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Three Nonparametric Models

Conditional Mean IV: Let (Y,X,Z) ∈ R×Rdx ×Rdz have distribution P :

Y = θ0(X) + ε EP [ε|Z] = 0

Conditional Quantile IV: Let (Y,X,Z) ∈ R×Rdx ×Rdz have distribution P :

Y = θ0(X) + ε P (ε ≤ 0|Z) = τ

Non-separable IV: Let (Y,X,Z) ∈ R×Rdx ×Rdz have distribution P :

Y = θ0(X, ε) P (θ0(X, ε) ≤ θ0(X, τ)|Z) = τ

where in addition τ 7→ θ0(X, τ) is assumed strictly monotonic almost surely.
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Identification

In conditional mean IV, identification requires a unique solution (in θ) to:

EP [Y |Z] = EP [θ(X)|Z]

Since Newey & Powell (2003), identification through completeness condition

EP [θ(X)|Z] = 0 P − a.s. ⇒ θ(X) = 0 P − a.s.

Comments
• More general: bounded completeness or Lq(P ) completeness.
• Sometimes referred to as nonparametric rank condition.
• Also used in identification of quantile and nonseparable models.
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Testability

Problems
• Completeness conditions are difficult to interpret.
• Hard to motivate from economic theory.

Questions
• Are completeness assumptions testable under reasonable conditions?
• More generally: is point identification testable in these three models?

Answers
• We show no nontrivial tests for completeness exist.
• We show no nontrivial tests for identification exist in these three models.
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Linear Model Intuition

Linear IV: Suppose (Y,X,Z) ∈ R3 with distribution P ∈ P, and satisfy:

Y = Xθ0 + ε EP [Zε] = 0

⇒ θ0 is identified if and only if EP [XZ] 6= 0 – i.e. θ0 = EP [XY ]/EP [XZ].

Testing Rank Condition

H0 : EP [XZ] = 0 H1 : EP [XZ] 6= 0

Bahadur and Savage (1956)

• Negative: If P is rich enough, only test is the trivial test.
• Positive: Learn how to restrict P for tests to exist (example bounded).
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General Setup

H0 : P ∈ P0 H1 : P ∈ P1

where P1 ≡ P \P0 = {distributions that are complete (or model identified)}.

Main Result

Any test φn that controls asymptotic size at level α ∈ (0, 1), in the sense:

lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α ,

(for Pn ≡
⊗n

i=1 P ) will have no power against any alternative, in the sense:

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α .

Conclusion holds for all three models, under common assumptions on P.
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Literature Review

Nonparametric IV

Newey & Powell (2003), Hall and Horowitz (2005), Blundell et al. (2007),
Darolles et al. (2011), Hu and Schennach (2008), Berry & Haile (2010),
d’Haultfoeuille (2011), Andrews (2011), Hoderlein et al. (2012).

Quantile/Nonseparable IV
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Uniformly Valid Inference
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General Outline

Setup
• Notation and Assumptions.
• Useful Lemma.

Testing Completeness
• The null and alternative hypothesis.
• Main result and proof strategy.

Quantile/Nonseparable IV
• Quantile IV: Main result and proof strategy.
• Nonseparable IV: Main result.
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1 Setup

2 Completeness

3 Quantile IV

4 Nonseparable IV
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Notation

Let M be the set of all probability measures on R×Rdx ×Rdz , and define:

M(ν) ≡ {P ∈M : P � ν}

We will require P ⊆M(ν) for some measure ν satisfying the following:

Main Assumption (A)
• ν is a σ-finite Borel measure on R×Rdx ×Rdz .
• ν = νy × νx × νz for νy, νx and νz Borel measures on R, Rdx and Rdz .
• The measure νx is atomless on Rdx .

Comments
• Support restrictions imposed through ν (example (X,Z) ∈ [0, 1]dx+dz ).
• ν product measure does not require P ∈ P to be product measure.
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Discussion

νx atomless
• May be relaxed, but νx cannot be purely discrete.
• If dx > 1, then sufficient for one coordinate to be atomless.

Example

• Suppose νx and νz have discrete support {x1, . . . , xs} and {z1, . . . , zt}.

