On the Testability of Identification in Some Nonparametric Models with Endogeneity

Ivan A. Canay Northwestern U. Andres Santos UC San Diego Azeem M. Shaikh U. Chicago

Three Nonparametric Models

Conditional Mean IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$ have distribution P:

 $Y = \theta_0(X) + \epsilon \qquad \qquad E_P[\epsilon|Z] = 0$

Three Nonparametric Models

Conditional Mean IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$ have distribution P:

 $Y = \theta_0(X) + \epsilon \qquad \qquad E_P[\epsilon|Z] = 0$

Conditional Quantile IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$ have distribution *P*:

 $Y = \theta_0(X) + \epsilon \qquad P(\epsilon \le 0|Z) = \tau$

Three Nonparametric Models

Conditional Mean IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$ have distribution P:

 $Y = \theta_0(X) + \epsilon \qquad \qquad E_P[\epsilon|Z] = 0$

Conditional Quantile IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$ have distribution *P*:

 $Y = \theta_0(X) + \epsilon \qquad P(\epsilon \le 0|Z) = \tau$

Non-separable IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$ have distribution *P*:

 $Y = \theta_0(X, \epsilon) \qquad \qquad P(\theta_0(X, \epsilon) \le \theta_0(X, \tau) | Z) = \tau$

where in addition $\tau \mapsto \theta_0(X, \tau)$ is assumed strictly monotonic almost surely.

Identification

In conditional mean IV, identification requires a unique solution (in θ) to:

 $E_P[Y|Z] = E_P[\theta(X)|Z]$

Since Newey & Powell (2003), identification through completeness condition

 $E_P[\theta(X)|Z] = 0$ $P-a.s. \Rightarrow \theta(X) = 0$ P-a.s.

Comments

- More general: bounded completeness or $L^q(P)$ completeness.
- Sometimes referred to as nonparametric rank condition.
- Also used in identification of quantile and nonseparable models.

Problems

- Completeness conditions are difficult to interpret.
- Hard to motivate from economic theory.

Questions

- Are completeness assumptions testable under reasonable conditions?
- More generally: is point identification testable in these three models?

Answers

- We show no nontrivial tests for completeness exist.
- We show no nontrivial tests for identification exist in these three models.

Linear Model Intuition

Linear IV: Suppose $(Y, X, Z) \in \mathbf{R}^3$ with distribution $P \in \mathbf{P}$, and satisfy:

 $Y = X\theta_0 + \epsilon \qquad \qquad E_P[Z\epsilon] = 0$

 $\Rightarrow \theta_0$ is identified if and only if $E_P[XZ] \neq 0$ – i.e. $\theta_0 = E_P[XY]/E_P[XZ]$.

Testing Rank Condition

 $H_0: E_P[XZ] = 0 \qquad \qquad H_1: E_P[XZ] \neq 0$

Bahadur and Savage (1956)

- Negative: If P is rich enough, only test is the trivial test.
- Positive: Learn how to restrict P for tests to exist (example bounded).

 $H_0: P \in \mathbf{P}_0 \qquad \qquad H_1: P \in \mathbf{P}_1$

where $\mathbf{P}_1 \equiv \mathbf{P} \setminus \mathbf{P}_0 = \{ \text{distributions that are complete (or model identified}) \}.$

Main Result

Any test ϕ_n that controls asymptotic size at level $\alpha \in (0,1)$, in the sense:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha ,$

(for $P^n \equiv \bigotimes_{i=1}^n P$) will have no power against any alternative, in the sense:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \alpha \; .$

Conclusion holds for all three models, under common assumptions on P.

Andres Santos

Nonparametric IV

Newey & Powell (2003), Hall and Horowitz (2005), Blundell et al. (2007), Darolles et al. (2011), Hu and Schennach (2008), Berry & Haile (2010), d'Haultfoeuille (2011), Andrews (2011), Hoderlein et al. (2012).

Quantile/Nonseparable IV

Chernozhukov & Hansen (2005), Horowitz & Lee (2007), Chen & Pouzo (2008), Chernozhukov et al. (2010), Imbens & Newey (2009), Berry & Haile (2009, 2010), Torgovitzky (2011), d'Haultfoeuielle & Fevrier (2011).

