On the Testability of Identification in Some Nonparametric Models with Endogeneity

Ivan A. Canay Andres Santos Azeem M. Shaikh
Northwestern U. UC San Diego U. Chicago
Three Nonparametric Models

Conditional Mean IV: Let \((Y, X, Z) \in \mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}\) have distribution \(P:\)

\[Y = \theta_0(X) + \epsilon \quad \quad E_P[\epsilon|Z] = 0 \]
Three Nonparametric Models

Conditional Mean IV: Let \((Y, X, Z) \in \mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}\) have distribution \(P:\)

\[Y = \theta_0(X) + \epsilon \quad E_P[\epsilon|Z] = 0 \]

Conditional Quantile IV: Let \((Y, X, Z) \in \mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}\) have distribution \(P:\)

\[Y = \theta_0(X) + \epsilon \quad P(\epsilon \leq 0|Z) = \tau \]
Three Nonparametric Models

Conditional Mean IV: Let \((Y, X, Z) \in \mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}\) have distribution \(P\):

\[
Y = \theta_0(X) + \epsilon \quad \quad \quad \quad \quad E_P[\epsilon|Z] = 0
\]

Conditional Quantile IV: Let \((Y, X, Z) \in \mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}\) have distribution \(P\):

\[
Y = \theta_0(X) + \epsilon \quad \quad \quad \quad \quad P(\epsilon \leq 0|Z) = \tau
\]

Non-separable IV: Let \((Y, X, Z) \in \mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}\) have distribution \(P\):

\[
Y = \theta_0(X, \epsilon) \quad \quad \quad \quad \quad P(\theta_0(X, \epsilon) \leq \theta_0(X, \tau)|Z) = \tau
\]

where in addition \(\tau \mapsto \theta_0(X, \tau)\) is assumed strictly monotonic almost surely.
In conditional mean IV, identification requires a unique solution (in θ) to:

$$E_P[Y|Z] = E_P[\theta(X)|Z]$$

Since Newey & Powell (2003), identification through completeness condition

$$E_P[\theta(X)|Z] = 0 \quad P - a.s. \quad \Rightarrow \quad \theta(X) = 0 \quad P - a.s.$$

Comments

- More general: bounded completeness or $L^q(P)$ completeness.
- Sometimes referred to as nonparametric rank condition.
- Also used in identification of quantile and nonseparable models.
Testability

Problems

- Completeness conditions are difficult to interpret.
- Hard to motivate from economic theory.

Questions

- Are completeness assumptions testable under reasonable conditions?
- More generally: is point identification testable in these three models?

Answers

- We show no nontrivial tests for completeness exist.
- We show no nontrivial tests for identification exist in these three models.
Linear Model Intuition

Linear IV: Suppose \((Y, X, Z) \in \mathbb{R}^3\) with distribution \(P \in \mathbb{P}\), and satisfy:

\[
Y = X\theta_0 + \epsilon \quad \quad \quad \quad E_P[Z\epsilon] = 0
\]

\(\Rightarrow \theta_0\) is identified if and only if \(E_P[XZ] \neq 0\) – i.e. \(\theta_0 = E_P[XY]/E_P[XZ]\).

Testing Rank Condition

\[
H_0 : E_P[XZ] = 0 \quad \quad \quad \quad H_1 : E_P[XZ] \neq 0
\]

Bahadur and Savage (1956)

- **Negative**: If \(P\) is rich enough, only test is the trivial test.
- **Positive**: Learn how to restrict \(P\) for tests to exist (example bounded).

Andres Santos UCSD
General Setup

\[H_0 : P \in P_0 \quad \text{and} \quad H_1 : P \in P_1 \]

where \(P_1 \equiv P \setminus P_0 = \{\text{distributions that are complete (or model identified)}\} \).

