
Supplemental Appendix - Auxiliary Lemmas for the proof of Theorem 2.4

Throughout Appendix C, we employ the notation of Section 2.4, which emphasizes the dependence on P ∈ P.

Equations new to this appendix have the prefix C.#, while equations in the main text are references by their number.

Lemma C.1. Let Assumption 2.3 hold, and denote the Edgeworth expansion for P (Tn ≤ z) by:

En(z, P ) ≡ Φ(z) +
φ(z)κ(P )
6σ(P )3

√
n

(2z2 + 1)− φ(z)
σ(P )3

√
n

(c′H0(P )−1Σ0(P )H0(P )−1γ0(P )(z2 + 1)− γ1(P )σ2(P )) . (C.1)

If c 6= 0, then it follows that lim supn→∞ supP∈P supz∈R
√
n|P (Tn ≤ z)− En(z, P )| = 0.

Proof: For fixed P ∈ P, the validity of the Edgeworth expansion has already been established in Theorem 2.3. We

establish the Lemma by showing Assumption 2.3 controls all approximation errors uniformly. Specifically, in lieu of

(15) and (16) note that with ν̃ in place of ν: Lemma A.2(i) holds uniformly in P ∈ P due to supP∈PEP [‖Xε‖ν̃ ] <∞

by Assumption 2.3(ii); Lemma A.2(ii) holds uniformly in P ∈ P due to Assumptions 2.3(ii)-(iii) implying:

0 < inf
P∈P
‖H0(P )−1‖o < sup

P∈P
‖H0(P )−1‖F <∞ , (C.2)

and supP∈PEP [‖XX ′‖ν̃F ] < ∞ by Assumption 2.3(ii); Lemma A.2(iii) holds uniformly in P ∈ P by (C.2); and

Lemma A.2(iv) holds uniformly in P ∈ P by EP [‖XX ′‖ν̃F ], EP [‖XX ′ε2‖ν̃F ], EP [‖(c′H0(P )−1X)2εX‖ ν̃2 ], ‖γ0(P )‖

and ‖Σ0(P )‖F being uniformly bounded in P ∈ P by Assumptions 2.3(ii)-(iii) and result (C.2). Similarly, since

infP∈P σ(P ) > 0 by Assumption 2.3(iii), we get by result (C.2) and supP∈P ‖γ0(P )‖ < ∞ by Assumptions 2.3(ii)-

(iii), that the arguments in Lemma A.3 hold uniformly in P ∈ P. Therefore we obtain for any α ∈ [0, 2ν̃−3
2ν̃ ):

lim sup
n→∞

sup
P∈P

√
nP (|Tn − Ln(P )| > n−α) = 0 . (C.3)

Let Z ∈ Rdz be as in Assumption 2.3(iv), set Sn(P ) = 1√
n

∑
i(Zi − EP [Zi]), V (P ) = EP [ZZ ′] and ΦV (P ) to be

a mean zero Gaussian measure on Rdz with covariance V (P ). For Xk(Sn(P )) the kth cumulant of Sn(P ) under P ,

and Pj the Cramer-Edgeworth measures we next aim to show that for any Borel set B and all P ∈ P:

|P (Sn(P ) ∈ B)−
1∑
j=0

∫
B

dPj(−ΦV (P ) : {Xk(Sn(P ))})| ≤ δn + ΦV (P )((∂B)2e
−dn

) (C.4)

where δn = o(n−
1
2 ) and d > 0 are independent of B and P . The validity of the Edgeworth expansion in (C.4)

pointwise in P ∈ P is immediate from Assumption 2.3 and Theorem 20.1 in Bhattacharya and Rao (1976). Most

of their error bounds can be controlled uniformly by supP∈PEP [‖Z‖4] < ∞. The only necessary modifications to

their arguments is in their equation (20.22) which can be controlled uniformly due to infP∈P λ(EP [ZZ ′]) > 0 by

