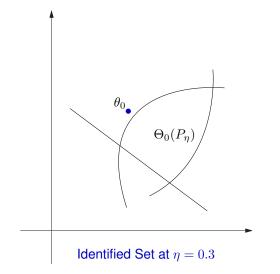


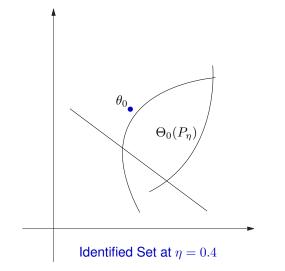












Local Power

Theorem: Let Assumptions (A), (B), (C) and regularity conditions hold and

 $\limsup_{n \to \infty} \pi_n(P_{\eta/\sqrt{n}}; \theta_0) \le \alpha$

for every $P_{\eta} \in \mathbf{H}(\theta_0)$ and $\eta < 0$. If $\mathfrak{M}(\theta_0) = \{p_0\}$, then for any $P_{\eta} \in \mathbf{H}(\theta_0)$ $\limsup_{n \to \infty} \pi_n(P_{\eta/\sqrt{n}}; \theta_0) \le \lim_{n \to \infty} \pi_n^*(P_{\eta/\sqrt{n}}; \theta_0) = 1 - \Phi\left(z_{1-\alpha} - \eta \frac{E[\tilde{l}(X)s_0(X)]}{\sqrt{E[\mathbb{G}_0^2(p_0)]}}\right)$

where $s_0(x)$ is the score of $\eta \mapsto P_\eta$ and $\tilde{l}(x) = -\lambda(p_0, P_0)' H(\theta_0) m(x, \theta_0)$.

Comments:

- Applies to θ_0 not at kink of boundaries.
- $P_{\eta} \in \mathbf{H}(\theta_0)$ if and only if $E[\tilde{l}(X)s_0(X)] > 0$.
- Weak "size control" requirement ... locality of semiparametric efficiency.

Subvectors

Suppose $\Theta = \Theta_1 \times \Theta_2$ with $\Theta_1 \subset \mathbf{R}^{d_{\theta_1}}$, $\Theta_2 \subset \mathbf{R}^{d_{\theta_2}}$ and $\theta = (\theta_1, \theta_2)$.

 $\Theta_{0,M}(P_0) \equiv \{\theta_1 \in \Theta_1 : (\theta_1, \theta_2) \in \Theta_0(P_0) \text{ for some } \theta_2 \in \Theta_2\}$

Key: For $p_1 \in \mathbb{S}^{d_{\theta_1}}$ and $(p_1, p_2) = p \in \mathbb{S}^{d_{\theta_1} + d_{\theta_2}}$, it follows that:

$$\nu(p_1, \Theta_{0,M}(P_0)) = \sup_{\substack{\theta_1 \in \Theta_{0,M}(P_0)}} \langle p_1, \theta_1 \rangle$$
$$= \sup_{(\theta_1, \theta_2) \in \Theta_0(P_0)} \{ \langle p_1, \theta_1 \rangle + \langle 0, \theta_2 \rangle \} = \nu((p_1, 0), \Theta_0(P_0))$$

 \Rightarrow The efficient estimator for $\nu(\cdot, \Theta_{0,M}(P_0))$ is just $\nu((\cdot, 0), \Theta_0(\hat{P}_n))$.

 \Rightarrow All our results apply to the identified set $\Theta_{0,M}$ as well.

3 Confidence Regions

Regression with Interval Outcome

• Let $\epsilon_i \sim N(0,1)$ and Y_i (unobservable) be generated according to:

 $Y_i = Z'_i \theta_0 + \epsilon_i$

where $Z_i = (1, Z_{i,2}), Z_{i,2}$ uniform on K equally spaced points in [-5, 5].