Uniformly Valid Inference

Bahadur & Savage (1956), Romano (2004), and many others ...

General Outline

Setup

- Notation and Assumptions.
- Useful Lemma.

Testing Completeness

- The null and alternative hypothesis.
- Main result and proof strategy.

Quantile/Nonseparable IV

- Quantile IV: Main result and proof strategy.
- Nonseparable IV: Main result.

Andres Santos

Let M be the set of all probability measures on $\mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$, and define:

 $\mathbf{M}(\nu) \equiv \{P \in \mathbf{M} : P \ll \nu\}$

We will require $\mathbf{P} \subseteq \mathbf{M}(\nu)$ for some measure ν satisfying the following:

Let M be the set of all probability measures on $\mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$, and define:

 $\mathbf{M}(\nu) \equiv \{ P \in \mathbf{M} : P \ll \nu \}$

We will require $\mathbf{P} \subseteq \mathbf{M}(\nu)$ for some measure ν satisfying the following:

Main Assumption (A)

- ν is a σ -finite Borel measure on $\mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$.
- $\nu = \nu_y \times \nu_x \times \nu_z$ for ν_y, ν_x and ν_z Borel measures on **R**, \mathbf{R}^{d_x} and \mathbf{R}^{d_z} .
- The measure ν_x is atomless on \mathbf{R}^{d_x} .

Let M be the set of all probability measures on $\mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$, and define:

 $\mathbf{M}(\nu) \equiv \{ P \in \mathbf{M} : P \ll \nu \}$

We will require $\mathbf{P} \subseteq \mathbf{M}(\nu)$ for some measure ν satisfying the following:

Main Assumption (A)

- ν is a σ -finite Borel measure on $\mathbf{R} \times \mathbf{R}^{d_x} \times \mathbf{R}^{d_z}$.
- $\nu = \nu_y \times \nu_x \times \nu_z$ for ν_y, ν_x and ν_z Borel measures on **R**, \mathbf{R}^{d_x} and \mathbf{R}^{d_z} .
- The measure ν_x is atomless on \mathbf{R}^{d_x} .

Comments

- Support restrictions imposed through ν (example $(X, Z) \in [0, 1]^{d_x+d_z}$).
- ν product measure does not require $P \in \mathbf{P}$ to be product measure.

Discussion

ν_x atomless

- May be relaxed, but ν_x cannot be purely discrete.
- If $d_x > 1$, then sufficient for one coordinate to be atomless.

Example

• Suppose ν_x and ν_z have discrete support $\{x_1, \ldots, x_s\}$ and $\{z_1, \ldots, z_t\}$.

 $\Pi(P) \equiv \{s \times t \text{ matrix with } \Pi(P)_{j,k} = P(X = x_j | Z = z_k)\}$

- Newey & Powell (2003) showed P is complete iff $rank(\Pi(P)) = s$.
- Test can be constructed through uniform confidence region for $\Pi(P)$.

Useful Lemma

$$||P_1 - P_2||_{TV} \equiv \sup_{g:|g| \le 1} \frac{1}{2} \left| \int g dP_1 - \int g dP_2 \right|$$

Lemma If for all $P \in \mathbf{P}_1$, there is $\{P_k\}$ with $P_k \in \mathbf{P}_0$ and $||P - P_k||_{TV} = o(1)$ $\sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \leq \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n]$

for every sequence of test functions $\{\phi_n\}$ and for every *n*.

Comments

- Small modification of Theorem 1 in Romano (2004).
- Result implies its asymptotic analogue.
- Intuition: If every $P \in \mathbf{P}_1$ is in the boundary of \mathbf{P}_0 , then we conclude

Size Control \Rightarrow No Power

Useful Lemma

Key Idea: Since $|\phi_n| \leq 1$ for any test function, $||P - P_k||_{TV} = o(1)$ implies:

$$\left|\int \phi_n dP_k^n - \int \phi_n dP^n\right| \le \sup_{g:|g|\le 1} \frac{1}{2} \left|\int g dP_k^n - \int g dP^n\right| = o(1)$$

Comments

- Total Variation distance plays no role in the definition of P₀ and P₁.
- · Metrics compatible with weak topology may be too weak for result.
- Stronger metric, implies harder to show $P_k \rightarrow P$.

