Understanding Movements in Aggregate and Product-Level Real-Exchange Rates

Ariel Burstein (UCLA) and Nir Jaimovich (Stanford)

October 2009
Canada-US: CPI-based RER and Relative Unit Labor Costs
Relative prices: Perfect competition / constant markups

- Change in price = change in marginal cost.

- For traded goods produced in common location:

\[\Delta \frac{eP^*_n}{P_n} = 0 \]

 - \(P_n \) domestic price, \(P^*_n \) foreign price, \(e \) nominal exchange rate.
Relative prices: Perfect competition / constant markups

- Change in price = change in marginal cost.

- For traded goods produced in common location:

\[\Delta \frac{eP_n^*}{P_n} = 0 \]

 - P_n domestic price, P_n^* foreign price, e nominal exchange rate.

- If all goods freely traded, implies aggregate RER constant over time.
Relative prices: Two alternative models

- Non-traded goods (locally produced or traded + distribution services):
 - Constant markups: \(\Delta \frac{eP_n^*}{P_n} = \Delta \) relative marginal costs.
Relative prices: Two alternative models

- **Non-traded goods (locally produced or traded + distribution services):**
 - Constant markups: \(\Delta \frac{eP_n^*}{P_n} = \Delta \text{ relative marginal costs.} \)

- **Imperfect competition with variable markups:**
 - \(\Delta \frac{eP_n^*}{P_n} \neq 0 \) reflects movements in relative markups.
 - Pricing-to-market by exporters.

 "optimal" changes in markups or sticky prices in local currency.
This paper

- Data: Document extent of movements in relative prices from pricing-to-market using price data for non-durables in Canada and US.
 - Price of individual products sold in multiple locations
 - Advantage over using aggregate price indices
 - Identify traded versus nontraded products
 - Wholesale price (instead of retail price)

- Key assumption: goods produced in common location and sold in multiple locations are subject to common % change in marginal cost
This paper

- **Data**: Document extent of movements in relative prices from pricing-to-market using price data for non-durables in Canada and US.
 - Price of individual products sold in multiple locations
 - Advantage over using aggregate price indices
 - Identify traded versus nontraded products
 - Wholesale price (instead of retail price)
 - Key assumption: goods produced in common location and sold in multiple locations are subject to common % change in marginal cost

- Model of international trade and pricing-to-market to rationalize facts
 - Role of the international border in giving rise to pricing-to-market?
 - When parameterized to match volumes of intl trade between Canada and U.S., reproduce degree of pricing-to-market in data?
This Paper: Data

- Substantial pricing-to-market across regions for traded products.
 - On average, \(\frac{eP_n^*}{P_n} \) tracks movements in Canada/US unit labor costs.
 - Consistent with Mussa (1986) and Engel (1999).

- Nominal prices change frequently and by large magnitudes.

- Substantial idiosyncratic component of pricing-to-market (analogous to Bils and Klenow 2004 for US consumer prices)

- More prevalent across than within countries.
Substantial pricing-to-market across regions for traded products.

- On average, $\frac{eP_n^*}{P_n}$ tracks movements in Canada/US unit labor costs.
 - Consistent with Mussa (1986) and Engel (1999).

- Not from $\Delta P_n^* = \Delta P_n = 0$, $\Delta e \neq 0$
 - Nominal prices change frequently and by large magnitudes.
 - $\Delta \frac{eP_n^*}{P_n}$ three times as volatile as exchange rate.
 - Substantial idiosyncratic component of pricing-to-market (analogous to Bils and Klenow 2004 for US consumer prices)
This Paper: Data

- Substantial pricing-to-market across regions for traded products.
 - On average, $\frac{eP^*_n}{P^*_n}$ tracks movements in Canada/US unit labor costs.
 - Consistent with Mussa (1986) and Engel (1999).
 - Not from $\Delta P^*_n = \Delta P_n = 0$, $\Delta e \neq 0$
 - Nominal prices change frequently and by large magnitudes.
 - $\Delta \frac{eP^*_n}{P^*_n}$ three times as volatile as exchange rate.
 - Substantial idiosyncratic component of pricing-to-market (analogous to Bils and Klenow 2004 for US consumer prices)
 - More prevalent across than within countries.
Data: Related Papers

 - We measure extent to which movements in relative prices reflect pricing-to-market.
 - Unique features of our data: matched products, wholesale prices, country-of-origin to identify traded/nontraded.

