# The Wild Bootstrap with a Small Number of Large Clusters 

Ivan A. Canay<br>Northwestern<br>Andres Santos<br>UCLA<br>Azeem M. Shaikh<br>U. Chicago

October 4, 2019

## The Question

## Wild Bootstrap

- Prevalent inference method in linear models with few clusters.
- Due to remarkable simulations by Cameron, Gelbach \& Miller (2008).
- Simulations show size control with as few as five clusters.


## Examples

- Meng, Qian, and Yared (2015, REStud): 19 clusters.
- Acemoglu, Cantoni, Johnson, Robinson (2011, AER): 13 clusters.
- Giuliano and Spilimbergo (2014, REStud): 9 clusters.
- Kosfeld and Rustagi (2015, AER): 5 clusters.


## The Problem:

- Available theory requires \# clusters $\rightarrow$ infinity.
- Asymptotic properties with few clusters remain unknown.


## The Question

## What We Know

- Simulations have shown wild bootstrap can fail to control size
... but not easy to find these designs.


## The Question

## What We Know

- Simulations have shown wild bootstrap can fail to control size
... but not easy to find these designs.
- Justifications are asymptotic as number of clusters diverges
... but why does it work with as few as five clusters?


## The Question

## What We Know

- Simulations have shown wild bootstrap can fail to control size
... but not easy to find these designs.
- Justifications are asymptotic as number of clusters diverges
... but why does it work with as few as five clusters?
- Small changes to the procedure can affect simulation performance
... e.g. why do Rademacher weights do better than Mammen weights?


## The Question

## What We Know

- Simulations have shown wild bootstrap can fail to control size
... but not easy to find these designs.
- Justifications are asymptotic as number of clusters diverges
... but why does it work with as few as five clusters?
- Small changes to the procedure can affect simulation performance
... e.g. why do Rademacher weights do better than Mammen weights?


## This Paper

- Study the performance of the Wild bootstrap with few clusters.
- Study in asymptotic framework where number of clusters is fixed.
- Will Show Wild bootstrap can be valid with few clusters.
- Result requires clusters to be suitably "homogenous".


## Related Literature

## Wild Bootstrap

Liu (1988), Mammen (1993), Davidson \& Mackinnon (1999), Cameron, Gelbach \& Miller (2008), Davidson \& Flachaire (2008), Kline \& Santos (2012a, 2012b), Webb (2013), Mackinnon, Nielsen \& Webb (2017).
$\Rightarrow$ These results do not explain performance with (as few as) five clusters.

## Related Literature

## Wild Bootstrap

Liu (1988), Mammen (1993), Davidson \& Mackinnon (1999), Cameron, Gelbach \& Miller (2008), Davidson \& Flachaire (2008), Kline \& Santos (2012a, 2012b), Webb (2013), Mackinnon, Nielsen \& Webb (2017).
$\Rightarrow$ These results do not explain performance with (as few as) five clusters.

## Fixed Number of Clusters

Ibragimov \& Muller (2010, 2016), Bester, Conley \& Hansen (2011), Canay, Romano \& Shaikh (2017), Hagemann (2019).
$\Rightarrow$ Study alternative procedures with fixed number of clusters.

## (1) Setup and Notation

## (2) The Assumptions

## (3) Main Result

## 4. Studentization and Extensions

## (5) Simulation Evidence

## The Model

$$
Y_{i, j}=W_{i, j}^{\prime} \gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

where $\gamma \in \mathbf{R}^{d_{w}}, \beta \in \mathbf{R}^{d_{z}}$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ and $E\left[W_{i, j} \epsilon_{i, j}\right]=0(\forall i, j)$.

## The Model

$$
Y_{i, j}=W_{i, j}^{\prime} \gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

where $\gamma \in \mathbf{R}^{d_{w}}, \beta \in \mathbf{R}^{d_{z}}$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ and $E\left[W_{i, j} \epsilon_{i, j}\right]=0(\forall i, j)$.

## Notation

- We index clusters by $j \in J$.
- We index number of clusters by $q=|J|$.
- We index units in the $j^{\text {th }}$ cluster by $i \in I_{n, j}$.
- We index number of units in cluster $j$ by $n_{j}=\left|I_{n, j}\right|$.


## The Model

$$
Y_{i, j}=W_{i, j}^{\prime} \gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

where $\gamma \in \mathbf{R}^{d_{w}}, \beta \in \mathbf{R}^{d_{z}}$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ and $E\left[W_{i, j} \epsilon_{i, j}\right]=0(\forall i, j)$.

## Notation

- We index clusters by $j \in J$.
- We index number of clusters by $q=|J|$.
- We index units in the $j^{t h}$ cluster by $i \in I_{n, j}$.
- We index number of units in cluster $j$ by $n_{j}=\left|I_{n, j}\right|$.


## Comment

- $\beta$ is main coefficient of interest (e.g. $Z_{i, j} \in \mathbf{R}$ ).
- $\gamma$ is a nuisance parameter (e.g. $W_{i, j}$ are fixed effects).


## The Test

For some $c \in \mathbf{R}^{d_{z}}$ and $\lambda \in \mathbf{R}$ we consider the hypothesis testing problem

$$
H_{0}: c^{\prime} \beta=\lambda \quad H_{1}: c^{\prime} \beta \neq \lambda
$$

## The Test

For some $c \in \mathbf{R}^{d_{z}}$ and $\lambda \in \mathbf{R}$ we consider the hypothesis testing problem

$$
H_{0}: c^{\prime} \beta=\lambda \quad H_{1}: c^{\prime} \beta \neq \lambda
$$

## Test Statistic

$$
T_{n} \equiv\left|\sqrt{n}\left(c^{\prime} \hat{\beta}_{n}-\lambda\right)\right|
$$

where $\hat{\beta}_{n}$ is the ordinary least squares estimator of $\beta$.

## The Test

For some $c \in \mathbf{R}^{d_{z}}$ and $\lambda \in \mathbf{R}$ we consider the hypothesis testing problem

$$
H_{0}: c^{\prime} \beta=\lambda \quad H_{1}: c^{\prime} \beta \neq \lambda
$$

## Test Statistic

$$
T_{n} \equiv\left|\sqrt{n}\left(c^{\prime} \hat{\beta}_{n}-\lambda\right)\right|
$$

where $\hat{\beta}_{n}$ is the ordinary least squares estimator of $\beta$.

## Wild Bootstrap Test

$$
\phi_{n}=1\left\{T_{n}>\hat{c}_{n}(1-\alpha)\right\}
$$

where $\hat{c}_{n}(1-\alpha)$ is computed using a specific variant of the wild bootstrap.
Note: We will study properties of the Studentized test statistic later.

