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The Question

Wild Bootstrap
• Prevalent inference method in linear models with few clusters.
• Due to remarkable simulations by Cameron, Gelbach & Miller (2008).
• Simulations show size control with as few as five clusters.

Examples
• Meng, Qian, and Yared (2015, REStud): 19 clusters.
• Acemoglu, Cantoni, Johnson, Robinson (2011, AER): 13 clusters.
• Giuliano and Spilimbergo (2014, REStud): 9 clusters.
• Kosfeld and Rustagi (2015, AER): 5 clusters.

The Problem:
• Available theory requires # clusters→ infinity.
• Asymptotic properties with few clusters remain unknown.
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The Question

What We Know
• Simulations have shown wild bootstrap can fail to control size

... but not easy to find these designs.

• Justifications are asymptotic as number of clusters diverges
... but why does it work with as few as five clusters?

• Small changes to the procedure can affect simulation performance
... e.g. why do Rademacher weights do better than Mammen weights?

This Paper
• Study the performance of the Wild bootstrap with few clusters.
• Study in asymptotic framework where number of clusters is fixed.
• Will Show Wild bootstrap can be valid with few clusters.
• Result requires clusters to be suitably “homogenous”.
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Related Literature

Wild Bootstrap
Liu (1988), Mammen (1993), Davidson & Mackinnon (1999), Cameron,
Gelbach & Miller (2008), Davidson & Flachaire (2008), Kline & Santos
(2012a, 2012b), Webb (2013), Mackinnon, Nielsen & Webb (2017).

⇒ These results do not explain performance with (as few as) five clusters.

Fixed Number of Clusters
Ibragimov & Muller (2010, 2016), Bester, Conley & Hansen (2011), Canay,
Romano & Shaikh (2017), Hagemann (2019).

⇒ Study alternative procedures with fixed number of clusters.
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2 The Assumptions

3 Main Result

4 Studentization and Extensions
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The Model

Yi,j = W ′i,jγ + Z ′i,jβ + εi,j

where γ ∈ Rdw , β ∈ Rdz and E[Zi,jεi,j ] = 0 and E[Wi,jεi,j ] = 0 (∀i, j).

Notation
• We index clusters by j ∈ J .
• We index number of clusters by q = |J |.
• We index units in the jth cluster by i ∈ In,j .
• We index number of units in cluster j by nj = |In,j |.

Comment
• β is main coefficient of interest (e.g. Zi,j ∈ R).
• γ is a nuisance parameter (e.g. Wi,j are fixed effects).
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The Test

For some c ∈ Rdz and λ ∈ R we consider the hypothesis testing problem

H0 : c′β = λ H1 : c′β 6= λ

Test Statistic

Tn ≡ |
√
n(c′β̂n − λ)|

where β̂n is the ordinary least squares estimator of β.

Wild Bootstrap Test

φn = 1{Tn > ĉn(1− α)}

where ĉn(1− α) is computed using a specific variant of the wild bootstrap.

Note: We will study properties of the Studentized test statistic later.
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Critical Values

Work with a very specific variant of the wild bootstrap.

Step 1

• Run a restricted regression of Yi,j on (Wi,j , Zi,j) subject to c′β = λ.

• Let γ̂r
n ∈ Rdw and β̂r

n ∈ Rdz be restricted estimators.
• Let ε̂ri,j be the corresponding residuals from restricted regression.

Step 2

• Let {ωj}j∈J be i.i.d. with P (ωj = 1) = P (ωj = −1) = 1/2 for all j ∈ J .
• Define ω = {ωj}j∈J , and for each ω denote the new outcomes

Y ∗ij(ω) ≡W ′i,j γ̂r
n + Z ′i,j β̂

r
n + ωj ε̂

r
i,j

• Run an unrestricted regression of Y ∗i,j(ω) in (Wi,j , Zi,j).

• Let γ̂∗n(ω) and β̂∗n(ω) be corresponding unrestricted coefficients.
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Critical Values

Step 3

• Compute the 1−α quantile of bootstrap statistic conditional on the data

ĉn(1− α) ≡ inf{u ∈ R : P (|
√
n(c′β̂∗n(ω)− λ)| ≤ u|Data) ≥ 1− α}

• In practice ĉn(1− α) approximated via simulation of bootstrap samples.

