Supplier Churn and Growth: A Micro-to-Macro Analysis

David R. Baqae
UCLA
Ariel Burstein
UCLA
Cedric Duprez
NBB and UMons*
Emmanuel Farhi†

July 2023

Abstract

We investigate the effects of input variety creation and destruction on both micro- and macroeconomic outcomes using detailed data from Belgium. We estimate that average costs rise by around 0.5% for every 1% of suppliers lost (in terms of the firm’s cost share). We show that this elasticity measures the area under the input demand curve relative to expenditures, and can be used to calibrate love-of-variety and quality-ladder models. We also develop a macroeconomic growth-accounting framework that quantifies the importance of supply chain churn for aggregate growth. Using firm-level production network data and estimated microeconomic elasticities, we show that supplier churn can plausibly account for a large portion of the trend component of growth in aggregate productivity. Our findings highlight the crucial role of input entry and exit in driving economic growth.

*First version: June, 2022. We thank Andy Atkeson, Pablo Fajgelbaum, Marc Melitz, Ezra Oberfield, Gianluca Violante, and Jonathan Vogel for comments. We acknowledge financial support from NSF grant No. 1947611 and the Alfred P. Sloan Foundation. The views expressed in this paper are those of the authors and do not necessarily reflect the views of the National Bank of Belgium.
†Emmanuel Farhi tragically passed away in July, 2020.
1 Introduction

In this paper, we explore the role of supplier creation and destruction in driving economic growth. Our study consists of a microeconomic and a macroeconomic part. In the microeconomic part, we define a statistic, the “inframarginal surplus” ratio, which quantifies consumer surplus from additional suppliers per unit of expenditures. We show that the inframarginal surplus ratio is an important statistic in many models of growth and trade, including expanding-variety and quality-ladder models. We propose a strategy for estimating it and implement our strategy using microeconomic data from Belgium. In the macroeconomic part, we develop a growth accounting framework to assess the contribution of supplier churn to economy-wide productivity growth. Our growth accounting formula is disciplined by the microeconomic estimates from the first part of the paper. We apply our growth-accounting framework to Belgian firm-to-firm production network data from value-added tax (VAT) filings. We discuss the two parts of the paper in turn.

To estimate the inframarginal surplus ratio at the micro-level, we employ a unique approach that enables us to estimate the area under the input demand curve without specifying the demand system itself, thus reducing potential errors due to misspecification and extrapolation. We show that the inframarginal surplus ratio can be estimated as the elasticity of downstream firms’ marginal costs with respect to upstream exits. By-passing a fully specified demand system is useful because it would be extremely high dimensional in our dataset, and could only be estimated under very strong functional form assumptions.

Our estimates use a detailed survey of manufacturing firms in Belgium called Prodcom. This survey contains sales and quantity information for manufacturing firms in Belgium. We merge this data with firm-to-firm input-output linkage information from VAT returns. Using this tax information, we observe at annual frequency almost all suppliers of the firms in Prodcom. We calculate a measure of marginal cost for Prodcom firms as the log change in average variable costs and regress it on supplier separations. We show that, when this regression is consistently estimated, the coefficient should identify the inframarginal surplus ratio.

To achieve consistent estimation, we utilize two alternative identification strategies for supplier separations, with the aim of ensuring they are not correlated with other factors that could affect downstream firms’ marginal costs. In our preferred specifica-

1Expanding varieties models of growth and trade include Dixit and Stiglitz (1977), Krugman (1979), Romer (1987), and Melitz (2003). Ricardian models of growth and trade include Dornbusch et al. (1977), Aghion and Howitt (1992), and Eaton and Kortum (2002). For a synthesis of these models see Grossman and Helpman (1993), Acemoglu (2009), and Costinot and Rodriguez-Clare (2014).
tion, we predict exits using a Bartik-type instrument of the firms’ suppliers’ sales to non-manufacturing industries. That is, a supplier is more likely to exit if sales in non-manufacturing industries it sells to decline. Our second instrument uses supplying firms’ short-term debt obligations interacted with changes in aggregate interest rates. That is, a supplier is more likely to exit if it has taken on a large amount of short-term debt and the aggregate interest rate rises. In either case, the identification requirement is that supplier separations predicted by our instrument are not correlated with other reasons why downstream firms’ marginal costs change, such as a change in the firm’s own productivity or entry of better suppliers.

We find significant microeconomic effects of supply linkage destruction on downstream marginal costs. According to our baseline estimates, if 1 percentage point of a firm’s suppliers (in terms of the firm’s variable cost share) exit, then this raises the firm’s marginal cost by around 0.5 percentage points. In a CES expanding varieties model, the “love-of-variety” corresponds to an elasticity of substitution of roughly 3. In a quality-ladder model with unitary elasticities between inputs, this corresponds to an innovation step-size of around 50 log points. In other words, at the microeconomic level, the destruction of supply linkages has strong effects on downstream marginal costs.

Our estimates of the integral of demand contribute to the broader objective of measuring higher derivatives of demand curves. Estimates of the first derivative of demand are common, since the first derivative of demand affects the price elasticity of demand (see, e.g., Berry and Haile, 2021). The second derivative of demand has also received considerable empirical attention, since it determines the pass-through of marginal cost into the price (see, e.g., Burstein and Gopinath, 2014 for a survey on exchange rate pass-through). Even the third derivative of demand is an important statistic, because it disciplines the rate at which pass-through changes along the demand curve (e.g. Amiti et al., 2019). Our paper is one of the few attempts to directly measure the first anti-derivative — that is, the integral — of demand.

In the macroeconomic part of the paper, we develop a growth-accounting framework to quantify the importance of supplier churn for measured aggregate growth, adding an extensive margin for supplier entry and exit to otherwise standard growth accounting formulas (i.e. Solow, 1957; Domar, 1961; Hulten, 1978; Basu and Fernald, 2002; Baqae and Farhi, 2019). We take into account how the formation and separation of supplier links affects the prices of downstream firms, and how these price changes are transmitted along existing supply chains from supplying firms to purchasing firms, all the way down to final consumers. Our accounting framework does not require a fully spelled-out model of market structure, factor markets, or link formation but is consistent with many
different structural models. We discipline our growth accounting exercises using our microeconomic regression estimates. When we extrapolate our microeconomic estimates of the inframarginal surplus to the whole of the Belgian economy, we find that almost all long-run aggregate productivity growth can plausibly be accounted for by churn in the supply chain.

The structure of the paper is as follows. Section 2 contains theoretical microeconomic results. These results motivate our microeconomic empirical strategy, which we describe and report in Section 3. Section 4 introduces the aggregation framework and presents our theoretical macroeconomic results. We use these results, and our earlier microeconomic estimates, to decompose aggregate growth in our data in Section 5. We conclude in Section 6.

Related literature. Our paper is related to three different literatures. First, as discussed above, our analysis contributes to expanding-varieties and quality-ladder models of entry and exit. In these models, a key object of interest and source of welfare gains is either the love for product variety or the gap in quality between incumbents and entrants.

The love-of-variety effect is usually defined using an elasticity of the utility function. In this paper, we define love-of-variety using the area under the demand curve instead. Unlike the elasticity of the utility function, the area under the demand curve is, in principle, observable. Furthermore, this definition clarifies the concept of love-of-variety by showing that it corresponds to changes in marginal cost resulting from significant (non-marginal) changes in input prices. If one is comfortable with the idea that small input price changes have effects on costs and welfare, then one should also be comfortable with the love-of-variety effect. Moreover, our definition, which is based on the area under the demand curve, can be applied to a much broader class of demand systems than standard definitions.

We contribute to the expanding-variety and quality-ladder literatures by directly estimating the inframarginal surplus lost when firms lose access to suppliers. We can do this because our data allows us to measure costs, output quantities, and firms’ suppliers. In lieu of this data, researchers have typically relied on very indirect evidence to disci-
pline the consumer surplus from new suppliers in their models. For example, expanding-varieties models typically use a CES demand system, where the price elasticity of residual demand at any point on the demand curve also controls the love-of-variety effect. Similarly, in quality ladder models, researchers typically discipline the step-size between the best and second-best supplier by indirect inference via matching moments on firm employment dynamics, patents, and growth (see Garcia-Macia et al., 2019 and Akcigit and Kerr, 2018 for example).\(^3\)^4

The second literature our paper is related to is the one on production networks, particularly those with an extensive margin. For example, Baqaee (2018) and Baqaee and Farhi (2020) show that cascades of supplier entry and exit in production networks change how aggregate output responds to microeconomic shocks. The response of aggregate output to a microeconomic shock, in turn, crucially depends on the same notion of surplus as discussed above. The importance of the extensive margin of firm-to-firm linkages has also been emphasized and studied by Oberfield (2018), Lim (2017), Tintelnot et al. (2018), Acemoglu and Tahbaz-Salehi (2020), Elliott et al. (2020), Taschereau-Dumouchel (2020), Kopytov et al. (2022), and Bernard et al. (2018). Empirical studies by Jacobson and Von Schedvin (2015), Barrot and Sauvagnat (2016), Carvalho et al. (2021), and Miyauchi et al. (2018) have shown that shocks and failures to one firm are transmitted across supply chains and affect the sales and employment of other firms in neighboring parts of the production network. Huneeus (2018) and Arkolakis et al. (2021) study adjustment costs in link-formation between firms and their aggregate consequences using a structural model. Boehm and Oberfield (2020) document that link formation is affected by institutional distortions and that this can reduce aggregate productivity. Our paper complements this literature by providing direct estimates of the value of link formation at the microeconomic level and a growth accounting exercise that quantifies the macroeconomic importance of supplier churn. Unlike this literature, we take the formation and separation of links between firms as given (i.e. we take them from the data), and do not provide a fully specified model for counterfactuals.

Third, our paper is also related to a deep literature on correcting price indices to ac-

---

\(^3\)There is a large literature that provides reduced-form evidence of how changes in policies (e.g. import tariffs) impact firm outcomes such as productivity, markups, and firm product-scope. See, for example, Amiti and Konings (2007), Brandt et al. (2017), Goldberg et al. (2010), and De Loecker et al. (2016). Although this literature provides suggestive evidence that input variety matters for firm-level outcomes, it does not provide an estimate of how large these gains are.

\(^4\)There is a large body of work that decomposes changes in a weighted-average of firm-level productivities into reallocation, entry, and exit terms (see e.g. Baily et al., 1992; Foster et al. 2001). However, the object these studies decompose is not aggregate productivity in a growth accounting sense — that is, it does not measure the gap between real output and real input growth. See Petrin and Levinsohn (2012), Hsieh et al. (2018), Baqaee and Farhi (2019), and Baqaee et al. (2020) for more details.
count for the entry and exit of goods. Our macroeconomic exercise quantifies the importance of supplier entry and exit for measured growth. The macroeconomic and trade literatures on the importance of entry and exit, which trace their origins to Hicks (1940), have been greatly influenced by Feenstra (1994) who introduced a methodology for accounting for product entry and exit, or other types of mismeasurement, under a CES demand system. This CES methodology owes its popularity to its simplicity and nondemanding information requirements. Broda and Weinstein (2006) apply it to calculate welfare gains from trade due to newly imported varieties, and Broda and Weinstein (2010) compute the unmeasured welfare gains from changes in varieties in consumer non-durables. Using a similar methodology, Jaravel (2016) calculates the gains from consumer product variety across the income distribution, while Gopinath and Neiman (2014), Melitz and Redding (2014), Halpern et al. (2015), and Blaum et al. (2018) study the welfare gains from trade in intermediate inputs.\(^5\) Aghion et al. (2019) build on this methodology to correct aggregate growth rates for expanding varieties and unmeasured quality growth. Outside of the CES literature, Hausman (1996), Feenstra and Weinstein (2017), and Foley (2022) have provided alternative price index corrections that dispense with the CES assumptions.

A universal theme in this literature is to estimate or calibrate price elasticities of demand and infer the value of entering and exiting products by inverting or integrating demand curves under parametric restrictions (e.g. isoelastic, linear, or translog demand). Our approach differs from this literature in that we attempt to identify the area under the input demand curve directly through its effect on downstream marginal costs rather than via implicit or explicit integration of demand curves. This is because we focus on production, and for producers the value of an input can be measured by its effect on costs. In contrast, the literature typically focuses on the value of new goods in consumption, where there is no observable counterpart to marginal cost.\(^6\)

2 Microeconomic Value of Link Formation: Theory

In this section, we derive expressions for how supplier entry-exit affects a downstream firm’s marginal cost. We consider two approaches. The first approach, in Section 2.1,\(^5\)

\(^{5}\)The methodology of Feenstra (1994) requires knowledge of the elasticity of substitution, which is typically estimated using data on expenditure switching. Blaum et al. (2018) instead uses changes in the buying firm’s revenues (and parametric assumptions on the production function and demand for the buying firms’ output) to estimate the elasticity of substitution between imports and domestic inputs.\(^6\)For a producer, marginal costs of production are, at least in principle, observable. However, for a household, the derivative of the expenditure function with respect to utility is an unobservable nuisance parameter that measures how the utility function is cardinalizing the underlying preference relation. This is because unlike quantity produced, utility is only defined up to monotone transformations.
imposes minimal assumptions on the demand system. We then contrast this to an approach that imposes CES input demand in Section 2.2. The partial equilibrium results in this section serve as the basis for our firm-level regressions in Section 3. We delay general equilibrium and aggregation to Sections 4 and 5.

2.1 Direct Approach Using Area Under Demand Curve.

Consider a downstream firm, indexed by $i$ whose variable cost function is

$$C_i(p, A_i, q_i) = mc_i(p, A_i) q_i,$$

where $p$ is the vector of quality-adjusted input prices, $A_i$ indexes technology, and $q_i$ is the total quantity of output. We allow the firm to have fixed costs of operation, but assume that variable production has constant returns to scale. We allow for the possibility that the price of some inputs is equal to infinity (i.e. some inputs are not available).

Assume that there is a continuum of inputs that can be grouped into types. The cost function is symmetric in input prices that belong to the same type but not necessarily symmetric across types. More formally, two inputs belong to the same group if swapping their prices does not affect variable cost. This assumption ensures that the downstream firm’s input demand curve for all varieties of a given type $j$ are the same function $x_{ij}(p, A_i, q_i)$.

We do not restrict own-type or cross-type price elasticities. We assume without loss of further generality that inputs of the same price have the same initial price. We can do this by defining inputs that have different initial prices to be different types. To simplify notation, we assume that there is a countable number of types. Let $M_{ij}$ denote the mass of inputs of type $j$ used by firm $i$.

Almost all popular production technologies used in macroeconomics and trade feature a notion of “types.” For example, for CES, we say two inputs have the same type if they have the same share parameter and price. More generally, for the Kimball (1995) demand system, the homothetic demand systems introduced by Matsuyama and Ushchev (2017), and the separable demand system introduced by Fally (2022), we say that two inputs have the same type if they share the same residual demand function and the same price.

Our paper focuses on the creation and destruction of buyer-supplier relationships.

\[\text{In the body of the paper, we assume that firms take input prices as given. In Appendix B, we show that, under some additional assumptions, our empirical strategy is also valid if firms face a schedule of input prices as a function of input quantities instead. This input price schedule, which we take as given, could, for example, be the outcome of second-degree price discrimination or a bargaining process.}\]
These events are typically discrete in the sense that when suppliers are added or dropped, expenditures change discontinuously. To account for this phenomenon, we introduce the concept of a *jump* in the price of an input $j$, which is defined by the size of the jump or the *step-size* $z_{ij} = \Delta \log p_j$. This means that for each input type $j$, there is a possibility of a discontinuous change in its price.