Main Result

Any test \(\phi_n \) that controls asymptotic size at level \(\alpha \in (0, 1) \), in the sense:

\[
\limsup_{n \to \infty} \sup_{P \in P_0} E_{P^n}[\phi_n] \leq \alpha ,
\]

(for \(P^n \equiv \bigotimes_{i=1}^{n} P \)) will have no power against any alternative, in the sense:

\[
\limsup_{n \to \infty} \sup_{P \in P_1} E_{P^n}[\phi_n] \leq \alpha .
\]

Conclusion holds for all three models, under common assumptions on \(P \).
Nonparametric IV

Quantile/Nonseparable IV

Uniformly Valid Inference
Bahadur & Savage (1956), Romano (2004), and many others ...
General Outline

Setup
- Notation and Assumptions.
- Useful Lemma.

Testing Completeness
- The null and alternative hypothesis.
- Main result and proof strategy.

Quantile/Nonseparable IV
- Quantile IV: Main result and proof strategy.
- Nonseparable IV: Main result.
1 Setup

2 Completeness

3 Quantile IV

4 Nonseparable IV
Notation

Let \mathcal{M} be the set of all probability measures on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, and define:

$$\mathcal{M}(\nu) \equiv \{ P \in \mathcal{M} : P \ll \nu \}$$

We will require $P \subseteq \mathcal{M}(\nu)$ for some measure ν satisfying the following:
Notation

Let \mathcal{M} be the set of all probability measures on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, and define:

$$\mathcal{M}(\nu) \equiv \{ P \in \mathcal{M} : P \ll \nu \}$$

We will require $\mathcal{P} \subseteq \mathcal{M}(\nu)$ for some measure ν satisfying the following:

Main Assumption (A)

- ν is a σ-finite Borel measure on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$.
- $\nu = \nu_y \times \nu_x \times \nu_z$ for ν_y, ν_x and ν_z Borel measures on \mathbb{R}, \mathbb{R}^{d_x} and \mathbb{R}^{d_z}.
- The measure ν_x is atomless on \mathbb{R}^{d_x}.
Notation

Let \mathcal{M} be the set of all probability measures on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, and define:

$$\mathcal{M}(\nu) \equiv \{ P \in \mathcal{M} : P \ll \nu \}$$

We will require $P \subseteq \mathcal{M}(\nu)$ for some measure ν satisfying the following:

Main Assumption (A)
- ν is a σ-finite Borel measure on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$.
- $\nu = \nu_y \times \nu_x \times \nu_z$ for ν_y, ν_x and ν_z Borel measures on \mathbb{R}, \mathbb{R}^{d_x} and \mathbb{R}^{d_z}.
- The measure ν_x is atomless on \mathbb{R}^{d_x}.

Comments
- Support restrictions imposed through ν (example $(X, Z) \in [0, 1]^{d_x+d_z}$).
- ν product measure does not require $P \in \mathcal{P}$ to be product measure.
Discussion

νᵢ atomless

- May be relaxed, but νᵢ cannot be purely discrete.
- If dᵢ > 1, then sufficient for one coordinate to be atomless.

Example

- Suppose νᵢ and νᵦ have discrete support \{x₁, \ldots, xₙ\} and \{z₁, \ldots, zₜ\}.

\[\Pi(P) \equiv \{ s \times t \text{ matrix with } \Pi(P)_{j,k} = P(X = x_j | Z = z_k) \} \]

- Newey & Powell (2003) showed P is complete iff \text{rank}(\Pi(P)) = s.
- Test can be constructed through uniform confidence region for Π(P).
Useful Lemma

\[\|P_1 - P_2\|_{TV} \equiv \sup_{g:|g|\leq 1} \frac{1}{2} \left| \int gdP_1 - \int gdP_2 \right| \]

Lemma If for all \(P \in \mathcal{P}_1 \), there is \(\{P_k\} \) with \(P_k \in \mathcal{P}_0 \) and \(\|P - P_k\|_{TV} = o(1) \)

\[\sup_{P \in \mathcal{P}_1} E_{P_n}[\phi_n] \leq \sup_{P \in \mathcal{P}_0} E_{P_n}[\phi_n] \]

for every sequence of test functions \(\{\phi_n\} \) and for every \(n \).