## Critical Values

Work with a very specific variant of the wild bootstrap.

## Critical Values

Work with a very specific variant of the wild bootstrap.

## Step 1

- Run a restricted regression of $Y_{i, j}$ on ( $W_{i, j}, Z_{i, j}$ ) subject to $c^{\prime} \beta=\lambda$.
- Let $\hat{\gamma}_{n}^{r} \in \mathbf{R}^{d_{w}}$ and $\hat{\beta}_{n}^{r} \in \mathbf{R}^{d_{z}}$ be restricted estimators.
- Let $\hat{\epsilon}_{i, j}^{r}$ be the corresponding residuals from restricted regression.


## Critical Values

Work with a very specific variant of the wild bootstrap.

## Step 1

- Run a restricted regression of $Y_{i, j}$ on ( $W_{i, j}, Z_{i, j}$ ) subject to $c^{\prime} \beta=\lambda$.
- Let $\hat{\gamma}_{n}^{r} \in \mathbf{R}^{d_{w}}$ and $\hat{\beta}_{n}^{r} \in \mathbf{R}^{d_{z}}$ be restricted estimators.
- Let $\hat{\epsilon}_{i, j}^{r}$ be the corresponding residuals from restricted regression.


## Step 2

- Let $\left\{\omega_{j}\right\}_{j \in J}$ be i.i.d. with $P\left(\omega_{j}=1\right)=P\left(\omega_{j}=-1\right)=1 / 2$ for all $j \in J$.
- Define $\omega=\left\{\omega_{j}\right\}_{j \in J}$, and for each $\omega$ denote the new outcomes

$$
Y_{i j}^{*}(\omega) \equiv W_{i, j}^{\prime} \hat{\gamma}_{n}^{r}+Z_{i, j}^{\prime} \hat{\beta}_{n}^{r}+\omega_{j} \hat{\epsilon}_{i, j}^{r}
$$

- Run an unrestricted regression of $Y_{i, j}^{*}(\omega)$ in $\left(W_{i, j}, Z_{i, j}\right)$.
- Let $\hat{\gamma}_{n}^{*}(\omega)$ and $\hat{\beta}_{n}^{*}(\omega)$ be corresponding unrestricted coefficients.


## Critical Values

## Step 3

- Compute the $1-\alpha$ quantile of bootstrap statistic conditional on the data

$$
\hat{c}_{n}(1-\alpha) \equiv \inf \left\{u \in \mathbf{R}: P\left(\left|\sqrt{n}\left(c^{\prime} \hat{\beta}_{n}^{*}(\omega)-\lambda\right)\right| \leq u \mid \text { Data }\right) \geq 1-\alpha\right\}
$$

- In practice $\hat{c}_{n}(1-\alpha)$ approximated via simulation of bootstrap samples.


## Comments

- Bootstrap uses $\hat{\beta}_{n}^{r}$ satisfying $c^{\prime} \hat{\beta}_{n}^{r}=\lambda$ (impose the null).
- Use of Rademacher weights is essential for our results.
- Importance of Rademacher vs alternatives known from simulations.


## Different Interpretation

Key: Under fixed number of clusters, distribution of $\left\{\omega_{j}\right\}_{j \in J}$ fixed with $n$.

## Different Interpretation

Key: Under fixed number of clusters, distribution of $\left\{\omega_{j}\right\}_{j \in J}$ fixed with $n$.

## Observations

- Let $\mathbf{G} \equiv\{-1,1\}^{q}$, which corresponds to the support of $\omega=\left\{\omega_{j}\right\}_{j \in J}$.
- Every $\left(g_{1}, \ldots, g_{q}\right)=g \in \mathbf{G}$ is then a possible realization of $\omega=\left\{\omega_{j}\right\}_{j \in J}$.
- Note that $P(\omega=g)=1 /|\mathbf{G}|$ for every $g \in \mathbf{G}$ (all equally likely).


## Different Interpretation

Key: Under fixed number of clusters, distribution of $\left\{\omega_{j}\right\}_{j \in J}$ fixed with $n$.

## Observations

- Let $\mathbf{G} \equiv\{-1,1\}^{q}$, which corresponds to the support of $\omega=\left\{\omega_{j}\right\}_{j \in J}$.
- Every $\left(g_{1}, \ldots, g_{q}\right)=g \in \mathbf{G}$ is then a possible realization of $\omega=\left\{\omega_{j}\right\}_{j \in J}$.
- Note that $P(\omega=g)=1 /|\mathbf{G}|$ for every $g \in \mathbf{G}$ (all equally likely).

Abuse Notation Write $\hat{\beta}_{n}^{*}(g)$ and $\hat{\gamma}_{n}^{*}(g)$ in place of $\hat{\beta}_{n}^{*}(\omega)$ and $\hat{\gamma}_{n}^{*}(\omega)$.

$$
\begin{aligned}
\hat{c}_{n}(1-\alpha) & \equiv \inf \left\{u \in \mathbf{R}: P\left(\left|\sqrt{n}\left(c^{\prime} \hat{\beta}_{n}^{*}(\omega)-\lambda\right)\right| \leq u \mid \text { Data }\right) \geq 1-\alpha\right\} \\
& =\inf \left\{u \in \mathbf{R}: \frac{1}{|\mathbf{G}|} \sum_{g \in \mathbf{G}} 1\left\{\left|\sqrt{n}\left(c^{\prime} \hat{\beta}_{n}^{*}(g)-\lambda\right)\right| \leq u\right\} \geq 1-\alpha\right\}
\end{aligned}
$$

## (1) Setup and Notation

(2) The Assumptions

## (3) Main Result

## 4. Studentization and Extensions

## (5) Simulation Evidence

## Preliminary Notation

- Let $\hat{\Pi}_{n}$ be the $d_{w} \times d_{z}$ matrix satisfying the orthogonality conditions

$$
\sum_{j \in J} \sum_{i \in I_{n, j}}\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right) W_{i, j}^{\prime}=0
$$

## Preliminary Notation

- Let $\hat{\Pi}_{n}$ be the $d_{w} \times d_{z}$ matrix satisfying the orthogonality conditions

$$
\sum_{j \in J} \sum_{i \in I_{n, j}}\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right) W_{i, j}^{\prime}=0
$$

- $\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right)$ is residual from regressing $Z_{i, j}$ on $W_{i, j}$ on whole sample.

$$
\tilde{Z}_{i, j} \equiv\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right)
$$