 - We document substantial "idiosyncratic" pricing-to-market not correlated with exchange rate.

- Variable markups and incomplete exchange rate pass-through: Nakamura (2008), Goldberg-Hellerstein (08), Gopinath-Itskhoki (08).
 - Our focus: movements in relative markups across locations (i.e. differences in pass-through).
This Paper: Model

- Simple Ricardian model of international trade and pricing-to-market with flexible prices.
 - Bertrand competition with limit pricing \Rightarrow variable markups.
 - International trade costs segments competitors across countries.

- If producers face different competitors across regions.
 - Pricing-to-market in response to idiosyncratic and aggregate shocks.
This Paper: Model

- Analytic results: key ingredients to account for product-level and aggregate price observations
This Paper: Model

- Analytic results: key ingredients to account for product-level and aggregate price observations

- Parameterized model that matches trade volumes and individual price movements: 10% idiosyncratic movements in relative markups across location, average increase in Canada-U.S. markups 70% as large as increase in Canada-U.S. relative costs

- Use model to assess method of identifying trade costs with price data (Engel-Roger 1996)

1. Need to distinguish between traded and nontraded goods
2. More pricing-to-market across than within countries – not informative
3. Pricing-to-market in response to change in relative labor costs – informative
Outline of Talk

- Data description.
- Basic facts on product-level and aggregate RERs.
- Simple model of international trade and pricing-to-market.
- Pricing implications: analytic results.
- Additional model predictions versus data.
- Pricing implications: quantitative results.
Data

- Large grocery chain in Canada and US.
- Stores in multiples US states and Canadian provinces (British Columbia, Alberta and Manitoba).
- 93 product categories of nondurable branded products.
 - Processed food, beverages, personal care, cleaning products.
 - Abstract from retailer brands.
Data

- Focus on pricing-to-market, $\Delta eP^*_n / P_n$, at producer level.

- Wholesale price (replacement cost of good for retailer).
 - Closest measure of producer prices in our data.
 - Smaller nontraded component than retail price.
Data

- Focus on pricing-to-market, $\Delta eP_n^*/P_n$, at producer level.

- Wholesale price (replacement cost of good for retailer).
 - Closest measure of producer prices in our data.
 - Smaller nontraded component than retail price.

- Aggregate weekly prices into quarterly prices (average).
 - Relative prices even more volatile using weekly data.
Data

- Focus on pricing-to-market, $\Delta eP_n^*/P_n$, at producer level.

- Wholesale price (replacement cost of good for retailer).
 - Closest measure of producer prices in our data.
 - Smaller nontraded component than retail price.

- Aggregate weekly prices into quarterly prices (average).
 - Relative prices even more volatile using weekly data.

- Aggregate store prices into regional price (median).
 - 5 pricing regions in British Columbia, 14 in Northern California.
Matching products in Canada and US

- Identical UPC code (1,213 matches) or
Matching products in Canada and US

- Identical UPC code (1,213 matches) or
- Different UPC code, same manufacturer, same brand, other common characteristic (e.g. not required: same size, exact product description).
 - Underlying assumption to infer pricing-to-market: same % change in marg. cost for matched products if produced in common location.
 - Purex Baby Soft, Purex Baby Soft Classic Detergent.
 - Crest toothpaste sensitivity protection, Crest sensitivity toothpaste whitening scope.
 - Schweppes Raspberry Ginger Ale 2Lts, Schweppes Ginger Ale 24Oz.

- 14,000 matches across countries.
- Findings robust to using identical (but fewer) matches.
Country of production in Canada and US

- For matched products:
 - Identify country of origin in May-June 2008 using product label information.
 - Information from Vancouver and North California (focus on this area).
Country of production in Canada and US

For matched products:

- Identify country of origin in May-June 2008 using product label information.

- Information from Vancouver and North California (focus on this area).

- 1,000 identical matches, 11,000 conservative matches.
- 50% of product expenditures in Canada, 35% in US.