Comments
• Bootstrap uses β̂r

n satisfying c′β̂r
n = λ (impose the null).

• Use of Rademacher weights is essential for our results.
• Importance of Rademacher vs alternatives known from simulations.
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Different Interpretation

Key: Under fixed number of clusters, distribution of {ωj}j∈J fixed with n.

Observations
• Let G ≡ {−1, 1}q, which corresponds to the support of ω = {ωj}j∈J .
• Every (g1, . . . , gq) = g ∈ G is then a possible realization of ω = {ωj}j∈J .
• Note that P (ω = g) = 1/|G| for every g ∈ G (all equally likely).

Abuse Notation Write β̂∗n(g) and γ̂∗n(g) in place of β̂∗n(ω) and γ̂∗n(ω).

ĉn(1− α) ≡ inf{u ∈ R : P (|
√
n(c′β̂∗n(ω)− λ)| ≤ u|Data) ≥ 1− α}

= inf{u ∈ R :
1

|G|
∑
g∈G

1{|
√
n(c′β̂∗n(g)− λ)| ≤ u} ≥ 1− α}
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Preliminary Notation

• Let Π̂n be the dw × dz matrix satisfying the orthogonality conditions∑
j∈J

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j = 0

• (Zi,j − Π̂′nWi,j) is residual from regressing Zi,j on Wi,j on whole sample.

Z̃i,j ≡ (Zi,j − Π̂′nWi,j)

• Let Π̂ c
n,j be a dw × dz matrix satisfying the orthogonality conditions∑

i∈In,j

(Zi,j − (Π̂c
n)′Wi,j)W

′
i,j = 0

Note: Π̂c
n,j may not be uniquely defined (e.g. include cluster fixed effects)

Canay, Santos, and Shaikh. October 4, 2019. UCLA



Preliminary Notation

• Let Π̂n be the dw × dz matrix satisfying the orthogonality conditions∑
j∈J

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j = 0

• (Zi,j − Π̂′nWi,j) is residual from regressing Zi,j on Wi,j on whole sample.

Z̃i,j ≡ (Zi,j − Π̂′nWi,j)

• Let Π̂ c
n,j be a dw × dz matrix satisfying the orthogonality conditions∑

i∈In,j

(Zi,j − (Π̂c
n)′Wi,j)W

′
i,j = 0

Note: Π̂c
n,j may not be uniquely defined (e.g. include cluster fixed effects)

Canay, Santos, and Shaikh. October 4, 2019. UCLA



Preliminary Notation

• Let Π̂n be the dw × dz matrix satisfying the orthogonality conditions∑
j∈J

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j = 0

• (Zi,j − Π̂′nWi,j) is residual from regressing Zi,j on Wi,j on whole sample.

Z̃i,j ≡ (Zi,j − Π̂′nWi,j)

• Let Π̂ c
n,j be a dw × dz matrix satisfying the orthogonality conditions∑

i∈In,j

(Zi,j − (Π̂c
n)′Wi,j)W

′
i,j = 0

Note: Π̂c
n,j may not be uniquely defined (e.g. include cluster fixed effects)

Canay, Santos, and Shaikh. October 4, 2019. UCLA



Weak Assumption

Assumption W
(i) The following statistic converges in distribution as n diverges to infinity

1√
n

∑
j∈J

∑
i∈In,j

(
Wi,jεi,j
Zi,jεi,j

)

(ii) The following statistic converges (in prob.) to a positive definite matrix

1

n

∑
j∈J

∑
i∈In,j

(
Wi,jW

′
i,j Wi,jZ

′
i,j

Zi,jW
′
i,j Zi,jZ

′
i,j

)

Comments
• Requirements for showing β̂n and β̂r

n converge in distribution.
• Implicit requirement dependence within cluster weak enough for CLT.
• Imply Π̂n converges in probability to a well defined limit.
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Homogeneity Assumption

Assumption H
(i) For independent {Zj}j∈J with Zj ∼ N(0,Σj) and Σj > 0 we have

{ 1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J} d→ {Zj : j ∈ J}

(ii) For each j ∈ J , nj/n→ ξj > 0.