A jump in the quality-adjusted price of inputs can capture both quality-ladder and expanding-variety models of entry-exit. In quality-ladder models, an input’s price jumps when a new supplier displaces an incumbent. If the new (quality-adjusted) price is greater than the initial price, this represents a move down the quality ladder, and if the new (quality-adjusted) price is less than the initial price, this represents a move up the quality ladder. In expanding-variety models, prices jump to infinity when a variety is dropped and become finite when a new variety is added. This means that in expanding-variety models, the step-size is plus or minus infinity. Empirically, we identify jumps in the data that can be attributed to exogenous supplier separations. We do not investigate price jumps that may be occurring within continuing buyer-supplier relationships, which could be caused by process or product innovation from continuing suppliers.

Define the *inframarginal surplus ratio* associated with a change in the price of input $j$ (holding the price of all other inputs constant) to be

$$
\delta_{ij}(p_j, p'_j) = \frac{\int_{p_j}^{p'_j} x_{ij}(\xi) d\xi}{p_j x_{ij}(p_j)} \geq 0, \tag{1}
$$

where we define $p_j$ to be the lower price and $p'_j$ to be the higher of the two possible prices for input $i$. Equation (1) is the surplus to $i$ from the jump in the price of input $j$ per unit of expenditures. Since we define $p_j$ to always be the lower of the two possible prices, $\delta_{ij}$ is always a non-negative number. As long as the demand curve is strictly downward sloping, $\delta_{ij}$ is strictly positive. If the demand curve is perfectly horizontal, then $\delta_{ij} = 0$.

---

8In many quality-ladder models, the best supplier limit-prices the second-best supplier and provides the input at the marginal cost (quality adjusted) of the second-best supplier. This means that each time a supplier is replaced by a better supplier, the change in the input price is the gap between the marginal cost of the second- and third-best supplier. If the step-size is constant, then this is the same as the gap in the marginal cost of the best and second-best supplier. In some models, however, like Fontaine et al. (2022), the step-size is not constant. Nevertheless, the surplus for the downstream firm is determined by the jump in the (quality-adjusted) input price, which may or may not be equal to the jump in the marginal cost of the supplier.

9Technically, the price need only jump to/from the reservation or choke price (the price at which demand is zero). However, since demand is zero beyond the choke price, we can also think of the price as jumping to/from infinity.

10In equation (1), we suppress dependence of the conditional input demand $x_{ij}$ on arguments other than the price of $j$ since those other arguments are being held constant. We include the additional arguments
Denote the input share of each type-\(j\) variety purchased by firm \(i\) to be \(\Omega_{ij}\):
\[
\Omega_{ij} = \frac{p_j x_{ij}(p, A)}{C_i(p, A_i, q_i)}.
\]

The next proposition loglinearizes the downstream firm’s marginal cost.

**Proposition 1 (Downstream Marginal Cost).** Consider a change in the vector of input prices by type \(\Delta p\), the vector of the measure of inputs whose price jumps \(m_i\), and the technology parameter \(\Delta A_i\). To a first-order approximation in these primitives, the change in the downstream firm’s marginal cost is
\[
\Delta \log mc_i \approx \sum_j \Omega_{ij} M_{ij} \Delta \log p_j + \sum_j \Omega_{ij} m_{ij} \delta_{ij} \left[ 1(z_{ij} > 0) - 1(z_{ij} < 0) \right] + \frac{\partial \log C_i}{\partial \log A_i} \Delta \log A_i.
\]

In words, the marginal cost of the downstream firm depends on the costs of its inputs, captured by the first two summands, as well as its own technology, the last summand. The price of inputs can change on the margin or they can jump. If the change in input prices is small, then their effect on the downstream firm’s marginal cost depends on the expenditures on the input. On the other hand, if input prices jump discretely, then their effect on the downstream firm’s marginal cost depends on the area under the input demand, which is captured by the product of \(\delta_{ij}\) and expenditures on the inputs whose price jumps \(\Omega_{ij} m_{ij}\). That is, movements along the quality ladder and variety creation generate surplus for the downstream producer according to the area under the input demand curve.

The inframarginal surplus ratio, \(\delta_{ij}\), is depicted in Figure 1. The left panel depicts a jump along the quality ladder where the price jumps from \(p_j\) to \(p'_j\). The right panel depicts the case where the price \(p_j\) jumps to infinity. The former is a quality-ladder model and the latter is an expanding-variety model. In both cases, the inframarginal surplus ratio is given graphically by
\[
\delta_{ij} = \frac{A}{B} \geq 0.
\]
Either way, this jump in input price raises the costs of production by an amount commensurate with \(\delta_{ij}\), and this is weighted by expenditures on this input.

To better understand Proposition 1, we work through some simple examples.
Example 1 (CES with Quality Ladders). Consider the CES special case, in which the demand for an input variety of type $j$ takes the form

$$x_{ij} = \frac{b_{ij} p_j^{-\sigma} q_i}{\left(\sum_k b_{ik} p_k^{1-\sigma} M_{ik}\right)^{-\sigma'}}. \tag{3}$$

where $b_{ij}$ and $b_{ik}$ are exogenous parameters. Suppose that the producer of the best input with price $p_j$ exits and is displaced by the next-best competitor whose quality-adjusted price $p'_j$ is higher. The inframarginal surplus ratio associated with this jump is

$$\delta_{ij} = \int_{p_j}^{p'_j} \frac{x_{ij}(\xi)d\xi}{p_j x_{ij}} = \frac{1}{\sigma - 1} \left(1 - \left(\frac{p'_j}{p_j}\right)^{1-\sigma}\right) \geq 0.$$

Proposition 1 implies that the change in the downstream firm’s marginal cost in response to the destruction of a mass $m_{ij}$ of input $j$ is

$$\Delta \log mc_i = \Omega_{ij} m_{ij} \delta_{ij} = \frac{1}{\sigma - 1} \Omega_{ij} m_{ij} \left(1 - \left(\frac{p'_j}{p_j}\right)^{1-\sigma}\right). \tag{4}$$

In the $\sigma \rightarrow 1$ limit, the inframarginal surplus ratio $\delta_{ij}$ is equal to the innovation step-size
\[ \log(p'_j/p_j), \text{ and } \Delta \log mc_i = \Omega_{ij} m_{ij} \log(p'_j/p_j). \]

**Example 2** (CES with Expanding Varieties). Now suppose that when \( j \) exits, there is no next-best producer of that input, so that the new price is infinite, \( p'_j = \infty \) in (4). In this case, \( \delta_{ij} \) simplifies to \( 1/(\sigma - 1) \). Hence, in response to a change in the availability of some varieties of type \( j \), the change in the downstream marginal cost is

\[ \Delta \log mc_i = \Omega_{ij} m_{ij} \delta_{ij} = \frac{1}{\sigma - 1} \Omega_{ij} m_{ij}. \]  

(5)

This is the so-called “love-of-variety” effect and is just the limiting case of quality-ladders where the step size is infinitely large.

Due to the near-ubiquitous use of the CES demand system, “love-of-variety” is sometimes conflated with the price elasticity of demand. However, as pointed out by Dixit and Stiglitz (1977), outside of the expanding-variety CES model, these two statistics are not the same. Under a plausible condition, we can show that the surplus produced by new varieties is maximized under the CES demand system.

**Proposition 2** (Inframarginal Surplus with Marshall’s Second Law). Denote the own-price elasticity of \( i \)'s demand for input \( j \) by

\[ \sigma_{ij}(p) = -\frac{\partial \log x_{ij}(p)}{\partial \log p_j} > 1. \]

Marshall’s second law of demand holds if \( \partial \sigma_{ij}/\partial p_j > 0 \). Under this condition,

\[ \delta_{ij}(p, p'_j) < \frac{1}{\sigma_{ij}(p) - 1} \left[ 1 - \frac{p'_j x_{ij}(p'_j)}{p_j x_{ij}(p_j)} \right] \]  

(6)

as long as \( \sigma_{ij}(p) \geq 1. \)

Note that the right-hand side of (6) is the inframarginal surplus ratio implied by a CES demand system calibrated to match the initial price elasticity of demand, the initial expenditure share, and the change in the expenditure share caused by the price jump.\(^{11}\)

Hence, the inframarginal surplus ratio that is implied if one were to incorrectly impose CES input demand is strictly larger than the true one, as long as as Marshall’s second law holds.\(^{12}\) For a specific example, see Appendix B.

---

\(^{11}\)Compare with the expression in (4) and use the fact that \((p'_j/p_j)^{1-\sigma} = (p'_j x_i(p'_j))/(p_j x_i(p_j))\).

\(^{12}\)The proof builds on similar results in Matsuyama and Ushchev (2020) and Grossman et al. (2021). They prove a similar result assuming the input demand system belongs to the HSA/HDIA/HIIA class and the step size is infinite.
Proposition 1 motivates our regression specification in Section 3. Before discussing those results, however, we first compare Proposition 1 to the more traditional approach in the literature, following Feenstra (1994), which imposes a CES functional form.

### 2.2 Indirect Approach Exploiting CES

If we assume that technology is CES, then we can infer the value of supplier entry-exit using an alternative approach due to Feenstra (1994).

**Proposition 3** (Feenstra, 1994). *Suppose that the downstream firm has a CES technology with elasticity of substitution $\sigma$. Consider a change in the price of inputs by type $\Delta p$, the measure of inputs whose price jumps $m$, and the technology parameter $\Delta A_i$. To a first-order approximation, the change in the downstream firm’s marginal cost is*

$$
\Delta \log mc_i \approx \sum_j \Omega_{ij} M_{ik} \Delta \log p_j \left( \frac{1}{\sigma - 1} \right) + \sum_j \Omega_{ij} M_{ij} \Delta \log \Omega_{ij} + \frac{\partial}{\partial \log A_i} \Delta \log A_i .
$$

That is, as long as technology is CES, Proposition 3 allows us to infer the value of jumps by relying on the elasticity of substitution $\sigma$ and the change in the share of non-jumping inputs.

Equation (4) applies Proposition 1 under the additional assumption that input demand is CES. Hence, comparing the entry-exit adjustment in equations (4) and (7) clarifies the differences between Propositions 1 and 3. There are several differences.

First, equation (7) uses the change in the expenditure share on continuing suppliers whereas (4) uses the level of the expenditure share on entering/exiting suppliers. That is, the right-hand side variable associated with entry-exit are different in Propositions 1 and 3. The special case where $\sigma = 1$ starkly illustrates the differences. In this case, Proposition 1 can still be used to recover the change in marginal cost induced by entry-exit (i.e. as in a quality-ladder model), but Proposition 3 cannot because the change in the continuing share is always zero. When $\sigma = 1$, the share on continuing suppliers is constant because the exiting and entering shares are equal to each other.

Second, in equation (7), the coefficient on the change in the share of non-jumping inputs is always $1/(\sigma - 1)$ regardless of the size of the price jumps. On the other hand,

---

13 A firm’s expenditure shares on continuing, separating, and entering suppliers are connected by the following identity: the change in the expenditure share on continuing suppliers between $t$ and $t + 1$ is equal to the share on separating suppliers at $t$ minus the share on entering suppliers at $t + 1$. 
in equation (4) the coefficient of the share of jumping inputs is equal to the inframarginal surplus ratio, which under CES is shaped both by $\sigma$ and the size of the price jump. Under CES, these two coefficients coincide only when the size of the jump is infinity.

Of course, a final difference is that if the demand system is not CES, then Proposition 3 is not applicable, whereas Proposition 1 continues to apply.

3 Empirical Microeconomic Results

Motivated by the results in Section 2, we consider two different regressions aimed at identifying the benefits of inputs and the elasticity of substitution between continuing and non-continuing inputs.

3.1 Estimating Equations

We estimate the inframarginal surplus ratio, $\delta$, using the following regression:

$$\Delta \log mc_{it} = \delta \times \text{separation share}_{it} + \text{controls}_{it} + \epsilon_{it},$$

where separation share$_{it}$ is firm $i$'s share of variable costs in period $t$ spent on non-continuing suppliers. Following Proposition 1, the estimated coefficient $\hat{\delta}$ should reflect inframarginal surplus ratios if variation in the separation share is caused by jumps.

Proposition 1 elucidates some threats to identification if we rely on an OLS regression. First, the error term includes own technology shocks and changes in the prices of those continuing suppliers that we do not directly control for, both of which are plausibly correlated with the separation share. For example, separations may be caused by shocks to the downstream firm’s technology or changes in other suppliers’ prices.

Second, even if a separation is caused by a jump in that input’s price, unconditionally we do not know if the jump is positive or negative (i.e. $z_{ij} > 0$ or $z_{ij} < 0$). That is, a supplier could discontinue because the input price jumps up (i.e. the input becomes unavailable because the supplier ceases to sell the input) or because the input price jumps down (i.e. the supplier is replaced by a better alternative). To identify the inframarginal surplus ratios, we need to use supplier separations that are associated with input price jumps of a common sign rather than pooling all separations together.

If we impose the assumption that the downstream firms’ technology is CES between continuing and non-continuing varieties, then using Proposition 3, we can identify the elasticity of substitution between continuing and non-continuing varieties by estimating
the following regression:

$$
\Delta \log mc_{it} = \hat{\beta} \times \Delta \log \text{continuing share}_{it} + \text{controls}_{it} + \varepsilon_{it},
$$

(9)

where continuing share$_{it}$ is the log change in firm i’s expenditures share on continuing suppliers between $t$ and $t + 1$ multiplied by i’s ratio of intermediate purchases relative to variable costs in period $t$. The estimated $\hat{\beta}$ should identify $1/(\sigma - 1)$, where $\sigma$ is the elasticity of substitution between inputs, as long as CES is a valid assumption and the error term is uncorrelated with the log change in the continuing share.

As explained in Section 2, regressions (8) and (9) estimate different objects even if one assumes CES technology. Furthermore, regression (8) is motivated by Proposition 1 which holds under quite general technology, whereas regression (9) requires assuming CES technology between continuing and non-continuing suppliers. Of course, as with (8), endogeneity is a major concern since changes in the continuing share could be caused by changes in the prices of continuing suppliers or shocks to the downstream firms’ technology.

To overcome the identification challenges, we use an instrumental variables strategy. We describe our instruments after describing the data sets we use.

### 3.2 Data

In this section, we describe how we map our model to data. Our empirical analysis makes use of a rich micro-level data structure on Belgian firms in the period 2002-2018. The data structure brings together information drawn from six comprehensive panel-level data sets: (i) the National Bank of Belgium’s (NBB) Central Balance Sheet Office (CBSO), which we refer to as the annual accounts; (ii) the Belgian Prodcom Survey, which covers firms that produce goods covered by the Prodcom classification and that have at least 20 employees or 5 million euros turnover in the previous reference year; (iii) the NBB Business-to-Business (B2B) Transactions data; (iv) International Trade data at the NBB; (v) VAT declarations; and (vi) the Crossroads Bank of Enterprises (CBE) which we use to identify mergers and acquisitions. Additional details are provided in Appendix C.

**Network of Suppliers.** We construct the network of domestic suppliers of Belgian firms using the confidential NBB B2B Transactions data set. This data set contains the values of yearly sales relationships among all VAT liable companies for the years 2002 to 2018, and is based on the VAT listings collected by the tax authorities. At the end of every calendar year, all VAT liable in Belgium have to file a complete listing of their Belgian VAT liable
customers over that year. An observation in this data set refers to the sales value in euro of enterprise \( j \) selling to enterprise \( i \) within Belgium, excluding the VAT amount due on these sales. The reported value is the sum of invoices from \( j \) to \( i \) in a given calendar year. As every firm in Belgium is required to report VAT on all sales of at least 250 euros, the data has nearly universal coverage of all businesses active in Belgium. To control for misreporting errors, we drop a transaction if its value is higher than the seller’s aggregate sales and higher than the buyer’s total intermediate input purchases (which is reported separately).

We drop from the network those suppliers that produce capital goods, identified from the Main Industrial Groupings (MIG) Classification of the EU (we report sensitivity to including these suppliers in the network). Finally, we also drop from the network (but include in downstream firms’ costs) the small subset of suppliers with unknown VAT numbers or that that are part of the downstream firm (due to mergers and acquisitions).