Goal: Show in problems we study, lack of identification (\mathbf{P}_0) is "dense".

 $H_0: P \in \mathbf{P}_0 \qquad H_1: P \in \mathbf{P}_1$

where $\mathbf{P} = \mathbf{M}(\nu)$ for some $\nu \in \mathbf{M}$, $\mathbf{P}_0 \equiv \mathbf{P} \setminus \mathbf{P}_1$ and we additionally define:

 $\mathbf{P}_1 \equiv \{ P \in \mathbf{P} : E_P[\theta(X)|Z] = 0 \text{ for } \theta \in L^{\infty}(P) \Rightarrow \theta(X) = 0 P - a.s. \}$

Comments

- Using $L^{\infty}(P) \Rightarrow$ test for bounded completeness.
- Replacing L[∞](P) with L^q(P) for 1 ≤ q < ∞ just enlarges P₀.
- No power in this setting \Rightarrow no power in test of $L^q(P)$ completeness.

Completeness

Theorem Let $\mathbf{P} = \mathbf{M}(\nu)$ and Assumption (A) hold. Then if $\{\phi_n\}$ satisfies:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha ,$

for $P^n \equiv \bigotimes_{i=1}^n P$ and level $\alpha \in (0,1)$, then it follows that it also satisfies:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \alpha \; .$

Comments

- If ν has compact support, then support of $P \in \mathbf{P}$ uniformly bounded.
- In contrast, ν with compact support suffices in linear IV model.

Step 1 Fix $P \in \mathbf{P}_1$, let $f \equiv dP/d\nu$, show $\sup_{g:|g| \leq 1} |\int g(f_k - f)d\nu| = o(1)$:

$$f_k(x,z) \equiv \sum_{i=1}^{K_k} \pi_{ik} 1\{(x,z) \in S_{ik}\} \qquad f_k \ge 0 \qquad \int f_k d\nu = 1$$

Step 2 $\{S_{ik}\}_{i=1}^{K_k}$ can be chosen to be the product of two collections of sets:

- $\{U_{ik}\}$ a partition of the set $[-M_k, M_k]^{d_x}$ some $M_k \in (0, \infty)$.
- $\{V_{ik}\}$ a partition of the set $[-M_k, M_k]^{d_z}$ same $M_k \in (0, \infty)$.

Step 3 Since ν_x is atomless, we can partition each U_{ik} into $(U_{ik}^{(1)}, U_{ik}^{(2)})$:

$$\nu_x(U_{ik}^{(1)}) = \nu_x(U_{ik}^{(2)}) = \frac{1}{2}\nu_x(U_{ik})$$

Step 4 Let P_k be measure with $dP_k/d\nu = f_k$, and define the function:

$$\theta_k(x) \equiv \sum_{i=1}^{D_k} (1\{x \in U_{ik}^{(1)}\} - 1\{x \in U_{ik}^{(2)}\})$$

Step 5 Then: (i) θ_k is bounded, (ii) $\theta_k(X) \neq 0$ $P_k - a.s.$, and (iii):

$$\begin{split} \int_{V_{nk}} \int_{U_{tk}} \psi(z) \theta_k(x) \nu_x(dx) \nu_z(dz) \\ &= \int_{V_{nk}} \psi(z) \int_{U_{tk}} (1\{x \in U_{tk}^{(1)}\} - 1\{x \in U_{tk}^{(2)}\}) \nu_x(dx) \nu_z(dz) \\ &= 0 \end{split}$$

However, recall $dP_k/d\nu = \sum_{i=1}^{K_k} \pi_{ik} 1\{(x, z) \in S_{ik}\}$ with $S_{ik} = V_{nk} \times U_{tk} \dots$

Step 6 Therefore, $E_{P_k}[\psi(Z)\theta_k(X)] = 0$ for all P_k -integrable ψ , and hence:

 $E_{P_k}[\theta_k(X)|Z] = 0 \quad P_k - a.s.$

Step 7 Therefore, $P_k \in \mathbf{P}_0$ for all k, and $||P_k - P||_{TV} = o(1)$. By Lemma,

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha$

Step 6 Therefore, $E_{P_k}[\psi(Z)\theta_k(X)] = 0$ for all P_k -integrable ψ , and hence:

 $E_{P_k}[\theta_k(X)|Z] = 0 \quad P_k - a.s.$

Step 7 Therefore, $P_k \in \mathbf{P}_0$ for all k, and $||P_k - P||_{TV} = o(1)$. By Lemma,

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha$

Comments

- The sequence $\{\theta_k\}$ developed in the proof is not differentiable.
- Proof may be modified so $\{\theta_k\}$ is infinitely differentiable.
- $\Rightarrow L^{\infty}(P)$ may be replaced by Sobolev space or Ball.
- Similarly, we may also impose smoothness restrictions on $dP/d\nu$.

Two Important Features

- Completeness may be testable under alternative specifications of P. However, standard "nonparametric" approaches do not seem to apply.
- Assumptions routinely employed that are non testable but "reasonable".

Genericity Arguments

- Alternative justification in favor of completeness assumptions.
- Andrews (2011) shows set of distributions for which it fails is "shy".
- Chen et al. (2012) show certain measures (over conditional expectation operators) assign zero probability to completeness failure.

Andres Santos

Quantile IV

 $H_0: P \in \mathbf{P}_0 \qquad \qquad H_1: P \in \mathbf{P}_1$

for P the subset of $\mathbf{M}(\nu)$ consisting of $P \in \mathbf{M}(\nu)$ such that $\exists \theta_0 \in L^{\infty}(P)$: $Y = \theta_0(X) + \epsilon \qquad P(\epsilon \le 0|Z) = \tau P - a.s.$ $H_0: P \in \mathbf{P}_0 \qquad \qquad H_1: P \in \mathbf{P}_1$

for **P** the subset of $\mathbf{M}(\nu)$ consisting of $P \in \mathbf{M}(\nu)$ such that $\exists \theta_0 \in L^{\infty}(P)$:

 $Y = \theta_0(X) + \epsilon$ $P(\epsilon \le 0|Z) = \tau P - a.s.$

As before, $\mathbf{P}_0 \equiv \mathbf{P} \setminus \mathbf{P}_1$, where now $\mathbf{P}_1 \subset \mathbf{P}$ is given by the set of measures: $\mathbf{P}_1 \equiv \{P \in \mathbf{P} : \exists ! \theta \in L^{\infty}(P) \text{ s.t. } P(Y \leq \theta(X) | Z) = \tau \ P - a.s.\}$ $H_0: P \in \mathbf{P}_0 \qquad \qquad H_1: P \in \mathbf{P}_1$

for P the subset of $\mathbf{M}(\nu)$ consisting of $P \in \mathbf{M}(\nu)$ such that $\exists \ \theta_0 \in L^{\infty}(P)$:

 $Y = \theta_0(X) + \epsilon$ $P(\epsilon \le 0|Z) = \tau P - a.s.$

As before, $\mathbf{P}_0 \equiv \mathbf{P} \setminus \mathbf{P}_1$, where now $\mathbf{P}_1 \subset \mathbf{P}$ is given by the set of measures: $\mathbf{P}_1 \equiv \{P \in \mathbf{P} : \exists! \theta \in L^{\infty}(P) \text{ s.t. } P(Y \leq \theta(X) | Z) = \tau \ P - a.s.\}$

Comments

- Uniqueness of $\theta \in L^{\infty}(P)$ understood up to sets of *P*-measure zero.
- No easy necessary conditions for identification from completeness:

⇒ We test for identification directly

Quantile IV

Theorem Let **P** be as defined, and Assumption (A) hold. If $\{\phi_n\}$ satisfies:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha ,$

for $P^n \equiv \bigotimes_{i=1}^n P$ and level $\alpha \in (0,1)$, then it follows that it also satisfies:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \alpha \; .$

Comments

- We show \mathbf{P}_0 is dense in $\mathbf{M}(\nu)$ (not just \mathbf{P}_1) w.r.t Total Variation.
- Theorem holds for $L^q(P)$ in place of $L^{\infty}(P)$ as well.