Π(P ) ≡ {s× t matrix with Π(P )j,k = P (X = xj |Z = zk)}

• Newey & Powell (2003) showed P is complete iff rank(Π(P )) = s.
• Test can be constructed through uniform confidence region for Π(P ).

Andres Santos UCSD



Useful Lemma

‖P1 − P2‖TV ≡ sup
g:|g|≤1

1

2

∣∣∣ ∫ gdP1 −
∫
gdP2

∣∣∣
Lemma If for all P ∈ P1, there is {Pk} with Pk ∈ P0 and ‖P − Pk‖TV = o(1)

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn]

for every sequence of test functions {φn} and for every n.

Comments
• Small modification of Theorem 1 in Romano (2004).
• Result implies its asymptotic analogue.
• Intuition: If every P ∈ P1 is in the boundary of P0, then we conclude

Size Control⇒ No Power
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Useful Lemma

Key Idea: Since |φn| ≤ 1 for any test function, ‖P − Pk‖TV = o(1) implies:∣∣∣ ∫ φndP
n
k −

∫
φndP

n
∣∣∣ ≤ sup

g:|g|≤1

1

2

∣∣∣ ∫ gdPnk −
∫
gdPn

∣∣∣ = o(1)

Comments
• Total Variation distance plays no role in the definition of P0 and P1.
• Metrics compatible with weak topology may be too weak for result.
• Stronger metric, implies harder to show Pk → P .

Goal: Show in problems we study, lack of identification (P0) is “dense”.
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1 Setup

2 Completeness

3 Quantile IV

4 Nonseparable IV
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Completeness

H0 : P ∈ P0 H1 : P ∈ P1

where P = M(ν) for some ν ∈M, P0 ≡ P \P1 and we additionally define:

P1 ≡ {P ∈ P : EP [θ(X)|Z] = 0 for θ ∈ L∞(P )⇒ θ(X) = 0 P − a.s.}

Comments
• Using L∞(P )⇒ test for bounded completeness.
• Replacing L∞(P ) with Lq(P ) for 1 ≤ q <∞ just enlarges P0.
• No power in this setting⇒ no power in test of Lq(P ) completeness.
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Completeness

Theorem Let P = M(ν) and Assumption (A) hold. Then if {φn} satisfies:

lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α ,

for Pn ≡
⊗n

i=1 P and level α ∈ (0, 1), then it follows that it also satisfies:

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α .

Comments
• If ν has compact support, then support of P ∈ P uniformly bounded.
• In contrast, ν with compact support suffices in linear IV model.
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Proof Outline

Step 1 Fix P ∈ P1, let f ≡ dP/dν, show supg:|g|≤1 |
∫
g(fk − f)dν| = o(1):

fk(x, z) ≡
Kk∑
i=1

πik1{(x, z) ∈ Sik} fk ≥ 0

∫
fkdν = 1

Step 2 {Sik}Kk
i=1 can be chosen to be the product of two collections of sets:

• {Uik} a partition of the set [−Mk,Mk]dx some Mk ∈ (0,∞).
• {Vik} a partition of the set [−Mk,Mk]dz same Mk ∈ (0,∞).

Step 3 Since νx is atomless, we can partition each Uik into (U
(1)
ik , U

(2)
ik ):

νx(U
(1)
ik ) = νx(U

(2)
ik ) =

1

2
νx(Uik)
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Proof Outline

Step 4 Let Pk be measure with dPk/dν = fk, and define the function:

θk(x) ≡
Dk∑
i=1

(1{x ∈ U (1)
ik } − 1{x ∈ U (2)

ik })

Step 5 Then: (i) θk is bounded, (ii) θk(X) 6= 0 Pk − a.s., and (iii):∫
Vnk

∫
Utk

ψ(z)θk(x)νx(dx)νz(dz)

=

∫
Vnk

ψ(z)

∫
Utk

(1{x ∈ U (1)
tk } − 1{x ∈ U (2)

tk })νx(dx)νz(dz)

= 0

However, recall dPk/dν =
∑Kk

i=1 πik1{(x, z) ∈ Sik} with Sik = Vnk × Utk ...
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Proof Outline

Step 6 Therefore, EPk
[ψ(Z)θk(X)] = 0 for all Pk-integrable ψ, and hence:

EPk
[θk(X)|Z] = 0 Pk − a.s.