Assumption 2.3(iv), and in their equations (20.29)-(20.34), which can be controlled uniformly in P ∈ P since:

sup
‖t‖≥

√
n

16EP [‖Z‖3]

|ξZ,P (t/
√
n)| ≤ sup

‖t‖≥(16 supP∈P EP [‖Z‖3])−1
|ξZ,P (t)| ≤ sup

‖t‖≥(16 supP∈P EP [‖Z‖3])−1
F (t) < 1 , (C.5)

due to Assumption 2.3(iv). The remaining arguments in establishing (C.4) are identical to their proof and therefore

omitted; see also Lemma 2 in Singh and Babu (1990) for the univariate case.
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Next, let GP : Rdz → R be such that Ln(P ) =
√
nGP ( 1

n

∑
i Zi), and note GP (EP [Z]) = 0. Further define

gn,P (z) =
√
nGP (EP [Z] + z/

√
n) and note Ln(P ) = gn,P (Sn(P )). Exploiting result (C.4), we aim to establish that:

lim sup
n→∞

sup
P∈P

sup
z∈R

√
n|P (Ln(P ) ≤ z)− En(z, P )| = lim sup

n→∞
sup
P∈P

sup
z∈R

√
n|P (gn,P (Sn(P )) ≤ z)− En(z, P )| = 0 (C.6)

The validity of (C.6) pointwise in P follows from Assumption 2.3 and Theorem 2 in Bhattacharya and Ghosh

(1978). The arguments leading to a uniform result are similar, and we describe only the necessary modifications.

To this end, let K > 0 satisfy supP∈P ‖EP [ZZ ′]‖F < K < ∞, which is feasible by Assumption 2.3(ii), and define

Mn ≡ {z ∈ Rdz : ‖z‖ < K log(n)}. By Assumption 2.3(ii), {Xk(Sn(P ))}3k=1 are bounded in P ∈ P, and hence:

lim sup
n→∞

sup
P∈P

1∑
j=0

√
n|

∫
(Mn)c

dPj(−ΦV (P ) : {Xk(Sn(P ))})| = 0 . (C.7)

Since in addition ∇gn,P (z̃) is uniformly bounded on (z̃, P ) ∈Mn ×P and n by Assumption 2.3(ii)-(iii), Lemma 2.1

in Bhattacharya and Ghosh (1978) holds uniformly in P ∈ P. For each z ∈ R, then define the set An,P (z) ≡ {z̃ ∈

Rdz : gn,P (z̃) ≤ z} and note that by continuity ∂An,P (z) ⊆ {z̃ ∈ Rdz : gn,P (z̃) = z}. Moreover, ∇gn,P (z̃) being

uniformly bounded on Mn × P further implies that if z̃ ∈ ∂An,P (z) ∩Mn, z̃′ ∈ Mn, and ‖z̃ − z̃′‖ ≤ ε, then by the

mean value theorem gn,P (z̃′) ∈ z ±Mε for some M not depending on P , z̃ or n. Hence, (∂An,P (z))ε ∩Mn ⊆ {z̃ ∈

Rdz : gn,P (z̃′) ∈ z ±Mε}, and since supP∈P
∫
Mc
n
dΦV (P )(z̃) = o(n−

1
2 ) by (C.7), we conclude:∫

(∂An,P (z))2e−dn
dΦV (P )(z̃) =

∫
(∂An,P (z))2e−dn∩Mn

dΦV (P )(z̃) + o(n−
1
2 )

≤ 2
1∑
j=0

∫
{z̃:gn,P (z̃)∈z±Mε}

dPj(−ΦV (P ) : {Xk(Sn(P ))}) + o(n−
1
2 ) ≤ O(e−dn) + o(n−

1
2 ) , (C.8)

where the first inequality holds for n large enough uniformly in P by arguing as in (20.37) in Bhattacharya and

Rao (1976), while the second inequality holds by Lemma 2.1 in Bhattacharya and Ghosh (1978), Corollary 3.2 in