## Preliminary Notation

- Let $\hat{\Pi}_{n}$ be the $d_{w} \times d_{z}$ matrix satisfying the orthogonality conditions

$$
\sum_{j \in J} \sum_{i \in I_{n, j}}\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right) W_{i, j}^{\prime}=0
$$

- $\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right)$ is residual from regressing $Z_{i, j}$ on $W_{i, j}$ on whole sample.

$$
\tilde{Z}_{i, j} \equiv\left(Z_{i, j}-\hat{\Pi}_{n}^{\prime} W_{i, j}\right)
$$

- Let $\hat{\Pi}_{n, j}^{\mathrm{c}}$ be a $d_{w} \times d_{z}$ matrix satisfying the orthogonality conditions

$$
\sum_{i \in I_{n, j}}\left(Z_{i, j}-\left(\hat{\Pi}_{n}^{\mathrm{c}}\right)^{\prime} W_{i, j}\right) W_{i, j}^{\prime}=0
$$

Note: $\hat{\Pi}_{n, j}^{c}$ may not be uniquely defined (e.g. include cluster fixed effects)

## Weak Assumption

## Assumption W

(i) The following statistic converges in distribution as $n$ diverges to infinity

$$
\frac{1}{\sqrt{n}} \sum_{j \in J} \sum_{i \in I_{n, j}}\binom{W_{i, j} \epsilon_{i, j}}{Z_{i, j} \epsilon_{i, j}}
$$

(ii) The following statistic converges (in prob.) to a positive definite matrix

$$
\frac{1}{n} \sum_{j \in J} \sum_{i \in I_{n, j}}\left(\begin{array}{cc}
W_{i, j} W_{i, j}^{\prime} & W_{i, j} Z_{i, j}^{\prime} \\
Z_{i, j} W_{i, j}^{\prime} & Z_{i, j} Z_{i, j}^{\prime}
\end{array}\right)
$$

## Comments

- Requirements for showing $\hat{\beta}_{n}$ and $\hat{\beta}_{n}^{r}$ converge in distribution.
- Implicit requirement dependence within cluster weak enough for CLT.
- Imply $\hat{\Pi}_{n}$ converges in probability to a well defined limit.


## Homogeneity Assumption

## Assumption H

(i) For independent $\left\{\mathcal{Z}_{j}\right\}_{j \in J}$ with $\mathcal{Z}_{j} \sim N\left(0, \Sigma_{j}\right)$ and $\Sigma_{j}>0$ we have

$$
\left\{\frac{1}{\sqrt{n_{j}}} \sum_{i \in I_{n, j}} \tilde{Z}_{i, j} \epsilon_{i, j}: j \in J\right\} \xrightarrow{d}\left\{\mathcal{Z}_{j}: j \in J\right\}
$$

(ii) For each $j \in J, n_{j} / n \rightarrow \xi_{j}>0$.

## Comments

- Requirement (i) requires convergence of cluster level "score".
- Requirement (ii) requires clusters not be "too" imbalanced.


## Homogeneity Assumption

## Assumption H

(iii) There are $a_{j}>0$ and $\Omega_{\tilde{Z}}$ positive definite such that for each $j \in J$

$$
\frac{1}{n_{j}} \sum_{i \in I_{n, j}} \tilde{Z}_{i, j} \tilde{Z}_{i, j}^{\prime} \xrightarrow{p} a_{j} \Omega_{\tilde{Z}}
$$

(iv) For each $j \in J$ it follows that

$$
\frac{1}{n_{j}} \sum_{i \in I_{n, j}}\left\|W_{i, j}^{\prime}\left(\hat{\Pi}_{n}-\hat{\Pi}_{n, j}^{\mathrm{c}}\right)\right\|^{2} \xrightarrow{p} 0
$$

## Comments

- If $Z_{i, j} \in \mathbf{R}, \mathrm{H}$ (iii) means nonzero limit of $\sum_{i \in I_{n, j}} \tilde{Z}_{i, j}^{2} / n_{j}$.
- H (iv) requires convergence of full sample and cluster level projections.


## Some Discussion

For $\gamma \in \mathbf{R}, E\left[\epsilon_{i, j}\right]=0$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ for all $i \in I_{n, j}$ and $j \in J$ suppose

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

## Some Discussion

For $\gamma \in \mathbf{R}, E\left[\epsilon_{i, j}\right]=0$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ for all $i \in I_{n, j}$ and $j \in J$ suppose

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

Note: Since here $W_{i, j}=1$ for all $i \in I_{n, j}$ and $j \in J$ we therefore we have

$$
\hat{\Pi}_{n}^{\prime} W_{i, j}=\frac{1}{n} \sum_{j \in J} \sum_{i \in I_{n, j}} Z_{i, j} \quad\left(\hat{\Pi}_{n}^{\mathrm{c}}\right)^{\prime} W_{i, j}=\frac{1}{n_{j}} \sum_{i \in I_{n, j}} Z_{i, j}
$$

## Some Discussion

For $\gamma \in \mathbf{R}, E\left[\epsilon_{i, j}\right]=0$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ for all $i \in I_{n, j}$ and $j \in J$ suppose

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

Note: Since here $W_{i, j}=1$ for all $i \in I_{n, j}$ and $j \in J$ we therefore we have

$$
\hat{\Pi}_{n}^{\prime} W_{i, j}=\frac{1}{n} \sum_{j \in J} \sum_{i \in I_{n, j}} Z_{i, j} \quad\left(\hat{\Pi}_{n}^{\mathrm{c}}\right)^{\prime} W_{i, j}=\frac{1}{n_{j}} \sum_{i \in I_{n, j}} Z_{i, j}
$$

- Hence, Assumption H(iv) (asymptotic equivalence of projections) needs

Cluster level means are the same (asymptotically)

## Some Discussion

For $\gamma \in \mathbf{R}, E\left[\epsilon_{i, j}\right]=0$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ for all $i \in I_{n, j}$ and $j \in J$ suppose

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

Note: Since here $W_{i, j}=1$ for all $i \in I_{n, j}$ and $j \in J$ we therefore we have

$$
\hat{\Pi}_{n}^{\prime} W_{i, j}=\frac{1}{n} \sum_{j \in J} \sum_{i \in I_{n, j}} Z_{i, j} \quad\left(\hat{\Pi}_{n}^{\mathrm{c}}\right)^{\prime} W_{i, j}=\frac{1}{n_{j}} \sum_{i \in I_{n, j}} Z_{i, j}
$$

- Hence, Assumption H(iv) (asymptotic equivalence of projections) needs

Cluster level means are the same (asymptotically)

- While, Assumption H(iii) needs same covariance matrices (up to scaling).