Step 7 Therefore, Pk ∈ P0 for all k, and ‖Pk − P‖TV = o(1). By Lemma,

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α

Comments
• The sequence {θk} developed in the proof is not differentiable.
• Proof may be modified so {θk} is infinitely differentiable.
• ⇒ L∞(P ) may be replaced by Sobolev space or Ball.
• Similarly, we may also impose smoothness restrictions on dP/dν.
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Comments

Two Important Features
• Completeness may be testable under alternative specifications of P.

However, standard “nonparametric” approaches do not seem to apply.
• Assumptions routinely employed that are non testable but “reasonable”.

Genericity Arguments

• Alternative justification in favor of completeness assumptions.
• Andrews (2011) shows set of distributions for which it fails is “shy”.
• Chen et al. (2012) show certain measures (over conditional expectation

operators) assign zero probability to completeness failure.
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1 Setup
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3 Quantile IV
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Andres Santos UCSD



Quantile IV

H0 : P ∈ P0 H1 : P ∈ P1

for P the subset of M(ν) consisting of P ∈M(ν) such that ∃ θ0 ∈ L∞(P ):

Y = θ0(X) + ε P (ε ≤ 0|Z) = τ P − a.s.

As before, P0 ≡ P \P1, where now P1 ⊂ P is given by the set of measures:

P1 ≡ {P ∈ P : ∃!θ ∈ L∞(P ) s.t. P (Y ≤ θ(X)|Z) = τ P − a.s.}

Comments
• Uniqueness of θ ∈ L∞(P ) understood up to sets of P -measure zero.
• No easy necessary conditions for identification from completeness:

⇒ We test for identification directly
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Quantile IV

Theorem Let P be as defined, and Assumption (A) hold. If {φn} satisfies:

lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α ,

for Pn ≡
⊗n

i=1 P and level α ∈ (0, 1), then it follows that it also satisfies:

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α .

Comments
• We show P0 is dense in M(ν) (not just P1) w.r.t Total Variation.
• Theorem holds for Lq(P ) in place of L∞(P ) as well.
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Proof Outline

Step 1 Fix P ∈ P1, let f ≡ dP/dν, show supg:|g|≤1 |
∫
g(fk − f)dν| = o(1):

fk(y, x, z) ≡
Kk∑
i=1

πik1{(y, x, z) ∈ Sik} fk ≥ 0

∫
fkdν = 1

Step 2 {Sik}Kk
i=1 can be chosen to be the product of three collections of sets

• {Uik} a partition of the set [−Mk,Mk]dx some Mk ∈ (0,∞).
• {Vik} a partition of the set [−Mk,Mk]dz same Mk ∈ (0,∞).
• {Lik} a partition of the set [−Mk,Mk] same Mk ∈ (0,∞).

Step 3 Since νx is atomless, we can pick U (1)
ik (τ) ⊂ Uik, and U (2)

ik (τ) ⊂ Uik:

νx(U
(1)
ik (τ)) = νx(U

(2)
ik (τ)) = τνx(Uik) νx(U

(1)
ik (τ)4U (2)

ik (τ)) > 0
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Proof Outline

x

fx

Step 4 Under Pk, Y has support contained in [−Mk,Mk]. Hence, letting:

θ
(l)
k (x, τ) =

Dk∑
i=1

{2Mk1{x ∈ U (l)
ik (τ)} − 2Mk1{x ∈ Uik \ U (l)

ik (τ)}}

we get that 1{Y ≤ θ(l)k (X, τ)} =
∑
i 1{X ∈ U (l)

ik }, almost surely under Pk.
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Proof Outline

Step 5 Then: (i) θ(1)k and θ(2)k are bounded, (ii) for any Ljk × Vnk × Utk:∫
Ljk

∫
Vnk

∫
Utk

ψ(z)(1{y ≤ θ(l)k (x, τ)} − τ)νx(dx)νz(dz)νy(dy)

=

∫
Ljk

∫
Vnk

ψ(z)

∫
Utk

(1{x ∈ U (l)
tk (τ)} − τ)νx(dx)νz(dz)νy(dy)

= 0

However, dPk/dν =
∑Kk

i=1 πik1{(x, z) ∈ Sik} with Sik = Ljk × Vnk × Utk ...