Comments

- Small modification of Theorem 1 in Romano (2004).
- Result implies its asymptotic analogue.
- Intuition: If every \(P \in \mathcal{P}_1 \) is in the boundary of \(\mathcal{P}_0 \), then we conclude

\[\text{Size Control} \Rightarrow \text{No Power} \]
Useful Lemma

Key Idea: Since \(|\phi_n| \leq 1 \) for any test function, \(\|P - P_k\|_{TV} = o(1) \) implies:

\[
\left| \int \phi_n dP_k^n - \int \phi_n dP^n \right| \leq \sup_{g:|g| \leq 1} \frac{1}{2} \left| \int gdP_k^n - \int gdP^n \right| = o(1)
\]

Comments

- Total Variation distance plays no role in the definition of \(P_0 \) and \(P_1 \).
- Metrics compatible with weak topology may be too weak for result.
- Stronger metric, implies harder to show \(P_k \to P \).

Goal: Show in problems we study, lack of identification \((P_0)\) is “dense”.

Andres Santos UCSD
1 Setup

2 Completeness

3 Quantile IV

4 Nonseparable IV
Completeness

\[\begin{align*}
H_0 : P &\in \mathcal{P}_0 & H_1 : P &\in \mathcal{P}_1
\end{align*} \]

where \(\mathcal{P} = \mathcal{M}(\nu) \) for some \(\nu \in \mathcal{M} \), \(\mathcal{P}_0 \equiv \mathcal{P} \setminus \mathcal{P}_1 \) and we additionally define:

\[\mathcal{P}_1 \equiv \{ P \in \mathcal{P} : E_P[\theta(X)|Z] = 0 \text{ for } \theta \in L^\infty(P) \Rightarrow \theta(X) = 0 \ P - a.s. \} \]

Comments

- Using \(L^\infty(P) \) \(\Rightarrow \) test for bounded completeness.
- Replacing \(L^\infty(P) \) with \(L^q(P) \) for \(1 \leq q < \infty \) just enlarges \(\mathcal{P}_0 \).
- No power in this setting \(\Rightarrow \) no power in test of \(L^q(P) \) completeness.
Completeness

Theorem Let $\mathbb{P} = \mathcal{M}(\nu)$ and Assumption (A) hold. Then if \(\{\phi_n\} \) satisfies:

$$
\limsup_{n \to \infty} \sup_{P \in \mathcal{P}_0} E_{P^n}[\phi_n] \leq \alpha,
$$

for \(P^n \equiv \bigotimes_{i=1}^{n} P \) and level \(\alpha \in (0, 1) \), then it follows that it also satisfies:

$$
\limsup_{n \to \infty} \sup_{P \in \mathcal{P}_1} E_{P^n}[\phi_n] \leq \alpha.
$$

Comments

- If ν has compact support, then support of $P \in \mathbb{P}$ uniformly bounded.
- In contrast, ν with compact support suffices in linear IV model.
Proof Outline

Step 1 Fix $P \in P_1$, let $f \equiv dP/d\nu$, show $\sup_{g:|g|\leq 1} |\int g(f_k - f)d\nu| = o(1)$:

$$f_k(x, z) = \sum_{i=1}^{K_k} \pi_{ik} 1\{(x, z) \in S_{ik}\} \quad f_k \geq 0 \quad \int f_k d\nu = 1$$

Step 2 $\{S_{ik}\}_{i=1}^{K_k}$ can be chosen to be the product of two collections of sets:

- $\{U_{ik}\}$ a partition of the set $[-M_k, M_k]^d_x$ some $M_k \in (0, \infty)$.
- $\{V_{ik}\}$ a partition of the set $[-M_k, M_k]^d_z$ same $M_k \in (0, \infty)$.