## Some Discussion

For $\gamma \in \mathbf{R}, E\left[\epsilon_{i, j}\right]=0$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ for all $i \in I_{n, j}$ and $j \in J$ suppose

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

Note: Same model, but estimate with cluster level fixed effects ( $W_{i, j}$ )

## Some Discussion

For $\gamma \in \mathbf{R}, E\left[\epsilon_{i, j}\right]=0$ and $E\left[Z_{i, j} \epsilon_{i, j}\right]=0$ for all $i \in I_{n, j}$ and $j \in J$ suppose

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\epsilon_{i, j}
$$

Note: Same model, but estimate with cluster level fixed effects $\left(W_{i, j}\right)$

$$
\hat{\Pi}_{n}^{\prime} W_{i, j}=\frac{1}{n_{j}} \sum_{i \in I_{n, j}} Z_{i, j} \quad\left(\hat{\Pi}_{n}^{\mathrm{c}}\right)^{\prime} W_{i, j}=\frac{1}{n_{j}} \sum_{i \in I_{n, j}} Z_{i, j}
$$

- Hence, Assumption H(iv) (equivalence of projections) is automatic.
- While, Assumption H(iii) needs same covariance matrices (up to scaling).


## (1) Setup and Notation

(2) The Assumptions

(3) Main Result

## 4) Studentization and Extensions

## (5) Simulation Evidence

## Main Result

Theorem If Assumptions $W$ and $H$ hold and $c^{\prime} \beta=\lambda$, then it follows that

$$
\begin{aligned}
\alpha-\frac{1}{2^{q-1}} & \leq \liminf _{n \rightarrow \infty} P\left(T_{n}>\hat{c}_{n}(1-\alpha)\right) \\
& \leq \limsup _{n \rightarrow \infty} P\left(T_{n}>\hat{c}_{n}(1-\alpha)\right) \\
& \leq \alpha
\end{aligned}
$$

## Comments

- Wild bootstrap controls size for any number of clusters.
- Conservative, but difference decreases exponentially with \# of clusters.
- Because $q$ fixed, $\hat{c}_{n}(1-\alpha)$ is not consistent.
- Theorem valid for IV under similar assumptions.


## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Test Statistic

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Test Statistic

- Suppose the null hypothesis is true so that $c^{\prime} \beta=\lambda$. Then it follows that

$$
T_{n}=\sqrt{n}\left|c^{\prime} \hat{\beta}_{n}-\lambda\right|=\sqrt{n}\left|c^{\prime}\left(\hat{\beta}_{n}-\beta\right)\right|=\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{1}{\sqrt{n}} \sum_{i \in I_{j}} Z_{i, j} \epsilon_{i, j}\right|
$$

where $\hat{\Omega}_{n} \equiv \sum_{j \in J} \sum_{i \in I_{n, j}} Z_{i, j} Z_{i, j}^{\prime} / n$ is usual $d_{z} \times d_{z}$ matrix.

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Test Statistic

- Suppose the null hypothesis is true so that $c^{\prime} \beta=\lambda$. Then it follows that

$$
T_{n}=\sqrt{n}\left|c^{\prime} \hat{\beta}_{n}-\lambda\right|=\sqrt{n}\left|c^{\prime}\left(\hat{\beta}_{n}-\beta\right)\right|=\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{1}{\sqrt{n}} \sum_{i \in I_{j}} Z_{i, j} \epsilon_{i, j}\right|
$$

where $\hat{\Omega}_{n} \equiv \sum_{j \in J} \sum_{i \in I_{n, j}} Z_{i, j} Z_{i, j}^{\prime} / n$ is usual $d_{z} \times d_{z}$ matrix.

- Therefore, for an appropriate function $T$ we can write $T_{n}$ as

$$
T_{n}=T\left(S_{n}\right) \quad S_{n}=\left(\hat{\Omega}_{n},\left\{\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} Z_{i, j} \epsilon_{i, j}\right\}_{j \in J}\right)
$$

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Bootstrap Statistic

- Since $\hat{\beta}_{n}^{r}$ satisfies $c^{\prime} \hat{\beta}_{n}^{r}=\lambda$ by construction, it then follows that

$$
\sqrt{n}\left|c^{\prime} \hat{\beta}_{n}^{*}(g)-\lambda\right|=\sqrt{n}\left|c^{\prime}\left(\hat{\beta}_{n}^{*}(g)-\hat{\beta}_{n}^{r}\right)\right|=\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{1}{\sqrt{n}} \sum_{i \in I_{j}} g_{j} Z_{i, j} \hat{\epsilon}_{i, j}^{r}\right|
$$

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Bootstrap Statistic

- Since $\hat{\beta}_{n}^{r}$ satisfies $c^{\prime} \hat{\beta}_{n}^{r}=\lambda$ by construction, it then follows that

$$
\sqrt{n}\left|c^{\prime} \hat{\beta}_{n}^{*}(g)-\lambda\right|=\sqrt{n}\left|c^{\prime}\left(\hat{\beta}_{n}^{*}(g)-\hat{\beta}_{n}^{r}\right)\right|=\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{1}{\sqrt{n}} \sum_{i \in I_{j}} g_{j} Z_{i, j} \hat{\epsilon}_{i, j}^{r}\right|
$$

- Therefore, for the same function $T$ characterizing $T_{n}$ it follows that

$$
\sqrt{n}\left|c^{\prime} \hat{\beta}_{n}^{*}(g)-\lambda\right|=T\left(g S_{n}^{*}\right) \quad g S_{n}^{*}=\left(\hat{\Omega}_{n},\left\{\frac{g_{j}}{\sqrt{n}} \sum_{i \in I_{n, j}} Z_{i, j} \hat{\epsilon}_{i, j}^{r}\right\}_{j \in J}\right)
$$

for any $\left(g_{1}, \ldots, g_{q}\right)=g \in \mathbf{G}$, where recall $\mathbf{G}=\{-1,1\}^{q}$.

