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S.1 Auxiliary Lemmas

Lemma S.1.1. Let Assumptions 2.1 and 2.2 hold, Ω̂−
Z̃,n

denote the pseudo-inverse of Ω̂Z̃,n, and

set ā ≡
∑

j∈J ξjaj and Un,j ≡ 1√
n

∑
i∈In,j Z̃i,jεi,j. If c′β = λ, then for any (g1, . . . , gq) = g ∈ G

σ̂2n = c′Ω̂−
Z̃,n

∑
j∈J

(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)′
Ω̂−
Z̃,n

c+ oP (1)

(σ̂∗n(g))2 = c′Ω̂−
Z̃,n

∑
j∈J

(
gjUn,j −

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃

)(
gjUn,j −

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃

)′
Ω̂−
Z̃,n

c+ oP (1) .

Proof: Recall that (β̂′n, γ̂
′
n)′ denotes the least squares estimator of (β′, γ′)′ in (1) and denote the

corresponding residuals by ε̂i,j ≡ (Yi,j − Z ′i,j β̂n −W ′i,j γ̂n). Since
√
n(β̂n − β) and

√
n(γ̂n − γ) are

bounded in probability by Assumption 2.1, Lemma S.1.2 and the definition of Un,j yield

1√
n

∑
i∈In,j

Z̃i,j ε̂i,j =
1√
n

∑
i∈In,j

Z̃i,jεi,j −
1

n

∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂n − β)− 1

n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂n − γ)

= Un,j −
1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂n − β) + oP (1) . (S.1)

Next, note that Ω̂Z̃,n is invertible with probability tending to one by Assumption 2.2(iii). Since

Ω̂−
Z̃,n

= Ω̂−1
Z̃,n

when Ω̂Z̃,n is invertible, we obtain from Assumptions 2.2(ii)-(iii) that

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂n − β)

=
nj
n

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,jΩ̂

−
Z̃,n

1√
n

∑
j̃∈J

∑
k∈In,j̃

Z̃k,j̃εk,j̃ + oP (1) =
ξjaj
ā

∑
j̃∈J

Un,j̃ + oP (1) . (S.2)

Therefore, (S.1), (S.2), and the continuous mapping theorem yield

V̂n =
∑
j∈J

( 1√
n

∑
i∈In,j

Z̃i,j ε̂i,j

)( 1√
n

∑
k∈In,j

Z̃ ′k,j ε̂k,j

)
=
∑
j∈J

(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)′
+ oP (1) . (S.3)

The first part of the lemma thus follows by the definition of σ̂2n in (15).

For the second claim of the lemma, note that when c′β = λ, it follows from Assumption 2.1 and

Amemiya (1985, Eq. (1.4.5)) that
√
n(β̂rn−β) and

√
n(γ̂rn−γ) are bounded in probability. Together

with Assumption 2.1 such result in turn also implies that
√
n(β̂∗n(g)− β̂rn) and

√
n(γ̂∗n(g)− γ̂rn) are

bounded in probability for all g ∈ G. Next, recall that the residuals from the bootstrap regression

in (4) equal ε̂∗i,j(g) = gj ε̂
r
i,j − Z ′i,j(β̂

∗
n(g) − β̂rn) − W ′i,j(γ̂

∗
n(g) − γ̂rn) for all (g1, . . . , gq) = g ∈ G.
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Therefore, we are able to conclude for any g ∈ G and j ∈ J that

1√
n

∑
i∈In,j

Z̃i,j ε̂
∗
i,j(g)

=
1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j −

1

n

∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂∗n(g)− β̂rn)− 1

n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂∗n(g)− γ̂rn)

=
1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j −

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂∗n(g)− β̂rn) + oP (1) , (S.4)

where in the final equality we employed Lemma S.1.2. Next, recall ε̂ri,j ≡ εi,j − Z ′i,j(β̂
r
n − β) −

W ′i,j(γ̂
r
n − γ) and note

c′Ω̂−
Z̃,n

1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j = c′Ω̂−

Z̃,n

1

n

∑
i∈In,j

Z̃i,jgj(εi,j − Z ′i,j
√
n(β̂rn − β)−W ′i,j

√
n(γ̂rn − γ))