Step 3 Since ν_x is atomless, we can partition each U_{ik} into $(U_{ik}^{(1)}, U_{ik}^{(2)})$:

$$\nu_x(U_{ik}^{(1)}) = \nu_x(U_{ik}^{(2)}) = \frac{1}{2} \nu_x(U_{ik})$$
Proof Outline

Step 4 Let P_k be measure with $dP_k/d\nu = f_k$, and define the function:

$$\theta_k(x) \equiv \sum_{i=1}^{D_k} (1\{x \in U_{ik}^{(1)}\} - 1\{x \in U_{ik}^{(2)}\})$$

Step 5 Then: (i) θ_k is bounded, (ii) $\theta_k(X) \neq 0$ $P_k - a.s.$, and (iii):

$$\int_{V_{nk}} \int_{U_{tk}} \psi(z) \theta_k(x) \nu_x(dx) \nu_z(dz)$$

$$= \int_{V_{nk}} \psi(z) \int_{U_{tk}} (1\{x \in U_{tk}^{(1)}\} - 1\{x \in U_{tk}^{(2)}\}) \nu_x(dx) \nu_z(dz)$$

$$= 0$$

However, recall $dP_k/d\nu = \sum_{i=1}^{K_k} \pi_{ik} 1\{(x, z) \in S_{ik}\}$ with $S_{ik} = V_{nk} \times U_{tk}$...
Step 6 Therefore, \(E_{P_k}[\psi(Z)\theta_k(X)] = 0 \) for all \(P_k \)-integrable \(\psi \), and hence:

\[
E_{P_k}[\theta_k(X)|Z] = 0 \quad P_k - a.s.
\]

Step 7 Therefore, \(P_k \in \mathbf{P}_0 \) for all \(k \), and \(\|P_k - P\|_{TV} = o(1) \). By Lemma,

\[
\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \leq \limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \leq \alpha
\]
Proof Outline

Step 6 Therefore, \(E_{P_k}[\psi(Z)\theta_k(X)] = 0 \) for all \(P_k \)-integrable \(\psi \), and hence:

\[
E_{P_k}[\theta_k(X) | Z] = 0 \quad P_k - a.s.
\]

Step 7 Therefore, \(P_k \in P_0 \) for all \(k \), and \(\|P_k - P\|_{TV} = o(1) \). By Lemma,

\[
\limsup_{n \to \infty} \sup_{P \in P_1} E_{P_n}[\phi_n] \leq \limsup_{n \to \infty} \sup_{P \in P_0} E_{P_n}[\phi_n] \leq \alpha
\]

Comments

- The sequence \(\{\theta_k\} \) developed in the proof is not differentiable.
- Proof may be modified so \(\{\theta_k\} \) is infinitely differentiable.
- \(\Rightarrow L^\infty(P) \) may be replaced by Sobolev space or Ball.
- Similarly, we may also impose smoothness restrictions on \(dP/d\nu \).
Comments

Two Important Features

- Completeness may be testable under alternative specifications of \(P \). However, standard “nonparametric” approaches do not seem to apply.
- Assumptions routinely employed that are non testable but “reasonable”.

Genericity Arguments

- Alternative justification in favor of completeness assumptions.
- Andrews (2011) shows set of distributions for which it fails is “shy”.
- Chen et al. (2012) show certain measures (over conditional expectation operators) assign zero probability to completeness failure.
1 Setup

2 Completeness

3 Quantile IV

4 Nonseparable IV
Quantile IV

\[H_0 : P \in P_0 \quad H_1 : P \in P_1 \]

for \(P \) the subset of \(M(\nu) \) consisting of \(P \in M(\nu) \) such that \(\exists \theta_0 \in L^\infty(P) : \)

\[
Y = \theta_0(X) + \epsilon \quad P(\epsilon \leq 0|Z) = \tau P - a.s.
\]