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Critical Value

- Since $\hat{\beta}_{n}^{r}$ satisfies $c^{\prime} \hat{\beta}_{n}^{r}=\lambda$ by construction, it then follows that

$$
\begin{aligned}
\hat{c}_{n}(1-\alpha) & =1-\alpha \text { quantile of }\left|\sqrt{n} c^{\prime}\left(\hat{\beta}_{n}^{*}(g)-\lambda\right)\right| \text { over } g \in \mathbf{G} \\
& =1-\alpha \text { quantile of } T\left(g S_{n}^{*}\right) \text { over } g \in \mathbf{G}
\end{aligned}
$$

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

## The Critical Value

- Since $\hat{\beta}_{n}^{r}$ satisfies $c^{\prime} \hat{\beta}_{n}^{r}=\lambda$ by construction, it then follows that

$$
\begin{aligned}
\hat{c}_{n}(1-\alpha) & =1-\alpha \text { quantile of }\left|\sqrt{n} c^{\prime}\left(\hat{\beta}_{n}^{*}(g)-\lambda\right)\right| \text { over } g \in \mathbf{G} \\
& =1-\alpha \text { quantile of } T\left(g S_{n}^{*}\right) \text { over } g \in \mathbf{G}
\end{aligned}
$$

- Equivalently, let $T^{(k)}\left(S_{n}^{*} \mid \mathbf{G}\right)$ be the $k^{t h}$ smallest value of $\left\{T\left(g S_{n}^{*}\right)\right\}_{g \in \mathbf{G}}$

$$
T^{(1)}\left(g S_{n}^{*} \mid \mathbf{G}\right) \leq \cdots \leq \underbrace{T^{(|\mathbf{G}|(1-\alpha) \mid)}\left(g S_{n}^{*} \mid \mathbf{G}\right)}_{\hat{c}_{n}(1-\alpha)} \leq \cdots \leq T^{(|\mathbf{G}|)}\left(g S_{n}^{*} \mid \mathbf{G}\right)
$$

## Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

$$
T_{n}>\hat{c}_{n}(1-\alpha) \text { or equivalently } T\left(S_{n}\right)>T^{(|\mathbf{G}|(1-\alpha))}\left(g S_{n}^{*} \mid \mathbf{G}\right)
$$

## Comments

- If $S_{n}$ equaled $S_{n}^{*}$, it would resemble a randomization test.
- Since the number of clusters is fixed, $\mathbf{G}$ is not changing.
- Showing bootstrap validity needs "non-standard" arguments.


## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

$$
\left|T\left(g S_{n}\right)-T\left(g S_{n}^{*}\right)\right| \leq\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{n_{j}}{n} \frac{1}{n_{j}} \sum_{i \in I_{n, j}} g_{j} Z_{i, j} Z_{i, j}^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\}\right|
$$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

$$
\begin{gathered}
\left|T\left(g S_{n}\right)-T\left(g S_{n}^{*}\right)\right| \leq\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{n_{j}}{n} \frac{1}{n_{j}} \sum_{i \in I_{n, j}} g_{j} Z_{i, j} Z_{i, j}^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{\mathrm{r}}\right\}\right| \\
\left(\Omega_{j}=E\left[Z_{i, j} Z_{i, j}^{\prime}\right]+\mathrm{LLN}\right)=\left|c^{\prime}\left(\sum_{j \in J} \frac{n_{j}}{n} \Omega_{j}\right)^{-1} \sum_{j \in J} \frac{n_{j}}{n} \Omega_{j} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{\mathrm{r}}\right\}\right|+o_{p}(1)
\end{gathered}
$$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

$$
\begin{aligned}
\left|T\left(g S_{n}\right)-T\left(g S_{n}^{*}\right)\right| & \leq\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{n_{j}}{n} \frac{1}{n_{j}} \sum_{i \in I_{n, j}} g_{j} Z_{i, j} Z_{i, j}^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\}\right| \\
\left(\Omega_{j}=E\left[Z_{i, j} Z_{i, j}^{\prime}\right]+\mathrm{LLN}\right) & =\left|c^{\prime}\left(\sum_{j \in J} \frac{n_{j}}{n} \Omega_{j}\right)^{-1} \sum_{j \in J} \frac{n_{j}}{n} \Omega_{j} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\}\right|+o_{p}(1) \\
\text { (Homogeneity) } & =|c^{\prime} \underbrace{\left(\sum_{j \in J} \frac{n_{j}}{n} \Omega_{\tilde{Z}}\right)^{-1} \Omega_{\tilde{Z}}}_{\approx \text { Identity }} \sum_{j \in J} \frac{n_{j}}{n} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\}|+o_{p}(1)
\end{aligned}
$$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

$$
\begin{aligned}
\left|T\left(g S_{n}\right)-T\left(g S_{n}^{*}\right)\right| & \leq\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{n_{j}}{n} \frac{1}{n_{j}} \sum_{i \in I_{n, j}} g_{j} Z_{i, j} Z_{i, j}^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{\mathrm{r}}\right\}\right| \\
\left(\Omega_{j}=E\left[Z_{i, j} Z_{i, j}^{\prime}\right]+\mathrm{LLN}\right) & =\left|c^{\prime}\left(\sum_{j \in J} \frac{n_{j}}{n} \Omega_{j}\right)^{-1} \sum_{j \in J} \frac{n_{j}}{n} \Omega_{j} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{\mathrm{r}}\right\}\right|+o_{p}(1) \\
(\text { Homogeneity }) & =\left\lvert\, c^{\prime}(\left.\underbrace{\left.\sum_{j \in J} \frac{n_{j}}{n} \Omega_{\tilde{Z}}\right)^{-1} \Omega_{\tilde{Z}}}_{\approx \text { Identity }} \sum_{j \in J} \frac{n_{j}}{n} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\} \right\rvert\,+o_{p}(1)\right. \\
\text { (Push } c^{\prime} \text { through) } & \approx\left|\sum_{j \in J} \frac{n_{j}}{n} g_{j} c^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{\mathrm{r}}\right\}\right|+o_{p}(1)
\end{aligned}
$$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

$$
\begin{aligned}
\left|T\left(g S_{n}\right)-T\left(g S_{n}^{*}\right)\right| & \leq\left|c^{\prime} \hat{\Omega}_{n}^{-1} \sum_{j \in J} \frac{n_{j}}{n} \frac{1}{n_{j}} \sum_{i \in I_{n, j}} g_{j} Z_{i, j} Z_{i, j}^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\}\right| \\
\left(\Omega_{j}=E\left[Z_{i, j} Z_{i, j}^{\prime}\right]+\mathrm{LLN}\right) & =\left|c^{\prime}\left(\sum_{j \in J} \frac{n_{j}}{n} \Omega_{j}\right)^{-1} \sum_{j \in J} \frac{n_{j}}{n} \Omega_{j} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\}\right|+o_{p}(1) \\
(\text { Homogeneity }) & =\left\lvert\, c^{\prime}(\left.\underbrace{\left(\sum_{j \in J} \frac{n_{j}}{n} \Omega_{\tilde{Z}}\right)^{-1} \Omega_{\tilde{Z}}}_{\approx \text { Identity }} \sum_{j \in J} \frac{n_{j}}{n} g_{j} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{r}\right\} \right\rvert\,+o_{p}(1)\right. \\
\text { (Push } c^{\prime} \text { through) } & \approx\left|\sum_{j \in J} \frac{n_{j}}{n} g_{j} c^{\prime} \sqrt{n}\left\{\beta-\hat{\beta}_{n}^{\mathrm{r}}\right\}\right|+o_{p}(1) \\
\left(\text { Use } c^{\prime} \hat{\beta}_{n}^{r}=c^{\prime} \beta\right) & =o_{p}(1)
\end{aligned}
$$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$
So Far We have shown $T\left(g S_{n}\right)=T\left(g S_{n}^{*}\right)+o_{p}(1)$ for any $g \in \mathbf{G}$.