Caveat: change in country of production over time.

Based on interviews with retail managers, small variation in country of production over time.
Country of production in Canada and US

For matched products:

- Identify country of origin in May-June 2008 using product label information.
- Information from Vancouver and North California (focus on this area).
- 1,000 identical matches, 11,000 conservative matches.
- 50% of product expenditures in Canada, 35% in US.

Caveat: change in country of production over time

- Based on interviews with retail managers, small variation in country of production over time.
Country of production in Canada and US

- **Sets of matched products:**
 - Common products produced only in US:
 - Pantene shampoo, Ziploc bags, Rold Gold Pretzels.
 - Common products produced only in Canada:
 - Sapporo beer, Atkins advantage bar, Seagram whisky.
 - Common products produced in both countries:
 - Coca-Cola, Haagen-Dazs ice-cream, Yoplait Yoghurt, Bounce softener.
 - Common products produced in other ROW countries:
 - Myojo instant noodles (Japan), Absolut Vodka (Sweden), Delverde pasta (Italy).

- More than 50% matched products are domestically produced (and non-exported) in each country.
Expenditure Shares

- Expenditure shares in the US:
 - Locally produced: 89%
 - Canada: 2%
 - ROW: 9%

- Expenditure shares in Canada:
 - Locally produced: 67%
 - US: 30%
 - ROW: 3%

- Similar to OECD-based bilateral import shares in gross output of food, beverages, chemicals.
Prices

- Products $n = 1, 2, 3, \ldots$

- Sold in country $i = 1$ (US) and $i = 2$ (Canada), in region $r = A, \ldots, R$.

- Product-level RER:
 \[Q_{nijrr'} t = e_{ijt} P_{nirt} / P_{njr'} t \text{ where } e_{ii} = 1 \]

- Percentage change in product-level RER:
 \[\Delta Q_{nijrr'} t = \log (Q_{nijrr'} t) - \log (Q_{nijrr'} t_{-1}) \]
Prices

- Products $n = 1, 2, 3, ..$

- Sold in country $i = 1$ (US) and $i = 2$ (Canada), in region $r = A, .., R$.

- Product-level RER:

 \[Q_{nijrr'}t = e_{ijt}P_{nirt}/P_{njr'}t \quad \text{where} \quad e_{ii} = 1 \]

- Percentage change in product-level RER:

 \[\Delta Q_{nijrr'}t = \log (Q_{nijrr'}t) - \log (Q_{nijrr't-1}) \]

- Aggregate RER: average $\Delta Q_{n21rr't}$ across many products.
Aggregate RER: All Exports

- Average of product-level RERs across products and countries.
 - Systematic increase in Canada-U.S. markups.
Aggregate RER: All Exports

- Average of product-level RERs across products within countries.
 - Movements in product-level RER’s average-out within countries.
Aggregate RER: Identical and US exports
Aggregate RER: All Exports, Retail Prices
Prices change frequently and by large magnitudes

- Movements in $\Delta eP_{n2}/P_{n1}$ not from $\Delta P_{n1} = \Delta P_{n2} = 0$, $\Delta e \neq 0$

 - Raw weekly wholeprice data: prices change on average every 2 weeks.

 - Fraction of product/weeks in which either Canadian price or US price change $= 0.72$.

 - Probability that Canadian and US price remain both unchanged in a quarter close to zero.

 - $\Delta eP_{n2}/P_{n1}$ very volatile, more than relative unit labor costs.
Example: US exported product in “Tea”
Example: US exported product in “Tea”
Distribution of product-level RERs: Exported products

- Product-level RER = \(\Delta Q_{nijr't} = \Delta e_{ijt} + \Delta P_{nirt} - \Delta P_{njr't} \).
Distribution of product-level RERs: Exported products

Product-level RER = $\Delta Q_{nijr't} = \Delta e_{ijt} + \Delta P_{nirt} - \Delta P_{njr't}$.

![Graph](image-url)
Product-level real exchange rates: Robustness

- Broader geographical coverage than BC and North Cali

\[
\text{Std}^{\Delta Q_{ijrr'}} = \alpha + \beta \log \text{Distance}_{ijrr'} + \gamma \mathbb{I}_{i \neq j}
\]

- Average \text{Std}^{\Delta Q_{ijrr'}} within countries: 6%.