Comments
- Uniqueness of \(\theta \in L^\infty(P) \) understood up to sets of \(P \)-measure zero.
- No easy necessary conditions for identification from completeness: \(\Rightarrow \) We test for identification directly.
\[H_0 : P \in P_0 \quad \text{and} \quad H_1 : P \in P_1 \]

for \(P \) the subset of \(M(\nu) \) consisting of \(P \in M(\nu) \) such that \(\exists \theta_0 \in L^\infty(P) : \]
\[Y = \theta_0(X) + \epsilon \quad \quad P(\epsilon \leq 0|Z) = \tau P \text{ a.s.} \]

As before, \(P_0 \equiv P \setminus P_1 \), where now \(P_1 \subset P \) is given by the set of measures:
\[P_1 \equiv \{ P \in P : \exists! \theta \in L^\infty(P) \text{ s.t. } P(Y \leq \theta(X)|Z) = \tau P \text{ a.s.} \} \]
Quantile IV

\[H_0 : P \in \mathcal{P}_0 \quad H_1 : P \in \mathcal{P}_1 \]

for \(P \) the subset of \(\mathcal{M}(\nu) \) consisting of \(P \in \mathcal{M}(\nu) \) such that \(\exists \theta_0 \in L^\infty(P) : \)

\[Y = \theta_0(X) + \epsilon \quad P(\epsilon \leq 0|Z) = \tau P \text{ a.s.} \]

As before, \(\mathcal{P}_0 \equiv P \setminus \mathcal{P}_1 \), where now \(\mathcal{P}_1 \subset \mathcal{P} \) is given by the set of measures:

\[\mathcal{P}_1 \equiv \{ P \in \mathcal{P} : \exists! \theta \in L^\infty(P) \text{ s.t. } P(Y \leq \theta(X)|Z) = \tau P \text{ a.s.} \} \]

Comments

- Uniqueness of \(\theta \in L^\infty(P) \) understood up to sets of \(P \)-measure zero.
- No easy necessary conditions for identification from completeness:

\[\Rightarrow \text{ We test for identification directly} \]
Theorem Let \mathbb{P} be as defined, and Assumption (A) hold. If $\{\phi_n\}$ satisfies:

$$\limsup_{n \to \infty} \sup_{P \in \mathbb{P}_0} E_{P^n} [\phi_n] \leq \alpha,$$

for $P^n \equiv \bigotimes_{i=1}^n P$ and level $\alpha \in (0, 1)$, then it follows that it also satisfies:

$$\limsup_{n \to \infty} \sup_{P \in \mathbb{P}_1} E_{P^n} [\phi_n] \leq \alpha.$$

Comments

- We show \mathbb{P}_0 is dense in $\mathcal{M}(\nu)$ (not just \mathbb{P}_1) w.r.t Total Variation.
- Theorem holds for $L^q(P)$ in place of $L^\infty(P)$ as well.
Proof Outline

Step 1 Fix $P \in P_1$, let $f \equiv dP/d\nu$, show $\sup_{g:|g| \leq 1} |\int g(f_k - f) d\nu| = o(1)$:

\[
f_k(y, x, z) \equiv \sum_{i=1}^{K_k} \pi_{ik} 1\{(y, x, z) \in S_{ik}\} \quad f_k \geq 0 \quad \int f_k d\nu = 1
\]

Step 2 \(\{S_{ik}\}_{i=1}^{K_k}\) can be chosen to be the product of three collections of sets

- \(\{U_{ik}\}\) a partition of the set \([-M_k, M_k] d_x\) some \(M_k \in (0, \infty)\).
- \(\{V_{ik}\}\) a partition of the set \([-M_k, M_k] d_z\) same \(M_k \in (0, \infty)\).
- \(\{L_{ik}\}\) a partition of the set \([-M_k, M_k]\) same \(M_k \in (0, \infty)\).