**Downstream firms.** Our sample of downstream firms comes from the Prodcom survey, where we observe data on quantities sold (which are required to measure marginal costs). We restrict the sample to non-financial corporations that file the annual accounts. To ensure that Prodcom variables are representative of a firm’s overall activities, we restrict the sample to those whose Prodcom sales are at least 30% of the firm’s total sales.\(^ {14}\) Our micro sample contains between roughly 2,000 and 4,000 downstream firms per year. We now describe how we measure a number of key variables for these firms.

**Sales.** We define firms’ total sales as the highest value between sales reported in the annual accounts (reported mainly by large firms) and sales reported in the VAT declarations. We replace this measure of sales by the sum of exports reported in the international trade data set and sales to other Belgian firms reported in the B2B data set if the latter exceeds the prior.

**Total variable costs.** Firms’ input costs consist of labor costs, the user cost of capital, and purchases of intermediates (excluding purchases of capital goods). We let a fraction of labor and capital be overhead inputs, but assume intermediates purchases are fully variable inputs.

\(^{14}\)Total sales may differ from Prodcom sales because, for example, firms sell products that they do not produce (Bernard et al. 2019) or they sell services along with the goods they produce (Ariu et al. 2020). The ratio of Prodcom sales to total sales is 0.89 for the median firm in our sample, as shown in Column (ix) of Table A9.
Labor costs are reported in the annual accounts. The cost of capital is defined as the product of the capital stock reported by firms in the annual accounts (which includes plants, property, equipment, and intellectual property) and an industry-specific user cost of capital. The latter is the sum of a risk premium (set as 5 percent), the risk-free real rate (defined as the corresponding governmental 10 year-bonds nominal rate minus consumer price inflation at that time period), and the industry-level depreciation rate, \((1 - d) \times g\), where \(d\) is the industry level depreciation rate (defined as consumption of fixed capital as a ratio of net capital stock) and \(g\) is the expected growth of the relative price of capital at the industry level (defined as the growth in the relative price of capital computed from the industry-specific investment price index relative to the consumer prices index in each year).

Purchases of intermediates are the sum of imports reported in the international trade data set and domestic intermediates purchased from other Belgian firms reported in the B2B data set. We do not include as part of intermediate consumption the goods purchased from other Belgian firms classified as capital goods providers, and we drop imported goods that are classified as capital goods in the Broad Economic Categories (BEC) classification (BEC codes 410 and 521), as these goods are not considered part of the variable intermediate inputs bundle. We replace the sum of imports and domestic purchases by total sales minus value added reported in the annual accounts if the latter exceeds the former.

We assume that a fraction \(\phi\) of labor and capital costs are variable and the remaining fraction \(1 - \phi\) are overhead costs. To calibrate \(\phi\), we follow a similar strategy to Dhyne et al. (2022). We regress the change in labor and capital costs on the change in intermediate costs (which we assume are fully variable) instrumented using a demand shock. We set \(\phi = 0.7\) because our estimates indicate that labor and capital costs rise by roughly 0.7 percent when intermediate purchases rise by 1 percent in response to a demand shock. See Appendix C for more details. Given uncertainty over the extent of overhead costs, we redo our analysis under three alternative assumptions. First, we set \(\phi = 0.5\), consistent with estimates in Dhyne et al. (2022) using a different instrument. Second, we assume that capital costs are all overhead and keep \(\phi = 0.7\) for labor costs. Finally, we abstract from overhead costs all together, setting \(\phi = 1\). Our results are fairly robust across these specifications.

**Prodcom quantities and unit values.** We construct changes in output quantities and unit values for the sample of firms in the Prodcom survey. Products are identified at the 8-digit level of the Prodcom product code (PC) classification, which is common to all
EU member states.\textsuperscript{15} Sales values (in euros) and quantities are available at the firm-PC8-month level. Quantities are reported in one of several measurement units (over two thirds of observation are in kilograms; other units include liters, meters, square meters, kilowatt, and kg of active substance). We aggregate monthly observations to yearly values to match the other data sets, and calculate log differences in quantities and unit values by PC8 product from year $t$ to $t+1$. As quantities and unit values can be noisy, we trim changes in these two variables at the 5-95th percentile level. For multi-product firms (defined as Prodcom firms that produce multiple PC8 products), we aggregate changes in quantities of individual products to the firm-level using a Divisia index, with weights given by the firm’s sales share of each product in the corresponding year. This quantity index is valid if we assume that demand for multi-product firms in Prodcom is homothetic. In this case, a Divisia index reliably aggregates multiple products into a single product bundle. For each firm, we also construct changes in unit values as log changes in Prodcom sales minus the Divisia quantity index.\textsuperscript{16}

**Marginal cost.** For each firm in the Prodcom survey, given our assumptions, we can calculate the log change in marginal cost as

$$\Delta \log mc = \Delta \log \text{total variable costs} - \Delta \log \text{total quantity}, \quad (10)$$

which also equals the log change in average variable costs. However, we observe changes in Prodcom quantities and not changes in total quantities. To address this, write

$$\Delta \log \frac{\text{total quantity}}{\text{Prodcom quantity}} = \Delta \log \frac{\text{total sales}}{\text{Prodcom sales}} + \text{error},$$

where the unobserved error term is the difference in log changes of average unit values between Prodcom and non-Prodcom sales of the same firm. We use this equation to impute the log change in total quantity, which we then use in (10). This imputation is innocuous as long as the unobserved error term is uncorrelated with our instrument.

We provide sensitivity analysis where we measure changes in marginal costs as log changes in Prodcom unit values minus log changes in markups. We calculate markups either as total sales relative to total variable costs, or using the methodology of De Loecker and Warzynski (2012) with production function estimates using the approach in Levin-

\textsuperscript{15}As product codes tend to vary from year to year, we use the correspondence of 8-digit products in the Prodcom classifications that trace products over time used by Duprez and Magerman (2018).

\textsuperscript{16}We obtain very similar results if we calculate changes in unit values as a Divisia index (sales-weighted) of changes in unit values by product rather than deflating sales by the quantity Divisia index.
sohn and Petrin (2003).

Separation and continuing share. Having described how we construct the left-hand side variable in (8) and (9), we now discuss how we construct the right-hand side variables. For each Prodcom firm \( i \) and period \( t \), we identify in the B2B data the set of continuing suppliers in the network from which firm \( i \) purchases intermediates both in period \( t \) and \( t + 1 \). We measure \( \Delta \log \text{continuing share}_{it} \) as the log change in firm \( i \)'s intermediate purchases from its continuing links between \( t \) and \( t + 1 \) minus the log change in \( i \)'s total domestic intermediate purchases, multiplied by the ratio of \( i \)'s purchases of intermediates from domestic suppliers relative to total variable costs in \( t \). We measure firm \( i \)'s purchases of intermediates from its non-continuing (or separating) suppliers as the difference between \( i \)'s purchases from all domestic suppliers in the network and purchases from its continuing suppliers. We calculate the separation share \( s_{it} \) as the ratio of \( i \)'s purchases of intermediates from non-continuing suppliers relative to total variable costs.\(^{17}\)

Input prices. In our regressions, we control for changes in the prices of continuing suppliers to the extent possible. For continuing upstream suppliers that happen to belong to Prodcom, we construct and control for the change in the unit values (see Duprez and Magerman, 2018 and Cherchye et al., 2021). We also measure and control for the price of labor by dividing total labor costs by total full time employed workers. We measure and control for the price of capital services via the user cost of capital as described above. We measure and control for changes in unit values of imported inputs using a firm-level Divisia index of changes in unit values faced by firm \( i \) at the CN8 product level, trimming changes in unit values at the 5th-95th percentile. As a robustness check, we control for non-Prodcom input prices by constructing for each firm an average of industry-level price indices from Eurostat, with weights given by the firm's industry shares in non-Prodcom input purchases.

\(^{17}\)We measure purchases on non-continuing suppliers as a residual — rather than directly from discontinued links in the B2B data set — because exiting suppliers tend to under-report B2B sales the year prior to disappearing. Table A6 in the Appendix C shows that the share of B2B sales in total sales at \( t \) and the number of B2B costumers at \( t \) fall significantly for firms exiting at \( t + 1 \) but not for firms exiting at \( t + 2 \). Whereas sellers do not report B2B transactions reliably in the year prior to exit, buyers continue to report their total intermediate purchases. Table A7 shows that buyers with an increase in the share of intermediate input purchases not reported in the B2B data tend to have a reduction in the number of their suppliers. This suggests that purchases of intermediates from suppliers that disappear in \( t + 1 \) are unreliable at \( t \) in the B2B data set. We thus measure non-continuing purchases as a residual between total domestic intermediates (reported by the buyers) and those from the B2B data on continuing suppliers (reported by the sellers).
Additional data cleaning and summary statistics. We trim the data for firm-year observations in which either total costs (the sum of inputs, labor, and capital) or total sales rise or fall by at least a factor of 5. Table A9 in Appendix C reports summary statistics about the level and changes in the continuing share of suppliers, as well as basic information on the number of suppliers each downstream firm has and the share of intermediate materials as a share of total costs for our Prodcom sample.

3.3 Identification Strategy and Results

In this section, we discuss our identification strategy and report our results.

Instrument. To identify $\delta$ and $\sigma$ in (8) and (9), we use an instrumental variables identification strategy. To identify $\delta$, the instrument must induce variation in the separation share, must be associated with an increase in the input price that jumps (otherwise the sign is flipped), and it must not be correlated with own technology shocks or the prices of continuing suppliers.

We instrument the endogenous variable in (8) and (9) using a Bartik-type demand shock to the suppliers. For each downstream firm $i$ at time $t$, we define the instrument:

$$
\text{Suppliers' Demand}_{it} = \sum_j \sum_K \Omega_{ij,t} \times r_{jK,t} \times \Delta \log sales_{K,t+1},
$$

(11)

where $\Omega_{ij,t}$ is the share of $i$’s total variable costs spent on each supplier $j$, and $r_{jK,t}$ is the share of supplier $j$’s sales to other domestic firms in each non-manufacturing industry $K$, and $\Delta \log sales_{K,t+1}$ is the change in total sales of industry $K$ between $t$ and $t + 1$.$^{18}$

Intuitively, a reduction in the sales of $i$’s suppliers, triggered by shocks to non-manufacturing industries, makes it more likely that $i$’s suppliers shrink or shutdown operations (for example, due to the presence of overhead costs). This induces variation in the endogenous variable in equations (8) and (9) that is uncorrelated with technology shocks to $i$ and continuing suppliers’ prices. In this case, separations induced by our instrument are not associated with the appearance of better suppliers. Hence, these separations imply an increase in input prices for the downstream firm ($z_{ij} > 0$). Figure 2 graphically illustrates our instrument.

To understand how our instrument works, column (i) in Table 1 is an OLS regression of a $\{0, 1\}$ indicator of supplier exit on the Bartik-style demand instrument constructed

$^{18}$Results are very similar if $r_{jK,t}$ is calculated as the share of supplier $j$’s total sales (rather than domestic sales) to each non-manufacturing industry $K$, or if $\Delta \log sales_{K,t+1}$ is the change in intermediate consumption of industry $K$ (rather than the change in total sales).
for the supplier itself, and a 4-digit NACE industry by year fixed effect (which is the most disaggregated classification we can consider for the sample of suppliers). We see that an increase in demand for the supplier predicts a decline in supplier death. That is, when suppliers get favorable demand shocks, they are less likely to cease operations. Our instrument, defined in (11) is, for each downstream firm, the average demand shock for this firm’s suppliers. Hence, our instrument induces variation in the separation share by, at least partially, causing existing suppliers to exit due to unfavorable demand shocks.

Figure 2: Graphical illustration of the demand instrument defined in equation (11). Arrows show the flow of goods and services. We denote downstream firms by \(i\), suppliers of downstream firms by \(j\), and the non-manufacturing industry of suppliers’ customers by \(K\).

**Baseline estimates of regression (8).** The regression results for (8) are shown in Table 1. We start with the OLS results in Column (ii), which show that increases in the separation share are associated with very small reductions in marginal cost. Of course, the OLS is subject to severe omitted variable bias. For example, a positive productivity shock to the downstream firm may induce the firm to switch suppliers or perform some operation in-house. Moreover, exiting suppliers could be replaced by better suppliers, as in models of creative destruction, flipping the sign on the coefficient in front of the exit share in Proposition 1. Our OLS estimates would be biased towards zero as they reflect a mix of input price increases (\(z_{ij} > 0\)) and decreases (\(z_{ij} < 0\)). For these reasons, we instrument the separation share with demand shocks to suppliers.

\(^{19}\)Table A11 in Appendix D tabulates unconditional death rates for firms year by year in Belgium for small and large firms.
Column (iii) is a reduced-form regression regressing changes in marginal cost directly on our instrument. This shows that increased demand for a firms’ suppliers reduces that firm’s marginal cost. Columns (iv) and (v) run regression (8) using our suppliers’ demand instrument, first without and then with controls. All regressions include 8 digit product code by year fixed effects. Column (vi) adds a firm fixed effects, allowing for the possibility of firm-level trends. Column (vii) weights observations by employment. Column (viii) constructs the instrument using lagged sales shares. In all cases, the first-stage is strong (demand shocks to a downstream firm’s suppliers help predict separation between the firm and those suppliers, conditional on other controls). Moreover, the second stage estimates are positive and significant. The point estimates imply that $\delta \approx 0.5$. If technology is CES and there are expanding varieties, then $\delta = 0.5$ corresponds to a CES elasticity of substitution of 3. On the other hand, in a typical quality ladders model with unitary elasticity across inputs, the implied step size is 50 log points. Either way, marginal costs of downstream firms react very strongly to separations with its suppliers.

Table 1: Estimates of $\delta$ using demand instrument

<table>
<thead>
<tr>
<th></th>
<th>Supplier Exit</th>
<th>$\Delta \log mc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation share</td>
<td>-0.024**</td>
<td>0.505***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.125)</td>
</tr>
<tr>
<td>Supplier Demand</td>
<td>-0.392***</td>
<td>-0.680***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.169)</td>
</tr>
<tr>
<td>F-stat</td>
<td></td>
<td>64 65 95 56 75</td>
</tr>
<tr>
<td>Specification</td>
<td>OLS</td>
<td>OLS RF IV IV IV IV IV</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>Y Y N Y Y Y Y Y Y</td>
</tr>
<tr>
<td>4 digit x year FE</td>
<td>Y</td>
<td>N N N N N N N N N</td>
</tr>
<tr>
<td>8 digit PC x year FE</td>
<td>N</td>
<td>Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>Firm FE</td>
<td>N</td>
<td>N N N N Y N N N</td>
</tr>
</tbody>
</table>

Notes: Column (i) reports estimates of a regression of supplier death on the supplier’s demand shock, and Columns (ii)-(viii) report estimates of regression (8). Demand shock is the instrument in the IV regressions and is defined by (11). Supplier death is an indicator for suppliers who ceased operations. Controls are log changes in the price of imported inputs, log changes in the price of inputs purchased from other Prodcom firms, changes in log wages, changes in the log user cost of capital, and a Bartik-type demand shock constructed for the downstream firm itself. All regressions are unweighted except (vii), which is weighted by firm employment. Column (viii) uses lagged shares at $t - 1$ instead of initial $t$ shares in constructing the instrument. Standard errors are clustered at the firm-level, and F-stat is the Kleibergen-Paap (KP) statistic.