Step 6 Hence, EPk
[ψ(Z)(1{Y ≤ θ(l)k (X, τ)} − τ)] = 0 for ψ ∈ L1(Pk), and:

EPk
[1{Y ≤ θ(l)k (X, τ)} − τ |Z] = 0 Pk − a.s.
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Proof Outline

Step 7 Argue that Pk(θ
(1)
k (X, τ) 6= θ

(2)
k (X, τ)) > 0 for all k.

Step 8 Hence, Pk ∈ P0 for all k, and ‖Pk − P‖TV = o(1). By Lemma,

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α

Comments
• In the proof, we actually establish the stronger inequality:

EPk
[(1{Y ≤ θ(1)k (X, τ)} − 1{Y ≤ θ(2)k (X, τ)})2] > 0 .

• Results holds if identification is up to P equivalence of 1{Y ≤ θ(X)}.
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Nonseparable IV

H0 : P ∈ P0 H1 : P ∈ P1

for P the maximal subset of M(ν) s.t. for each P ∈ P, ∃ θ0 ∈ L∞(P ), with:

Y = θ0(X, ε) P (θ0(X, ε) ≤ θ0(X, τ)|Z) = τ P − a.s.

As before, P0 ≡ P \P1, where now P1 ⊂ P is given by the set of measures:

P1 ≡ {P ∈ P : ∃!θ ∈ L∞(P ) s.t. P (Y ≤ θ(X, τ)|Z) = τ ∀τ P − a.s.}

Comments
• For each τ ∈ (0, 1) model is equivalent to previous one.
• τ 7→ θ(X, τ) additionally strictly increasing P − a.s.

Andres Santos UCSD



Nonseparable IV

H0 : P ∈ P0 H1 : P ∈ P1

for P the maximal subset of M(ν) s.t. for each P ∈ P, ∃ θ0 ∈ L∞(P ), with:

Y = θ0(X, ε) P (θ0(X, ε) ≤ θ0(X, τ)|Z) = τ P − a.s.

As before, P0 ≡ P \P1, where now P1 ⊂ P is given by the set of measures:

P1 ≡ {P ∈ P : ∃!θ ∈ L∞(P ) s.t. P (Y ≤ θ(X, τ)|Z) = τ ∀τ P − a.s.}

Comments
• For each τ ∈ (0, 1) model is equivalent to previous one.
• τ 7→ θ(X, τ) additionally strictly increasing P − a.s.

Andres Santos UCSD



Nonseparable IV

H0 : P ∈ P0 H1 : P ∈ P1

for P the maximal subset of M(ν) s.t. for each P ∈ P, ∃ θ0 ∈ L∞(P ), with:

Y = θ0(X, ε) P (θ0(X, ε) ≤ θ0(X, τ)|Z) = τ P − a.s.

As before, P0 ≡ P \P1, where now P1 ⊂ P is given by the set of measures:

P1 ≡ {P ∈ P : ∃!θ ∈ L∞(P ) s.t. P (Y ≤ θ(X, τ)|Z) = τ ∀τ P − a.s.}

Comments
• For each τ ∈ (0, 1) model is equivalent to previous one.
• τ 7→ θ(X, τ) additionally strictly increasing P − a.s.
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Nonseparable IV

Theorem For P be as defined, and under Assumption (A), if {φn} satisfies:

lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α ,

for Pn ≡
⊗n

i=1 P and level α ∈ (0, 1), then it follows that it also satisfies:

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α .

Comments
• We show P0 is dense in M(ν) not just P1 w.r.t. Total Variation.
• Theorem holds for Lq(P ) in place of L∞(P ) completeness as well.
• Essentially same steps, but add monotonicity in τ to construction.
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Conclusion

Testability

• No nontrivial tests for identification exist in three IV models.
• P requirements are satisfied by usual assumptions in the literature.

However ...

• Valid tests may exist under more restrictive assumptions on P.
• Valid tests may also exist under shape restrictions on θ0.
• Results can aid develop nontrivial tests under additional requirements.

Two Constructive Points
• Highlight importance of alternative justifications – e.g. genericity.
• Emphasize value of procedures that are robust to partial identification.
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