- Border doubles \text{Std}^{\Delta Q_{ijrr'}}
Product-level real exchange rates: Robustness

- Broader geographical coverage than BC and North Cali

\[
\text{Std}^{\Delta Q_{ijrr}} = \alpha + \beta \log \text{Distance}_{ijrr} + \gamma \mathbb{I}_{i \neq j}
\]

- Average \(\text{Std}^{\Delta Q_{ijrr}} \) within countries: 6%.

- Border doubles \(\text{Std}^{\Delta Q_{ijrr}} \)

- Identical UPC matches, more/less restrictive matches.
Product-level real exchange rates: Robustness

- Broader geographical coverage than BC and North Cali

\[
\text{Std}^{\Delta Q_{ijrr'}} = \alpha + \beta \log \text{Distance}_{ijrr'} + \gamma \mathbb{I}_{i \neq j}
\]

- Average \(\text{Std}^{\Delta Q_{ijrr'}}\) within countries: 6%.

- Border doubles \(\text{Std}^{\Delta Q_{ijrr'}}\)

- Identical UPC matches, more/less restrictive matches.

- De-mean price by product-category price or nominal wage.
 - \(\text{Std}^{\Delta Q_{inter}}\) not driven by category-wide shocks (e.g. seasonalities).

- Retail prices (modal prices change less frequently).
Summary of findings

- Substantial pricing-to-market across regions for traded products.
 - On average, Canada/US markups track movements in Canada/US relative labor costs.
 - Pricing-to-market not from sticky prices: nominal prices change frequently.
 - Large idiosyncratic component of pricing-to-market: international relative prices three times as volatile as exchange rate.
 - More prevalent across than within countries.
Model Overview

- Geography:
 - 2 countries (3 in paper), 2 regions per country.
Model Overview

- Geography:
 - 2 countries (3 in paper), 2 regions per country.

- Exports subject to international trade costs.
 - Paper allows for trade costs within countries.
 - Paper includes choice of serving foreign market via exports or MP (as in Ramondo-Rodriguez Clare 2008).
Model Overview

- **Geography:**
 - 2 countries (3 in paper), 2 regions per country.

- **Exports subject to international trade costs.**
 - Paper allows for trade costs within countries.
 - Paper includes choice of serving foreign market via exports or MP (as in Ramondo-Rodriguez Clare 2008).

- **Shocks:**
 - Permanent cost differences across producers (comparative advantage).
 - Temporary regional/product-level demand and cost shocks.
 - Changes in aggregate relative unit labor costs.
Model Overview

- Geography:
 - 2 countries (3 in paper), 2 regions per country.

- Exports subject to international trade costs.
 - Paper allows for trade costs within countries.
 - Paper includes choice of serving foreign market via exports or MP (as in Ramondo-Rodriguez Clare 2008).

- Shocks:
 - Permanent cost differences across producers (comparative advantage).
 - Temporary regional/product-level demand and cost shocks.
 - Changes in aggregate relative unit labor costs.

- Constant markups, Bertrand competition with limit pricing.
Model Overview

- Atkeson and Burstein (2008) plus:
 - Bertrand limit pricing (as in AER P&P).
 - Multiple regions.
 - Multinational production.
 - Time varying idiosyncratic shocks.
 - Asymmetric countries.
Consumption composite across many varieties:

\[y_{irt} = \left[\int_0^1 (y_{nirt})^{1-1/\eta} \, dn \right]^{\eta/(\eta-1)} \]
Consumption

- Consumption composite across many varieties:
 \[y_{ir} = \left[\int_0^1 (y_{nir})^{1-1/\eta} \, dn \right]^{\eta/(\eta-1)} \]

- \(K \) potential producers per variety
 - Perfect substitutes
 - Regional taste shock

\[y_{nir} = \sum_{k=1}^{K} a_{knir} y_{knir} \]
Consumption

- Consumption composite across many varieties:
 \[y_{irt} = \left[\int_0^1 (y_{nirt})^{1-1/\eta} \, dn \right]^{\eta/(\eta-1)} \]

