On the Testability of Identification in Some Nonparametric Models with Endogeneity

Ivan A. Canay

Northwestern U.

Andres Santos
UC San Diego
Azeem M. Shaikh
U. Chicago

Three Nonparametric Models

Conditional Mean IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$ have distribution P :

$$
Y=\theta_{0}(X)+\epsilon \quad E_{P}[\epsilon \mid Z]=0
$$

Three Nonparametric Models

Conditional Mean IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$ have distribution P :

$$
Y=\theta_{0}(X)+\epsilon \quad E_{P}[\epsilon \mid Z]=0
$$

Conditional Quantile IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$ have distribution P :

$$
Y=\theta_{0}(X)+\epsilon \quad P(\epsilon \leq 0 \mid Z)=\tau
$$

Three Nonparametric Models

Conditional Mean IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$ have distribution P :

$$
Y=\theta_{0}(X)+\epsilon \quad E_{P}[\epsilon \mid Z]=0
$$

Conditional Quantile IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$ have distribution P :

$$
Y=\theta_{0}(X)+\epsilon \quad P(\epsilon \leq 0 \mid Z)=\tau
$$

Non-separable IV: Let $(Y, X, Z) \in \mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$ have distribution P :

$$
Y=\theta_{0}(X, \epsilon) \quad P\left(\theta_{0}(X, \epsilon) \leq \theta_{0}(X, \tau) \mid Z\right)=\tau
$$

where in addition $\tau \mapsto \theta_{0}(X, \tau)$ is assumed strictly monotonic almost surely.

Identification

In conditional mean IV, identification requires a unique solution (in θ) to:

$$
E_{P}[Y \mid Z]=E_{P}[\theta(X) \mid Z]
$$

Since Newey \& Powell (2003), identification through completeness condition

$$
E_{P}[\theta(X) \mid Z]=0 \quad P-\text { a.s. } \quad \Rightarrow \quad \theta(X)=0 \quad P-a . s .
$$

Comments

- More general: bounded completeness or $L^{q}(P)$ completeness.
- Sometimes referred to as nonparametric rank condition.
- Also used in identification of quantile and nonseparable models.

Testability

Problems

- Completeness conditions are difficult to interpret.
- Hard to motivate from economic theory.

Questions

- Are completeness assumptions testable under reasonable conditions?
- More generally: is point identification testable in these three models?

Answers

- We show no nontrivial tests for completeness exist.
- We show no nontrivial tests for identification exist in these three models.

Linear Model Intuition

Linear IV: Suppose $(Y, X, Z) \in \mathbf{R}^{3}$ with distribution $P \in \mathbf{P}$, and satisfy:

$$
Y=X \theta_{0}+\epsilon \quad E_{P}[Z \epsilon]=0
$$

$\Rightarrow \theta_{0}$ is identified if and only if $E_{P}[X Z] \neq 0$ - i.e. $\theta_{0}=E_{P}[X Y] / E_{P}[X Z]$.

Testing Rank Condition

$$
H_{0}: E_{P}[X Z]=0 \quad H_{1}: E_{P}[X Z] \neq 0
$$

Bahadur and Savage (1956)

- Negative: If \mathbf{P} is rich enough, only test is the trivial test.
- Positive: Learn how to restrict \mathbf{P} for tests to exist (example bounded).

General Setup

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

where $\mathbf{P}_{1} \equiv \mathbf{P} \backslash \mathbf{P}_{0}=\{$ distributions that are complete (or model identified) $\}$.

Main Result

Any test ϕ_{n} that controls asymptotic size at level $\alpha \in(0,1)$, in the sense:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

(for $P^{n} \equiv \bigotimes_{i=1}^{n} P$) will have no power against any alternative, in the sense:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

Conclusion holds for all three models, under common assumptions on \mathbf{P}.