Comments
• Requirement (i) requires convergence of cluster level “score”.
• Requirement (ii) requires clusters not be “too” imbalanced.
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Homogeneity Assumption

Assumption H
(iii) There are aj > 0 and ΩZ̃ positive definite such that for each j ∈ J

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j

p→ ajΩZ̃

(iv) For each j ∈ J it follows that

1

nj

∑
i∈In,j

‖W ′i,j(Π̂n − Π̂c
n,j)‖2

p→ 0

Comments
• If Zi,j ∈ R, H(iii) means nonzero limit of

∑
i∈In,j Z̃

2
i,j/nj .

• H(iv) requires convergence of full sample and cluster level projections.
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Some Discussion

For γ ∈ R, E[εi,j ] = 0 and E[Zi,jεi,j ] = 0 for all i ∈ In,j and j ∈ J suppose

Yi,j = γ + Z ′i,jβ + εi,j

Note: Since here Wi,j = 1 for all i ∈ In,j and j ∈ J we therefore we have

Π̂′nWi,j =
1

n

∑
j∈J

∑
i∈In,j

Zi,j (Π̂c
n)′Wi,j =

1

nj

∑
i∈In,j

Zi,j

• Hence, Assumption H(iv) (asymptotic equivalence of projections) needs

Cluster level means are the same (asymptotically)

•While, Assumption H(iii) needs same covariance matrices (up to scaling).
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Main Result

Theorem If Assumptions W and H hold and c′β = λ, then it follows that

α− 1

2q−1
≤ lim inf

n→∞
P (Tn > ĉn(1− α))

≤ lim sup
n→∞

P (Tn > ĉn(1− α))

≤ α

Comments
• Wild bootstrap controls size for any number of clusters.
• Conservative, but difference decreases exponentially with # of clusters.
• Because q fixed, ĉn(1− α) is not consistent.
• Theorem valid for IV under similar assumptions.
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Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

The Test Statistic

• Suppose the null hypothesis is true so that c′β = λ. Then it follows that

Tn =
√
n|c′β̂n − λ| =

√
n|c′(β̂n − β)| = |c′Ω̂−1n

∑
j∈J

1√
n

∑
i∈Ij

Zi,jεi,j |

where Ω̂n ≡
∑
j∈J

∑
i∈In,j Zi,jZ

′
i,j/n is usual dz × dz matrix.

• Therefore, for an appropriate function T we can write Tn as

Tn = T (Sn) Sn = (Ω̂n, {
1√
n

∑
i∈In,j

Zi,jεi,j}j∈J)
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n|c′β̂n − λ| =

√
n|c′(β̂n − β)| = |c′Ω̂−1n

∑
j∈J

1√
n

∑
i∈Ij

Zi,jεi,j |

where Ω̂n ≡
∑
j∈J

∑
i∈In,j Zi,jZ

′
i,j/n is usual dz × dz matrix.

• Therefore, for an appropriate function T we can write Tn as

Tn = T (Sn) Sn = (Ω̂n, {
1√
n

∑
i∈In,j

Zi,jεi,j}j∈J)
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Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

The Bootstrap Statistic

• Since β̂r
n satisfies c′β̂r

n = λ by construction, it then follows that

√
n|c′β̂∗n(g)− λ| =

√
n|c′(β̂∗n(g)− β̂r

n)| = |c′Ω̂−1n
∑
j∈J

1√
n

∑
i∈Ij

gjZi,j ε̂
r
i,j |

• Therefore, for the same function T characterizing Tn it follows that

√
n|c′β̂∗n(g)− λ| = T (gS∗n) gS∗n = (Ω̂n, {

gj√
n

∑
i∈In,j

Zi,j ε̂
r
i,j}j∈J)

for any (g1, . . . , gq) = g ∈ G, where recall G = {−1, 1}q.
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Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

The Critical Value

• Since β̂r
n satisfies c′β̂r

n = λ by construction, it then follows that

ĉn(1− α) = 1− α quantile of |
√
nc′(β̂∗n(g)− λ)| over g ∈ G

= 1− α quantile of T (gS∗n) over g ∈ G

• Equivalently, let T (k)(S∗n|G) be the kth smallest value of {T (gS∗n)}g∈G

T (1)(gS∗n|G) ≤ · · · ≤ T (|G|(1−α)|)(gS∗n|G)︸ ︷︷ ︸
ĉn(1−α)

≤ · · · ≤ T (|G|)(gS∗n|G)
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Sketch of Proof

Step 1 Rewrite the test to show (asymptotic) connection to randomized test.