= c′Ω̂−
Z̃,n

gjUn,j − c′Ω̂−Z̃,n
1

n

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β̂rn − β) + oP (1) , (S.5)

where the second equality follows from Lemma S.1.2 and Ω̂−
Z̃,n

,
√
n(β̂rn− β), and

√
n(γ̂rn− γ) being

bounded in probability. Moreover, Assumptions 2.2(ii)-(iii) imply

c′Ω̂−
Z̃,n

1

n

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β̂rn − β) = c′Ω−1

Z̃

gjξjaj
ā

ΩZ̃

√
n(β̂rn − β) + oP (1) = oP (1) , (S.6)

where the final result follows from c′β̂r = λ by construction and c′β = λ by hypothesis. Next, we

note that since Ω̂−
Z̃,n

= Ω̂−1
Z̃,n

whenever Ω̂Z̃,n is invertible, and Ω̂Z̃,n is invertible with probability

tending to one by Assumption 2.2(iii), we can conclude that

c′Ω̂−
Z̃,n

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂∗n(g)− β̂rn) = c′Ω̂−

Z̃,n

nj
n

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,jΩ̂

−
Z̃,n

∑
j̃∈J

1√
n

∑
k∈In,j̃

Z̃k,jgj̃ ε̂
r
k,j̃

+ oP (1)

= c′Ω̂−
Z̃,n

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃ + oP (1) , (S.7)

where in the final equality we applied (S.5), (S.6), and ā ≡
∑

j∈J ξjaj . The second part of the

lemma then follows from the definition of (σ̂∗n(g))2 in (16) and results (S.4)-(S.7).

Lemma S.1.2. Let Assumptions 2.1(ii) and 2.2(iv) hold. It follows that for any j ∈ J we have

1

nj

∑
i∈In,j

Z̃i,jW
′
i,j = oP (1) and

1

nj

∑
i∈In,j

Z̃i,jZ
′
i,j =

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j + oP (1) .

Proof: Let ‖ · ‖F denote the Frobenius matrix norm, which recall equals ‖M‖2F ≡ trace{M ′M}
for any matrix M . By the definition of Z̃i,j in (8),

∑
i∈In,j (Zi,j − (Π̂c

n,j)
′Wi,j)W

′
i,j = 0 by definition
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of Π̂c
n,j (see (9)), and the triangle inequality applied to ‖ · ‖F , we then obtain

‖ 1

nj

∑
i∈In,j

Z̃i,jW
′
i,j‖F = ‖ 1

nj

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j‖F

= ‖ 1

nj

∑
i∈In,j

(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F ≤

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F . (S.8)

Moreover, applying a second triangle inequality and the properties of the trace we get

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F =

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,j‖ × ‖W ′i,jWi,j‖

≤
{ 1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,j‖2

}1/2
×
{ 1

nj

∑
i∈In,j

‖Wi,j‖2
}1/2

= oP (1) , (S.9)

where the inequality follows from the Cauchy-Schwarz inequality, and the final result by Assumption

2.1(ii) and 2.2(iv). Since Π̂n is bounded in probability by Assumption 2.1(ii) and

1

nj

∑
i∈In,j

Z̃i,jZ
′
i,j =

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j +

1

nj

∑
i∈In,j

Z̃i,jW
′
i,jΠ̂n (S.10)

by (8), the second part of the lemma follows.

S.2 Further Details for Remark 2.3

Consider a differences-in-differences application in which, for simplicity, we assume there are only

two time periods. Treatment is assigned in the second time period, and for each individual i in

group j we let Yi,j denote an outcome of interest, Ti,j ∈ {1, 2} be the time period at which Yi,j was

observed, and Zi,j ∈ {0, 1} indicate treatment status. In the canonical differences-in-differences

model (Angrist and Pischke, 2008), these variables are assumed to be related by

Yi,j = I{Ti,j = 2}δ +
∑
j̃∈J

I{j̃ = j}ζj̃ + Zi,jβ + εi,j ,

which we may accommodate in our framework by letting Wi,j be cluster-level fixed effects and

I{Ti,j = 2}. Typically, the groups are such that treatment status is common among all i ∈ In,j
with Ti,j = 2. This structure implies that J can be partitioned into sets J(0) and J(1) such that