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$
So Far We have shown $T\left(g S_{n}\right)=T\left(g S_{n}^{*}\right)+o_{p}(1)$ for any $g \in \mathbf{G}$.
In addition If $g= \pm(1, \ldots, 1)$, then $T\left(g S_{n}\right)=T\left(g S_{n}^{*}\right)$ (same arguments)

## Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate $T\left(g S_{n}^{*}\right)$ to $T\left(g S_{n}\right)$
So Far We have shown $T\left(g S_{n}\right)=T\left(g S_{n}^{*}\right)+o_{p}(1)$ for any $g \in \mathbf{G}$.
In addition If $g= \pm(1, \ldots, 1)$, then $T\left(g S_{n}\right)=T\left(g S_{n}^{*}\right)$ (same arguments)
Therefore

$$
\begin{array}{lll}
T_{n}>\hat{c}_{n}(1-\alpha) & \text { or equivalently } & T\left(S_{n}\right)>T^{(|\mathbf{G}|(1-\alpha))}\left(g S_{n}^{*} \mid \mathbf{G}\right) \\
& \text { or w.p.a. one } & T\left(S_{n}\right)>T^{(|\mathbf{G}|(1-\alpha))}\left(g S_{n} \mid \mathbf{G}\right)
\end{array}
$$

## Comments

- Using restricted estimator $\hat{\beta}_{n}^{r}$ plays fundamental role.
- Ensuring $T\left(g S_{n}\right)=T\left(g S_{n}^{*}\right)$ for $g= \pm(1, \ldots, 1)$ fundamental for ties.


## Sketch of Proof

## Step 3 Establish asymptotic connection to randomization test to conclude.

## Sketch of Proof

Step 3 Establish asymptotic connection to randomization test to conclude.

$$
S_{n} \equiv\left(\hat{\Omega}_{n},\left\{\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} Z_{i, j} \epsilon_{i, j}\right\}_{j \in J}\right) \xrightarrow{d}\left(\Omega_{\tilde{Z}},\left\{\mathcal{Z}_{j}\right\}_{j \in J}\right) \equiv S
$$

## Sketch of Proof

Step 3 Establish asymptotic connection to randomization test to conclude.

$$
S_{n} \equiv\left(\hat{\Omega}_{n},\left\{\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} Z_{i, j} \epsilon_{i, j}\right\}_{j \in J}\right) \xrightarrow{d}\left(\Omega_{\tilde{Z}},\left\{\mathcal{Z}_{j}\right\}_{j \in J}\right) \equiv S
$$

## Therefore

$$
\begin{aligned}
P\left(T_{n}>\hat{c}_{n}(1-\alpha)\right) & =P\left(T\left(S_{n}\right)>T^{(|\mathbf{G}|(1-\alpha)| |}\left(g S_{n} \mid \mathbf{G}\right)\right)+o(1) \\
& \rightarrow P\left(T(S)>T^{(|\mathbf{G}|(1-\alpha))}(g S \mid \mathbf{G})\right)
\end{aligned}
$$

## Sketch of Proof

Step 3 Establish asymptotic connection to randomization test to conclude.

$$
S_{n} \equiv\left(\hat{\Omega}_{n},\left\{\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} Z_{i, j} \epsilon_{i, j}\right\}_{j \in J}\right) \xrightarrow{d}\left(\Omega_{\tilde{Z}},\left\{\mathcal{Z}_{j}\right\}_{j \in J}\right) \equiv S
$$

## Therefore

$$
\begin{aligned}
P\left(T_{n}>\hat{c}_{n}(1-\alpha)\right) & =P\left(T\left(S_{n}\right)>T^{(|\mathbf{G}|(1-\alpha)| |}\left(g S_{n} \mid \mathbf{G}\right)\right)+o(1) \\
& \rightarrow P\left(T(S)>T^{(|\mathbf{G}|(1-\alpha))}(g S \mid \mathbf{G})\right)
\end{aligned}
$$

Finally since $g S \stackrel{d}{=} S$ for all $g \in \mathbf{G}$, properties of randomization tests imply

$$
P\left(T(S)>T^{(|\mathbf{G}|(1-\alpha))}(g S \mid \mathbf{G})\right) \leq \alpha
$$

## Additional Comments

## Main Conclusion

- Wild bootstrap provides size control with fixed \# clusters.
- Certain homogeneity assumptions are required.
- Procedure also works if $q \uparrow \infty$, so Wild bootstrap is "robust" to $q$.


## Procedure Comments

- Fundamental to use restricted estimator $\hat{\beta}_{n}^{r}$.
- Fundamental to use Rademacher weights.
- Both these observations are folklore from simulations.


## Proof Comments

- The wild bootstrap is not consistent (i.e. $\hat{c}_{n}(1-\alpha)$ does not converge).
- Instead wild bootstrap behaves like randomization test.