Tn > ĉn(1− α) or equivalently T (Sn) > T (|G|(1−α))(gS∗n|G)

Comments

• If Sn equaled S∗n, it would resemble a randomization test.
• Since the number of clusters is fixed, G is not changing.
• Showing bootstrap validity needs “non-standard” arguments.
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Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate T (gS∗n) to T (gSn)

|T (gSn)− T (gS∗n)| ≤ |c′Ω̂−1n
∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZi,jZ
′
i,j

√
n{β − β̂r

n}|

(Ωj = E[Zi,jZ
′
i,j ] + LLN) = |c′(

∑
j∈J

nj
n

Ωj)
−1
∑
j∈J

nj
n

Ωjgj
√
n{β − β̂r

n}|+ op(1)

(Homogeneity) = |c′ (
∑
j∈J

nj
n

ΩZ̃)−1ΩZ̃︸ ︷︷ ︸
≈ Identity

∑
j∈J

nj
n
gj
√
n{β − β̂r

n}|+ op(1)

(Push c′ through) ≈ |
∑
j∈J

nj
n
gjc
′√n{β − β̂r

n}|+ op(1)

(Use c′β̂r
n = c′β) = op(1)
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Sketch of Proof

Step 2 Employ the homogeneity assumptions to relate T (gS∗n) to T (gSn)

So Far We have shown T (gSn) = T (gS∗n) + op(1) for any g ∈ G.

In addition If g = ±(1, . . . , 1), then T (gSn) = T (gS∗n) (same arguments)

Therefore
Tn > ĉn(1− α) or equivalently T (Sn) > T (|G|(1−α))(gS∗n|G)

or w.p.a. one T (Sn) > T (|G|(1−α))(gSn|G)

Comments
• Using restricted estimator β̂r

n plays fundamental role.
• Ensuring T (gSn) = T (gS∗n) for g = ±(1, . . . , 1) fundamental for ties.
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Sketch of Proof

Step 3 Establish asymptotic connection to randomization test to conclude.

Sn ≡ (Ω̂n, {
1√
n

∑
i∈In,j

Zi,jεi,j}j∈J)
d→ (ΩZ̃ , {Zj}j∈J) ≡ S

Therefore

P (Tn > ĉn(1− α)) = P (T (Sn) > T (|G|(1−α)|)(gSn|G)) + o(1)

→ P (T (S) > T (|G|(1−α))(gS|G))

Finally since gS d
= S for all g ∈ G, properties of randomization tests imply

P (T (S) > T (|G|(1−α))(gS|G)) ≤ α
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P (Tn > ĉn(1− α)) = P (T (Sn) > T (|G|(1−α)|)(gSn|G)) + o(1)

→ P (T (S) > T (|G|(1−α))(gS|G))

Finally since gS d
= S for all g ∈ G, properties of randomization tests imply

P (T (S) > T (|G|(1−α))(gS|G)) ≤ α

Canay, Santos, and Shaikh. October 4, 2019. UCLA



Sketch of Proof

Step 3 Establish asymptotic connection to randomization test to conclude.

Sn ≡ (Ω̂n, {
1√
n

∑
i∈In,j

Zi,jεi,j}j∈J)
d→ (ΩZ̃ , {Zj}j∈J) ≡ S

Therefore
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Additional Comments

Main Conclusion

• Wild bootstrap provides size control with fixed # clusters.
• Certain homogeneity assumptions are required.
• Procedure also works if q ↑ ∞, so Wild bootstrap is “robust” to q.

Procedure Comments

• Fundamental to use restricted estimator β̂r
n.

• Fundamental to use Rademacher weights.
• Both these observations are folklore from simulations.