Literature Review

Nonparametric IV

Newey \& Powell (2003), Hall and Horowitz (2005), Blundell et al. (2007), Darolles et al. (2011), Hu and Schennach (2008), Berry \& Haile (2010), d'Haultfoeuille (2011), Andrews (2011), Hoderlein et al. (2012).

Quantile/Nonseparable IV

Chernozhukov \& Hansen (2005), Horowitz \& Lee (2007), Chen \& Pouzo (2008), Chernozhukov et al. (2010), Imbens \& Newey (2009), Berry \& Haile (2009, 2010), Torgovitzky (2011), d'Haultfoeuielle \& Fevrier (2011).

Uniformly Valid Inference

Bahadur \& Savage (1956), Romano (2004), and many others ...

General Outline

Setup

- Notation and Assumptions.
- Useful Lemma.

Testing Completeness

- The null and alternative hypothesis.
- Main result and proof strategy.

Quantile/Nonseparable IV

- Quantile IV: Main result and proof strategy.
- Nonseparable IV: Main result.
(2) Completeness
(3) Quantile IV

(4) Nonseparable IV

Notation

Let M be the set of all probability measures on $\mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$, and define:

$$
\mathbf{M}(\nu) \equiv\{P \in \mathbf{M}: P \ll \nu\}
$$

We will require $\mathbf{P} \subseteq \mathbf{M}(\nu)$ for some measure ν satisfying the following:

Notation

Let M be the set of all probability measures on $\mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$, and define:

$$
\mathbf{M}(\nu) \equiv\{P \in \mathbf{M}: P \ll \nu\}
$$

We will require $\mathbf{P} \subseteq \mathbf{M}(\nu)$ for some measure ν satisfying the following:

Main Assumption (A)

- ν is a σ-finite Borel measure on $\mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$.
- $\nu=\nu_{y} \times \nu_{x} \times \nu_{z}$ for ν_{y}, ν_{x} and ν_{z} Borel measures on $\mathbf{R}, \mathbf{R}^{d_{x}}$ and $\mathbf{R}^{d_{z}}$.
- The measure ν_{x} is atomless on $\mathbf{R}^{d_{x}}$.

Notation

Let M be the set of all probability measures on $\mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$, and define:

$$
\mathbf{M}(\nu) \equiv\{P \in \mathbf{M}: P \ll \nu\}
$$

We will require $\mathbf{P} \subseteq \mathbf{M}(\nu)$ for some measure ν satisfying the following:

Main Assumption (A)

- ν is a σ-finite Borel measure on $\mathbf{R} \times \mathbf{R}^{d_{x}} \times \mathbf{R}^{d_{z}}$.
- $\nu=\nu_{y} \times \nu_{x} \times \nu_{z}$ for ν_{y}, ν_{x} and ν_{z} Borel measures on $\mathbf{R}, \mathbf{R}^{d_{x}}$ and $\mathbf{R}^{d_{z}}$.
- The measure ν_{x} is atomless on $\mathbf{R}^{d_{x}}$.

Comments

- Support restrictions imposed through ν (example $(X, Z) \in[0,1]^{d_{x}+d_{z}}$).
- ν product measure does not require $P \in \mathbf{P}$ to be product measure.

Discussion

ν_{x} atomless

- May be relaxed, but ν_{x} cannot be purely discrete.
- If $d_{x}>1$, then sufficient for one coordinate to be atomless.

Example

- Suppose ν_{x} and ν_{z} have discrete support $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{z_{1}, \ldots, z_{t}\right\}$.

$$
\Pi(P) \equiv\left\{s \times t \text { matrix with } \Pi(P)_{j, k}=P\left(X=x_{j} \mid Z=z_{k}\right)\right\}
$$

- Newey \& Powell (2003) showed P is complete iff $\operatorname{rank}(\Pi(P))=s$.
- Test can be constructed through uniform confidence region for $\Pi(P)$.