- \(K \) potential producers per variety
 - Perfect substitutes
 - Regional taste shock

\[y_{nirt} = \sum_{k=1}^{K} a_{knirt} y_{knirt} \]

- Consumers purchase product with highest \(a_{knirt} / P_{knirt} \).
 - No arbitrage across regions.
Consumption

Consumption composite across many varieties:

\[y_{irt} = \left[\int_0^1 (y_{nirt})^{1-1/\eta} \, dn \right]^{\eta/(\eta-1)} \]

- \(K \) potential producers per variety
 - Perfect substitutes
 - Regional taste shock

\[y_{nirt} = \sum_{k=1}^{K} a_{knirt} y_{knirt} \]

Consumers purchase product with highest \(a_{knirt} / P_{knirt} \).
 - No arbitrage across regions.

Product demand shocks, \(a_{knirt} \):
 - Lognormal, variance \(\sigma^2_a \), correlation across regions \(\rho_a \).
Production

- Producers:
 - K_1 from country 1, K_2 from country 2.
Production

- Producers:
 - K_1 from country 1, K_2 from country 2.

- Technology linear in labor, $y = l/z$.

- $z_{knt} = \underbrace{\tilde{Z}_{kn}}_{\text{Permanent, } (\tilde{u}_{kn})^\theta, \tilde{u}_{kn} \text{ exponential}} \ast \underbrace{\tilde{Z}_{knt}}_{\text{Temporary, lognormal } \sigma_z^2}$
Production

- Producers:
 - K_1 from country 1, K_2 from country 2.

- Technology linear in labor, $y = l/z$.

- $z_{knt} = \bar{Z}_{kn} \ast \tilde{Z}_{knt}$
 - Permanent, $(\bar{u}_{kn})^\theta$, \bar{u}_{kn} exponential
 - Temporary, lognormal σ_z^2

- Marginal cost, c, for firms in country 1:
 1. $W_1 z$ domestic sales
 2. $DW_1 z$ exports
Production

- Producers:
 - K_1 from country 1, K_2 from country 2.

- Technology linear in labor, $y = l/z$.

- $z_{knt} = \tilde{Z}_{kn} \ast \tilde{Z}_{knt}$
 - Permanent, $(\bar{u}_{kn})^\theta$, \bar{u}_{kn} exponential
 - Temporary, lognormal σ^2_z

- Marginal cost, c, for firms in country 1:
 1. W_1z domestic sales
 2. DW_1z exports

- Partial equilibrium: Movements in unit labor costs W_i lognormal σ_w
Pricing: Perfect Competition benchmark

- Within each region, only producer with lowest c/a sells.

- Price = marginal cost.

 \[P_{nirt} = c_{nirt}^{1st}. \]

- Price changes:

 \[\Delta P_{nirt} = \Delta c_{nirt}^{1nd}. \]
Product-level RERs: Perfect Competition

- Variance of relative price changes of individual products.

- Exporters:
 \[
 \text{Variance}^{\Delta Q_{\text{intra}}} = \text{Variance}^{\Delta Q_{\text{inter}}} = 0
 \]
 - Face same cost shock on domestic and foreign sales.
Product-level RERs: Perfect Competition

- Variance of relative price changes of individual products.

- Exporters:
 \[
 \text{Variance}^{\Delta Q_{\text{intra}}} = \text{Variance}^{\Delta Q_{\text{inter}}} = 0
 \]
 - Face same cost shock on domestic and foreign sales.

- Domestically produced goods consumed in both countries:
 \[
 \text{Variance}^{\Delta Q_{\text{inter}}} > 0
 \]
 - Face different cost shock on domestic and foreign sales.
Aggregate RER: Perfect Competition

- Average ΔQ^{inter} across many products.
- Exported products, $\Delta Q = 0$.
- Domestically produced products, $\Delta Q = \Delta \left(\frac{W_2}{W_1} \right)$.
Aggregate RER: Perfect Competition

- Average ΔQ^{inter} across many products.

- Exported products, $\Delta Q = 0$.

- Domestically produced products, $\Delta Q = \Delta \left(\frac{W_2}{W_1} \right)$.