Zi,j = I{Ti,j = 2, j ∈ J(1)}. In order to examine the content of Assumptions 2.2(iii)-(iv) in this

setting, define

τ ≡
∑

j∈J(1) nj(1)pj∑
j∈J nj(1)pj

, (S.11)
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where nj(t) ≡
∑

i∈In,j I{Ti,j = t} and pj ≡ nj(2)/nj . By direct calculation, it is then possible to

verify that (Π̂c
n)′Wi,j = Zi,j , while

Π̂′nWi,j =


−pjτ if Ti,j = 1 and j ∈ J(0)

(1− τ)pjτ if Ti,j = 1 and j ∈ J(1)

(1− pj)τ if Ti,j = 2 and j ∈ J(0)

τ + (1− τ)pj if Ti,j = 2 and j ∈ J(1)

, (S.12)

which implies Assumption 2.2(iv) is violated. On the other hand, these derivations also imply that

it may be possible to satisfy Assumption 2.2(iii) by clustering more coarsely. In particular, if we

instead group elements of J into larger clusters {Sk : k ∈ K} (K < q) such that∑
j∈J(1)∩Sk nj(1)pj∑
j∈Sk nj(1)pj

converges to τ , then Assumption 2.2(iv) is satisfied. In this way, Assumption 2.2(iv) thereby

requires the clusters to be “balanced” in the proportion of treated units.

S.3 A General Result

In this section, we present a result that generalizes Theorem 3.3 and, as explained below, permits

us to establish qualitatively similar results for nonlinear null hypotheses and nonlinear models. In

what follows, there is no longer a need to distinguish between Yi,j , Wi,j , and Zi,j , so we denote by

Xi,j ∈ Rdx the observed data corresponding to the ith unit in the jth cluster. We consider tests

that reject for large values of a test statistic T F
n , whose limiting behavior we will assume below is

the same as the limiting behavior of F (Sn), where Sn is the cluster-level “scores” given by

Sn ≡

 1√
n

∑
i∈In,j

ψ(Xi,j) : j ∈ J


and F : Rq → R is a known, continuous function. Here, ψ : Rdx → Rdψ is an unknown function

that may depend on the distribution of the data, so, in order to describe a critical value with which

to compare T F
n , we assume that there are estimators ψ̂n of ψ and define

Ŝn ≡

 1√
n

∑
i∈In,j

ψ̂n(Xi,j) : j ∈ J

 .

Using this notation, the critical value we employ is obtained through the following construction:

Step 1: Let G = {−1, 1}q and for any g = (g1, . . . , gq) ∈ G define

gŜn ≡

 1√
n

∑
i∈In,j

gjψ̂n(Xi,j) : j ∈ J

 .
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Step 2: Compute the 1− α quantile of {F (gŜn)}g∈G, denoted by

ĉFn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I{F (gŜn) ≤ u} ≥ 1− α

 .

Below we develop properties of the test φFn that rejects whenever T F
n exceeds ĉFn(1− α)}, i.e.,

φFn ≡ I{T F
n > ĉFn(1− α)} .

In the context of the linear model studied in the main paper, under appropriate choices of F , ψ,

and ψ̂n, the test φFn is in fact numerically equivalent to the test φn defined in (6). More generally,

however, the test φFn can be interpreted as relying on the “score” bootstrap studied by Kline and

Santos (2012). In particular, note that ĉFn(1− α) may alternatively be written as

inf

u ∈ R : P

F
∑
j∈J

ωj√
n

∑
i∈In,j

ψ̂n(Xi,j)

 ≤ u|X(n)

 ≥ 1− α

 (S.13)

where X(n) denotes the data and {ωj}qj=1 are i.i.d. Rademacher random variables independent of

X(n). Whenever |G| is large, one may therefore approximate ĉFn(1− α) by simulating (S.13).

Our analysis will require the following high-level assumption:

Assumption S.3.1. The following statements hold:

(i) The test statistic TF
n satisfies

TF
n = F (Sn) + oP (1) .

(ii) The estimator ψ̂n satisfies

1√
n

∑
i∈In,j

ψ̂n(Xi,j) =
1√
n

∑
i∈In,j

ψ(Xi,j) + oP (1)

for all j ∈ J .