Useful Lemma

$$
\left\|P_{1}-P_{2}\right\|_{T V} \equiv \sup _{g:|g| \leq 1} \frac{1}{2}\left|\int g d P_{1}-\int g d P_{2}\right|
$$

Lemma If for all $P \in \mathbf{P}_{1}$, there is $\left\{P_{k}\right\}$ with $P_{k} \in \mathbf{P}_{0}$ and $\left\|P-P_{k}\right\|_{T V}=o(1)$

$$
\sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right]
$$

for every sequence of test functions $\left\{\phi_{n}\right\}$ and for every n.

Comments

- Small modification of Theorem 1 in Romano (2004).
- Result implies its asymptotic analogue.
- Intuition: If every $P \in \mathbf{P}_{1}$ is in the boundary of \mathbf{P}_{0}, then we conclude Size Control \Rightarrow No Power

Useful Lemma

Key Idea: Since $\left|\phi_{n}\right| \leq 1$ for any test function, $\left\|P-P_{k}\right\|_{T V}=o(1)$ implies:

$$
\left|\int \phi_{n} d P_{k}^{n}-\int \phi_{n} d P^{n}\right| \leq \sup _{g:|g| \leq 1} \frac{1}{2}\left|\int g d P_{k}^{n}-\int g d P^{n}\right|=o(1)
$$

Comments

- Total Variation distance plays no role in the definition of \mathbf{P}_{0} and \mathbf{P}_{1}.
- Metrics compatible with weak topology may be too weak for result.
- Stronger metric, implies harder to show $P_{k} \rightarrow P$.

Goal: Show in problems we study, lack of identification $\left(\mathbf{P}_{0}\right)$ is "dense".
(2) Completeness

(3) Quantile IV

(4) Nonseparable IV

Completeness

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

where $\mathbf{P}=\mathbf{M}(\nu)$ for some $\nu \in \mathbf{M}, \mathbf{P}_{0} \equiv \mathbf{P} \backslash \mathbf{P}_{1}$ and we additionally define:

$$
\mathbf{P}_{1} \equiv\left\{P \in \mathbf{P}: E_{P}[\theta(X) \mid Z]=0 \text { for } \theta \in L^{\infty}(P) \Rightarrow \theta(X)=0 P-\text { a.s. }\right\}
$$

Comments

- Using $L^{\infty}(P) \Rightarrow$ test for bounded completeness.
- Replacing $L^{\infty}(P)$ with $L^{q}(P)$ for $1 \leq q<\infty$ just enlarges \mathbf{P}_{0}.
- No power in this setting \Rightarrow no power in test of $L^{q}(P)$ completeness.

Completeness

Theorem Let $\mathbf{P}=\mathbf{M}(\nu)$ and Assumption (A) hold. Then if $\left\{\phi_{n}\right\}$ satisfies:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

for $P^{n} \equiv \bigotimes_{i=1}^{n} P$ and level $\alpha \in(0,1)$, then it follows that it also satisfies:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha .
$$

Comments

- If ν has compact support, then support of $P \in \mathbf{P}$ uniformly bounded.
- In contrast, ν with compact support suffices in linear IV model.

Proof Outline

Step 1 Fix $P \in \mathbf{P}_{1}$, let $f \equiv d P / d \nu$, show $\sup _{g:|g| \leq 1}\left|\int g\left(f_{k}-f\right) d \nu\right|=o(1)$:

$$
f_{k}(x, z) \equiv \sum_{i=1}^{K_{k}} \pi_{i k} 1\left\{(x, z) \in S_{i k}\right\} \quad f_{k} \geq 0 \quad \int f_{k} d \nu=1
$$

Step $2\left\{S_{i k}\right\}_{i=1}^{K_{k}}$ can be chosen to be the product of two collections of sets:

- $\left\{U_{i k}\right\}$ a partition of the set $\left[-M_{k}, M_{k}\right]^{d_{x}}$ some $M_{k} \in(0, \infty)$.
- $\left\{V_{i k}\right\}$ a partition of the set $\left[-M_{k}, M_{k}\right]^{d_{z}}$ same $M_{k} \in(0, \infty)$.