Bhattacharya and Rao (1976) and Assumptions 2.3(ii)-(iv). Therefore, by (C.4) and (C.8):

sup
P∈P

sup
z∈R
|P (Ln(P ) ≤ z)−

1∑
j=0

∫
An,P (z)

dPj(−ΦV (P ) : {Xk(Sn(P ))})| = o(n−
1
2 ) , (C.9)

where we have used that Ln(P ) ≤ z if and only if Sn(P ) ∈ An,P (z). Replacing equation (2.20) in Bhattacharya

and Ghosh (1978) with result (C.9), claim (C.6) then follows using the same arguments in the proof of Theorem 2

in Bhattacharya and Ghosh (1978) and noting that due to Assumption 2.3(ii)-(iii) the arguments in Lemmas A.8

and A.9 hold uniformly in P ∈ P. The claim of the Lemma then follows from (C.3), (C.9), Assumptions 2.3(ii)-(iii)

implying the coefficients in En(·, P ) are bounded in P ∈ P and Lemma 5 in Andrews (2002).

Lemma C.2. Let Assumptions 2.2(i)-(ii), 2.3(i)-(iii) hold and T ∗s,n be as in (47). It then follows that for any

9 ≤ ζ ≤ 2ν̃, and α ∈ [0, (2ω)∧ζ−2
(2ω)∧ζ −

1
2(ω∧ζ) ) there exists a deterministic sequence δn = o(n−

1
2 ) and sets An ⊆ Rn(dx+1)

such that P ∗(|T ∗s,n − T ∗n | > n−α) ≤ δn whenever {Yi, Xi}ni=1 ∈ An and supP∈P P ({Yi, Xi}ni=1 /∈ An) = O(n−
ν̃
2ζ ).

Proof: Let K0 satisfy supP∈P{‖H0(P )−1‖ζoEP [‖Xε‖ζ ]} < K0 <∞ which is possible by Assumption 2.3(ii)-(iii), and:

A0n ≡ {{Yi, Xi}ni=1 :
1
n

n∑
i=1

‖H−1
n ‖ζo‖Xi(Yi −X ′iβ̂)‖ζ < K0} . (C.10)

2



For any α0 ∈ [0, ω∧ζ−1
2(ω∧ζ) ), we then obtain from (41) together with (39) and (40) that whenever {Yi, Xi}ni=1 ∈ A0n,

P ∗(‖β̂∗ − β̂‖ > n−α0) ≤ C0K0

n( 1
2−α0)(ω∧ζ)

(C.11)

for some constant C0 > 0. Similarly, let supP∈P{(2d2
x)

ζ
2 ‖c‖ζ‖H0(P )−1‖ζoEP [‖X‖

3ζ
2 |ε|

ζ
2 ]} < K1 <∞, and:

A1n ≡ {{Yi, Xi}ni=1 :
(2d2

x)
ζ
2 ‖c‖ζ

n

n∑
i=1

‖H−1
n ‖ζo‖Xi‖

3ζ
2 |(Yi −X ′iβ̂)|

ζ
2 < K1} . (C.12)

For X(l)
i the lth coordinate of Xi, we obtain by (39) and (40) that for any 1 ≤ j ≤ k ≤ dx and α1 ∈ [0, ω∧(ζ/2)−1

2(ω∧(ζ/2)) ):

P ∗(‖c‖2‖H−1
n ‖2o‖

2d2
x

n

n∑
i=1

X
(j)
i X

(k)
i Xiε

∗
i ‖ > n−α1) ≤ C1K1

n( 1
2−α1)(ω∧(ζ/2))

(C.13)

for some C1 > 0 whenever {Yi, Xi}ni=1 ∈ A1n. Set supP∈P{‖c‖2‖H0(P )−1‖2oEP [‖XX ′‖F ‖X‖2]} < K2 <∞, and:

A2n ≡ {{Yi, Xi}ni=1 : ‖c‖2‖H−1
n ‖2o

1
n

n∑
i=1

‖XiX
′
i‖F ‖Xi‖2 < K2} . (C.14)

We then obtain from (42), (43), (44), together with (C.11) and (C.12) that for any α1 ∈ [0, ω∧(ζ/2)−1
2(ω∧(ζ/2)) ) there exists a

constant C2 > 0 (depending on K0, K1, K2, ω and ζ) such that whenever {Yi, Xi}ni=1 ∈ A0n ∩A1n ∩A2n:

P ∗(|(σ̂∗)2 − (σ̂∗s )2| > n−α1) ≤ C2

n( 1
2−α1)(ω∧(ζ/2))

. (C.15)

Let supP∈P{‖c‖4‖H0(P )−1‖4oEP [‖XX ′ε2‖2F ]} < K3 <∞ which is possible by Assumption 2.3(ii), and define:

A3n ≡ {{Yi, Xi}ni=1 : ‖c‖4‖H−1
n ‖4o

1
n

n∑
i=1

‖XiX
′
i(Yi −Xiβ̂)2‖2F < K3} . (C.16)

The inequalities (39) and (40) then imply that whenever {Yi, Xi}ni=1 ∈ A3n, for any ε > 0 we obtain that:

P ∗(|(σ̂∗s )2 − σ̂2| > ε) ≤ C3

ε2n
. (C.17)

Therefore, setting infP∈P σ2(P ) > ε0 > 0, which is feasible by Assumption 2.3(iii) and letting A4n ≡ {{Yi, Xi}ni=1 :

σ̂2 > ε0}, we obtain from (C.17) that whenever {Yi, Xi}ni=1 ∈ A3n ∩A4n we must have:

P ∗((σ̂∗s )2 < ε0/2) ≤ 2C3

ε0n
. (C.18)

Letting An =
⋂4
j=0Ajn, we then obtain from (48) together with (C.11), (C.17) and (C.18) and Assumptions 2.2(ii),

2.3(ii) that the desired deterministic sequence δn = o(n−
1
2 ) exists.

To conclude the proof, we next show that supP∈P P ({Yi, Xi}ni=1 ∈ Acn) = O(n−
ν̃
2ζ ). To this end, note that:

sup
P∈P

P (‖Hn −H0(P )‖F > η) = O(n−
ν̃
2 ) (C.19)

for any η > 0 due to (15), (16) and Assumption 2.3(ii). Moreover, since supP∈P ‖H0(P )−1‖o > 0 by Assumption

2.3(iii), (C.19) implies supP∈P P (‖H0(P )−1(Hn −H0(P ))‖F > η) = O(n−
ν̃
2 ), and therefore (18) and (19) yield:

sup
P∈P

P (‖H−1
n −H0(P )−1‖F > η) = O(n−

ν̃
2 ) . (C.20)

Therefore, by (C.20) and Assumption 2.3(iii) there exists an M0 > 0 such that supP∈P P (‖H−1
n ‖F > M0) = O(n−

ν̃
2 ).
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It then follows by Assumption 2.3(ii) and (15) and (16), that for any η > 0 we have:

sup
P∈P

P (‖β̂ − β0‖ > η) ≤ sup
P∈P

P (‖ 1
n

n∑
i=1

Xiεi‖ >
ε

M0
) +O(n−

ν̃
2 ) = O(n−

ν̃
2 ) . (C.21)

Since (C.20), the mean value theorem and Assumption 2.3(iii) yield supP∈P P (|‖H−1
n ‖ζo − ‖H0(P )−1‖ζo| > η) =