Step 3 Since \(\nu_x\) is atomless, we can pick \(U_{ik}^{(1)}(\tau) \subset U_{ik}\), and \(U_{ik}^{(2)}(\tau) \subset U_{ik}\):

\[
\nu_x(U_{ik}^{(1)}(\tau)) = \nu_x(U_{ik}^{(2)}(\tau)) = \tau \nu_x(U_{ik}) \quad \nu_x(U_{ik}^{(1)}(\tau) \triangle U_{ik}^{(2)}(\tau)) > 0
\]
Proof Outline

Step 4

Under P_k, Y has support contained in $[-M_k, M_k]$. Hence, letting:

$$\theta(l)_k(x, \tau) = D_k \sum_{i=1}^{\{x \in U_l(\tau)\}} \{-2M_k 1_{\{x \in U_{ik}\}}\}$$

we get that

$$1_{\{Y \leq \theta(l)_k(X, \tau)\}} = \sum_{i} 1_{\{X \in U_{ik}\}},$$

almost surely under P_k.

Andres Santos UCSD
Proof Outline

Step 4
Under P_k, Y has support contained in $[-M_k, M_k]$. Hence, letting:

$$\theta(l) k(x, \tau) = D_k \sum_{i=1}^{\{2M_k\}} \left\{ \begin{array}{l} x \in U_{ik}(\tau) \\ x \not\in U_{ik}(\tau) \end{array} \right\} - 2M_k \sum_{i=1}^{\{2M_k\}} \left\{ x \in U_{ik}(\tau) \right\},$$

we get that

$$\{Y \leq \theta(l) k(x, \tau)\} = \sum_{i=1}^{\{2M_k\}} \left\{ X \in U_{ik}(\tau) \right\},$$
a almost surely under P_k.

Andres Santos UCSD
Proof Outline

Step 4
Under P_k, Y has support contained in $[-M_k, M_k]$. Hence, letting:

$\theta(l)(x, \tau) = D_k \sum_{i=1}^{\mathbb{1}_{\{x \in U(l)\}}(\tau)} - 2M_k \sum_{i=1}^{\mathbb{1}_{\{x \in U(l)\}}(\tau)}$

we get that $\mathbb{1}_{\{Y \leq \theta(l)(x, \tau)\}} = \sum_{i=1}^{\mathbb{1}_{\{X \in U(l)\}}(\tau)}$, almost surely under P_k.

Andres Santos UCSD
Proof Outline

\[f_x \]

\[\tau \nu_x \{ U_{4k} \} \]

Under \(P_k \), \(Y \) has support contained in \([-M_k, M_k]\).

Hence, letting:

\[\theta(l; x, \tau) = D_k \sum_{i=1}^{2M_k} \left\{ x \in U_{ik}(l; \tau) \right\} - 2M_k \left\{ x \notin U_{ik}(l; \tau) \right\} \]

we get that:

\[\{ Y \leq \theta(l; x, \tau) \} = \sum_{i} \{ X \in U_{ik}(l; \tau) \}, \text{ almost surely under } P_k. \]
Proof Outline

$\tau \nu_x \{ U_{4k} \}$

U_{1k} U_{2k} U_{3k} U_{4k} U_{5k} U_{6k} U_{7k}

f_x
Proof Outline

Under P_k, Y has support contained in $[-M_k, M_k]$. Hence, letting:

$$\theta(l)(x, \tau)(\tau) = D_k \sum_{i=1}^{2M_k} \{x \in U^{(i)}(l, \tau)\} - 2M_k \{x \not\in U^{(i)}(l, \tau)\}$$

we get that

$$1\{Y \leq \theta(l)(X, \tau)\} = \sum_{i} 1\{X \in U^{(i)}(l, \tau)\},$$

almost surely under P_k.

$$\nu_x \{U^{(1)}(\tau) \Delta U^{(2)}(\tau)\} > 0$$
Proof Outline

\[\tau \nu_x \{ U_{4k} \} \]

\[\nu_x \{ U_{4k}^{(1)} (\tau) \Delta U_{4k}^{(2)} (\tau) \} > 0 \]