Step 3 Since ν_{x} is atomless, we can partition each $U_{i k}$ into $\left(U_{i k}^{(1)}, U_{i k}^{(2)}\right)$:

$$
\nu_{x}\left(U_{i k}^{(1)}\right)=\nu_{x}\left(U_{i k}^{(2)}\right)=\frac{1}{2} \nu_{x}\left(U_{i k}\right)
$$

Proof Outline

Step 4 Let P_{k} be measure with $d P_{k} / d \nu=f_{k}$, and define the function:

$$
\theta_{k}(x) \equiv \sum_{i=1}^{D_{k}}\left(1\left\{x \in U_{i k}^{(1)}\right\}-1\left\{x \in U_{i k}^{(2)}\right\}\right)
$$

Step 5 Then: (i) θ_{k} is bounded, (ii) $\theta_{k}(X) \neq 0 P_{k}-$ a.s., and (iii):

$$
\begin{aligned}
\int_{V_{n k}} \int_{U_{t k}} \psi(z) & \theta_{k}(x) \nu_{x}(d x) \nu_{z}(d z) \\
& =\int_{V_{n k}} \psi(z) \int_{U_{t k}}\left(1\left\{x \in U_{t k}^{(1)}\right\}-1\left\{x \in U_{t k}^{(2)}\right\}\right) \nu_{x}(d x) \nu_{z}(d z) \\
& =0
\end{aligned}
$$

However, recall $d P_{k} / d \nu=\sum_{i=1}^{K_{k}} \pi_{i k} 1\left\{(x, z) \in S_{i k}\right\}$ with $S_{i k}=V_{n k} \times U_{t k} \cdots$

Proof Outline

Step 6 Therefore, $E_{P_{k}}\left[\psi(Z) \theta_{k}(X)\right]=0$ for all P_{k}-integrable ψ, and hence:

$$
E_{P_{k}}\left[\theta_{k}(X) \mid Z\right]=0 \quad P_{k}-a . s .
$$

Step 7 Therefore, $P_{k} \in \mathbf{P}_{0}$ for all k, and $\left\|P_{k}-P\right\|_{T V}=o(1)$. By Lemma,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

Proof Outline

Step 6 Therefore, $E_{P_{k}}\left[\psi(Z) \theta_{k}(X)\right]=0$ for all P_{k}-integrable ψ, and hence:

$$
E_{P_{k}}\left[\theta_{k}(X) \mid Z\right]=0 \quad P_{k}-a . s .
$$

Step 7 Therefore, $P_{k} \in \mathbf{P}_{0}$ for all k, and $\left\|P_{k}-P\right\|_{T V}=o(1)$. By Lemma,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

Comments

- The sequence $\left\{\theta_{k}\right\}$ developed in the proof is not differentiable.
- Proof may be modified so $\left\{\theta_{k}\right\}$ is infinitely differentiable.
- $\Rightarrow L^{\infty}(P)$ may be replaced by Sobolev space or Ball.
- Similarly, we may also impose smoothness restrictions on $d P / d \nu$.

Comments

Two Important Features

- Completeness may be testable under alternative specifications of \mathbf{P}. However, standard "nonparametric" approaches do not seem to apply.
- Assumptions routinely employed that are non testable but "reasonable".

Genericity Arguments

- Alternative justification in favor of completeness assumptions.
- Andrews (2011) shows set of distributions for which it fails is "shy".
- Chen et al. (2012) show certain measures (over conditional expectation operators) assign zero probability to completeness failure.