O(n−
ν̃
2 ), and supP∈P P (| 1n

∑
i ‖XiX

′
i‖
ζ
F − EP [‖XX ′‖ζF ]| > η) = O(n−

ν̃
2ζ ) by Assumption 2.3(ii) and (15) and (16):

sup
P∈P

P (| 1
n

n∑
i=1

‖H−1
n ‖ζo‖Xi(Yi −X ′iβ̂)‖ζ − ‖H0(P )−1‖ζoEP [‖Xε‖ζ ]| > η) = O(n−

ν̃
2ζ ) (C.22)

due to (C.21). Since (C.22) holds for any η > 0, the definition of A0n and the constant K0 in turn imply that:

sup
P∈P

P ({Yi, Xi}ni=1 ∈ Ac0n) ≤ sup
P∈P

P (| 1
n

n∑
i=1

‖H−1
n ‖ζo‖Xi(Yi −X ′iβ̂)‖ζ − ‖H0(P )−1‖ζoEP [‖Xε‖ζ ]|

> K0 − sup
P∈P
‖H0(P )−1‖ζoEP [‖Xε‖ζ ]) = O(n−

ν̃
2ζ ) . (C.23)

Analogously, supP∈P P (| 1n
∑
i ‖Xi‖2ζ − EP [‖X‖2ζ ]| > η) = O(n−

ν̃
2ζ ) due to (15), (16) and Assumption 2.3(ii) im-

plying supP∈PEP [(‖X‖2ζ)δ] <∞ for any δ ≤ ν̃/ζ. Similarly, supP∈P P (| 1n
∑
i ‖Xi‖ζ‖Xiεi‖

ζ
2 − EP [‖X‖ζ‖Xε‖

ζ
2 ]| >

η) = O(n−
ν̃
2ζ ), and therefore from (C.20), (C.21) and arguing as in (C.22) and (C.23):

sup
P∈P

P ({Yi, Xi}ni=1 ∈ Ac1n) = O(n−
ν̃
2ζ ) . (C.24)

The same arguments, but bounding supP∈PEP [(‖XX ′‖F ‖X‖2)δ]2 ≤ supP∈P{EP [‖XX ′‖2δF ]EP [‖X‖4δ]} < ∞ for

δ ≤ ν̃/2, and supP∈PEP [(‖XX ′X‖2)δ]2 ≤ supP∈P{EP [‖XX ′‖4δ]EP [‖X‖4δ]} <∞ for δ ≤ ν̃/4, yields:

sup
P∈P

P ({Yi, Xi}ni=1 ∈ Ac2n) = O(n−
ν̃
4 ) sup

P∈P
max{P ({Yi, Xi}ni=1 ∈ Ac3n), P ({Yi, Xi}ni=1 ∈ Ac4n)} = O(n−

ν̃
8 ) (C.25)

The lemma then follows from P ({Yi, Xi}ni=1 ∈ Acn) ≤
∑4
j=1 P ({Yi, Xi}ni=1 ∈ Acjn), (C.23), (C.24) and (C.25).

Lemma C.3. Let Assumptions 2.2, 2.3(i)-(iii) hold, and (supP∈P |κ(P )|)/(infP∈P σ(P )3) < C0. In addition, denote

E∗n(z) ≡ Φ(z) +
φ(z)E[W 3]

6
√
n

(2z2 + 1)× (
|κ̂|
σ̂3
∧ C0)× sign{κ̂} , (C.26)

then there exist a deterministic δn = o(n−
1
2 ) and sets An ⊂ Rn(1+dx) such that supz∈R |P ∗(Tn ≤ z) − E∗n(z)| ≤ δn

whenever {Yi, Xi}ni=1 ∈ An and in addition supP∈P P ({Yi, Xi}ni=1 /∈ An) = O(n−
ν̃
18 ). Additionally, for any ε > 0:

sup
P∈P

P (| κ(P )
σ(P )3

− κ̂

σ̂3
| > ε) = O(n−

ν̃
8 ) (C.27)

Proof: We first proceed as in Lemmas B.2 and B.3 by verifying the conditions of Theorems 3.4 in Skovgaard (1986) and

3.2 in Skovgaard (1981) respectively. Throughout, let ain ≡ c′H−1
n Xi(Yi −Xiβ̂), Vin ≡ (ainWi, a