Step 1 Fix $P \in \mathbf{P}_1$, let $f \equiv dP/d\nu$, show $\sup_{g:|g| \leq 1} |\int g(f_k - f)d\nu| = o(1)$:

$$f_k(y, x, z) \equiv \sum_{i=1}^{K_k} \pi_{ik} \mathbb{1}\{(y, x, z) \in S_{ik}\} \qquad f_k \ge 0 \qquad \int f_k d\nu = 1$$

Step 2 $\{S_{ik}\}_{i=1}^{K_k}$ can be chosen to be the product of three collections of sets

- $\{U_{ik}\}$ a partition of the set $[-M_k, M_k]^{d_x}$ some $M_k \in (0, \infty)$.
- $\{V_{ik}\}$ a partition of the set $[-M_k, M_k]^{d_z}$ same $M_k \in (0, \infty)$.
- $\{L_{ik}\}$ a partition of the set $[-M_k, M_k]$ same $M_k \in (0, \infty)$.

Step 3 Since ν_x is atomless, we can pick $U_{ik}^{(1)}(\tau) \subset U_{ik}$, and $U_{ik}^{(2)}(\tau) \subset U_{ik}$:

$$\nu_x(U_{ik}^{(1)}(\tau)) = \nu_x(U_{ik}^{(2)}(\tau)) = \tau\nu_x(U_{ik}) \qquad \nu_x(U_{ik}^{(1)}(\tau) \triangle U_{ik}^{(2)}(\tau)) > 0$$

Andres Santos

Step 4 Under P_k , Y has support contained in $[-M_k, M_k]$. Hence, letting:

$$\theta_k^{(l)}(x,\tau) = \sum_{i=1}^{D_k} \{ 2M_k 1\{x \in U_{ik}^{(l)}(\tau)\} - 2M_k 1\{x \in U_{ik} \setminus U_{ik}^{(l)}(\tau)\} \}$$

we get that $1\{Y \le \theta_k^{(l)}(X, \tau)\} = \sum_i 1\{X \in U_{ik}^{(l)}\}$, almost surely under P_k .

Step 5 Then: (i) $\theta_k^{(1)}$ and $\theta_k^{(2)}$ are bounded, (ii) for any $L_{jk} \times V_{nk} \times U_{tk}$:

$$\begin{split} \int_{L_{jk}} \int_{V_{nk}} \int_{U_{tk}} \psi(z) (1\{y \le \theta_k^{(l)}(x,\tau)\} - \tau) \nu_x(dx) \nu_z(dz) \nu_y(dy) \\ &= \int_{L_{jk}} \int_{V_{nk}} \psi(z) \int_{U_{tk}} (1\{x \in U_{tk}^{(l)}(\tau)\} - \tau) \nu_x(dx) \nu_z(dz) \nu_y(dy) \\ &= 0 \end{split}$$

However, $dP_k/d\nu = \sum_{i=1}^{K_k} \pi_{ik} \mathbb{1}\{(x, z) \in S_{ik}\}$ with $S_{ik} = L_{jk} \times V_{nk} \times U_{tk} \dots$

Step 6 Hence, $E_{P_k}[\psi(Z)(1\{Y \le \theta_k^{(l)}(X, \tau)\} - \tau)] = 0$ for $\psi \in L^1(P_k)$, and: $E_{P_k}[1\{Y \le \theta_k^{(l)}(X, \tau)\} - \tau |Z] = 0$ $P_k - a.s.$

Step 7 Argue that $P_k(\theta_k^{(1)}(X,\tau) \neq \theta_k^{(2)}(X,\tau)) > 0$ for all k.

Step 8 Hence, $P_k \in \mathbf{P}_0$ for all k, and $||P_k - P||_{TV} = o(1)$. By Lemma,

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha$

Step 7 Argue that $P_k(\theta_k^{(1)}(X,\tau) \neq \theta_k^{(2)}(X,\tau)) > 0$ for all k.