(iii) There exists a collection of independent random variables {Zj}j∈J , where Zj ∈ Rdψ and

Zj ∼ N(0,Σj), such that 1√
n

∑
i∈In,j

ψ(Xi,j) : j ∈ J

 d→ {Zj : j ∈ J} .

(iv) For any g ∈ G and g̃ ∈ G,

P{F ({gjZj : j ∈ J}) = F ({g̃jZj : j ∈ J})} ∈ {0, 1} .

(v) There is an integer κ such that |A(g)| = κ for any g ∈ G, where

A(g) ≡ {g̃ ∈ G : P{F ({gjZj : j ∈ J}) = F ({g̃jZj : j ∈ J})} = 1} .
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Assumption S.3.1(i) formalizes the aforementioned requirement that the limiting behavior of T F
n

is the same as the limiting behavior of F (Sn). Assumption S.3.1(ii) encodes homogeneity restrictions

qualitatively similar to those in Assumption 2.2; see our discussion of nonlinear restrictions and

GMM below. Assumption S.3.1(iii) essentially requires that the dependence within clusters be weak

enough to permit application of a suitable central limit theorem to the cluster “scores.” Finally,

Assumptions S.3.1(iv)-(v) are typically satisfied with κ = 2 for two-sided tests and κ = 1 for one-

sided tests. By allowing for other values of κ, however, we can also accommodate settings in which

nj/n→ 0 for some j or Σj in Assumption S.3.1(iii) is positive semi-definite.

We are now prepared to state our result about the properties of φFn. While we are agnostic

about the exact form of the null hypothesis, we emphasize that we only expect Assumption S.3.1 to

hold under the null hypothesis, so the following result should be interpreted as a statement about

the limiting rejection probability of φFn under the null hypothesis, whatever it may be.

Theorem S.3.1. If Assumption S.3.1 holds, then

α− κ

2q
≤ lim inf

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ lim sup

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ α+

κ

2q
.

Proof of Theorem S.3.1: The proof follows arguments similar to those employed in establishing

Theorem 3.1. We again start by introducing notation that will streamline our arguments. Let

S ≡
⊗

j∈J R
dψ and write an element of s ∈ S by {sj : j ∈ J}. We further identify any (g1, . . . , gq) =

g ∈ G with an action on s ∈ S by gs = {gjsj : j ∈ J}. Since F is continuous by hypothesis, note

that Assumptions S.3.1(ii)-(iii) and the continuous mapping theorem imply

(F (Sn), {F (gŜn) : g ∈ G}) d→ (F (S), {F (gS) : g ∈ G}) . (S.14)

Hence, by Assumption S.3.1(i), a set inclusion restriction, and the Portmanteau theorem (see, e.g.,

Theorem 1.3.4(iii) in van der Vaart and Wellner (1996)), we obtain

lim sup
n→∞

P{T F
n > ĉFn(1− α)} ≤ lim sup

n→∞
P{T F

n ≥ ĉFn(1− α)}

≤ P

F (S) ≥ inf
{
u ∈ R :

1

|G|
∑
g∈G

I{F (gS) ≤ u} ≥ 1− α
} . (S.15)

In what follows, for any s ∈ S, we denote the ordered values of {F (gs) : g ∈ G} according to

F (1)(s|G) ≤ · · · ≤ F (|G|)(s|G) .

Setting k∗ ≡ d|G|(1− α)e, we then obtain from (S.15) and Assumption S.3.1(iii) that

lim sup
n→∞

P{T F
n > ĉFn(1− α)} ≤ P{F (S) > F (k∗)(S|G)}+ P{F (S) = F (k∗)(S|G)}

≤ α+ P{F (S) = F (k∗)(S|G)} , (S.16)

where in the final inequality we employed that gS
d
= S for all g ∈ G and the basic properties of

randomization tests; see, e.g., Theorem 15.2.1 in Lehmann and Romano (2005). Moreover, applying
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Theorem 15.2.2 in Lehmann and Romano (2005) yields

P{F (S) = F (k∗)(S|G)} = E[P{F (S) = F (k∗)(S|G)|S ∈ {gS}g∈G}

= E

 1

|G|
∑
g∈G

I{F (gS) = F (k∗)(gS|G)}

 =
κ

2q
, (S.17)

where the final equality follows from Assumptions S.3.1(iv)-(v). The claim of the upper bound in

the theorem therefore follows from results (S.16) and (S.17).