Sensitivity analysis. Columns (i)-(v) of Table 2 shows how our baseline estimates of $\delta$ change for different measures of marginal cost. Columns (i)-(iii) consider alternative as-

---

20 For multi-product firms, we use the product code of the product with the greatest sales share.
Table 2: Estimates for alternative measures of marginal costs and unit values

<table>
<thead>
<tr>
<th>Separation share</th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% fixed</td>
<td>Δ log mc</td>
<td>Δ log mc</td>
<td>Δ log mc</td>
<td>Δ log mc</td>
<td>Δ2 log mc</td>
<td>Δ log unit values</td>
</tr>
<tr>
<td>0% fixed</td>
<td>0.405***</td>
<td>0.516***</td>
<td>0.465***</td>
<td>0.636***</td>
<td>0.886***</td>
<td>-0.070</td>
</tr>
<tr>
<td>no cap.</td>
<td>(0.110)</td>
<td>(0.142)</td>
<td>(0.121)</td>
<td>(0.154)</td>
<td>(0.202)</td>
<td>(0.051)</td>
</tr>
</tbody>
</table>

Specifications:
- (i) and (ii) use measures of marginal costs under alternative assumptions on fixed costs.
- (iii) uses marginal costs obtained using Levinsohn-Petrin production function estimates.
- (iv) uses marginal costs defined as the change in unit value for the downstream firm minus the log changes in markup, where the latter is measured as log change in revenues relative to purchases of intermediate inputs adjusted by the elasticity of output with respect to materials (which we estimate following Levinsohn and Petrin (2003) in 5-year windows).

Controls:
- (i)-(iii) use log changes in the price of imported inputs, log changes in the price of inputs purchased from other Prodcom firms, changes in log wages, changes in the log user cost of capital, and a Bartik-type demand shock constructed for the downstream firm itself.

F-stat:
- (i)-(iii) use 73, (iv) use 52, (v) use 66, (vi) use 65.

Observations:
- (i-iv) use 35,239 observations, (v) use 29,156 observations, (vi) use 35,239 observations.

Notes: This table displays estimates of regression (8) for different outcome variables. Columns (i)-(iii) use measures of marginal costs under alternative assumptions on fixed costs, column (iv) uses marginal costs obtained using Levinsohn-Petrin production function estimates, column (v) uses two-year changes in marginal costs. Column (vi) uses changes in unit values of downstream firms. The instrument is the suppliers’ demand shock defined by (11). Controls are log changes in the price of imported inputs, log changes in the price of inputs purchased from other Prodcom firms, changes in log wages, changes in the log user cost of capital, and a Bartik-type demand shock constructed for the downstream firm itself. All regressions are unweighted. Standard errors are clustered at the firm-level, and F-stat is the KP statistic.

Assumptions on the split of labor and capital costs between variable and fixed inputs. Point estimates of $\delta$ are slightly increasing in the share of variable inputs in labor costs, and are fairly insensitive to whether we assume that capital is a variable or fixed input. Column (iv) measures marginal cost defined as the change in unit value for the downstream firm minus the log changes in markup, where the latter is measured as log change in revenues relative to purchases of intermediate inputs adjusted by the elasticity of output with respect to materials (which we estimate following Levinsohn and Petrin (2003) in 5-year windows). This increases the point estimates. Column (v) uses two-year changes in marginal costs as the outcome and shows that for the types of supplier separations caused by our instrument, the effects are persistent.

Column (vi) of Table 2 replaces changes in marginal costs in regression (8) with changes in unit values of the downstream firm’s sales. Pass-through of our identified shocks into unit values is close to zero. This estimate of pass-through is reduced-form and does not have a structural interpretation since pass-through generically depends not just on technology, but also on market structure and conduct (see e.g. Amiti et al. 2019). The low reduced-form pass-through we estimate could be due to strategic complementarities in

---

21 Results are very similar if we assume that this elasticity is constant over time.
firms’ pricing decisions, long-term contracts, and/or sticky prices.

Tables A12 and A13 in Appendix D report additional sensitivity checks. First, in our baseline regressions we only control for changes in input prices from Prodcom suppliers, which are the only ones we observed in our data. To control for non-Prodcom input prices, we use an input price index constructed using industry-level price indices weighted by firm-level industry shares in non-Prodcom purchases and obtain very similar point estimates.\(^{22}\) Second, we vary the product disaggregation in the product by year fixed effects, considering 4 or 6 digit products rather than 8 digits. Point estimates are slightly higher with less stringent fixed effects. Third, we drop downstream firms that switch the set of 8-digit products between years, or alternatively we drop firms that produce more than one 8-digit products. The latter reduces the sample size by roughly half and lowers point estimates.\(^ {23}\) Third, when constructing the suppliers’ demand instrument according to (11), we redefine \(r_{jK,t}\) to be the share of supplier \(j\)’s non-manufacturing sales to each non-manufacturing industry \(K\) (these share add up to one), and include a firm fixed effect to take into account the firm’s average exposure to non-manufacturing sales. Fourth, we exclude from our separation share measure suppliers either in the utilities sector or in the wholesale/retail sector. This increases point estimates slightly. Fifth, we exclude from our separation share measure suppliers that are self-employed, government, and financial entities. (We do so because we exclude these from the supplier network in our growth accounting exercises below). Sixth, we include in our separation share measure capital input suppliers. Seventh (not reported in the tables), we change our sample selection by varying the trimming of price, quantity, and cost changes and by altering the minimum threshold in the ratio of a firm’s Prodcom sales to the firm’s total sales from the annual accounts. Across all of these sensitivities, we continue to find positive and significant point estimates.

**Estimates of regression** (9). Table 3 shows results for regression (9). Here, we instrument (using the suppliers’ demand shock) for the change in continuing share rather than the separation share, and the coefficient identifies \(1/(\sigma - 1)\) under the assumption that the input technology is CES. Columns (i) and (ii) include 8 digit product code by year fixed effects, and columns (iii) and (iv) have 6 digit product code by year fixed effects. On

\(^{22}\)Alternatively, we use a Bartik-type control over the downstream firm’s non-manufacturing input purchases, defined as \(\sum_j \sum_K \Omega_{iK,t} \times \Delta \log sales_{K,t+1}\) where \(\Omega_{iK,t}\) is the share of \(i\)’s total variable costs spent on suppliers from non-manufacturing industry \(K\) and \(\Delta \log sales_{K,t+1}\) is the change in total sales of industry \(K\) between \(t\) and \(t+1\). Point estimates are a bit higher, as reported in column (ii) of Table A12.

\(^{23}\)We also report another sensitivity in which we measure changes in Prodcom quantities using the firm’s largest 8-digit product, rather than using the Divisia quantity index over all the products sold by the firm. Point estimates are virtually unchanged.
average our estimates suggest that $1/(\sigma - 1) \approx 0.4$ or that $\sigma \approx 3.5$.

Table 3: Estimates of $1/(\sigma - 1)$ assuming CES

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \log mc$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuing share</td>
<td>0.393*** (0.094)</td>
<td>0.357*** (0.093)</td>
<td>0.451*** (0.094)</td>
</tr>
<tr>
<td>F-stat</td>
<td>75</td>
<td>75</td>
<td>94</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>FE</td>
<td>8 digit × year</td>
<td>8 digit × year</td>
<td>6 digit × year</td>
</tr>
<tr>
<td>Obs</td>
<td>35,239</td>
<td>35,239</td>
<td>39,262</td>
</tr>
</tbody>
</table>

Notes: Estimates of regression (9). The instrument is the demand shock defined by (11). Controls are log changes in the price of imported inputs, log changes in the price of inputs purchased from other Prodcom firms, changes in log wages, changes in the log user cost of capital, and a Bartik-type demand shock constructed for the downstream firm itself. Standard errors are clustered at the firm-level, and F-stat is the KP statistic.

**Alternative instrument** As a final robustness exercise, we consider an alternative instrument. Rather than using suppliers’ demand shocks, we construct an instrument that induces variation in suppliers’ financial health. For each downstream firm $i$ in period $t$, we construct the following variable

$$\text{Rate shock}_{it} = \sum_j \Omega_{ij,t} \times d_{jt} \times \Delta R_{t+1}, \quad (12)$$

where $\Omega_{ij,t}$ are the expenditures of firm $i$ on supplier $j$ as a share of $i$’s total costs, $d_{jt}$ are the short-term debt obligations of $j$ as a share of total assets (from the annual accounts), and $\Delta R_{t+1}$ is the change in the 1-month money market interest rate for the euro area. An increase in this variable indicates a negative financial shock to $i$’s suppliers.

The regression results are shown in Table 4. Column (i) shows that an increase in financial shock to suppliers makes it more likely that the supplier ceases operations. That is, when suppliers get unfavorable financial shocks, they are more likely to exit. Column (ii) is the reduced-form regression showing that worse financial conditions for suppliers predict an increase in the downstream firm’s marginal cost. Column (iii) and (iv) are the IV regressions (8) using the financial shock instrument, first without and then with controls. All regressions include 8-digit product code by year fixed effects. Column (v) weights by firm employment. The estimated coefficients in the IV regressions are larger
Table 4: Estimates of $\delta$ using alternative instrument

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
<th>(vii)</th>
<th>(viii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supplier Death</td>
<td>$\Delta \log mc$</td>
<td>$\Delta \log unit value$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation share</td>
<td>0.778***</td>
<td>0.808***</td>
<td>0.866***</td>
<td>0.897*</td>
<td>0.386</td>
<td>0.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.257)</td>
<td>(0.248)</td>
<td>(0.280)</td>
<td>(0.493)</td>
<td>(1.071)</td>
<td>(0.109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate shock</td>
<td>0.003**</td>
<td>0.092***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.024)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
<td>08-12</td>
<td>03-07</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>F-stat</td>
<td>32</td>
<td>34</td>
<td>29</td>
<td>15</td>
<td>2</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td>OLS</td>
<td>RF</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>4 digit × year FE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>8 digit PC × year FE</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Firm FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>4,664,492</td>
<td>35,239</td>
<td>35,239</td>
<td>35,239</td>
<td>35,241</td>
<td>8,983</td>
<td>12,743</td>
<td>35,239</td>
</tr>
</tbody>
</table>

Notes: Column (i) reports estimates of a regression of supplier death (indicator for suppliers who ceased operations) on the interest rate instrument, and Columns (ii)-(viii) report estimates of regression (8), where column (viii) uses log changes in unit values as the outcome variable. Rate shock is the instrument in the IV regressions and is defined by (12). Controls are log changes in the price of imported inputs, log changes in the price of inputs purchased from other Prodcom firms, changes in log wages, changes in the log user cost of capital, and the firm’s own short-term debt obligations interacted with interest rate changes. All regressions are unweighted except (v), which is weighted by firm employment. Standard errors are clustered at the firm-level, and F-stat is the KP statistic.

than those in Table 1, but the confidence intervals overlap.

One concern with the financial shock instrument is the possibility that negative shocks to the downstream firm could be causing the downstream firms’ suppliers to take on more debt. To assuage this concern, we take advantage of the fact that most of the variation in interest rates occurred between 2008 and 2009, after the great financial crisis. In columns (vii) and (viii) we conduct an event-study. We freeze the shares in (12) at their 2008 values and run the regression separately for the period 2008–2012 and 2003–2007. Since we include a firm fixed effect, we are now exploiting variation caused by the fact that at the onset of the financial crisis, some firms had suppliers who were more heavily reliant on short-term debt than others. Column (vii) shows that $\delta$ is still positive and large (though much more imprecisely estimated). Column (viii) is the placebo test showing that before the large change in short-term interest rates, the first-stage is weak and differences in trends in marginal costs between firms with high- and low- short-term debt-reliant suppliers are insignificant.

The final column, (ix), replaces marginal cost with unit values as the left-hand side variable. We find that pass-through is slightly positive but insignificant as under the demand instrument. Once again, since we do not model firms’ pricing decisions, these reduced-form estimates of pass-through do not have structural interpretations.
Other threats to identification. In our model we assumed that variable production has constant returns to scale. Suppose that we allow for decreasing returns to scale, with variable costs given by $C_i(p, A_i, q_i) = mc_i(p, A_i) q_i^\alpha$, where $\alpha \geq 1$. With this iso-elastic cost function, log changes in average variable costs are still equal to log changes in marginal costs. However, the change in marginal cost now depends on the change in output quantity. Our estimating equation (8) must be extended to include $(\alpha - 1)d \log q_{it}$ on the right hand side. This requires either an additional instrument or an estimate of $\alpha$. In its absence, if quantity falls when input prices rise, then the true inframarginal surplus ratio $\delta$ will be larger than what we estimate. That is, if there is decreasing returns to scale, then our estimate of $\delta$ will be downward biased.

Similarly, our measures of marginal costs do not account for changes in the quality of the downstream firm’s output. If the downstream firm downgrades output quality in response to a positive jump in its input prices, we underestimate the rise in marginal cost because quality-adjusted quantity falls by more than measured quantity. Once again, our inframarginal surplus ratio estimates would be downward biased in this case.

4 Macroeconomic Value of Link Formation: Theory

In the previous section, we estimated the area under the input demand curve and found that input suppliers generate a considerable amount of inframarginal surplus for their downstream customers. In this section we develop a growth accounting framework to decompose the fraction of aggregate productivity growth that can be accounted for by observed churn in supply chains. The model explicitly accounts for how changes in one firm’s marginal cost, due to entry and exit of its suppliers, spill over to that firms’ customers, customers’ customers, and so on.

We discipline our macro growth accounting results using estimates from the micro sample which, recall, are estimated using only the Prodcom sample of manufacturing firms. However, we apply our growth accounting formulas to a much larger sample of Belgian firms.

We specify minimal structure on the aggregative model and do not fully specify the environment. This is because we take advantage of the fact that endogenous variables, like changes in factor prices, are directly observable and capture whatever resource constraints the economy is subject to.
4.1 Definitions and Environment

Consider a set of producers denoted by \( N \), called the network. There is a set of external inputs denoted by \( F \). An external input is an input used by producers in the network, \( N \), that those producers do not themselves produce. In practice, the set \( F \) includes labor, capital, and intermediate inputs purchased from firms not in the network \( N \). The firms in \( N \) collectively produce final outputs. Final output is the production by firms in \( N \) that firms in \( N \) do not themselves use. A stylized representation is given in Figure 3 showing the flow of goods and services.

![Graphical illustration of the economy](image)

Figure 3: Graphical illustration of the economy. External inputs are red nodes and final output are green nodes. The set \( N \) is depicted by the dotted line.

**Production.** Each producer \( i \in N \) has a constant-returns-to-scale production technology in period \( t \) given by

\[
q_{i,t} = A_{i,t} F_{i,t} \left( \{x_{ij,t}\}_{j \in N}, \{l_{if,t}\}_{f \in F} \right).
\]

In the expression above, \( l_{if,t} \) is the quantity of external input \( f \) and \( x_{ij,t} \) is the quantity of intermediate input \( j \) used by \( i \) at time \( t \). The exogenous parameter \( A_{i,t} \) is a technological shifter. There may be fixed overhead costs that must be paid in addition to the variable production technology defined above, but we do not take a stance on these fixed costs for the time being. We abstract from multi-product firms and associate each firm with a
single output.

After having paid fixed costs, which could include the costs required to access specific inputs, the total variable costs of production paid by firm $i$ are

$$\sum_{j \in N} p_{j,t} x_{ij,t} + \sum_{f \in F} w_{f,t} l_{if,t},$$

where $p_{j,t}$ and $w_{f,t}$ are the prices of internal and external inputs. The markup charged by each producer $i$, $\mu_{i,t}$, is defined to be the ratio of its price $p_{i,t}$ and its marginal cost of production.

We say that good $i$ is a continuing good between $t$ and $t + 1$ if $q_{i,t} \times q_{i,t+1} > 0$. Denote by $C_t$ the set of all goods who are continuing at time $t$.