Step 8 Hence, $P_k \in \mathbf{P}_0$ for all k, and $||P_k - P||_{TV} = o(1)$. By Lemma,

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha$

Comments

• In the proof, we actually establish the stronger inequality:

 $E_{P_k}[(1\{Y \le \theta_k^{(1)}(X,\tau)\} - 1\{Y \le \theta_k^{(2)}(X,\tau)\})^2] > 0.$

• Results holds if identification is up to P equivalence of $1\{Y \le \theta(X)\}$.

Andres Santos

 $H_0: P \in \mathbf{P}_0 \qquad \qquad H_1: P \in \mathbf{P}_1$

for **P** the maximal subset of $\mathbf{M}(\nu)$ s.t. for each $P \in \mathbf{P}, \exists \theta_0 \in L^{\infty}(P)$, with:

 $Y = \theta_0(X, \epsilon) \qquad P(\theta_0(X, \epsilon) \le \theta_0(X, \tau) | Z) = \tau P - a.s.$

 $H_0: P \in \mathbf{P}_0 \qquad H_1: P \in \mathbf{P}_1$

for **P** the maximal subset of $\mathbf{M}(\nu)$ s.t. for each $P \in \mathbf{P}, \exists \theta_0 \in L^{\infty}(P)$, with:

 $Y = \theta_0(X, \epsilon) \qquad P(\theta_0(X, \epsilon) \le \theta_0(X, \tau) | Z) = \tau P - a.s.$

As before, $\mathbf{P}_0 \equiv \mathbf{P} \setminus \mathbf{P}_1$, where now $\mathbf{P}_1 \subset \mathbf{P}$ is given by the set of measures: $\mathbf{P}_1 \equiv \{P \in \mathbf{P} : \exists ! \theta \in L^{\infty}(P) \text{ s.t. } P(Y \leq \theta(X, \tau) | Z) = \tau \quad \forall \tau \ P - a.s. \}$ $H_0: P \in \mathbf{P}_0 \qquad \qquad H_1: P \in \mathbf{P}_1$

for **P** the maximal subset of $\mathbf{M}(\nu)$ s.t. for each $P \in \mathbf{P}, \exists \theta_0 \in L^{\infty}(P)$, with:

 $Y = \theta_0(X, \epsilon) \qquad P(\theta_0(X, \epsilon) \le \theta_0(X, \tau) | Z) = \tau P - a.s.$

As before, $\mathbf{P}_0 \equiv \mathbf{P} \setminus \mathbf{P}_1$, where now $\mathbf{P}_1 \subset \mathbf{P}$ is given by the set of measures: $\mathbf{P}_1 \equiv \{P \in \mathbf{P} : \exists ! \theta \in L^{\infty}(P) \text{ s.t. } P(Y \leq \theta(X, \tau) | Z) = \tau \quad \forall \tau \ P - a.s.\}$

Comments

- For each $\tau \in (0,1)$ model is equivalent to previous one.
- $\tau \mapsto \theta(X, \tau)$ additionally strictly increasing P a.s.

Theorem For **P** be as defined, and under Assumption (A), if $\{\phi_n\}$ satisfies:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{P^n}[\phi_n] \le \alpha ,$

for $P^n \equiv \bigotimes_{i=1}^n P$ and level $\alpha \in (0,1)$, then it follows that it also satisfies:

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} E_{P^n}[\phi_n] \le \alpha \; .$

Comments

- We show \mathbf{P}_0 is dense in $\mathbf{M}(\nu)$ not just \mathbf{P}_1 w.r.t. Total Variation.
- Theorem holds for $L^q(P)$ in place of $L^{\infty}(P)$ completeness as well.
- Essentially same steps, but add monotonicity in τ to construction.

Conclusion

Testability

- No nontrivial tests for identification exist in three IV models.
- P requirements are satisfied by usual assumptions in the literature.

However ...

- Valid tests may exist under more restrictive assumptions on P.
- Valid tests may also exist under shape restrictions on θ_0 .
- Results can aid develop nontrivial tests under additional requirements.

Two Constructive Points

- Highlight importance of alternative justifications e.g. genericity.
- Emphasize value of procedures that are robust to partial identification.