For the lower bound, note that k∗ ≡ d|G|(1 − α)e > |G| + κ implies α − κ/|G| ≤ 0, in which

case the lower bound is immediate. Assume k∗ ≤ |G| − κ and note that result (S.14) and the

Portmanteau Theorem, see, e.g., Theorem 1.3.4(ii) in van der Vaart and Wellner (1996) yield

lim inf
n→∞

P{T F
n > ĉFn(1− α)} ≥ P{F (S) > F (k∗)(S|G)} ≥ P{F (S) ≥ F (k∗+κ)(S|G)} , (S.18)

where the last inequality holds because P{F (z+κ)(S|G) > F (z)(S|G)} = 1 for any integer z ≤
|G| − κ by Assumptions S.3.1(iv)-(v). Next note k∗ + κ = d|G|((1− α) + κ/|G|)e = d|G|(1− α′)e
with α′ = α− κ/2q and so the properties of randomization tests (see Lehmann and Romano, 2005,

Theorem 15.2.1) imply

P{F (S) ≥ F (k∗+κ)(S|G)} ≥ α− κ

2q
. (S.19)

Thus, the lower bound holds by (S.18) and (S.19), and the claim of the theorem follows.

S.3.1 Applications of the General Result

Below, we apply Theorem S.3.1 to establish results qualitatively similar to Theorem 3.3 for tests of

nonlinear null hypotheses in both the linear model of Section 2 and the GMM framework of Hansen

(1982).

S.3.1.1 Nonlinear Null Hypotheses

Recall the setup introduced in Section 2, including Assumptions 2.1 and 2.2. For h : Rdβ → Rdh

with dh ≤ dβ and h continuously differentiable at β, consider testing

H0 : h(β) = 0 vs. H1 : h(β) 6= 0 . (S.20)

We employ T F
n = ‖

√
nh(β̂n)‖2, where ‖ · ‖ is the Euclidean norm, as our test statistic. For our

critical value, we use

ĉFn(1−α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I
{
‖∇h(β̂rn)

∑
j∈J

gj√
n

∑
i∈In,j

Ω̂−1
Z̃,n

Z̃i,j ε̂
r
i,j‖2 ≤ u

}
≥ 1− α

 , (S.21)

where ∇h(β̂rn) denotes the Jacobian of h : Rdβ → Rdh , and (γ̂rn, β̂
r
n) are understood to be computed

subject to the restriction that h(β) = 0 rather than c′β = λ. The following theorem bounds the
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limiting rejection probability of the test

φFn ≡ I{T F
n > ĉFn(1− α)}

under the null hypothesis.

Theorem S.3.2. If Assumptions 2.1 and 2.2 hold and h(β) = 0 for h : Rdβ → Rdh with dh ≤ dβ
and h continuously differentiable at β, then

α− 1

2q−1
≤ lim inf

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ lim sup

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ α+

1

2q−1
.

Sketch of Proof: Theorem S.3.2 follows from an application of Theorem S.3.1. To map φFn into

the context of Theorem S.3.1, we let Xi,j = (Yi,j , Z
′
i,j ,W

′
i,j)
′ and define

ψ(Xi,j) = ∇h(β)(āΩZ̃)−1Z̃i,jεi,j , (S.22)

where recall ā =
∑

j∈J ajξj . It then follows by standard arguments and Ω̂Z̃,n
P→ āΩZ̃ by As-

sumptions 2.2(ii)-(iii), that T F
n satisfies Assumption S.3.1(i) with F : Rq → R given by F (c) =

‖
∑

j∈J cj‖2 for any c = (c1, . . . , cq) and ψ(Xi,j) as in (S.22). Moreover, by setting

ψ̂n(Xi,j) = ∇h(β̂rn)Ω̂−1
Z̃,n

Z̃i,j ε̂
r
i,j , (S.23)

we verify the critical value in (S.21) has the exact structure required by Theorem S.3.1. Further

note that arguments similar to those leading to (A-37) in the proof of Theorem 3.3 yield