2
in(W 2

i − 1)), Ωn ≡
1
n

∑
iE
∗[VinV ′in] and Sn ≡ 1√

n

∑
i Ω−

1
2

n Vin. We first aim to show there exist sets Bn such that supP∈P P ({Yi, Xi}ni=1 /∈

Bn) = O(n−
ν̃
18 ), and that there exists a deterministic sequence bn = o(n−

1
2 ) satisfying:

P ∗(Sn ∈ B) =
1∑
j=0

∫
B

dPj(−ΦI2 : {X ∗k (Sn)}) + bn , (C.28)

uniformly over all Borel sets B with
∫
(∂B)ε

dΦI2(u) ≤ Cε whenever {Yi, Xi}ni=1 ∈ Bn. To this end, let ai ≡

c′H0(P )−1Xiεi, Vi ≡ (aiWi, a
2
i (W

2
i − 1)) and Ω(P ) ≡ EP [V V ′]. By Assumption 2.3(ii)-(iii) and Exercise 3.8 in
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Durrett (1996), there exists a 1 > δ0 > 0 such that infP∈P P (|ai|2 > δ0) > 0, and hence by Assumption 2.3(iii):

inf
P∈P

P (|ai|2 > δ0 and max{‖Xε‖, ‖XX ′‖F } ≤M0) > ε0 (C.29)

for some M0 <∞ and some ε0 > 0. We can now define the sequence of sets Bn, by Bn =
⋂4
j=0Bjn, where:

B0n ≡ {{Yi, Xi}ni=1 : supt∈R2
1

3!‖t‖3 |E
∗[(t′Sn)3]| ≤ n− 5

18 }

B1n ≡ {{Yi, Xi}ni=1 : ‖Ω−
1
2

n ‖o( 1
n

∑
i{|ain|4.5 + |ain|9})

2
4.5 < 2 supP∈P{‖Ω(P )−

1
2 ‖o(EP [|ai|4.5] + EP [|ai|9])

2
4.5 }}

B2n ≡ {{Yi, Xi}ni=1 : 2n−1‖Ω−
1
2

n ‖4o
∑
i{a4

inE[W 4] + a8
inE[(W 2 − 1)4]} ≤ n 4

9 }

B3n ≡ {{Yi, Xi}ni=1 : ‖Ω−1
n ‖

3
2
o n−1

∑
i{|ain|3 + |ain|6} < 2 supP∈P{‖Ω(P )−1‖

3
2
o EP [|ai|3 + |ai|6]}}

B4n ≡ {{Yi, Xi}ni=1 : n−1
∑
i 1{min{|ain|, a2

in} ≥ δ0/2} > ε0/2 and ‖Ωn‖
1
2
o < 2 supP∈P ‖Ω(P )‖

1
2
o }

Then note that whenever {Yi, Xi}ni=1 ∈ Bn: (i) {Yi, Xi}ni=1 ∈ B0n implies Conditions (I) and (II) in Theorem 3.4

in Skovgaard (1986) are satisfied with rn � n
5
18 ; (ii) {Yi, Xi}ni=1 ∈ B1n ∩ B2n implies together with results (78)-

(81) that Condition (IV) in Theorem 3.4 in Skovgaard (1986) is satisfied; (iii) {Yi, Xi}ni=1 ∈ B3n ∩ B4n implies by

(84)-(86), together with setting ε < (δ0 supP∈P{‖Ω(P )−1‖
3
2
o EP [|ai|3 + |ai|6]})/(2 supP∈P ‖Ω(P )‖

1
2
o ) in equation (88),

Assumption 2.2(ii) and (89) that Condition III” of Theorem 3.4 in Skovgaard (1986) also holds. Therefore, the

existence of the desired deterministic sequence bn = o(n−
1
2 ) follows from Theorem 3.4 in Skovgaard (1986).