- Country of origin key to discriminate constant vs variable markup model.
Pricing: Bertrand Competition

- Within region, only firm with lowest c/a sells.

\[P_{nirt} = \min \left\{ \frac{\eta}{\eta - 1} \frac{c_{1st}}{a_{nirt}}, \frac{a_{1st}}{a_{2nd}} \frac{c_{2nd}}{c_{nirt}} \right\} \]

- a_{2nd} and c_{2nd}, “latent competitor” shocks.
Pricing: Bertrand Competition

- Within region, only firm with lowest c/a sells.

\[P_{nirt} = \min \left\{ \frac{\eta}{\eta - 1} c_{nirt}^{1st}, \frac{a_{nirt}^{1st}}{a_{nirt}^{2nd}} c_{nirt}^{2nd} \right\} \]

- a_{nirt}^{2nd} and c_{nirt}^{2nd}, "latent competitor" shocks.

- Assume for analytic results:
 - Monopoly price not binding.
 - Small time-varying shocks \Rightarrow Unchanged active and latent competitors.

\[\Delta P_{nirt} = \Delta a_{nirt}^{1st} - \Delta a_{nirt}^{2nd} + \Delta c_{nirt}^{2nd}. \]
Product-level RERs: Bertrand competition

- Price changes:
 \[
 \Delta P_{nirt} = \Delta a_{nirt}^{1st} - \Delta a_{nirt}^{2nd} + \Delta c_{nirt}^{2nd}.
 \]
 - Demand shocks
 - Cost shocks

- Correlation of price changes across two regions
 - Demand: correlation \(\rho_a \).
 - Cost: \[
 \text{correl}=1 \text{ if face same latent competitor (fraction } r) \\
 \text{correl}=0 \text{ if face different latent competitor (fraction } 1 - r) \]

- Variance \(\Delta Q \) = \(2 \times \text{Variance}^{\Delta P} \left(1 - \text{correlation}^{\Delta P_{r1},\Delta P_{r2}} \right) \)
Product-level RERs: Bertrand competition

- Variance $\Delta Q = 4\sigma_a^2 (1 - \rho_a r) + 2 (\sigma_z^2 + \sigma_w^2) \times (1 - r)$

 - Demand shocks \(\sigma_a^2 \) and \(\rho_a \)
 - Cost shocks \(\sigma_z^2 \) and \(\sigma_w^2 \)

- Pricing-to-market if low \(\rho_a \) and/or low \(r \).

Demand shocks less correlated across/within countries \(\rho_{\text{inter}} < \rho_{\text{intra}} \).

Variance $\Delta Q_{\text{inter}} > \Delta Q_{\text{intra}}$ does not imply \(D > 1 \).
Product-level RERs: Bertrand competition

- Variance $\Delta Q = 4\sigma_a^2 (1 - \rho_a r) + 2(\sigma_z^2 + \sigma_w^2) \times (1 - r)$

 - Demand shocks
 - Cost shocks

- Pricing-to-market if low ρ_a and/or low r.

- Pricing-to-market more prevalent across than within countries if:
 - Less likely to face same competitor across than within countries ($r_{\text{inter}} < r_{\text{intra}}$).
 - High intern/intra-national trade costs.
 - Demand shocks less correlated across/within countries ($\rho_{\text{inter}} < \rho_{\text{intra}}$).
Product-level RERs: Bertrand competition

- **Variance** $\Delta Q = 4\sigma_a^2 (1 - \rho_a r) + 2 (\sigma_z^2 + \sigma_w^2) \ast (1 - r)$
 - demand shocks
 - cost shocks

- Pricing-to-market if low ρ_a and/or low r.

- Pricing-to-market more prevalent across than within countries if:
 - Less likely to face same competitor across than within countries ($r_{inter} < r_{intra}$).
 - High intern/intra-national trade costs.
 - Demand shocks less correlated across/within countries ($\rho_{inter} < \rho_{intra}$).