1√
n

∑
i∈In,j

ψ̂n(Xi,j) =
1√
n

∑
i∈In,j

∇h(β)(āΩZ̃)−1Z̃i,j(εi,j + Z̃ ′i,j(β − β̂rn)) + oP (1)

=
1√
n

∑
i∈In,j

ψ(Xi,j) +∇h(β)
ajξj
ā

√
n(β − β̂rn) + oP (1) =

1√
n

∑
i∈In,j

ψ(Xi,j) + oP (1) ,

where the second equality follows from Assumption 2.2(iii), and the final equality follows from

∇h(β)
√
n(β − β̂rn) = oP (1) due to h(β̂rn) = h(β) = 0. Hence, Assumption S.3.1(ii) is satisfied.

Finally, Assumptions S.3.1(iii)-(v) hold immediately with κ = 2 by Assumptions 2.2(i)-(ii).

Remark S.3.1. In this application it is also natural to consider employing the critical value

c̃Fn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I{‖
√
nh(β̂∗n(g))‖2 ≤ u} ≥ 1− α

 (S.24)

where, again, β̂∗n(g) is understood to be computed as in Section 2 but by using (γ̂rn, β̂
r
n) corresponding

to the restriction h(β) = 0 rather than c′β = λ. By the mean value theorem we then obtain

√
nh(β̂∗n(g)) = ∇h(β̄n(g))

√
n(β̂∗n(g)− β̂rn) =

∑
j∈J

gj√
n

∑
i∈In,j

∇h(β̄n(g))Ω̂−1
Z̃,n

Z̃i,j ε̂
r
i,j
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for some β̄n(g) satisfying β̄n(g)
P→ β̂rn. Hence, the continuity of the the Jacobian ∇h implies that

√
nh(β̂∗n(g)) =

∑
j∈J

gj√
n

∑
i∈In,j

ψ̂n(Xi,j) + oP (1) ,

which reveals a close relation between ĉFn(1−α) as in (S.21) and c̃Fn(1−α) as in (S.24). Inspecting the

proof of Theorem S.3.1 (see, in particular, (S.14), (S.15), and (S.18)), then reveals the conclusion

of Theorem S.3.1 continues to apply if we employ c̃Fn(1− α) in place of ĉFn(1− α); i.e.

α− 1

2q−1
≤ lim inf

n→∞
P
{
TF
n > c̃Fn(1− α)

}
≤ lim sup

n→∞
P
{
TF
n > c̃Fn(1− α)

}
≤ α+

1

2q−1
.

We note that if h is linear, then ĉFn(1− α) and c̃Fn(1− α) are numerically equivalent and the upper

bound on the limiting rejection probability can be shown to equal α (instead of α+ 1/2q−1).

S.3.1.2 Generalized Method of Moments

In this section, we apply Theorem S.3.1 to study the properties of “score” bootstrap-based tests

of nonlinear null hypotheses in a GMM setting with a “small” number of “large” clusters. As

mentioned previously, the reason for relying on the “score” bootstrap instead of the wild bootstrap

stems from there being no natural “residuals” in this setting.

To this end, let

β̂n ≡ arg min
b

 1

n

∑
j∈J

∑
i∈In,j

m(Xi,j , b)

′ Σ̂n

 1

n

∑
j∈J

∑
i∈In,j

m(Xi,j , b)

 , (S.25)

where m(Xi,j , ·) : Rdβ → Rdm is a moment function Σ̂n is a dm × dm weighting matrix. Under

suitable conditions, see, e.g., Newey and McFadden (1994), β̂n is consistent for its estimand, which

we denote by β. For h : Rdβ → Rdh with dβ ≤ dh and h continuously differentiable at β, we

consider testing

H0 : h(β) = 0 vs. H1 : h(β) 6= 0 .

We again employ T F
n = ‖

√
nh(β̂n)‖2, where ‖ · ‖ is the Euclidean norm, as our test statistic. In

order to describe a critical value with which to compare T F
n , define, for any b ∈ Rdβ , the matrix

D̂n(b) ≡ 1

n

∑
j∈J

∑
i∈In,j

∇m(Xi,j , b) (S.26)

where ∇m(Xi,j , b) denotes the Jacobian of m(Xi,j , ·) : Rdβ → Rdm at b. Further define, for β̂rn the

GMM estimator computed subject to the restriction h(β̂rn) = 0,

ψ̂n(Xi,j) = ∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂nm(Xi,j , β̂
r
n) .
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Using this notation, our critical value is given by

ĉFn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I
{
‖
∑
j∈J

gj√
n

∑
i∈In,j

ψ̂n(Xi,j)‖2 ≤ u
}
≥ 1− α

 .