We now verify supP∈P P ({Yi, Xi}ni=1 /∈ Bn) = O(n−
ν̃
18 ). To this end, let δ satisfy 1 ≤ δ ≤ 9. By result (C.20)

and Assumption 2.3(iii), there exists a 0 < M1 < ∞ such that supP∈P P (‖H−1
n ‖F > M1) = O(n−

ν̃
2 ). Moreover,

supP∈P P (| 1n
∑
i ‖XiXi‖δF − EP [‖XiXi‖δF ]| > η) = O(n−

ν̃
2δ ) for any η > 0 due to ν̃ ≥ 18, and results (15) and (16).

Hence, by Assumption 2.3(ii) there exists a 0 < M2 < ∞ such that supP∈P P ( 1
n

∑
i ‖XiX

′
i‖δF > M2) = O(n−

ν̃
2δ ).

Combining these results, we then obtain that:

sup
P∈P

P (
1
n

n∑
i=1

|c′H−1
n XiX

′
i(β̂ − β0)|δ > η) ≤ sup

P∈P
P (M1M2‖c‖δ‖β̂ − β0‖δ > η) +O(n−

ν̃
2δ ) = O(n−

ν̃
2δ ) , (C.30)

where the final equality follows from (C.21) and δ ≥ 1. Next, note that by (15), (16) and Assumption 2.3(ii) we have

supP∈P P (| 1n
∑
i ‖Xiεi‖δ −EP [‖Xε‖δ]| > η) = O(n−

ν̃
δ ) for any η > 0. Therefore, by Assumption 2.3(ii), there exists

a 0 < M3 <∞ such that supP∈P P ( 1
n

∑
i ‖Xiεi‖δ > M3) = O(n−

ν̃
δ ), and thus we have:

sup
P∈P

P (
1
n

n∑
i=1

|c′(H−1
n −H−1

0 )Xiεi|δ > η) = O(n−
ν̃
2 ) +O(n−

ν̃
δ ) (C.31)

due to result (C.20). Moreover, supP∈P P (| 1n
∑n
i=1 |ai|δ − EP [|ai|δ]| > η) = O(n−

ν̃
δ ) for any η > 0 by the same

arguments and Assumption 2.3(ii). Therefore, combining (C.30) and (C.31) we can conclude that:

sup
P∈P

P (| 1
n

n∑
i=1

|ain|δ − EP [|ai|δ]| > η) = O(n−
ν̃
2δ ) . (C.32)

Hence, result (C.32), the definition of Ωn and Ω(P ) and ain, ai being nonstochastic with respect to L∗, imply:

sup
P∈P

P (‖Ωn − Ω(P )‖F > η) = O(n−
ν̃
8 ) (C.33)

for any η > 0. In addition, Assumptions 2.3(iii)-(iv) and E[(W 2 − 1)2] > 0 by Assumption 2.2(i)-(ii) imply that
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infP∈P λ(Ω(P )) > 0, where λ(Ω(P )) denotes the smallest eigenvalue of Ω(P ). Hence, arguing as in (18)-(19):

sup
P∈P

P (‖Ω−1
n − Ω(P )−1‖o > η) = O(n−

ν̃
8 ) , (C.34)

for any η > 0. Therefore, employing (73)-(74) for B0n and results (C.32) and (C.34) allow us to obtain the bounds:

supP∈P P ({Yi, Xi}ni=1 /∈ B0n) = O(n−
ν̃
12 ) supP∈P P ({Yi, Xi}ni=1 /∈ B1n) = O(n−

ν̃
18 )

supP∈P P ({Yi, Xi}ni=1 /∈ B2n) = O(n−
ν̃
16 ) supP∈P P ({Yi, Xi}ni=1 /∈ B3n) = O(n−

ν̃
12 )

. (C.35)

Moreover, we also note by direct calculation that results (C.20) and (C.21) imply that (for M0 as in (C.29)):

sup
P∈P

P ( sup
max{‖XX′‖F ,‖Xε‖}≤M0

|c′H0(P )−1Xε− c′H−1
n X(Y −Xβ̂)| > η) = O(n−

ν̃
2 ) . (C.36)