(2) Completeness

(3) Quantile IV

(4) Nonseparable IV

Quantile IV

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

for \mathbf{P} the subset of $\mathbf{M}(\nu)$ consisting of $P \in \mathbf{M}(\nu)$ such that $\exists \theta_{0} \in L^{\infty}(P)$:

$$
Y=\theta_{0}(X)+\epsilon \quad P(\epsilon \leq 0 \mid Z)=\tau P-\text { a.s. }
$$

Quantile IV

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

for \mathbf{P} the subset of $\mathbf{M}(\nu)$ consisting of $P \in \mathbf{M}(\nu)$ such that $\exists \theta_{0} \in L^{\infty}(P)$:

$$
Y=\theta_{0}(X)+\epsilon \quad P(\epsilon \leq 0 \mid Z)=\tau P-\text { a.s. }
$$

As before, $\mathbf{P}_{0} \equiv \mathbf{P} \backslash \mathbf{P}_{1}$, where now $\mathbf{P}_{1} \subset \mathbf{P}$ is given by the set of measures:

$$
\mathbf{P}_{1} \equiv\left\{P \in \mathbf{P}: \exists!\theta \in L^{\infty}(P) \text { s.t. } P(Y \leq \theta(X) \mid Z)=\tau P-a . s .\right\}
$$

Quantile IV

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

for \mathbf{P} the subset of $\mathbf{M}(\nu)$ consisting of $P \in \mathbf{M}(\nu)$ such that $\exists \theta_{0} \in L^{\infty}(P)$:

$$
Y=\theta_{0}(X)+\epsilon \quad P(\epsilon \leq 0 \mid Z)=\tau P-\text { a.s. }
$$

As before, $\mathbf{P}_{0} \equiv \mathbf{P} \backslash \mathbf{P}_{1}$, where now $\mathbf{P}_{1} \subset \mathbf{P}$ is given by the set of measures:

$$
\mathbf{P}_{1} \equiv\left\{P \in \mathbf{P}: \exists!\theta \in L^{\infty}(P) \text { s.t. } P(Y \leq \theta(X) \mid Z)=\tau P-a . s .\right\}
$$

Comments

- Uniqueness of $\theta \in L^{\infty}(P)$ understood up to sets of P-measure zero.
- No easy necessary conditions for identification from completeness:
\Rightarrow We test for identification directly

Quantile IV

Theorem Let \mathbf{P} be as defined, and Assumption (A) hold. If $\left\{\phi_{n}\right\}$ satisfies:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha,
$$

for $P^{n} \equiv \bigotimes_{i=1}^{n} P$ and level $\alpha \in(0,1)$, then it follows that it also satisfies:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha .
$$

Comments

- We show \mathbf{P}_{0} is dense in $\mathbf{M}(\nu)$ (not just \mathbf{P}_{1}) w.r.t Total Variation.
- Theorem holds for $L^{q}(P)$ in place of $L^{\infty}(P)$ as well.

Proof Outline

Step 1 Fix $P \in \mathbf{P}_{1}$, let $f \equiv d P / d \nu$, show $\sup _{g:|g| \leq 1}\left|\int g\left(f_{k}-f\right) d \nu\right|=o(1)$:

$$
f_{k}(y, x, z) \equiv \sum_{i=1}^{K_{k}} \pi_{i k} 1\left\{(y, x, z) \in S_{i k}\right\} \quad f_{k} \geq 0 \quad \int f_{k} d \nu=1
$$

Step $2\left\{S_{i k}\right\}_{i=1}^{K_{k}}$ can be chosen to be the product of three collections of sets

- $\left\{U_{i k}\right\}$ a partition of the set $\left[-M_{k}, M_{k}\right]^{d_{x}}$ some $M_{k} \in(0, \infty)$.
- $\left\{V_{i k}\right\}$ a partition of the set $\left[-M_{k}, M_{k}\right]^{d_{z}}$ same $M_{k} \in(0, \infty)$.
- $\left\{L_{i k}\right\}$ a partition of the set $\left[-M_{k}, M_{k}\right]$ same $M_{k} \in(0, \infty)$.