**Resource Constraints.** We construct a measure of net or final production by the set of continuing, $C_t$, firms. Let the total quantity of external inputs used by continuing firms be

$$L_{f,t} = \sum_{i \in C_t} l_{if,t} + \sum_{i \in C_t} l_{if,t}^{\text{fixed}},$$

where $l_{if,t}$ is used in variable production and $l_{if,t}^{\text{fixed}}$ are fixed costs. Firm $i$’s final output is defined to be the quantity of its production that is not sold to other firms in $C_t$:

$$y_{i,t} = q_{i,t} - \sum_{j \in C_t} x_{ji,t}.$$

That is, final output of good $i \in C_t$, denoted by $y_{i,t}$, is the quantity produced of $i$ that is not used by any $j \in C_t$ and is either consumed by households, used for investment, sold as exports, or sold to other suppliers that are not in the network of continuing producers.

The change in the final output price deflator between $t$ and $t + 1$ is defined to be the share-weighted change in the price of continuing goods

$$\Delta \log P^Y_t = \sum_{i \in C_t} b_{i,t} \Delta \log p_{i,t},$$

where, as in a Tornqvist index, the weights are the average of shares in $t$ and $t + 1$:

$$b_{i,t} = \frac{1}{2} \frac{p_{i,t} y_{i,t}}{\sum_{j \in C_t} p_{j,t} y_{j,t}} + \frac{1}{2} \frac{p_{i,t+1} y_{i,t+1}}{\sum_{j \in C_t} p_{j,t+1} y_{j,t+1}}.$$

Growth in real final output of the set of continuing goods, denoted by $\Delta \log Y_t$, is the change
in nominal final output minus the final output price deflator:

\[ \Delta \log Y_t = \Delta \log \left( \sum_{i \in C_t} p_i t \gamma_{i,t} \right) - \Delta \log P_t^Y. \]  

(13)

To calculate growth in real final output between \( t \) and \( t + T \), we cumulate \( \Delta \log Y \):

\[ \log Y_{t+T} - \log Y_t = \sum_{s=t}^{t+T} \Delta \log Y_s. \]

Our objective is to decompose the contribution of supplier churn to growth in real final output.

4.2 Theoretical Results

To state our decomposition result, we need to first set up some input-output notation. Define the \( C_t \times C_t \) cost-based input-output network of continuing firms to have \( ij \)th element equal to:

\[ \Omega_{ij,t} = \frac{p_{ij,t} x_{ij,t}}{\sum_{k \in C_t} p_{k,t} x_{ik,t} + \sum_{f \in F} w_{f,t} l_{if,t}}. \]

Let \( \Omega^F \) be the \( C_t \times F \) matrix of external input usages, where the \( if \)th element is

\[ \Omega^F_{if,t} = \frac{w_{f,t} l_{if,t}}{\sum_{k \in C_t} p_{k,t} x_{ik} + \sum_{f \in F} w_{f,t} l_{if}}. \]

Group inputs of continuing suppliers of \( i \) into \( J_i \) types (similar to Section 4). Let \( M_{ij,t} \) be the mass of inputs of type \( J \in J_i \) used by firm \( i \) at time \( t \). Firm \( i \) adds suppliers of type \( J \) if \( \Delta M_{ij,t} > 0 \) and removes suppliers if \( \Delta M_{ij,t} < 0 \). Denote the per-variety expenditure share on type \( J \) inputs by \( \Omega_{ij,t} \). The average inframarginal surplus for entering suppliers is

\[ \bar{\delta}_{i,t}^{\text{entry}} = \sum_{\Delta M_{ij,t} > 0, J \in J_i} \frac{\Omega_{ij,t} \Delta M_{ij,t}}{\sum_{\Delta M_{ik,t} > 0} \Omega_{ik,t} \Delta M_{ik,t}} \delta_{ij,t}(p_{j,t}, \infty), \]

and the average inframarginal surplus for exiting suppliers is

\[ \bar{\delta}_{i,t}^{\text{exit}} = \sum_{\Delta M_{ij,t} < 0, J \in J_i} \frac{\Omega_{ij,t} \Delta M_{ij,t}}{\sum_{\Delta M_{ik,t} < 0} \Omega_{ik,t} \Delta M_{ik,t}} \delta_{ij,t}(p_{j,t}, \infty). \]

This representation can capture both expanding variety models and quality-ladder mod-
els as long as $\delta_{ij}(p_{J}, \infty) < \infty$. To capture a movement along a quality ladder, we consider the simultaneous addition and removal of supplier-pairs. That is, if an input climbs the quality ladder, a low quality supplier is eliminated and a high quality supplier is added. See Appendix B for more details and an example.

Define the set of continuing suppliers for firm $i$ by $C_{i,t}$. That is,

$$C_{i,t} = \{ j \in C_t : x_{ij,t} x_{ij,t+1} > 0 \}.$$

We assume that $C_{i,t}$ is non-empty. Define the supplier-extensive margin term for firm $i$ to be

$$\Delta E_{i,t} = - \left( \sum_{j \in J_i} M_{ij,t} \Omega_{ij,t} \right) \log \left( \frac{\sum_{j \in C_{i,t}} p_{j,t+1} x_{ij,t+1} / \sum_{k \in N} p_{k,t+1} x_{ik,t+1}}{\sum_{j \in C_{i,t}} p_{j,t} x_{ij,t} / \sum_{k \in N} p_{k,t} x_{ik,t}} \right).$$

This term is positive whenever the expenditure share on continuing suppliers falls between $t$ and $t+1$. Define the entering-supplier term for firm $i$ to be

$$\Delta D_{it} = \left( \sum_{j \in J_i} M_{ij,t} \Omega_{ij,t} \right) \left( 1 - \frac{\sum_{j \in C_{i,t}} p_{j,t+1} x_{ij,t+1}}{\sum_{k \in N} p_{k,t+1} x_{ik,t+1}} \right).$$

This term is positive whenever firm $i$ adds suppliers between $t$ and $t+1$.

The following lemma, which is a consequence of Proposition 1, shows that the effect of supplier churn on the downstream firm’s marginal cost can be written in terms of $\Delta E_{i,t}$ and $\Delta D_{it}$.

**Lemma 1 (Decomposition of Marginal Cost).** Consider a change in the price of inputs $\Delta p_t$ and $\Delta w_t$, the measure of inputs by type $\Delta M_{ij,t}$, and the technology parameter $\Delta A_{i,t}$. Let $\Delta \mu_{i,t}$ be the change in markups. Assume $\delta_{ij}(p, \infty) < \infty$ for every $J$. Then to a first-order approximation, the change in the price of each continuing firm $i$ is given by

$$\Delta \log p_{i,t} \approx \Delta \log \frac{\mu_{i,t}}{A_{i,t}} + \sum_{j \in J_i} \Omega_{ij,t} \Delta \log p_{j,t} + \sum_{f \in F} \Omega_{if,t} \Delta \log w_{f,t} - \delta_{i,t} \Delta E_{i,t} + (\delta_{i,t}^{exit} - \delta_{i,t}^{entry}) \Delta D_{it}.$$

The first three summands are standard, reflecting changes in $i$’s own markup and technology as well as changes in the prices of $i$’s continuing suppliers and external inputs (e.g. wages and user cost of capital). The fourth summand reflects changes in $i$’s marginal cost due to churning of suppliers assuming that the average inframarginal surplus created
by entering and exiting suppliers is the same. The final term accounts for the discrepancy between the average inframarginal surplus of entering and exiting suppliers.

Lemma 1 is a useful reformulation of Proposition 1 since it allows us to summarize heterogeneous extensive margin effects into two sufficient statistics: \( \bar{\delta}^{\text{exit}} \) and \( \bar{\delta}^{\text{exit}} - \bar{\delta}^{\text{entry}} \). These sufficient statistics are multiplied by observable statistics: changes in the share of continuing suppliers and the share of entering suppliers. If we calibrate \( \bar{\delta}^{\text{exit}} \) and \( \bar{\delta}^{\text{entry}} \), then using observational data on expenditures on suppliers (from, say, VAT returns), we can infer the effect of extensive margin adjustments on every firm’s price without needing to measure the price of every firm in the economy.

The following corollary specializes Lemma 1 to the CES special case.

**Corollary 1 (CES Special Case).** If i’s production technology is CES with elasticity of substitution \( \sigma > 1 \), then

\[
\bar{\delta}^{\text{exit}} = \bar{\delta}^{\text{entry}} = \frac{1}{\sigma - 1}.
\]

Hence,

\[
\Delta \log p_{i,t} \approx \Delta \log \mu_{i,t} + \sum_{j \in \mathcal{J}_i} \Omega_{ij,t} \Delta \log p_{j,t} + \sum_{f \in \mathcal{F}} \Omega_{if,t} \Delta \log w_{f,t} - \frac{1}{\sigma - 1} \Delta \varepsilon_{i,t}.
\]

CES input demand is a useful benchmark since it greatly simplifies the expression in Lemma 1. Under CES, the treatment effect associated with each entry or exit event is just the expenditure share of that supplier multiplied by \( 1/(1 - \sigma) \) — there is no heterogeneity in inframarginal surplus and entry is as beneficial as exit is costly per dollar of spending. Furthermore, since inframarginal surplus is constant, if we know it, then changes in the continuing input share are all we need to measure over time to see the effect of the extensive margin on marginal cost.\(^{24}\)

Lemma 1 is about a single firm, but we can build on it to decompose aggregate growth \( d \log Y_t \). To do this, note that Lemma 1 can be rewritten in matrix notation as

\[
\Delta \log \mathbf{p}_t \approx \Delta \log \mathbf{\mu}_t - \Delta \log \mathbf{A}_t + \Omega \Delta \log \mathbf{p}_t + \Omega^F \Delta \log \mathbf{w}_t - \bar{\delta}^{\text{exit}} \Delta \mathbf{\varepsilon}_t + (\bar{\delta}^{\text{exit}} - \bar{\delta}^{\text{entry}}) \Delta \mathbf{D}_t.
\]

\(^{24}\)As long as input demand is CES, Lemma 1 applies, regardless of whether supplier churn occurs according to a quality-ladder or expanding-varieties model. As mentioned before, we model a movement along the quality-ladder as the simultaneous addition and subtraction of a supplier pair. With CES input demand, both the entering and exiting supplier’s inframarginal surplus per unit of expenditure is \( 1/(\sigma - 1) \), and the downstream firms’ marginal cost will rise or fall depending on whether expenditures on the entering supplier are higher or lower than the exiting supplier. The derive this corollary, we must assume that \( \sigma > 1 \) because \( \bar{\delta}^{\text{exit}} = \bar{\delta}^{\text{entry}} = \infty \) when \( \sigma \leq 1 \).
Define the cost-based continuing Leontief inverse to be

\[ \Psi_t = (I - \Omega_t)^{-1} = \sum_{s=0}^{\infty} \Omega_i^s. \]

Then, we can solve out for changes in the prices of continuing firms:

\[
\Delta \log p_t \approx \Psi_t \left[ \Delta \log \mu_t - \Delta \log A_t + \Omega_i^F \Delta \log w_t - \bar{\delta}_i^{\text{exit}} \Delta E_i + \left( \bar{\delta}_i^{\text{exit}} - \bar{\delta}_i^{\text{exit}} \right) \Delta D_i \right]. \tag{14}
\]

That is, changes in the price of continuing goods depend on changes in markups, \( \Delta \log \mu_t \), productivity shifters, \( \Delta \log A_t \), prices of external inputs, \( \Delta \log w_t \), as well as the extensive margin terms, \( \Delta E_i \) and \( \Delta D_i \). All of these effects are mediated by the forward linkages in the Leontief inverse \( \Psi_t \).

Define the revenue-based Domar weight of \( i \in C_t \) and \( f \in F \) to be

\[
\lambda_{i,t} = \frac{p_{i,t}q_{i,t}}{\sum_{j \in C_t} p_{j,t} y_{j,t}}, \quad \text{and} \quad \Lambda_{f,t} = \frac{\sum_{i \in C_t} w_{f,t} l_{f,t}}{\sum_{j \in C_t} p_{j,t} y_{j,t}},
\]

and the cost-based continuing Domar weights for \( i \in C_t \) and \( f \in F \) to be

\[
\tilde{\lambda}_{i,t} = \sum_{j \in C_t} b_{j,t} \Psi_{ji,t}, \quad \text{and} \quad \tilde{\Lambda}_{f,t} = \sum_{j \in C_t} \tilde{\lambda}_{j,t} \Omega_{f,j,t}^F.
\]

The cost-based and revenue-based Domar weights are the same when there are no markups and the extensive margin is inactive. The cost-based continuing Domar weight \( \tilde{\lambda}_{i,t} \) measures the exposure of each continuing firm \( j \) to each continuing supplier \( i \), captured by \( \Psi_{ji,t} \), and averages this exposure by \( j \)'s share in the final output price deflator \( b_{j,t} \). Substituting (14) into the definition of the final output price deflator yields the following first order approximation for the change in the output price deflator

\[
\Delta \log P_Y^t \approx \sum_{i \in C_t} \tilde{\lambda}_{i,t} \left[ \Delta \log \frac{\mu_{i,t}}{A_{i,t}} - \bar{\delta}_{i,t}^{\text{exit}} \Delta E_{i,t} + \left( \bar{\delta}_{i,t}^{\text{exit}} - \bar{\delta}_{i,t}^{\text{exit}} \right) \Delta D_{i,t} \right] + \sum_{f \in F} \tilde{\Lambda}_{f,t} \Delta \log w_{f,t}.
\]

That is, shocks to \( i \) are transmitted into the final output price according to the cost-based Domar weight \( \tilde{\lambda}_{i,t} \). Similarly, changes in the price of external input \( f \) affects the final output price deflator according to its cost-based Domar weight \( \tilde{\Lambda}_{f,t} \).

Plugging this into the definition of real final output in equation (13) yields the following decomposition.

**Proposition 4** (Growth-Accounting with Entry-Exit). The change in real final output is given,
Aggregate output growth can be broken down into different components. We describe the different terms in sequence starting with the first line. The first term is exogenous productivity growth weighted by cost-based Domar weights. This accounts for how exogenous improvements in technology affect output, accounting for the fact that improvements in each firm’s technology will mechanically raise production by its consumers, and its consumers’ consumers, and so on. The second term captures a similar effect but for changes in factor quantities — if the quantity of factor \( f \) rises, then that raises the production of all firms that use factor \( f \), which raises the production of all firms that use the products of factor \( f \), and so on.\(^{25}\)

The second line captures the way changes in markups and factor prices affect output. An increase in \( i \)’s markup will raise \( i \)’s price, which raises the costs of production for \( i \)’s consumers, and \( i \)’s consumers’ consumers, and so on. Similarly, if the Domar weight \( \Lambda_f \) of factor \( f \) rises more quickly than the quantity \( L_f \) of factor \( f \), then this means that the relative price of factor \( f \) has increased. An increase in \( f \)’s price will raise the costs of production for all firms.

The last line is what this paper is focused on and captures the effects of supplier churn. It measures the reduction in the final-goods price deflator caused by jumps in input prices due to supplier churn, holding fixed technologies of continuing firms, markups, and factor prices. Churn at the level of each individual firm percolates to the rest of the economy through the input-output network and this effect is captured by weighing the extensive margin terms from Lemma 1 by the cost-based Domar weight of each firm and summing across all firms. This captures the idea that if one firm’s marginal costs change from

\(^{25}\)For counterfactuals, we need to be able to solve for changes in factor shares \( d \log \Lambda \). This requires modelling the details of fixed costs and entry decisions. However, conditional on changes in factor shares, we do not need to specify these details.
entry-exit of its suppliers, then those marginal cost changes will propagate to that firms’ consumers, its consumers’ consumers, and so on.

4.3 Special Cases of Growth Accounting

To better understand the intuition for Proposition 4, it helps to consider some special cases.