Proof Comments

• The wild bootstrap is not consistent (i.e. ĉn(1− α) does not converge).
• Instead wild bootstrap behaves like randomization test.
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Studentized Test

The Test Statistic

T s
n ≡
|
√
n(c′β̂n − λ)|

σ̂n

where σ̂n are cluster robust s.e.; i.e. ε̂i,j ≡ (Yi,j −W ′i,j γ̂n − Z ′i,j β̂n) and

σ̂2
n = c′Ω̂−1n V̂nΩ̂−1n c V̂n =

1

n

∑
j∈J

∑
i∈Ij

∑
s∈Ij

Z̃i,jZ̃
′
s,j ε̂i,j ε̂s,j

The Bootstrap

• Wild bootstrap critical values adjusted accordingly.
• Wild bootstrap s.e. use wild bootstrap residuals from β̂∗n(g).
• Write the resulting wild bootstrap critical value as ĉs

n(1− α).
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Studentized Test

Theorem If Assumptions W and H hold and c′β = λ, then it follows that

α− 1

2q−1
≤ lim inf

n→∞
P (T s

n > ĉs
n(1− α))

≤ lim sup
n→∞

P (T s
n > ĉs

n(1− α))

≤ α+
1

2q−1

Comments
• Problem: Unlike unstudentized version “ties” matter (T s

n = ĉs
n(1− α)).

• But: Probability of tie asymp. only 1/2q−1 ⇒ Small distortion.
• Similar intuition extends to nonlinear estimators and hypotheses.
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Score Bootstrap (Sketch)

Test Statistic
TF(Sn) = F (Sn) + op(1)

where F is a known function, and Sn is the cluster level scores given by

Sn ≡ {
1√
n

∑
i∈In,j

ψ(Xi,j) : j ∈ J}

Critical Value

ĉFn(1− α) ≡ inf{u :
1

|G|
∑
g∈G

1{F (gŜn) ≤ u} ≥ 1− α}

where gŜn are “perturbed” estimates for the cluster level scores given by

gŜn ≡ {
1√
n

∑
i∈In,j

gjψ̂n(Xi,j) : j ∈ J}
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Score Bootstrap (Sketch)

Main Assumption (M)

1√
n

∑
i∈In,j

ψ̂n(Xi,j) =
1√
n

∑
i∈In,j

ψ(Xi,j) + op(1)

To verify: use constrained estimator and “homogeneity” condition.

Example (GMM)
• For some m(Xi,j , ·) : Rdβ → Rdm parameter β ∈ Rdβ satisfies

E[m(Xi,j , β)] = 0

• If Tn is Wald test-statistic based on GMM estimator, key condition is

1

n

∑
i∈In,j

∇m(Xi,j , β̂n)
p→ ajD(β)
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Simulation Design

Yi,j = γ + Z ′i,jβ + σ(Zi,j)(ηj + εi,j)

for 1 ≤ i ≤ n and 1 ≤ j ≤ q where we explore four parameter specifications.

The Good Specifications

• Model 1: Zi,j = Aj + ζi,j , σ(Zi,j) = Z2
i,j , γ = 1. All variables N(0, 1).

• Model 2: As in M.1, but Zi,j =
√
j(Aj + ζi,j).

Note: Models 1 and 2 need fixed effects to satisfy our assumptions.
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Simulation Design

Yi,j = γ + Z ′i,jβ + σ(Zi,j)(ηj + εi,j)

for 1 ≤ i ≤ n and 1 ≤ j ≤ q where we explore four parameter specifications.

The Bad Specifications

• Model 3: As in M.1, but Aj ∼ N(0, I3), ζi,j ∼ N(0,Σj), β = (β1, 1, 1).

• Model 4: As in M.1, but β = (β1, 2), σ(Zi,j) = (Z
(1)
i,j + Z

(2)
i,j )2 with

Zi,j ∼ N(µ1,Σ1) for j > q/2

Zi,j ∼ N(µ2,Σ2) for j ≤ q/2

where µ1 = (−4,−2), µ2 = (2, 4), Σ1 = I2 and Σ2 =

(
10 0.8
0.8 1

)
.
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The Tests

The Tests We Consider

un-Stud: un-studentized test.

Stud: Studentized test.

ET-US: Equi-tail analog of the un-Stud test above.
Reject if Tn < ĉn(α/2) or Tn > ĉn(1− α/2).

ET-S: Same as ET-US but with studentized test statistic.