Step 4
Under \(P_k \), \(Y \) has support contained in \([-M_k, M_k]\). Hence, letting:
\[
\theta(l) = \sum_{i=1}^{2M_k} \mathbb{1}_{\{ x \in U_i(l) \}} - \sum_{i=1}^{2M_k} \mathbb{1}_{\{ x \notin U_i(l) \}}
\]
we get that:
\[
\mathbb{1}_{\{ Y \leq \theta(l) \}} = \sum_{i=1}^{2M_k} \mathbb{1}_{\{ X \in U_i(l) \}}, \text{ almost surely under } P_k.
\]
Step 4 Under P_k, Y has support contained in $[-M_k, M_k]$. Hence, letting:

$$
\theta_{k}^{(l)}(x, \tau) = \sum_{i=1}^{D_k} \left\{ 2M_k 1\{ x \in U_{ik}^{(l)}(\tau) \} - 2M_k 1\{ x \in U_{ik} \setminus U_{ik}^{(l)}(\tau) \} \right\}
$$

we get that $1\{ Y \leq \theta_{k}^{(l)}(X, \tau) \} = \sum_{i} 1\{ X \in U_{ik}^{(l)} \}$, almost surely under P_k.
Proof Outline

Step 5 Then: (i) $\theta_k^{(1)}$ and $\theta_k^{(2)}$ are bounded, (ii) for any $L_{jk} \times V_{nk} \times U_{tk}$:

$$
\int_{L_{jk}} \int_{V_{nk}} \int_{U_{tk}} \psi(z)(1 \{y \leq \theta_k^{(l)}(x, \tau)\} - \tau) \nu_x(dx) \nu_z(dz) \nu_y(dy)
$$

$$
= \int_{L_{jk}} \int_{V_{nk}} \psi(z) \int_{U_{tk}} (1 \{x \in U_{tk}^{(l)}(\tau)\} - \tau) \nu_x(dx) \nu_z(dz) \nu_y(dy)
$$

$$
= 0
$$

However, $dP_k/d\nu = \sum_{i=1}^{K_k} \pi_{ik} 1\{(x, z) \in S_{ik}\}$ with $S_{ik} = L_{jk} \times V_{nk} \times U_{tk} ...$

Step 6 Hence, $E_{P_k}[\psi(Z)(1 \{Y \leq \theta_k^{(l)}(X, \tau)\} - \tau)] = 0$ for $\psi \in L^1(P_k)$, and:

$$
E_{P_k}[1 \{Y \leq \theta_k^{(l)}(X, \tau)\} - \tau|Z] = 0 \quad P_k - a.s.
$$
Step 7 Argue that $P_k(\theta_k^{(1)}(X, \tau) \neq \theta_k^{(2)}(X, \tau)) > 0$ for all k.

Step 8 Hence, $P_k \in \mathbf{P}_0$ for all k, and $\|P_k - P\|_{TV} = o(1)$. By Lemma,

$$\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \leq \limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \leq \alpha$$
Proof Outline

Step 7 Argue that \(P_k(\theta_k^{(1)}(X, \tau) \neq \theta_k^{(2)}(X, \tau)) > 0 \) for all \(k \).

Step 8 Hence, \(P_k \in P_0 \) for all \(k \), and \(\|P_k - P\|_{TV} = o(1) \). By Lemma,

\[
\limsup_{n \to \infty} \sup_{P \in P_1} E_{P^n}[\phi_n] \leq \limsup_{n \to \infty} \sup_{P \in P_0} E_{P^n}[\phi_n] \leq \alpha
\]

Comments

• In the proof, we actually establish the stronger inequality:

\[
E_{P_k}[(1\{Y \leq \theta_k^{(1)}(X, \tau)\} - 1\{Y \leq \theta_k^{(2)}(X, \tau)\})^2] > 0.
\]