## (1) Setup and Notation

## (2) The Assumptions

## (3) Main Result

(4) Studentization and Extensions

## (5) Simulation Evidence

## Studentized Test

## The Test Statistic

$$
T_{n}^{\mathrm{s}} \equiv \frac{\left|\sqrt{n}\left(c^{\prime} \hat{\beta}_{n}-\lambda\right)\right|}{\hat{\sigma}_{n}}
$$

where $\hat{\sigma}_{n}$ are cluster robust s.e.; i.e. $\hat{\epsilon}_{i, j} \equiv\left(Y_{i, j}-W_{i, j}^{\prime} \hat{\gamma}_{n}-Z_{i, j}^{\prime} \hat{\beta}_{n}\right)$ and

$$
\hat{\sigma}_{n}^{2}=c^{\prime} \hat{\Omega}_{n}^{-1} \hat{V}_{n} \hat{\Omega}_{n}^{-1} c \quad \hat{V}_{n}=\frac{1}{n} \sum_{j \in J} \sum_{i \in I_{j}} \sum_{s \in I_{j}} \tilde{Z}_{i, j} \tilde{Z}_{s, j}^{\prime} \hat{\epsilon}_{i, j} \hat{\epsilon}_{s, j}
$$

## The Bootstrap

- Wild bootstrap critical values adjusted accordingly.
- Wild bootstrap s.e. use wild bootstrap residuals from $\hat{\beta}_{n}^{*}(g)$.
- Write the resulting wild bootstrap critical value as $\hat{c}_{n}^{\mathrm{s}}(1-\alpha)$.


## Studentized Test

Theorem If Assumptions $W$ and $H$ hold and $c^{\prime} \beta=\lambda$, then it follows that

$$
\begin{aligned}
\alpha-\frac{1}{2^{q-1}} & \leq \liminf _{n \rightarrow \infty} P\left(T_{n}^{\mathrm{s}}>\hat{c}_{n}^{\mathrm{s}}(1-\alpha)\right) \\
& \leq \limsup _{n \rightarrow \infty} P\left(T_{n}^{\mathrm{s}}>\hat{c}_{n}^{\mathrm{s}}(1-\alpha)\right) \\
& \leq \alpha+\frac{1}{2^{q-1}}
\end{aligned}
$$

## Comments

- Problem: Unlike unstudentized version "ties" matter $\left(T_{n}^{s}=\hat{c}_{n}^{\mathrm{s}}(1-\alpha)\right)$.
- But: Probability of tie asymp. only $1 / 2^{q-1} \Rightarrow$ Small distortion.
- Similar intuition extends to nonlinear estimators and hypotheses.


## Score Bootstrap (Sketch)

## Test Statistic

$$
T^{\mathrm{F}}\left(S_{n}\right)=F\left(S_{n}\right)+o_{p}(1)
$$

where $F$ is a known function, and $S_{n}$ is the cluster level scores given by

$$
S_{n} \equiv\left\{\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} \psi\left(X_{i, j}\right): j \in J\right\}
$$

## Critical Value

$$
\hat{c}_{n}^{\mathrm{F}}(1-\alpha) \equiv \inf \left\{u: \frac{1}{|\mathbf{G}|} \sum_{g \in \mathbf{G}} 1\left\{F\left(g \hat{S}_{n}\right) \leq u\right\} \geq 1-\alpha\right\}
$$

where $g \hat{S}_{n}$ are "perturbed" estimates for the cluster level scores given by

$$
g \hat{S}_{n} \equiv\left\{\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} g_{j} \hat{\psi}_{n}\left(X_{i, j}\right): j \in J\right\}
$$

## Score Bootstrap (Sketch)

## Main Assumption (M)

$$
\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} \hat{\psi}_{n}\left(X_{i, j}\right)=\frac{1}{\sqrt{n}} \sum_{i \in I_{n, j}} \psi\left(X_{i, j}\right)+o_{p}(1)
$$

To verify: use constrained estimator and "homogeneity" condition.

## Example (GMM)

- For some $m\left(X_{i, j}, \cdot\right): \mathbf{R}^{d_{\beta}} \rightarrow \mathbf{R}^{d_{m}}$ parameter $\beta \in \mathbf{R}^{d_{\beta}}$ satisfies

$$
E\left[m\left(X_{i, j}, \beta\right)\right]=0
$$

- If $T_{n}$ is Wald test-statistic based on GMM estimator, key condition is

$$
\frac{1}{n} \sum_{i \in I_{n, j}} \nabla m\left(X_{i, j}, \hat{\beta}_{n}\right) \xrightarrow{p} a_{j} D(\beta)
$$

## (1) Setup and Notation

## (2) The Assumptions

## (3) Main Result

## 4. Studentization and Extensions

(5) Simulation Evidence

## Simulation Design

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\sigma\left(Z_{i, j}\right)\left(\eta_{j}+\epsilon_{i, j}\right)
$$

for $1 \leq i \leq n$ and $1 \leq j \leq q$ where we explore four parameter specifications.
The Good Specifications

- Model 1: $Z_{i, j}=A_{j}+\zeta_{i, j}, \sigma\left(Z_{i, j}\right)=Z_{i, j}^{2}, \gamma=1$. All variables $N(0,1)$.
- Model 2: As in M.1, but $Z_{i, j}=\sqrt{j}\left(A_{j}+\zeta_{i, j}\right)$.

Note: Models 1 and 2 need fixed effects to satisfy our assumptions.

## Simulation Design

$$
Y_{i, j}=\gamma+Z_{i, j}^{\prime} \beta+\sigma\left(Z_{i, j}\right)\left(\eta_{j}+\epsilon_{i, j}\right)
$$

for $1 \leq i \leq n$ and $1 \leq j \leq q$ where we explore four parameter specifications.

## The Bad Specifications

- Model 3: As in M.1, but $A_{j} \sim N\left(0, I_{3}\right), \zeta_{i, j} \sim N\left(0, \Sigma_{j}\right), \beta=\left(\beta_{1}, 1,1\right)$.
- Model 4: As in M.1, but $\beta=\left(\beta_{1}, 2\right), \sigma\left(Z_{i, j}\right)=\left(Z_{i, j}^{(1)}+Z_{i, j}^{(2)}\right)^{2}$ with

$$
\begin{aligned}
Z_{i, j} & \sim N\left(\mu_{1}, \Sigma_{1}\right) \text { for } j>q / 2 \\
Z_{i, j} & \sim N\left(\mu_{2}, \Sigma_{2}\right) \text { for } j \leq q / 2
\end{aligned}
$$

where $\mu_{1}=(-4,-2), \mu_{2}=(2,4), \Sigma_{1}=I_{2}$ and $\Sigma_{2}=\left(\begin{array}{cc}10 & 0.8 \\ 0.8 & 1\end{array}\right)$.

## The Tests

## The Tests We Consider

un-Stud: un-studentized test.
Stud: Studentized test.
ET-US: Equi-tail analog of the un-Stud test above. Reject if $T_{n}<\hat{c}_{n}(\alpha / 2)$ or $T_{n}>\hat{c}_{n}(1-\alpha / 2)$.

ET-S: Same as ET-US but with studentized test statistic.

## Variants of These Tests

- Implemented with or without cluster-Ivl fixed effects
- Implemented with Rademacher or Mammen weights.