Step 3 Since ν_{x} is atomless, we can pick $U_{i k}^{(1)}(\tau) \subset U_{i k}$, and $U_{i k}^{(2)}(\tau) \subset U_{i k}$:

$$
\nu_{x}\left(U_{i k}^{(1)}(\tau)\right)=\nu_{x}\left(U_{i k}^{(2)}(\tau)\right)=\tau \nu_{x}\left(U_{i k}\right) \quad \nu_{x}\left(U_{i k}^{(1)}(\tau) \triangle U_{i k}^{(2)}(\tau)\right)>0
$$

Proof Outline

Step 4 Under P_{k}, Y has support contained in $\left[-M_{k}, M_{k}\right]$. Hence, letting:

$$
\theta_{k}^{(l)}(x, \tau)=\sum_{i=1}^{D_{k}}\left\{2 M_{k} 1\left\{x \in U_{i k}^{(l)}(\tau)\right\}-2 M_{k} 1\left\{x \in U_{i k} \backslash U_{i k}^{(l)}(\tau)\right\}\right\}
$$

we get that $1\left\{Y \leq \theta_{k}^{(l)}(X, \tau)\right\}=\sum_{i} 1\left\{X \in U_{i k}^{(l)}\right\}$, almost surely under P_{k}.

Proof Outline

Step 5 Then: (i) $\theta_{k}^{(1)}$ and $\theta_{k}^{(2)}$ are bounded, (ii) for any $L_{j k} \times V_{n k} \times U_{t k}$:

$$
\begin{aligned}
\int_{L_{j k}} \int_{V_{n k}} & \int_{U_{t k}} \psi(z)\left(1\left\{y \leq \theta_{k}^{(l)}(x, \tau)\right\}-\tau\right) \nu_{x}(d x) \nu_{z}(d z) \nu_{y}(d y) \\
& =\int_{L_{j k}} \int_{V_{n k}} \psi(z) \int_{U_{t k}}\left(1\left\{x \in U_{t k}^{(l)}(\tau)\right\}-\tau\right) \nu_{x}(d x) \nu_{z}(d z) \nu_{y}(d y) \\
& =0
\end{aligned}
$$

However, $d P_{k} / d \nu=\sum_{i=1}^{K_{k}} \pi_{i k} 1\left\{(x, z) \in S_{i k}\right\}$ with $S_{i k}=L_{j k} \times V_{n k} \times U_{t k} \ldots$

Step 6 Hence, $E_{P_{k}}\left[\psi(Z)\left(1\left\{Y \leq \theta_{k}^{(l)}(X, \tau)\right\}-\tau\right)\right]=0$ for $\psi \in L^{1}\left(P_{k}\right)$, and:

$$
E_{P_{k}}\left[1\left\{Y \leq \theta_{k}^{(l)}(X, \tau)\right\}-\tau \mid Z\right]=0 \quad P_{k}-\text { a.s. }
$$

Proof Outline

Step 7 Argue that $P_{k}\left(\theta_{k}^{(1)}(X, \tau) \neq \theta_{k}^{(2)}(X, \tau)\right)>0$ for all k.

Step 8 Hence, $P_{k} \in \mathbf{P}_{0}$ for all k, and $\left\|P_{k}-P\right\|_{T V}=o(1)$. By Lemma,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

Proof Outline

Step 7 Argue that $P_{k}\left(\theta_{k}^{(1)}(X, \tau) \neq \theta_{k}^{(2)}(X, \tau)\right)>0$ for all k.

Step 8 Hence, $P_{k} \in \mathbf{P}_{0}$ for all k, and $\left\|P_{k}-P\right\|_{T V}=o(1)$. By Lemma,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha
$$

Comments

- In the proof, we actually establish the stronger inequality:

$$
E_{P_{k}}\left[\left(1\left\{Y \leq \theta_{k}^{(1)}(X, \tau)\right\}-1\left\{Y \leq \theta_{k}^{(2)}(X, \tau)\right\}\right)^{2}\right]>0 .
$$

- Results holds if identification is up to P equivalence of $1\{Y \leq \theta(X)\}$.