• Results holds if identification is up to \(P \) equivalence of \(1\{Y \leq \theta(X)\} \).
1 Setup

2 Completeness

3 Quantile IV

4 Nonseparable IV
Nonseparable IV

\[H_0 : P \in P_0 \quad H_1 : P \in P_1 \]

for \(P \) the maximal subset of \(M(\nu) \) s.t. for each \(P \in P \), \(\exists \theta_0 \in L^\infty(P) \), with:

\[
Y = \theta_0(X, \epsilon) \quad P(\theta_0(X, \epsilon) \leq \theta_0(X, \tau)|Z) = \tau \quad P - a.s.
\]
Nonseparable IV

\[H_0 : P \in P_0 \quad \text{and} \quad H_1 : P \in P_1 \]

for \(P \) the maximal subset of \(\mathcal{M}(\nu) \) s.t. for each \(P \in \mathcal{P} \), \(\exists \theta_0 \in L^\infty(P) \), with:

\[Y = \theta_0(X, \epsilon) \quad P(\theta_0(X, \epsilon) \leq \theta_0(X, \tau)|Z) = \tau \ P - \text{a.s.} \]

As before, \(P_0 \equiv P \setminus P_1 \), where now \(P_1 \subset P \) is given by the set of measures:

\[P_1 \equiv \{ P \in \mathcal{P} : \exists! \theta \in L^\infty(P) \text{ s.t. } P(Y \leq \theta(X, \tau)|Z) = \tau \ \forall \tau \ P - \text{a.s.} \} \]
Nonseparable IV

\[H_0 : P \in P_0 \quad \quad H_1 : P \in P_1 \]

for \(P \) the maximal subset of \(M(\nu) \) s.t. for each \(P \in P \), \(\exists \theta_0 \in L^\infty(P) \), with:

\[Y = \theta_0(X, \epsilon) \quad \quad P(\theta_0(X, \epsilon) \leq \theta_0(X, \tau)|Z) = \tau \quad P - a.s. \]

As before, \(P_0 \equiv P \setminus P_1 \), where now \(P_1 \subset P \) is given by the set of measures:

\[P_1 \equiv \{ P \in P : \exists! \theta \in L^\infty(P) \text{ s.t. } P(Y \leq \theta(X, \tau)|Z) = \tau \quad \forall \tau \quad P - a.s. \} \]

Comments

- For each \(\tau \in (0, 1) \) model is equivalent to previous one.
- \(\tau \mapsto \theta(X, \tau) \) additionally strictly increasing \(P - a.s. \).
Theorem For \mathcal{P} be as defined, and under Assumption (A), if $\{\phi_n\}$ satisfies:

$$\limsup_{n \to \infty} \sup_{P \in \mathcal{P}_0} E_{P^n}[\phi_n] \leq \alpha,$$

for $P^n \equiv \bigotimes_{i=1}^{n} P$ and level $\alpha \in (0, 1)$, then it follows that it also satisfies:

$$\limsup_{n \to \infty} \sup_{P \in \mathcal{P}_1} E_{P^n}[\phi_n] \leq \alpha.$$

Comments

- We show \mathcal{P}_0 is dense in $\mathcal{M}(\nu)$ not just \mathcal{P}_1 w.r.t. Total Variation.
- Theorem holds for $L^q(P)$ in place of $L^\infty(P)$ completeness as well.
- Essentially same steps, but add monotonicity in τ to construction.
Conclusion

Testability

- No nontrivial tests for identification exist in three IV models.
- P requirements are satisfied by usual assumptions in the literature.

However ...

- Valid tests may exist under more restrictive assumptions on P.
- Valid tests may also exist under shape restrictions on θ_0.
- Results can aid develop nontrivial tests under additional requirements.

Two Constructive Points

- Highlight importance of alternative justifications – e.g. genericity.
- Emphasize value of procedures that are robust to partial identification.