- $\text{Variance}^{\Delta Q}_{inter} > \text{Variance}^{\Delta Q}_{intra}$ does not imply $D > 1$.
Aggregate RER: Bertrand Competition

- On average, \(\Delta c_{njAt}^{2nd} = \Delta W_j \) of latent competitor.

\[
\text{Average } \Delta Q^{inter} = \begin{cases}
0 & \text{if face} = \text{latent competitor} \\
\frac{\Delta W_2}{W_1} & \text{if face} \neq \text{local latent competitor}
\end{cases}
\]
On average, $\Delta c^{2nd}_{njAt} = \Delta W_j$ of latent competitor.

Average $\Delta Q^{inter} = \begin{cases}
0 & \text{if face = latent competitor} \\
\Delta W_2 / W_1 & \text{if face } \neq \text{ local latent competitor}
\end{cases}$

$\Delta Q = (1 - r) \Delta W_2 / W_1$
Aggregate RER: Bertrand Competition

- On average, $\Delta c_{n_jA_t}^{2nd} = \Delta W_j$ of latent competitor.

 Average $\Delta Q^{inter} = \begin{cases}
 0 & \text{if face} = \text{latent competitor} \\
 \Delta W_2 / W_1 & \text{if face} \neq \text{local latent competitor}
 \end{cases}$

 $\Delta Q = (1 - r) \Delta W_2 / W_1$

- Low r (due to high D), likely to face local competitor in each country.
 - Prices responsive to local wage in each country.
Aggregate RER: Bertrand Competition

- On average, $\Delta c_{njAt}^{2nd} = \Delta W_j$ of latent competitor.

$$\text{Average } \Delta Q^{\text{inter}} = \begin{cases} 0 \text{ if face } = \text{ latent competitor} \\ \Delta W_2 / W_1 \text{ if face } \neq \text{ local latent competitor} \end{cases}$$

$$\Delta Q = (1 - r) \Delta W_2 / W_1$$

- Low r (due to high D), likely to face local competitor in each country.
 - Prices responsive to local wage in each country.

- $\Delta Q > 0$ for traded products implies $D > 1$.
Model implication I: Idiosyncratic and aggregate pricing-to-market

- **Low \(r \):**
 - More idiosyncratic pricing-to-market, high \(\text{Var}^{\Delta Q_{\text{inter}}} \) and low \(\text{Correl}_{\Delta P}^{\text{inter}} \).
 - More aggregate pricing-to-market, high aggregate \(\Delta Q \).

- **Prediction:**
 - Categories with low \(\text{Correl}_{\Delta P}^{\text{inter}} \) should display high aggregate \(\Delta Q \).
Model implication I: Idiosyncratic and aggregate pricing-to-market

<table>
<thead>
<tr>
<th></th>
<th>Coeff.</th>
<th>Std. Err.</th>
<th>t Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.277</td>
<td>0.148</td>
<td>8.625</td>
</tr>
<tr>
<td>X Variable 1</td>
<td>-2.441</td>
<td>0.938</td>
<td>-2.603</td>
</tr>
</tbody>
</table>
Model implication II: Size of country and pricing-to-market

- $K_1 > K_2$, less pricing-to-market by US producers.
 - More likely same latent American competitor in both countries.

Findings: Correl $\Delta P_{\text{non-US exported products}} < \text{Correl } \Delta P_{\text{US exported products}}$.

Model implication II: Size of country and pricing-to-market

- $K_1 > K_2$, less pricing-to-market by US producers.
 - More likely same latent American competitor in both countries.

Quantitative analysis

- Add third production country — ROW, trade cost D^*.

- Add choice of serving foreign market via exports or MP subject to productivity loss (Ramondo-Rodriguez Clare 2008).

- Calibration targets:
 - Trade patterns.
 - Product-level RER for US exporters.

- Model reproduces other salient features of the data.
 - Product-level RER for Can, ROW exporters and non-exporters.
 - Large aggregate RER movements for US, Can, ROW exporters and non-exporters.
 - Asymmetry in RER fluctuations between producers from different locations.
Parameterization

- **11 parameters:**
 - $\theta, K_1, K_2, K_3, D, D^*, \lambda$ - trade patterns
 - $\sigma_z, \sigma_a, \rho_{a}^{\text{intra}}$ - shocks
 - η - elasticity of substitution.