## Size Under Homogeneity

|  | Test | Rade - with FEs |  |  | Rade - without FEs |  |  | Mammen - with FEs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | $\begin{aligned} & q \\ & 6 \end{aligned}$ | 8 | 5 | $\begin{aligned} & q \\ & 6 \end{aligned}$ | 8 | 5 | $\begin{aligned} & q \\ & 6 \end{aligned}$ | 8 |
| $\begin{aligned} & \text { Model } 1 \\ & n=50 \end{aligned}$ | Non-Stud. | 9.90 | 9.34 | 9.42 | 14.48 | 13.80 | 12.48 | 14.42 | 13.06 | 12.16 |
|  | Stud. | 10.42 | 9.54 | 9.76 | 10.80 | 10.04 | 9.86 | 6.26 | 5.16 | 4.58 |
|  | ET-NS | 7.40 | 9.64 | 9.26 | 11.42 | 14.00 | 12.16 | 3.14 | 3.30 | 4.74 |
|  | ET-S | 8.64 | 9.90 | 9.52 | 8.34 | 10.32 | 9.46 | 25.72 | 24.32 | 22.04 |
| Model 2$n=50$ | Non-Stud. | 9.02 | 9.70 | 9.98 | 15.84 | 15.60 | 15.42 | 13.62 | 13.78 | 13.72 |
|  | Stud | 9.44 | 9.72 | 10.08 | 10.38 | 10.06 | 11.04 | 5.92 | 4.60 | 4.10 |
|  | ET-NS | 6.68 | 9.88 | 9.72 | 12.44 | 15.68 | 15.00 | 1.54 | 2.22 | 3.58 |
|  | ET-S | 7.60 | 10.34 | 9.88 | 8.30 | 10.24 | 10.80 | 25.42 | 25.26 | 25.40 |
| Model 1 <br> $n=300$ | Non-Stud. | 9.72 | 9.46 | 10.16 | 15.48 | 14.32 | 14.24 | 14.78 | 13.48 | 12.88 |
|  | Stud | 10.22 | 9.64 | 10.16 | 11.24 | 10.42 | 10.86 | 6.88 | 5.30 | 4.58 |
|  | ET-NS | 7.14 | 9.66 | 9.84 | 12.00 | 14.42 | 13.82 | 2.66 | 3.62 | 4.70 |
|  | ET-S | 8.12 | 10.12 | 9.92 | 8.78 | 10.74 | 10.56 | 25.08 | 24.38 | 24.14 |
| Model 2$n=300$ | Non-Stud. | 9.68 | 9.74 | 10.12 | 17.74 | 16.20 | 15.26 | 14.86 | 14.08 | 13.34 |
|  | Stud | 10.16 | 9.86 | 10.16 | 10.96 | 10.28 | 10.66 | 6.18 | 4.80 | 4.34 |
|  | ET-NS | 7.26 | 10.00 | 9.96 | 13.60 | 16.24 | 14.74 | 1.80 | 2.36 | 3.40 |
|  | ET-S | 8.16 | 10.42 | 9.88 | 8.00 | 10.44 | 10.40 | 26.80 | 26.66 | 25.42 |

Table: Rejection prob. (in \%) under $H_{0} .5,000$ replications. $\alpha=10 \%$

## Size Without Homogeneity

|  | Test | Rade - with Fixed effects |  |  |  | Rade - without Fixed effects |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $q$ |  |  |  | $q$ |  |  |  |
|  |  | 4 | 5 | 6 | 8 | 4 | 5 | 6 | 8 |
| Model 3$n=50$ | Non-Stud | 11.58 | 13.90 | 13.32 | 13.24 | 26.68 | 37.16 | 32.38 | 26.12 |
|  | Stud | 11.14 | 12.74 | 11.94 | 11.44 | 19.98 | 18.62 | 14.54 | 12.66 |
|  | ET-NS | 5.62 | 10.82 | 12.78 | 12.92 | 8.66 | 31.40 | 33.18 | 25.62 |
|  | ET-S | 7.06 | 10.24 | 11.34 | 11.38 | 13.52 | 16.08 | 15.10 | 12.46 |
| Model 4$n=50$ | Non-Stud | 12.96 | 17.70 | 16.30 | 12.96 | 12.44 | 22.64 | 18.00 | 14.22 |
|  | Stud | 13.00 | 16.34 | 14.62 | 10.88 | 15.24 | 22.68 | 17.22 | 12.84 |
|  | ET-NS | 5.52 | 14.68 | 16.56 | 12.72 | 3.60 | 19.08 | 18.20 | 14.02 |
|  | ET-S | 7.62 | 14.30 | 15.10 | 10.76 | 9.60 | 20.70 | 17.66 | 12.74 |
| Model 3$n=300$ | Non-Stud | 12.26 | 15.10 | 13.52 | 12.66 | 30.10 | 39.08 | 33.26 | 26.06 |
|  | Stud | 12.32 | 13.52 | 11.40 | 10.96 | 22.00 | 19.38 | 15.44 | 12.96 |
|  | ET-NS | 5.88 | 12.20 | 14.14 | 12.38 | 14.20 | 32.34 | 16.14 | 12.74 |
|  | ET-S | 8.20 | 11.86 | 11.94 | 10.74 | 17.80 | 16.70 | 13.00 | 11.98 |
| Model 4$n=300$ | Non-Stud | 13.54 | 17.18 | 15.94 | 12.84 | 14.72 | 24.38 | 17.56 | 13.78 |
|  | Stud | 13.40 | 15.78 | 14.94 | 11.72 | 17.12 | 25.10 | 17.66 | 12.58 |
|  | ET-NS | 5.60 | 13.98 | 16.36 | 12.68 | 4.32 | 19.66 | 17.80 | 13.60 |
|  | ET-S | 7.88 | 13.38 | 15.46 | 11.56 | 10.42 | 22.16 | 18.14 | 12.36 |

Table: Rejection prob. (in \%) under $H_{0} .5,000$ replications. $\alpha=10 \%$

## Conclusion

## The Wild Bootstrap

- Valid under a fixed number of clusters (and still if $q \uparrow \infty$ )
- Specific to implementatin with Rademacher weight and " $\hat{\beta}_{n}^{r}$ ".
- Including cluster level fixed effects eases conditions.
- Studentized may over-reject (but negligible)


## Related to Folklore

- Rademacher weights outperform Mammen despite large $q$ theory.
- "Imposing the null" has dramatic effects in simulations.
- Certain "heterogeneous" designs negatively affect wild bootstrap.