**Corollary 2 (Neoclassical Economy without Entry-Exit).** For an efficient economy with no markups and no entry-exit margin, the change in aggregate output is

\[
\Delta \log Y_t \approx \sum_{i \in N} \lambda_{i,t} \Delta \log A_{i,t} + \sum_{f \in F} \Lambda_{f,t} \Delta \log L_{f,t}.
\]

To derive this from Proposition 4, note that there are no markups and all firms are continuing, so cost-based and revenue-based Domar weights are the same. Furthermore, since there are no profits, \(\sum_{f \in F} \hat{\Lambda}_f \Delta \log \Lambda_f \approx \sum_{f \in F} \Delta \Lambda_f \approx 0\), where the final equality follows from the fact that expenditures on external inputs must equal total final output since firms earn no profits. Finally, since there is no extensive margin, \(\Delta \mathcal{E}_{i,t} = \Delta \mathcal{D}_{i,t} = 0\).

In other words, under these assumptions, output growth is the sum of technology and external input growth weighted by sales. This is the neoclassical case considered by Solow (1957), Domar (1961), and Hulten (1978).

**Corollary 3 (Markups without Entry-Exit).** For an economy with no entry-exit, the change in aggregate output is

\[
\Delta \log Y_t \approx \sum_{i \in N} \tilde{\lambda}_{i,t} \Delta \log A_{i,t} + \sum_{f \in F} \tilde{\Lambda}_{f,t} \Delta \log L_{f,t} - \sum_{i \in N} \tilde{\lambda}_{i,t} \Delta \log \mu_{i,t} - \sum_{f \in F} \tilde{\Lambda}_{f,t} \Delta \log \Lambda_{f,t}.
\]

This is the environment considered by Baqae and Farhi (2019). The first two terms measure the increase in output growth due to the increase in technology and inputs, holding fixed the allocation of resources, and the latter two terms measure the effect of changes in the allocation of resources. Reallocations are beneficial if the reduction in factor prices, as measured by \(-\sum_{f \in F} \hat{\Lambda}_{f,t} \Delta \log \Lambda_{f,t}\), outpace the increases in prices caused by markups \(\sum_{i \in N} \hat{\lambda}_{i,t} \Delta \log \mu_{i,t}\). Intuitively, if factor shares fall by more than markups rise, then this indicates that resources are being reallocated to high-markup firms. Since those firms are initially too small from a social perspective, this reallocation boosts aggregate output.

**Corollary 4 (Constant Non-Zero Markups and Zero Profits).** For an economy with CES input demand, monopolistic competition, a single external input (labor), and a zero-profit condition,
we have
\[ \Delta \log Y_t = \sum_{i \in C_t} \tilde{\lambda}_{i,t} \Delta \log A_{i,t} + \Delta \log L_{f,t} + \sum_{i \in C_t} \tilde{\lambda}_{i,t} \frac{1}{\sigma_i - 1} \Delta \varepsilon_{i,t}, \]

where \( \sigma_i \) is the elasticity of substitution among input varieties in \( i \)'s production function.

The economy above nests Melitz (2003) and the input-output model in Baqaee (2018). Mechanically, monopolistic competition with CES implies constant markups, so that \( \Delta \log \mu_i = 0 \). The zero-profit condition with a single factor implies that \( \Delta \log A_f = 0 \). Substituting these into Proposition 4 yields the result. That is, similar to traditional neoclassical models, exogenous technology growth \( \Delta \log A \) and factor growth \( \Delta \log L \) can raise final output. However, there is a new term involving churn in the supply chain.

This final term measures the importance of supplier churn. If suppliers are added or discontinued in equilibrium in response to shocks, then these will affect marginal cost of downstream firms, which then spillover to other producers. The importance of these spillovers is captured by the cost-based continuing Domar weight \( \tilde{\lambda}_{i,t} \). Supplier churn is more powerful when the inframarginal surplus ratio is high, which happens when \( \sigma_i \) is close to one, and when the cost-based Domar weights, \( \tilde{\lambda}_{i,t} \), are large, which happens when the intermediate input share is high.

5 Empirical Macroeconomic Results

In this section, we apply Proposition 4 to decompose aggregate growth for a large subset of the Belgian economy.\(^{26}\) In the first part of this section, we describe how we map the data to the terms in Proposition 4. In the second part of this section, we show the results.

5.1 Mapping to Data

To apply Proposition 4, we need to define the set of continuing firms \( C_t \), the average inframarginal surplus parameters \( \bar{\delta}_{i,t}^{\text{exit}} \) and \( \bar{\delta}_{i,t}^{\text{entry}} \), the matrices \( \Omega_t \) and \( \Omega_t^{F} \) for all continuing firms in Belgium, markups \( \mu_{i,t} \), the growth in external input quantities (labor, capital, and external materials), and the growth in final real output. We discuss these in turn.

Assigning the continuing network set. We calculate an output measure for continuing, non-financial domestic Belgian corporations. We exclude from the set \( N \) of firms that we

\(^{26}\)When we apply Proposition 4 to decompose output growth, we use a Tornqvist second-order adjustment. That is, although Proposition 4 is a first order approximation, when we average the \( t \) and \( t + 1 \) coefficients on each shock, it provides a second order approximation (see Theil, 1967). For example, we weigh \( \Delta \log L_{f,t} \), the change in factor quantity \( f \) between \( t \) and \( t + 1 \), using the average of \( \tilde{\Lambda}_{f,t} \) and \( \tilde{\Lambda}_{f,t+1} \).
track self-employed and financial activities (NACE codes 64-66) and non-market services including government entities (NACE codes 84 and higher) because these sectors are not well-covered by VAT data (for example, hospitals and health centers are not required to submit VAT declarations) and markups are hard to measure.\textsuperscript{27} Even though we exclude from \(N\) self-employed, government, and financial entities, we include purchases from these suppliers in variable costs and treat them as a separate external factor.\textsuperscript{28}

We define a firm in \(N\) to be continuing in \(t\) if the following conditions are met: its sales are positive in \(t\) and \(t+1\), its employment is at least one in \(t\) and \(t+1\), and its capital stock is positive in \(t\) and \(t+1\). This gives us the set \(C_t\), which covers around 70\% of both value-added and total employment of the non-financial corporate sectors in Belgium as measured by the National Accounts Institute (see Table A8). Crucially, our output measure is much broader than the Prodcom sample that we used in Section 3. Whereas our Prodcom sample contains roughly 3,000 downstream firms per year, the growth accounting sample contains roughly 90,000 firms per year.

**Calibrating \(\delta_{\text{exit}}^{i,t}\) and \(\delta_{\text{entry}}^{i,t}\).** We calibrate the average inframarginal surplus over exiting and entering suppliers per unit of expenditures to be the same, \(\delta_{\text{exit}}^{i,t} = \delta_{\text{entry}}^{i,t}\), for all \(i\) and \(t\), and set this parameter to match our point estimates of \(\delta\) based on separations (equation 8). If we assume CES input demand (with elasticity of substitution \(\sigma\)), then these requirements hold automatically because, by Corollary 1, \(\delta_{i,J,t}(p_{J,t}, \infty) = \delta_{\text{exit}}^{i,t} = \delta_{\text{entry}}^{i,t} = \frac{1}{\sigma-1}\) for all \(i, J,\) and \(t\). In this case, we can alternatively set \(\frac{1}{\sigma-1}\) to match our estimates of equation (9) reported in Table 3. Outside of CES, if we assume that supplier separations induced by our instrument in Section 3 do not result in simultaneous additions of suppliers, then we can interpret our estimates of equation (8) as measuring \(\delta_{\text{exit}}^{i,t}\). If \(\delta_{\text{entry}}^{i,t}\) is greater than \(\delta_{\text{exit}}^{i,t}\), then the extensive margin’s contributions to growth will be larger than what we report. On the other hand, if the reverse is true, the contributions will be lower. Since in this paper we do not estimate \(\delta_{\text{entry}}^{i,t}\), we assume this difference is zero, as in the CES benchmark.

We experiment and report results with different values of \(\delta \in \{0, 0.2, 0.4, 0.5\}\).

\textsuperscript{27}We exclude self-employed because of data-privacy considerations. Non-markets services, such as government entities, education, health, art and entertainment, are not well-covered by VAT data. We exclude financial entities because (i) banks fill special annual accounts that we do not have access to, and (ii) interest receipts by banks and insurance premia receipts by insurance companies are not included in the VAT data.

\textsuperscript{28}We also include in this external factor purchases from suppliers that do not report VAT and intra-firm purchases (due to mergers and acquisitions). Column (iii) in Table A13 shows that our micro estimates are similar to our baseline if we exclude input purchases from self-employed, government, and finance suppliers.
Calibrating input-output shares and markups. As in Section 3, we construct the $C_t \times C_t$ network of domestic suppliers of Belgian firms using the NBB B2B Transactions data set. As mentioned before, almost all firms in Belgium are required to report sales of at least 250 euros, and the data has universal coverage of all businesses in $C_t$. We drop from the network purchases of capital inputs and outlier transactions as described in Section 3. There are four external inputs: labor, capital, imported materials, and materials from outside the set $N$ (i.e. purchased from self-employed firms, finance, and government entities). We construct the $C_t \times F$ matrix of external input requirements using data from the annual accounts, B2B transactions, and customs declarations. For capital, as in Section 3, we multiply the industry-specific user cost of capital by firms’ reported capital stocks. We measure firm-level markups by dividing sales by total variable costs. Total variable costs is the sum of all material purchases (domestic and foreign, from continuing and non-continuing firms, and including self-employed, finance, and government suppliers but excluding capital suppliers), plus the non-overhead component of the wage bill and the cost of capital (which we assume is $\phi = 0.7$). Any other expenditures the firm incurs are treated as overhead costs.

Calibrating final output. Final output is defined to be the sales of $C_t$ minus sales of materials to other firms in the production network. That is, final output are sales to households, exports, investment, and any other sales that are not considered to be intermediate purchases by firms in $N$. We convert nominal final output into a real measure by deflating nominal growth in final output using the Belgian GDP deflator from the national accounts. That is, we assume that the price deflator of our measure of final output grows at the same rate as the Belgian GDP deflator.

Calibrating external input quantities. We measure growth in labor quantity using total equivalent full time employees for firms in our sample. We measure growth in the capital stock of each firm by deflating the nominal value of its capital stock (which includes plants, property, equipment, and intellectual property) using the aggregate investment price deflator from the national accounts of Belgium. We measure the growth in imported materials by deflating the nominal imported material input growth with the import price deflator used for constructing the national accounts in Belgium. We cannot measure growth in the quantity of materials purchased from excluded domestic firms.

---

29 Given data on sales $(p_i q_i)$ for each firm $i \in C_t$, and the input-output matrix relative to sales, $\Omega_{ij}^s = \frac{p_j x_{ij}}{p_i q_i}$, we calculate total final output as $E = \sum_{i \in C_t} p_i q_i - \sum_{i \in C_t} p_i q_i \sum_{j \in C_t} \Omega_{ij}^s$. Final demand shares are given by $b_i = (p_i q_i - \sum_{j \in C_t} \Omega_{ij}^s p_j q_j) / E$.
(self-employed, finance, and government entities), so growth in the quantity of these materials is part of the residual.

Table A8 in Appendix D reports information on the fraction of Belgian value-added in our sample and compares how aggregate growth rates in our sample compare to Belgian national accounts data. Table A8 in Appendix D reports information on the fraction of Belgian value-added in our sample and compares how aggregate growth rates in our sample compare to Belgian national accounts data. Table A10 in Appendix D reports basic statistics on the level and changes in the continuing share of suppliers, as well as basic information on the number of suppliers each firm has, and the share of intermediate materials as a share of total costs for our sample. Each firm has, on average, 68 suppliers while the sales-weighted average number of suppliers is 658. Therefore, the number of suppliers rises with the size of the firm. Furthermore, the expenditure share on continuing suppliers falls, on average, by around 5% per year.

5.2 Results

Before showing our benchmark results, we start with two special cases of Proposition 4. The left panel of Figure 4 assumes perfect competition and no extensive margin. To do this, we make two assumptions: (i) we set \( \mu_{i,t} = 1 \) for all \( i \) and \( t \) and assume that the cost of capital is such that the firm makes no profits, and (ii) we set \( \delta = 0 \). In other words, the left panel of Figure 4 is a traditional Solow-Hulten decomposition that breaks down overall growth into growth in the quantity of labor, capital, and imported materials (external inputs) and a residual term. In this figure, 27% of aggregate growth over the whole period is driven by the residual term. The right panel maintains the assumption that the extensive margin is irrelevant, \( \bar{\delta} = 0 \), but allows for firm-level markups. That is, it implements a Baqae and Farhi (2019) style decomposition. This figure shows that increases in markups and factor shares over the sample have decreased aggregate output. Intuitively, the increase in average markups and factor shares indicates that firms with initially high-markups are using less resources over time. This is harmful for aggregate growth since these firms are inefficiently too small to begin with. The residual now accounts for roughly 42% of aggregate growth.

Figure 5 shows the role of supplier churn in growth for different values of \( \bar{\delta} \). Panel (a) shows the results with \( \bar{\delta} = 0.2 \), which in a CES model corresponds to an elasticity of substitution of 6. Panel (b) shows \( \bar{\delta} = 0.4 \), which corresponds to an elasticity of substitution of 3.5. Panel (c) shows the results for \( \bar{\delta} = 0.5 \), which in a CES model corresponds to
Figure 4: Growth accounting special cases

an elasticity of substitution of 3. Our microeconomic estimates in Section 3 are consistent with values of $\bar{\delta}$ that range between 0.3 and 0.5, and values of $\sigma$ under CES between 3.5 and 4.

Since we can observe supplier churn directly, the extensive margin term in Proposition 4 is not affected by measurement error in the other terms. It does, however, scale linearly with $\bar{\delta}$. As we raise $\bar{\delta}$, the technology residual falls in order to match the same real final output growth. The extensive margin is always positive because the weighted share of continuing suppliers is falling over time. In other words, when weighted appropriately, expenditures on new suppliers exceed expenditures on separating suppliers.

The magnitude of the extensive margin term is increasing in the inframarginal surplus. Panels (a), with $\bar{\delta} = 0.2$, is conservative compared to our point estimates in Section 3, in the sense that it assigns a smaller role to supplier churn than our point estimates suggest. Nevertheless, the extensive margin of adding and subtracting suppliers explains a substantial fraction of the residual. Panel (b), with $\bar{\delta} = 0.4$, is closer to our benchmark point estimates, and in this case supplier churn accounts for 38% of aggregate growth and the residual, capturing intensive margin improvements for existing firms, has mostly disappeared. In panel (c), with $\bar{\delta} = 0.5$, supplier churn accounts for 47% of aggregate growth, and the residual is slightly negative.

When $\bar{\delta} = 0.4$, the supplier churn term is very important for long-run growth whereas the residual is almost irrelevant. However, the picture is reversed for short-term fluctuations. For example, the supplier churn term is not important for explaining the decline in aggregate output following the 2008 financial crisis. More formally, at annual frequency,
the standard deviation of fluctuations in the residual is almost twice as large than that of the supplier churn term. That is, unlike long-run growth, supplier-churn is not as important for explaining cyclical movements.

Of course, these results are very speculative since they involve extrapolating estimates from the Prodcom manufacturing sample of firms to a much broader subset of Belgian firms (including ones outside the manufacturing sector). In practice, the inframarginal surplus ratio, \( \delta \), is likely highly heterogeneous and varies by both the characteristics of the suppliers being added or dropped as well as by the characteristics of the purchasing firm. Investigating such heterogeneity is an important area for future research. However, our aggregation exercise suggests that the extensive margin of supplier entry and exit is
plausibly a very important driver of aggregate growth.

6 Conclusion

This paper analyzes and quantifies the microeconomic and macroeconomic importance of creation and destruction of supply linkages. Our analysis shows that downstream firms’ marginal costs are greatly affected by supplier exits, which enables us to directly calculate the change in inframarginal surplus. This captures the love-of-variety effect in an expanding variety model and the innovation step-size in a quality-ladder model. Additionally, we demonstrate that supplier entry and exit can plausibly account for a large part of the growth component of the unexplained residual in a Solow (1957)-style growth accounting exercise. Future research can refine and replicate these estimates by exploring heterogeneity in $\delta$, using other identification strategies, or data from other countries.