- $\Delta W_{1t}, \Delta W_{2t}, \text{and } \Delta W_{3t}$
Parameterization: Trade

- Parameters that determine international trade shares:
 - Pick θ, K_1, K_3
 - Calibrate K_2, D, D^*, λ

 Import share in Canada from US = 25%

 Import share in US from Canada = 2%

 Average Import share in US and Canada from ROW = 10%

 \[
 \frac{\text{Expenditures in matched domestic products}}{\text{Expenditures in matched exported products}} \text{ in Canada} = 1
 \]

- Only K_3/D^* matters.

- Results unchanged with K_1.
Parameterization: Price changes

- Parameters determining product-level price movements:
 - $\sigma_z, \sigma_a, \rho_a$

- Target: US exporters
 - $\text{Std}^{\Delta P} = 8\%$
 - $\text{Std}^{\Delta Q \text{ intra}} = 5.5\%$
 - $\rho_a^{\text{inter}} = 0$
 - Baseline: $\rho_a^{\text{intra}} = 0$
 - Also set ρ_a^{intra} to match $\text{Std}^{\Delta Q \text{ inter}} = 11\%$.

- $\Delta W_{1t} = 0$, $\Delta W_{2t} = \Delta W_{3t} > 0$, increase in Canadian/US unit labor costs 2004-2006.
Parameterization: Elasticities

- Elasticity of substitution across varieties.
 - $\eta = 1.01$: as in our analytical approximation
 - Implied average markup $= 30\%$.
 - Also report our findings when $\eta = 2$.

- Dispersion of permanent costs: θ
 - $\theta = 0.3$, high range in Eaton and Kortum (2002).
 - Higher θ reduces switching of producers and latent competitors over time.
Parameter Values

Panel A: Parameter values

Parameters that determine trade patterns

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K_1</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>K_2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>K_3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1.58</td>
</tr>
<tr>
<td>5</td>
<td>D^*</td>
<td>1.15</td>
</tr>
<tr>
<td>6</td>
<td>λ</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>θ</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Parameters that determine price movements

<table>
<thead>
<tr>
<th></th>
<th>σ_z</th>
<th>Uncorrelated demand shocks</th>
<th>Correlated demand shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$\sigma_z^2/(\sigma_z^2 + \sigma_a^2)$</td>
<td>0.054</td>
<td>0.034</td>
</tr>
<tr>
<td>9</td>
<td>ρ_a</td>
<td>0.780</td>
<td>0.333</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Product-level RERs: Uncorrelated demand shocks

<table>
<thead>
<tr>
<th></th>
<th>Uncorrelated demand shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Exporters</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.7</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>9.8</td>
</tr>
<tr>
<td>Canadian Exporters</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.6</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>10.4</td>
</tr>
<tr>
<td>ROW Exporters</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.6</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>10.5</td>
</tr>
<tr>
<td>Domestically produced</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.6</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Uncorrelated demand shocks</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>US Exporters</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.7</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>9.8</td>
</tr>
<tr>
<td>Canadian Exporters</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.6</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>10.4</td>
</tr>
<tr>
<td>ROW Exporters</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.6</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>10.5</td>
</tr>
<tr>
<td>Domestically produced</td>
<td></td>
</tr>
<tr>
<td>St. dev. Intra-national</td>
<td>5.6</td>
</tr>
<tr>
<td>St. dev. Inter-national</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Aggregate RERs

Figure 5: Model Aggregate Real Exchange Rates

- **US exporters**
 - Unit labor cost
 - Aggregate RER

- **Canada exporters**
 - Unit labor cost
 - Aggregate RER

- **Rest of the world exporters**
 - Unit labor cost
 - Aggregate RER

- **Domestically produced and non-traded**
 - Unit labor cost
 - Aggregate RER
Conclusions

 - Guide design of models of international price setting.

- Construct model of pricing-to-market and international trade that helps rationalize data.
 - International border segments competitors across countries, pricing-to-market in response to idiosyncratic shocks and changes in relative labor costs.

- Future research.
 - Richer IO: other demand systems, producer-retailer interactions, long-term relations.
 - Pricing-to-market has potential welfare implications, partly determined by trade and exchange-rate policies.