Variants of These Tests

• Implemented with or without cluster-lvl fixed effects
• Implemented with Rademacher or Mammen weights.
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Size Under Homogeneity

Rade - with FEs Rade - without FEs Mammen - with FEs
q q q

Test 5 6 8 5 6 8 5 6 8
Non-Stud. 9.90 9.34 9.42 14.48 13.80 12.48 14.42 13.06 12.16

Model 1 Stud. 10.42 9.54 9.76 10.80 10.04 9.86 6.26 5.16 4.58
n = 50 ET-NS 7.40 9.64 9.26 11.42 14.00 12.16 3.14 3.30 4.74

ET-S 8.64 9.90 9.52 8.34 10.32 9.46 25.72 24.32 22.04
Non-Stud. 9.02 9.70 9.98 15.84 15.60 15.42 13.62 13.78 13.72

Model 2 Stud 9.44 9.72 10.08 10.38 10.06 11.04 5.92 4.60 4.10
n = 50 ET-NS 6.68 9.88 9.72 12.44 15.68 15.00 1.54 2.22 3.58

ET-S 7.60 10.34 9.88 8.30 10.24 10.80 25.42 25.26 25.40
Non-Stud. 9.72 9.46 10.16 15.48 14.32 14.24 14.78 13.48 12.88

Model 1 Stud 10.22 9.64 10.16 11.24 10.42 10.86 6.88 5.30 4.58
n = 300 ET-NS 7.14 9.66 9.84 12.00 14.42 13.82 2.66 3.62 4.70

ET-S 8.12 10.12 9.92 8.78 10.74 10.56 25.08 24.38 24.14
Non-Stud. 9.68 9.74 10.12 17.74 16.20 15.26 14.86 14.08 13.34

Model 2 Stud 10.16 9.86 10.16 10.96 10.28 10.66 6.18 4.80 4.34
n = 300 ET-NS 7.26 10.00 9.96 13.60 16.24 14.74 1.80 2.36 3.40

ET-S 8.16 10.42 9.88 8.00 10.44 10.40 26.80 26.66 25.42

Table: Rejection prob. (in %) under H0. 5,000 replications. α = 10%
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Size Without Homogeneity

Rade - with Fixed effects Rade - without Fixed effects
q q

Test 4 5 6 8 4 5 6 8
Non-Stud 11.58 13.90 13.32 13.24 26.68 37.16 32.38 26.12

Model 3 Stud 11.14 12.74 11.94 11.44 19.98 18.62 14.54 12.66
n = 50 ET-NS 5.62 10.82 12.78 12.92 8.66 31.40 33.18 25.62

ET-S 7.06 10.24 11.34 11.38 13.52 16.08 15.10 12.46
Non-Stud 12.96 17.70 16.30 12.96 12.44 22.64 18.00 14.22

Model 4 Stud 13.00 16.34 14.62 10.88 15.24 22.68 17.22 12.84
n = 50 ET-NS 5.52 14.68 16.56 12.72 3.60 19.08 18.20 14.02

ET-S 7.62 14.30 15.10 10.76 9.60 20.70 17.66 12.74
Non-Stud 12.26 15.10 13.52 12.66 30.10 39.08 33.26 26.06

Model 3 Stud 12.32 13.52 11.40 10.96 22.00 19.38 15.44 12.96
n = 300 ET-NS 5.88 12.20 14.14 12.38 14.20 32.34 16.14 12.74

ET-S 8.20 11.86 11.94 10.74 17.80 16.70 13.00 11.98
Non-Stud 13.54 17.18 15.94 12.84 14.72 24.38 17.56 13.78

Model 4 Stud 13.40 15.78 14.94 11.72 17.12 25.10 17.66 12.58
n = 300 ET-NS 5.60 13.98 16.36 12.68 4.32 19.66 17.80 13.60

ET-S 7.88 13.38 15.46 11.56 10.42 22.16 18.14 12.36

Table: Rejection prob. (in %) under H0. 5,000 replications. α = 10%
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Conclusion

The Wild Bootstrap

• Valid under a fixed number of clusters (and still if q ↑ ∞)
• Specific to implementatin with Rademacher weight and “β̂r

n”.
• Including cluster level fixed effects eases conditions.
• Studentized may over-reject (but negligible)

Related to Folklore

• Rademacher weights outperform Mammen despite large q theory.
• “Imposing the null” has dramatic effects in simulations.
• Certain “heterogeneous” designs negatively affect wild bootstrap.
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