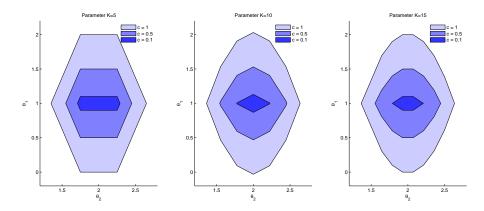
• For $V_i \sim U[0, 0.2]$ independent of (Y_i, Z_i) create $Y_{L_i} \leq Y \leq Y_{U,i}$ by:

 $Y_{L,i} = Y_i - C + V_i Z_i^2$ $Y_{U,i} = Y_i + C + V_i Z_i^2$

Design Parameters:

- C controls the diameter of the identified set (identification at C = 0).
- *K* controls severity of "intersection bounds" problem.

Figure: Identified Set as a Function of C and K



Expected Hausdorff Distance

		С			
	K	0.1	0.5	1	
n = 200	5	0.153	0.150	0.151	
	10	0.275	0.250	0.250	
	15	0.514	0.361	0.359	
n = 500	5	0.094	0.094	0.094	
	10	0.177	0.155	0.155	
	15	0.360	0.218	0.219	
n = 1,000	5	0.066	0.066	0.066	
,	10	0.130	0.109	0.109	
	15	0.201	0.154	0.154	

Table: Average $d_H(\hat{\Theta}_n, \Theta_0(P_0))$

Expected Inner Hausdorff Distance

		C			
	K	0.1	0.5	1	
n = 200	5	0.137	0.144	0.144	
	10	0.106	0.105	0.108	
	15	0.308	0.045	0.047	
n = 500	5	0.088	0.090	0.090	
	10	0.085	0.093	0.094	
	15	0.043	0.051	0.054	
n = 1,000	5	0.063	0.064	0.064	
,	10	0.075	0.081	0.081	
	15	0.061	0.055	0.053	

Table: Average $\vec{d}_H(\hat{\Theta}_n, \Theta_0(P_0))$

Expected Outer Hausdorff Distance

		С			
	K	0.1	0.5	1	
n = 200	5	0.150	0.145	0.145	
	10	0.273	0.249	0.250	
	15	0.296	0.359	0.359	
n = 500	5	0.092	0.090	0.090	
	10	0.185	0.154	0.154	
	15	0.360	0.218	0.219	
n = 1,000	5	0.064	0.064	0.064	
,	10	0.130	0.108	0.108	
	15	0.185	0.154	0.154	

Table: Average $\vec{d}_H(\Theta_0(P_0), \hat{\Theta}_n)$

One Sided Confidence Interval

 \overline{C} 0.1 0.5 K1 n = 2005 0.946 0.944 0.942 10 0.988 0.915 0.900 15 0.995 0.896 0.824 0.953 0.941 0.941 n = 5005 10 0.958 0.912 0.910 15 0.896 0.886 0.877 n = 1,0005 0.962 0.950 0.950 0.926 10 0.921 0.921 15 0.978 0.893 0.891

Table: Nominal Level 0.95

Two Sided Confidence Interval

 \overline{C} 0.5 K0.1 1 n = 2005 0.958 0.945 0.943 10 0.996 0.953 0.936 15 0.909 0.948 0.886 0.942 n = 5005 0.964 0.942 10 0.983 0.953 0.951 15 0.949 0.938 0.931 n = 1,0005 0.971 0.949 0.949 0.963 10 0.952 0.952 15 0.987 0.892 0.939

Table: Nominal Level 0.95

Semiparametric Efficiency

- Proposed a notion of semiparametric efficiency.
- Characterized sources of irregularity in higher dimensions.
- Derived the semiparametric efficiency bound.

Efficient Estimation

- Showed "plug-in" estimator is efficient.
- Obtained consistent bootstrap procedure.
- Employed efficient estimator to construct confidence regions.

Challenges

- Efficiency is local concept, often more uniformity is desired.
- Sensitivity to "intersection bound" problems in higher dimensions?
- Different use of efficient estimator (Imbens & Manski (2004)).
- Other efficient estimators may "behave" better ... Sieve MLE? EL?