The test we study is therefore given by

φFn ≡ I{T F
n > ĉFn(1− α)} .

In order to apply Theorem S.3.1 to establish properties of φFn, we impose the following assump-

tion:

Assumption S.3.2. The following statements hold:

(i) h : Rdβ → Rdh is continuously differentiable at β.

(ii) There are full rank matrices Σ and D(β) such that Σ̂n
P→ Σ and D̂n(bn)

P→ D(β) for any

random variable bn ∈ Rdβ satisfying bn
P→ β.

(iii) The restricted and unrestricted estimators satisfy
√
n(β̂rn − β) = OP (1) and

√
nh(β̂n) = ∇h(β)(D(β)′ΣD(β))−1D(β)′Σ

1√
n

∑
j∈J

∑
i∈In,j

m(Xi,j , β) + oP (1) .

(iv) There exists a collection of independent random variables {Nj}j∈J , where Nj ∈ Rdm and

Nj ∼ N(0,Σj) with Σj positive definite, such that 1√
n

∑
i∈In,j

m(Xi,j , β) : j ∈ J

 d→ {Nj : j ∈ J} .

(v) For each j ∈ J there is an aj > 0 such that

1

n

∑
i∈In,j

∇m(Xi,j , bn)
P→ ajD(β)

for any random variable bn ∈ Rdβ satisfying bn
P→ β.

The following theorem bounds the limiting rejection probability of φFn under the null hypothesis.

Theorem S.3.3. If Assumption S.3.2 holds and h(β) = 0, then

α− 1

2q−1
≤ lim inf

n→∞
P{TF

n > ĉFn(1− α)} ≤ lim sup
n→∞

P{TF
n > ĉFn(1− α)} ≤ α− 1

2q−1

Sketch of Proof: Theorem S.3.3 follows from an application of Theorem S.3.1. Let F : Rq → R

be given by F (c) = ‖
∑

j∈J cj‖2 for any c = (c1, . . . , cq) ∈ Rq and set ψ : Rdx → Rdβ to equal

ψ(Xi,j) = ∇h(β)(D(β)′ΣD(β))−1D(β)′Σm(Xi,j , β) . (S.27)
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Assumption S.3.2(iii), continuity of || · ||2, and the continuous mapping theorem imply Assumption

S.3.1(i). Assumption S.3.1(iii) follows from S.3.2(iv) with

Zj = ∇h(β)(D(β)′ΣD(β))−1D(β)′ΣNj .

Assumptions S.3.1(iv) and S.3.1(v) are then immediate with κ = 2. We are then left with Assump-

tion S.3.1(ii). By the mean value theorem and the definition of ψ̂n(Xi,j), we obtain

1√
n

∑
i∈In,j

ψ̂n(Xi,j) = ∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂n
1√
n

∑
i∈In,j

m(Xi,j , β)

+∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂n
1

n

∑
i∈In,j

∇m(Xi,j , β̄n)
√
n(β̂rn − β) , (S.28)

where β̄n lies between β̂rn and β. Assumptions S.3.2(i), S.3.2(ii), and S.3.2(iv) imply that the first

term satisfies

∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂n
1√
n

∑
i∈In,j

m(Xi,j , β) =
1√
n

∑
i∈In,j

ψ(Xi,j) + oP (1) .

Assumptions S.3.2(i) and S.3.2(ii)-(iv), imply that the second term equals

∇h(β)(D(β)′ΣD(β))−1D(β)′Σ(ajD(β))
√
n(β̂rn − β) + oP (1) = aj∇h(β)

√
n(β̂rn − β) + oP (1)

= oP (1) ,

where final equality follows from 0 = h(β̂rn)−h(β) = ∇h(β̄n)
√
n(β̂rn−β) = ∇h(β)

√
n(β̂rn−β)+oP (1)

for β̄n between β̂rn and β by Assumptions S.3.2(i)-(iii). This completes the argument.
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