References


production networks under supply chain uncertainty.


Matsuyama, K. and P. Ushchev (2020). When does procompetitive entry imply excessive entry?


Appendix A  Proofs

Proof of Proposition 1. We suppress the index $i$ for the downstream firm throughout the proof since all variables are indexed by the identity of the downstream firm. Use Shephard’s lemma to get
\[ dC = \sum_j x_j M_j dp_j + \frac{\partial C}{\partial A} dA + \frac{\partial C}{\partial q} dq. \]

Consider the change in costs due to a change in primitives. For any smooth path, indexed by $t \in [0, 1]$, with end points given by $(p^0, A^0, q^0)$ and $(p^1, A^1, q^1)$ the change in costs is
\[ C(p^1, A^1, q^1) - C(p^0, A^0, q^0) = \sum_j M_j \int_0^1 x_j(p(t), A(t), q(t)) \frac{dp_j}{dt} dt + \int_0^1 \frac{\partial C}{\partial A} dA dt + \int_0^1 \frac{\partial C}{\partial q} dq dt. \]

Given this exact representation, consider the total derivative of costs with respect to the new prices of each type $p^1_j$, the mass of inputs of each type $M_j$ whose price jumps by a discrete amount $z_j$, technology $A$, and quantity of output $q$. Omitting the dependence of conditional input, $x_j$, on its other arguments (which are held constant when we take the derivative), this results in the following expression
\[ dC = \sum_j M_j x_j dp_j + \sum_j \left( \int_{p_j^0}^{p_j^1} x_j(\xi) d\xi \right) dM_j + \frac{\partial C}{\partial A} dA + \frac{\partial C}{\partial q} dq, \]

where $dM_j = m_j$ is the infinitesimal measure of inputs of type $j$ whose price jumps. This first-order approximation can be rewritten as
\[ d \log C = \sum_j M_j \Omega_j d \log p_j + \frac{1}{C} \sum_i \left( \int_{p_j^0}^{p_j^1} x_j(\xi) d\xi \right) dM_j + \frac{\partial \log C}{\partial \log A} d \log A + \frac{\partial \log C}{\partial \log q} d \log q. \]

(15)

Next, by constant-returns, $\partial \log C/\partial \log q = 1$ and $d \log mc = d \log C - d \log q$. Hence, we can rewrite (15) as in (2) in Proposition 1 using the definition of $\delta_j$, and noting that if $p_j^1 < p_j^0$, then $-\delta_j$ must be used.

\[ \square \]

Proof of Proposition 2. Once again, we suppress the index $i$ for the downstream firm. Observe that
\[ x_j(p) = \frac{\frac{\partial (p_j x_j(p_i))}{\partial p_j}}{1 - \sigma_j(p_j)}. \]
where we omit the notation

\[ \Delta \]

which to a first order equals the log change in the continuing share, in brackets is, up to a first-order, the exit share minus the entry share of firm i’s suppliers. 

Proof of Proposition 4. In the text we showed that, to a first-order approximation, the final

\[ \Omega_{i,t} \left( \sum_{\Delta M_{ij,t}>0} \frac{\Omega_{ij,t}}{\Omega_{i,t}} \Delta M_{ij,t} \right) \delta_{ij,t}^{\text{exit}} - \sum_{\Delta M_{ij,t}>0} \frac{\Omega_{ij,t}}{\Omega_{i,t}} \Delta M_{ij,t} \left( \delta_{ij,t}^{\text{entry}} - \delta_{ij,t}^{\text{exit}} \right) \]

where we omit the notation \( J \in J_t \) from all the summands. In the last line, the first term in brackets is, up to a first-order, the exit share minus the entry share of firm i’s suppliers, which to a first order equals the log change in the continuing share, \( \Delta \log \mathcal{S}_{i,t}^C \). The term \( \sum_{\Delta M_{ij,t}>0} \frac{\Omega_{ij,t}}{\Omega_{i,t}} \Delta M_{ij,t} \) is, up to a first-order, the entry share, which is equal to one minus the continuing share at \( t+1 \).

Proof of Lemma 1. To derive the last two terms in equation Lemma 1, write the second term in (2) as

\[ - \sum_{\Delta M_{ij,t}<0} \Omega_{ij,t} \Delta M_{ij,t} \delta_{ij,t}^{\text{exit}}(p_{j,t}, \infty) - \sum_{\Delta M_{ij,t}>0} \Omega_{ij,t} \Delta M_{ij,t} \delta_{ij,t}^{\text{exit}}(p_{j,t}, \infty) = \]

\[ - \sum_{\Delta M_{ij,t}<0} \Omega_{ij,t} \Delta M_{ij,t} \delta_{ij,t}^{\text{exit}} - \sum_{\Delta M_{ij,t}>0} \Omega_{ij,t} \Delta M_{ij,t} \delta_{ij,t}^{\text{exit}} = \]

\[ \Omega_{i,t} \left( \sum_{\Delta M_{ij,t}<0} \frac{\Omega_{ij,t}}{\Omega_{i,t}} \Delta M_{ij,t} - \sum_{\Delta M_{ij,t}>0} \frac{\Omega_{ij,t}}{\Omega_{i,t}} \Delta M_{ij,t} \right) \delta_{ij,t}^{\text{exit}} - \Omega_{i,t} \sum_{\Delta M_{ij,t}>0} \frac{\Omega_{ij,t}}{\Omega_{i,t}} \Delta M_{ij,t} \left( \delta_{ij,t}^{\text{entry}} - \delta_{ij,t}^{\text{exit}} \right) \]

Marshall’s second law implies that \( \sigma_j(\xi) > \sigma_j(p_j) \) if \( \xi > p_j \), and the fundamental theorem of calculus implies

\[ \int_{p_j}^{p_j'} \frac{\partial(\xi x_j(\xi))}{\partial \xi} d\xi = p_j' x_j(p_j') - p_j x_j(p_j). \]

We thus have

\[ \delta_j < \frac{\int_{p_j}^{p_j'} \frac{\partial(\xi x_j(\xi))}{\partial \xi} d\xi}{p_j x_j(p_j)(1 - \sigma_j(p_j))} = \frac{p_j' x_j(p_j') - p_j x_j(p_j)}{p_j x_j(p_j)(1 - \sigma_j(p_j))} = \frac{1}{\sigma_j(p) - 1} \left[ 1 - \frac{p_j' x_j(p_j')}{p_j x_j(p_j)} \right]. \]

Proof of Proposition 3. To obtain equation (7), we invert the CES demand in equation (3) and express changes in marginal cost (for constant technology) as \( d \log p_j + \frac{1}{\sigma_j-1} d \log \Omega_{ij} \) for any input \( j \), where \( d \log \Omega_{ij} \) is the log change in cost share for a non-jumping input of type \( j \). Averaging over all input types using weight \( \Omega_{ij}M_{ij} \) gives the first two terms in (7). The term \( \sum_j \Omega_{ij}M_{ij} \Delta \log \Omega_{ij} \) is, up to a first-order, the log change in the cost share of non-jumping inputs.
output price deflator is given by

\[ \Delta \log P_t^Y = \sum_{i \in C_t} \tilde{\lambda}_{i,t} \left[ \Delta \log \frac{H_{i,t}}{A_{i,t}} - \tilde{\delta}_{i,t} \Delta \mathcal{E}_{i,t} + (\tilde{\delta}_{i,t} - \tilde{\delta}_{i,t}^{\text{exit}}) \Delta D_{i,t} \right] + \sum_{f \in F} \tilde{\Lambda}_{f,t} \Delta \log w_{f,t}. \]

Substitute this into \( \Delta \log Y = \Delta \log \left( \sum_{i \in C_t} p_{i,t} y_{i,t} \right) - \Delta \log P_t^Y \) and use the fact that \( \sum_{f \in F} \tilde{\Lambda}_{f,t} = 1 \) and the fact that \( \Delta \log w_{f,t} = \Delta \log \Lambda_{f,t} - \Delta \log L_{f,t} + \Delta \log (\sum_{i \in C_t} p_{i,t} y_{i,t}) \).

### Appendix B  Additional Theoretical Results

**Non linear input prices.** In Section 2 we assumed that firms buy inputs at given prices. Here we generalize Proposition 1 to the case in which firm faces a price schedule for each input. Specifically, we assume that if the firm buys \( x \) units of each input type, the per unit cost is given by \( p(x) \).

The cost minimization problem is

\[ \mathcal{C}(p(\cdot), A, q) = \min_x \sum_j p_j(x) x_j M_j, \text{ subject to } q = AF(x, M). \]

Given \( A \) and \( q \), this cost minimization problem implies a vector of input quantity choices with its implied input prices. We consider a shift in \( A \) from \( A^0 \) to \( A^1 \) and in the price schedule from \( p^0(\cdot) \) to \( p^1(\cdot) = p^0(\cdot) + \varepsilon(\cdot) \). We index the path by \( t \in [0, 1] \), where \( p(\cdot, t) = p^0(\cdot) + t \varepsilon(\cdot) \) for \( t \in [0, 1] \). Let \( x(t) \) be input quantities at \( t \). Differentiating total costs with respect to \( t \) and applying the envelope theorem,

\[ d\mathcal{C} = \sum_j x_j M_j \frac{\partial p_j}{\partial t} dt + \frac{\partial \mathcal{C}}{\partial A} \frac{dA}{dt} dt + \frac{\partial \mathcal{C}}{\partial q} \frac{dq}{dt} dt, \]

where all derivatives are evaluated at \( t \) and \( \frac{\partial p_j}{\partial t} \) is the derivative of the price schedule with respect to \( t \) evaluated at \( x(t) \).

We now follow similar steps to those in the proof of Proposition 1. The change in total costs is

\[ \mathcal{C}(p^1(\cdot), A^1, q^1) - \mathcal{C}(p^0(\cdot), A^0, q^0) = \sum_j x_j(t) \frac{dp_j}{dt} dt + \int_0^1 \frac{\partial \mathcal{C}}{\partial A} \frac{dA}{dt} dt + \int_0^1 \frac{\partial \mathcal{C}}{\partial q} \frac{dq}{dt} dt. \]
Consider the total derivative of costs with respect to the new price schedule of each type $p_j^1(\cdot)$, the mass of inputs of each type $M_j$ whose price schedule jumps by a discrete amount, technology $A$, and quantity of output $q$. The log change in average cost is

$$d \log ac = \log C - d \log q = \sum_j M_j \Omega_j d \log p_j + \frac{1}{C} \sum_j \left( \int_0^1 x_j(t) dt \right) dM_j + \frac{\partial \log C}{\partial \log A} d \log A + \left( \frac{\partial \log C}{\partial \log q} - 1 \right) d \log q.$$

Here $d \log p_j$ denotes a marginal change in the price schedule evaluated at initial input quantities, that is $\frac{\partial \log p_j}{\partial t} dt$ evaluated at $t = 0$. Define the infra-marginal surplus ratio for input $j$ to be

$$\delta_j = \int_0^1 \frac{x_j(t) dt}{p_j x_j},$$

which is the integral of input quantity demanded as the price schedule changes, relative to initial expenditures on this input. We can re-write the equation above as

$$d \log ac = \sum_j \Omega_j M_j d \log p_j + \sum_j \Omega_j \delta_j dM_j + \frac{\partial \log C}{\partial \log A} d \log A + \left( \frac{\partial \log C}{\partial \log q} - 1 \right) d \log q. \quad (16)$$

A special case of equation (16) is when input prices do not depend on input quantities as in Proposition 1 and the intuition is very similar. However, constant-returns in the production function $F$ does not imply $\partial \log C / \partial \log q = 1$ since input prices respond to input quantities. To ensure $\partial \log C / \partial \log q = 1$, we require the additional assumption that $p(x)$ is homogeneous of degree zero in input quantities. When $\partial \log C / \partial \log q = 1$, $d \log ac = d \log mc$, and justifies the regression in (8).

Lemma 2. Suppose that $F(x, M)$ has constant returns to scale in $x$, and $p(x)$ is homogeneous of degree zero in $x$. Then, $\partial \log C / \partial \log q = 1$. 

49
Proof. Under the assumption above, we have that:

\[ C(p\cdot, q) = \min_x \{ p(x) \cdot x : q = F(x) \} \]

\[ = \min_x \{ q(p(x/q) \cdot x/q) : q = F(x) \} \]

\[ = \min_z \{ q(z) \cdot z : 1 = F(z) \} \]

\[ = q \min_z \{ (p(z) \cdot z) : 1 = F(z) \} \]

\[ = qC(p\cdot, 1). \]

That is, the cost function is linear in quantity.

First-order equivalence of quality-ladder and expanding-variety models  In section 4, we say that firm \( i \) adds suppliers of type \( J \) if \( \Delta M_{ij,t} > 0 \) and removes suppliers if \( \Delta M_{ij,t} < 0 \). That is, each input is associated with an individual supplier and that input becomes unavailable when a supplier is dropped, as in expanding varieties models. However, as long \( \delta(p, \infty) < \infty \), Lemma 1 also applies to quality-ladder models. To see this, notice that a quality-ladder model can be represented via the simultaneous addition and removal of suppliers. Suppose that a mass \( m \) of inputs of type \( j \) improve by climbing the quality ladder and reducing their price from \( p'_j \) to \( p_j \). By Proposition 1, the effect on the marginal cost of \( i \) is

\[ \Delta \log mc_i \approx \Omega_{ij}(p_j)\delta_{ij}(p_j, p'_j)m, \]

where for clarity we suppress the time subscript and we index the cost share by the input price. This equation can be re-written as the outcome of adding \( m \) suppliers who price at \( p_j \) and removing \( m \) suppliers who price at \( p'_j \):

\[ \Delta \log mc \approx \Omega_{ij}(p_j)\delta_i(p_j, p'_j)m - \Omega_{ij}(p'_j)\delta(p'_j, \infty)m. \]

That is, a quality-ladder model can be represented using an expanding-variety model, to a first order approximation. The following example applies this result in the case of CES input demand.

Example 3 (Equivalence of Quality-Ladders and Expanding-Varieties under CES). Consider a downstream firm \( i \) with CES input demand with elasticity of substitution \( \sigma > 1 \). Suppose that some mass \( m > 0 \) of inputs climb the quality ladder from \( p_j \) to \( p'_j \). Then by
Proposition 1, the change in the marginal cost of $i$ is given by

$$\Delta \log mc_i = \Omega_{ij}(p_j) \frac{1}{1 - \sigma} \left( \frac{p'_{j'}}{p_j} \right)^{1-\sigma} m$$

as in Example 1. To show that this can be represented in our framework using an expanding-variety model, suppose there are two types of suppliers indexed by $j$ and $j'$ that price at $p_j$ and $p'_{j'}$. Now imagine that a mass $m$ of $j$-type suppliers exit and a mass $m$ of $j'$-type suppliers enter. Then, following Proposition 1, the change in marginal cost is given by

$$\Delta \log mc_i = \Omega_{ij}(p_j) \frac{1}{1 - \sigma} m - \Omega_{ij}(p_j) \frac{1}{1 - \sigma} m = \Omega_{ij}(p_j) \frac{1}{1 - \sigma} \left( \frac{p'_{j'}}{p_j} \right)^{1-\sigma} - 1 \right) m,$$

which is the same as the change caused by a shift along the quality-ladder.