Hence, since 0 < δ0 < 1, we obtain that on a set with probability 1−O(n−
ν̃
2 ) (uniformly in P ∈ P) we have:

1
n

n∑
i=1

1{min{|ain|, a2
in} ≥

δ0
2
} ≥ 1

n

n∑
i=1

1{a2
i ≥ δ0 and max{‖Xiεi‖, ‖XiX

′
i‖F } ≤M0} . (C.37)

Thus, by (C.37), Bernstein’s inequality and (C.29), together with (C.33) we conclude that supP∈P P ({Yi, Xi}ni=1 /∈

B4n) = O(n−
ν̃
8 ). Result (C.28) then follows by (C.35) and P ({Yi, Xi}ni=1 /∈ Bn) ≤

∑4
j=0 P ({Yi, Xi}ni=1 /∈ Bjn).

Next, we aim to exploit result (C.28) to establish the existence of sets Cn such that P ({Yi, Xi}ni=1 /∈ Cn) =

O(n−
ν̃
18 ) and a deterministic sequence cn = o(n−

1
2 ) such that whenever {Yi, Xi}ni=1 ∈ Cn, then uniformly in z ∈ R:

P ∗(T ∗s,n ≤ z) = Φ(z) +
φ(z)E[W 3]

6
√
n

(2z2 + 1)× κ̂

σ̂3
+ cn . (C.38)

To this end, define Cn = Bn ∩ (
⋂2
j=0 Cjn) where the sets Cjn are given by:

C0n ≡ {{Yi, Xi}ni=1 : σ̂2 > 1
2 infP∈P σ2(P ) and ‖Ωn‖F < supP∈P 2‖Ω(P )‖F }

C1n ≡ {{Yi, Xi}ni=1 : |E∗[(L∗n)2]− 1| ≤ n− 3
4 }

C2n ≡ {{Yi, Xi}ni=1 : |E∗[(L∗n)3] + (7E[W 3]κ̂)/(2σ̂3
√
n)| ≤ n− 3

4 }

.

Then note that whenever {Yi, Xi}ni=1 ∈ Cn: (i) {Yi, Xi}ni=1 ∈ Bn and (C.28) implies condition (3.1) of Theorem 3.2

in Skovgaard (1981) is satisfied; (ii) {Yi, Xi}ni=1 ∈ C0n and result (100) verifies condition (3.11) of Theorem 3.2 in

Skovgaard (1981), while {Yi, Xi}ni=1 ∈ C0n and result (101) verifies condition (3.12). The Edgeworth expansion in

(C.38) then holds due to Theorem 3.2 and Remark 3.4 in Skovgaard (1981), Lemma A.7 and {Yi, Xi}ni=1 ∈ C1n∩C2n.

Moreover, by (C.33) and (C.25), supP∈P P ({Yi, Xi}ni=1 /∈ C0n) = O(n−
ν̃
8 ), while from (56), (57) and (C.32), together

with (C.25) we obtain supP∈P P ({Yi, Xi}ni=1 /∈ C1n) = O(n−
ν̃
8 ) (note in Lemma A.8, ain = c′H−1

n Xi, and not

ain = c′H−1
n (Yi −Xiβ̂) as used in (C.32)). Finally, by direct calculation, we also obtain from (67)-(70 and (C.32),

together with (C.25) that supP∈P P ({Yi, Xi}ni=1 /∈ C2n) = O(n−
ν̃
18 ), and hence (C.38) follows.

Finally, note κ̂ = n−1
∑
i a

3
in, (C.25), (C.30) and (C.31) verify (C.27), which implies supP∈P P ( |κ̂|σ̂3 > C0) =

O(n−
ν̃
8 ). The Lemma then follows from (C.38), Lemma C.2 and Lemma 5 in Andrews (2002).
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