(2) Completeness

(3) Quantile IV

(4) Nonseparable IV

Nonseparable IV

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

for \mathbf{P} the maximal subset of $\mathbf{M}(\nu)$ s.t. for each $P \in \mathbf{P}, \exists \theta_{0} \in L^{\infty}(P)$, with:

$$
Y=\theta_{0}(X, \epsilon) \quad P\left(\theta_{0}(X, \epsilon) \leq \theta_{0}(X, \tau) \mid Z\right)=\tau P-\text { a.s. }
$$

Nonseparable IV

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

for \mathbf{P} the maximal subset of $\mathbf{M}(\nu)$ s.t. for each $P \in \mathbf{P}, \exists \theta_{0} \in L^{\infty}(P)$, with:

$$
Y=\theta_{0}(X, \epsilon) \quad P\left(\theta_{0}(X, \epsilon) \leq \theta_{0}(X, \tau) \mid Z\right)=\tau P-\text { a.s. }
$$

As before, $\mathbf{P}_{0} \equiv \mathbf{P} \backslash \mathbf{P}_{1}$, where now $\mathbf{P}_{1} \subset \mathbf{P}$ is given by the set of measures:

$$
\mathbf{P}_{1} \equiv\left\{P \in \mathbf{P}: \exists!\theta \in L^{\infty}(P) \text { s.t. } P(Y \leq \theta(X, \tau) \mid Z)=\tau \quad \forall \tau P-\text { a.s. }\right\}
$$

Nonseparable IV

$$
H_{0}: P \in \mathbf{P}_{0} \quad H_{1}: P \in \mathbf{P}_{1}
$$

for \mathbf{P} the maximal subset of $\mathbf{M}(\nu)$ s.t. for each $P \in \mathbf{P}, \exists \theta_{0} \in L^{\infty}(P)$, with:

$$
Y=\theta_{0}(X, \epsilon) \quad P\left(\theta_{0}(X, \epsilon) \leq \theta_{0}(X, \tau) \mid Z\right)=\tau P-\text { a.s. }
$$

As before, $\mathbf{P}_{0} \equiv \mathbf{P} \backslash \mathbf{P}_{1}$, where now $\mathbf{P}_{1} \subset \mathbf{P}$ is given by the set of measures:

$$
\mathbf{P}_{1} \equiv\left\{P \in \mathbf{P}: \exists!\theta \in L^{\infty}(P) \text { s.t. } P(Y \leq \theta(X, \tau) \mid Z)=\tau \quad \forall \tau P-\text { a.s. }\right\}
$$

Comments

- For each $\tau \in(0,1)$ model is equivalent to previous one.
- $\tau \mapsto \theta(X, \tau)$ additionally strictly increasing $P-a . s$.

Nonseparable IV

Theorem For \mathbf{P} be as defined, and under Assumption (A), if $\left\{\phi_{n}\right\}$ satisfies:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha,
$$

for $P^{n} \equiv \bigotimes_{i=1}^{n} P$ and level $\alpha \in(0,1)$, then it follows that it also satisfies:

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \alpha .
$$

Comments

- We show \mathbf{P}_{0} is dense in $\mathbf{M}(\nu)$ not just \mathbf{P}_{1} w.r.t. Total Variation.
- Theorem holds for $L^{q}(P)$ in place of $L^{\infty}(P)$ completeness as well.
- Essentially same steps, but add monotonicity in τ to construction.

Conclusion

Testability

- No nontrivial tests for identification exist in three IV models.
- \mathbf{P} requirements are satisfied by usual assumptions in the literature.

However ...

- Valid tests may exist under more restrictive assumptions on \mathbf{P}.
- Valid tests may also exist under shape restrictions on θ_{0}.
- Results can aid develop nontrivial tests under additional requirements.

Two Constructive Points

- Highlight importance of alternative justifications - e.g. genericity.
- Emphasize value of procedures that are robust to partial identification.