### Appendix C Additional Data Details

**Mergers and acquisitions.** One challenge with using data recorded at the level of the VAT identifier is the case of mergers and acquisitions, since this might blur our entry/exit analysis of suppliers.\(^{30}\) When a firm stops its business, it reports to the Crossroads Bank of Enterprises (CBE) the reason for ceasing activities, one of which is merger and acquisition. In such cases, we use the financial links also reported in the Crossroads Bank of Enterprises (CBE) to identify the absorbing VAT identifier and we group the two (or more) VAT identifiers into a unique firm. We choose the VAT identifier with the largest total assets. We use this head VAT identifier as the identifier of the firm. Having determined the head VAT identifier, we aggregate all the variables up to the firm level. For variables such as total sales and inputs, we adjust the aggregated variables with the amount of B2B trade that occurred within the firm, correcting for double counting. For other non-numeric variables such as firms’ primary sector, we take the value of its head VAT identifier. It is important to emphasize that we group VAT identifiers only for the corresponding cross-section (the year of the M&A and after), and not over the whole panel period.

\(^{30}\)Another challenge is that VAT declarations are made at the unit level, which in some instances group more than one VAT identifier. In this case, we group the two (or more) VAT identifiers into a unique firm.
Estimating share of variable costs in labor and capital costs  To estimate the share of labor and capital costs that are variable inputs, $\phi$, we consider the following regression:

$$\Delta \log (\text{labor + capital})_{it} = \phi \times \Delta \log (\text{intermediate inputs})_{it} + \text{controls}_{it} + \epsilon_{it}. \quad (17)$$

The variable $(\text{labor + capital})_{it}$ denotes the sum of labor and capital costs of firm $i$ in period $t$, and intermediate purchases$_{it}$ denotes intermediate input purchases of firm $i$ in period $t$. Assuming that the variable component of labor and capital costs move one-to-one with intermediate input purchases (which we assume are fully variable) in response to firm-level demand shocks that keep technologies and relative factor prices unchanged, $\phi$ captures the fraction of variable labor and capital costs.

We estimate this regression for the sample of manufacturing firms, and we instrument changes in intermediate purchases using a Bartik-type demand shock. For each firm $i$ at time $t$, we define the instrument:

$$\text{Firm’s Demand}_{it} = \sum_j \sum_K \Omega_{iK,t} \times \Delta \log \text{sales}_{K,t+1}, \quad (18)$$

where $\Omega_{iK,t}$ is the share of $i$’s sales to other domestic firms in each non-manufacturing industry $K$, and $\Delta \log \text{sales}_{K,t+1}$ is the change in total sales of industry $K$ between $t$ and $t + 1$. Note that the instrument (11) that we use in regressions (8) and (9) is a Bartik-type demand shock applied to firm $i$’s suppliers rather than to firm $i$ directly.

All regressions include 4 digit NACE industry by year fixed effects, which is the most disaggregated classification we can consider for the sample of manufacturing firms. Controls include a non-manufacturing input-price deflator (calculated by weighing disaggregated industry-level deflators from Eurostat using firm-level sales shares across industries) and a variant of the instrument defined in (18) where $\Omega_{iK,t}$ is the share of $i$’s variable costs spent on non-manufacturing industry $K$.

Table A5 displays the results. Columns (i) and (ii) report OLS results, which shows a positive but low estimate of $\phi$. However, OLS is subject to omitted variable bias because changes in intermediate purchases can result from shocks to firms’ costs, such as changes in the price of intermediates or factor-biased technical change.

Columns (iii)-(vi) show the 2SLS results. In all cases the first-stage is strong (demand shocks help predict changes in intermediate input purchases). The point estimate of $\phi$ is roughly 0.8 without controls and 0.7 with both controls. In our baseline, we set $\phi = 0.7$. This is slightly higher than the fraction of variable inputs in labor costs of 0.5 estimated by Dhyne et al. (2022) using an export-demand instrument in the Belgian data. We consider
this alternative value for $\phi$ in sensitivity analysis.

Table A5: Elasticity of labor and capital costs with respect to intermediate purchases

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \log (\text{labor + capital})$</td>
<td>$0.298^{***}$</td>
<td>$0.298^{***}$</td>
<td>$0.801^{***}$</td>
<td>$0.808^{***}$</td>
<td>$0.683^{***}$</td>
<td>$0.694^{***}$</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.248)</td>
<td>(0.246)</td>
<td>(0.255)</td>
<td>(0.253)</td>
</tr>
<tr>
<td>Specification</td>
<td>OLS</td>
<td>OLS</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>Control 1</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Control 2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>F-stat</td>
<td>33</td>
<td>34</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 digit × year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>315,022</td>
<td>315,022</td>
<td>227,424</td>
<td>227,424</td>
<td>227,424</td>
<td>227,424</td>
</tr>
</tbody>
</table>

Notes: This table displays estimates of regression (17) for manufacturing firms. The instrument is the firms’ demand shock defined in (18). Control 1 is a non-manufacturing input price deflator, and control 2 is a variant of the instrument defined in (18) using purchases from (rather than sales to) non-manufacturing industries. Regressions are unweighted, and standard errors are clustered at the firm-level.

Appendix D Additional Tables and Sensitivity Analysis
Table A6: B2B sales and firm exit

Panel A: B2B reporting at t for firms exiting at t+1

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B</td>
<td>exports</td>
<td>residual</td>
<td>Indicator</td>
<td>Number of</td>
</tr>
<tr>
<td>Firm dies at t+1</td>
<td>-0.028***</td>
<td>0.000</td>
<td>0.028***</td>
<td>0.137***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>9,611,106</td>
<td>9,611,106</td>
<td>9,611,106</td>
<td>9,611,106</td>
</tr>
</tbody>
</table>

Panel B: B2B reporting at t for firms exiting at t+2

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B</td>
<td>exports</td>
<td>residual</td>
<td>Indicator</td>
<td>Number of</td>
</tr>
<tr>
<td>Firm dies at t+2</td>
<td>0.001***</td>
<td>-0.001***</td>
<td>-0.000</td>
<td>0.021***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>8,187,858</td>
<td>8,187,858</td>
<td>8,187,858</td>
<td>8,187,858</td>
</tr>
</tbody>
</table>

Notes: The regressor is an indicator of whether the firm ceases operation (firm death) in t+1 (Panel A) or t+1 (Panel B). The outcome variables are the period t share of the firm’s sales to B2B, exports, and residual (defined by total sales - B2B sales - exports), an indicator of whether the firm does not report B2B sales in t, and the number of B2B customers in t. The sample includes firms with positive sales in t that report B2B sales at least one year.
Table A7: Intermediate input purchases and number of suppliers

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of suppliers</td>
<td>Change number of suppliers</td>
</tr>
<tr>
<td>Residual intermediate input share</td>
<td>-4.207***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td></td>
</tr>
<tr>
<td>Change in residual intermediate input share</td>
<td>-2.574***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>10,790,658</td>
<td>10,417,273</td>
</tr>
</tbody>
</table>

Notes: The regressor is residual intermediate input purchases as a share of total purchases (first row) or the change in this ratio (second row). The outcome variable is the number of suppliers (first column) or the change in the number of suppliers (second column). The sample includes firms with positive purchases in t that report B2B purchases at least one year.
Table A8: Coverage of growth accounting sample of firms

<table>
<thead>
<tr>
<th>year</th>
<th>count</th>
<th>(ii)</th>
<th>value added</th>
<th>% of agg.</th>
<th>(iv)</th>
<th>employment</th>
<th>% of agg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>83,007</td>
<td>101,475</td>
<td>68%</td>
<td>1,634</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>85,310</td>
<td>108,785</td>
<td>71%</td>
<td>1,640</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>86,700</td>
<td>115,977</td>
<td>71%</td>
<td>1,640</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>88,044</td>
<td>112,303</td>
<td>66%</td>
<td>1,655</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>90,056</td>
<td>121,918</td>
<td>68%</td>
<td>1,698</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>91,538</td>
<td>113,823</td>
<td>60%</td>
<td>1,734</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>92,486</td>
<td>121,446</td>
<td>62%</td>
<td>1,754</td>
<td>68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>91,763</td>
<td>119,098</td>
<td>63%</td>
<td>1,678</td>
<td>65%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>90,719</td>
<td>126,333</td>
<td>64%</td>
<td>1,660</td>
<td>64%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>91,778</td>
<td>119,553</td>
<td>58%</td>
<td>1,706</td>
<td>65%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>92,863</td>
<td>128,297</td>
<td>61%</td>
<td>1,718</td>
<td>65%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>92,808</td>
<td>135,365</td>
<td>64%</td>
<td>1,716</td>
<td>65%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>94,083</td>
<td>140,229</td>
<td>65%</td>
<td>1,737</td>
<td>66%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>91,825</td>
<td>147,303</td>
<td>65%</td>
<td>1,732</td>
<td>65%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>91,357</td>
<td>160,649</td>
<td>69%</td>
<td>1,815</td>
<td>67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>91,539</td>
<td>167,947</td>
<td>70%</td>
<td>1,863</td>
<td>67%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| avg. growth (%) | 3.4 | 3.3 | 0.9 | 1.1 |

Notes: The sample of firms used in this table are those used in the growth accounting exercise (continuing corporate non-financial firms) in Section 5. Employment is in thousands of people, and value added is in €million. “% agg.” is the share of value added and employment in the non-financial corporate sector reported in the national statistics calculated by the National Accounts Institute. The bottom row reports average annual growth rate for value added (in the sample and national statistics, respectively) and for employment.
### Table A9: Descriptive statistics: Prodcom sample

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
<th>(vii)</th>
<th>(viii)</th>
<th>(ix)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Share in costs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domestic materials</td>
<td>0.61</td>
<td>0.20</td>
<td>0.01</td>
<td>0.17</td>
<td>0.01</td>
<td>226</td>
<td>0.71</td>
<td>-0.03</td>
<td>0.83</td>
</tr>
<tr>
<td>imports</td>
<td>0.48</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
<td>112</td>
<td>0.58</td>
<td>-0.12</td>
<td>0.70</td>
</tr>
<tr>
<td>capital</td>
<td>0.63</td>
<td>0.15</td>
<td>0.00</td>
<td>0.16</td>
<td>0.01</td>
<td>168</td>
<td>0.74</td>
<td>-0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>suppliers</td>
<td>0.76</td>
<td>0.33</td>
<td>0.00</td>
<td>0.24</td>
<td>0.01</td>
<td>257</td>
<td>0.87</td>
<td>0.07</td>
<td>0.92</td>
</tr>
<tr>
<td><strong>count</strong></td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
<td>42,562</td>
</tr>
</tbody>
</table>

**Notes:** The sample of firms used in this table are those used in the micro regressions in Section 3 based on the Prodcom sample. Summary statistics are unweighted.

### Table A10: Descriptive statistics: growth-accounting sample

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
<th>(vii)</th>
<th>(viii)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Share in costs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domestic materials</td>
<td>0.69</td>
<td>0.04</td>
<td>0.06</td>
<td>0.18</td>
<td>0.02</td>
<td>68</td>
<td>0.48</td>
<td>-0.05</td>
</tr>
<tr>
<td>imports</td>
<td>0.58</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
<td>27</td>
<td>0.25</td>
<td>-0.20</td>
</tr>
<tr>
<td>capital</td>
<td>0.73</td>
<td>0.00</td>
<td>0.03</td>
<td>0.15</td>
<td>0.01</td>
<td>46</td>
<td>0.48</td>
<td>-0.02</td>
</tr>
<tr>
<td>suppliers</td>
<td>0.84</td>
<td>0.00</td>
<td>0.07</td>
<td>0.25</td>
<td>0.02</td>
<td>78</td>
<td>0.69</td>
<td>0.12</td>
</tr>
<tr>
<td><strong>count</strong></td>
<td>1,445,876</td>
<td>1,445,876</td>
<td>1,445,876</td>
<td>1,445,876</td>
<td>1,445,876</td>
<td>1,445,876</td>
<td>1,445,876</td>
<td>1,445,876</td>
</tr>
</tbody>
</table>

**Notes:** The sample of firms used in this table are those used in growth accounting in Section 5. Summary statistics are unweighted.
Table A11: Exit rate of suppliers

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>Exit rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>all</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>2002</td>
<td>609,049</td>
<td>0.086</td>
<td>0.134</td>
</tr>
<tr>
<td>2003</td>
<td>609,227</td>
<td>0.085</td>
<td>0.133</td>
</tr>
<tr>
<td>2004</td>
<td>618,673</td>
<td>0.086</td>
<td>0.135</td>
</tr>
<tr>
<td>2005</td>
<td>625,762</td>
<td>0.088</td>
<td>0.137</td>
</tr>
<tr>
<td>2006</td>
<td>636,729</td>
<td>0.086</td>
<td>0.137</td>
</tr>
<tr>
<td>2007</td>
<td>651,484</td>
<td>0.086</td>
<td>0.139</td>
</tr>
<tr>
<td>2008</td>
<td>663,750</td>
<td>0.090</td>
<td>0.145</td>
</tr>
<tr>
<td>2009</td>
<td>670,381</td>
<td>0.087</td>
<td>0.141</td>
</tr>
<tr>
<td>2010</td>
<td>681,501</td>
<td>0.086</td>
<td>0.140</td>
</tr>
<tr>
<td>2011</td>
<td>696,342</td>
<td>0.086</td>
<td>0.142</td>
</tr>
<tr>
<td>2012</td>
<td>708,552</td>
<td>0.091</td>
<td>0.147</td>
</tr>
<tr>
<td>2013</td>
<td>710,951</td>
<td>0.089</td>
<td>0.148</td>
</tr>
<tr>
<td>2014</td>
<td>735,064</td>
<td>0.099</td>
<td>0.164</td>
</tr>
<tr>
<td>2015</td>
<td>737,156</td>
<td>0.088</td>
<td>0.149</td>
</tr>
<tr>
<td>2016</td>
<td>751,118</td>
<td>0.088</td>
<td>0.151</td>
</tr>
<tr>
<td>2017</td>
<td>766,860</td>
<td>0.088</td>
<td>0.151</td>
</tr>
</tbody>
</table>

Notes: Number of suppliers at $t$ and fraction of suppliers that exit between $t$ and $t + 1$. Small and large suppliers are those below and above median sales.
Table A12: Sensitivity analysis I

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
<th>(vii)</th>
<th>(viii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry input</td>
<td>Δ log mc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>price control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartik control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-digit FE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-digit FE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8d prod. set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ log q largest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8d product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single 8d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prod. firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt. demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instrument</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Separation share 0.480*** (0.137) 0.605*** (0.228) 0.554*** (0.128) 0.561*** (0.134) 0.416*** (0.121) 0.463*** (0.123) 0.261** (0.120) 0.350*** (0.102)

Specification IV IV IV IV IV IV IV IV

Controls Y Y Y Y Y Y Y Y

F-stat 57 23 81 69 60 65 51 187

N 35,239 35,239 42,227 39,262 32,836 35,239 17,135 34,406

Notes: This table reports sensitivity analysis of regression (8), based on the demand shock instrument, described in page 23.
Table A13: Sensitivity analysis II

<table>
<thead>
<tr>
<th>Separation share</th>
<th>Exclude utilities suppliers</th>
<th>Exclude wholesale &amp; retail suppliers</th>
<th>Exclude self-employed, finance, government suppliers</th>
<th>Include capital suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i)</td>
<td>(ii)</td>
<td>(iii)</td>
<td>(iv)</td>
</tr>
<tr>
<td>∆ log mc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.494***</td>
<td>1.020***</td>
<td>0.465***</td>
<td>0.711***</td>
</tr>
<tr>
<td></td>
<td>(0.132)</td>
<td>(0.252)</td>
<td>(0.126)</td>
<td>(0.178)</td>
</tr>
<tr>
<td>Specification</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>F-stat</td>
<td>58</td>
<td>23</td>
<td>76</td>
<td>44</td>
</tr>
<tr>
<td>N</td>
<td>35,206</td>
<td>34,267</td>
<td>35,247</td>
<td>35,232</td>
</tr>
</tbody>
</table>

Notes: This table reports sensitivity analysis of regression (8), based on the demand shock instrument, described in page 23.