Measured Aggregate Gains from International Trade

Ariel Burstein and Javier Cravino

UCLA and University of Michigan

Workshop in Trade and Macroeconomics, Mainz, August 2013

Introduction

- New micro-level data in international trade
- New trade models to explain facts and answer new questions
- Did this agenda shape answers to key "aggregate" questions?
 - Implications of structural models for welfare gains from trade
 - ► This talk: measured aggregate gains from trade

Measured gains from trade in practice

- ► Empirical relationship between trade & real GDP
 - e.g. Frankel-Romer 1999, Rodriguez-Rodrik 2001, Feyrer 2009
- ► Aggregate productivity: role of reallocation between producers
 - e.g. Bernard and Jensen 1999, Pavnik 2002, Trefler 2004
- CPI bias due to increasing varieties and quality
 - e.g. Feenstra 94, Broda-Weinstein 06, Feenstra-Romalis 2012

Questions

- Impact of reduction in trade costs on aggregate productivity?
 - Sufficient statistics across models?
- ▶ Does CPI & real consumption capture welfare gains?
- ▶ Provide some answers within a class of baseline trade models
- ► Follow measurement procedures of BEA
- Kehoe-Ruhl (2010), Feenstra-Reinsdorf-Slaughter (2009), Burstein and Cravino (2013)

Roadmap

- Perfect competition and general production functions
 - Reductions in trade costs and aggregate productivity
 - Welfare, real consumption, real GDP
- "New" trade model: MC, endogenous varieties and quality
 - Sufficient statistics for aggregate productivity
 - Biases in consumption deflators vs. welfare price indices
- Quantitative applications, relate to empirical literature

▶ Country i endowed with production technologies $z \in \Omega_i$

- ▶ Country *i* endowed with production technologies $z \in \Omega_i$
- ▶ Feasible output, $y_{it}(z)$, inputs, $x_{it}(z)$, ∈ $Y_i(z)$

- ▶ Country *i* endowed with production technologies $z \in \Omega_i$
- ▶ Feasible output, $y_{it}(z)$, inputs, $x_{it}(z)$, ∈ $Y_i(z)$
- ▶ Aggregate supply of inputs $X_{it} = \int_{\Omega_i} x_{it}(z) dz$, assume constant

- ▶ Country *i* endowed with production technologies $z \in \Omega_i$
- ▶ Feasible output, $y_{it}(z)$, inputs, $x_{it}(z)$, ∈ $Y_i(z)$
- ▶ Aggregate supply of inputs $X_{it} = \int_{\Omega_i} x_{it}(z) dz$, assume constant
- ▶ One unit of output produced in i, $1/\tau_{int}$ units available in n

- ▶ Country *i* endowed with production technologies $z \in \Omega_i$
- ▶ Feasible output, $y_{it}(z)$, inputs, $x_{it}(z)$, ∈ $Y_i(z)$
- ▶ Aggregate supply of inputs $X_{it} = \int_{\Omega_i} x_{it}(z) dz$, assume constant
- ▶ One unit of output produced in i, $1/\tau_{int}$ units available in n
- Equilibrium allocations maximize profits given prices

$$\Pi_{it} = \max_{\left\{y_{in}(z), x_i(z)\right\}} \int_{\Omega_i} \sum_{n} p_{int}(z) y_{in}(z) / \tau_{int} - W_{it} x_i(z) dz$$

subject to
$$\{\sum y_{in}(z), x_i(z)\} \in Y_i(z)$$
 for all z

►
$$GDP_{it} = \int_{\Omega_i} \sum_n p_{int}(z) y_{int}(z) / \tau_{int} dz = W_{it} X_{it} + \Pi_{it}$$

- - $\lambda_{int_0}(z)$: revenue share at t_0

- ► $GDP_{it} = \int_{\Omega_i} \sum_n p_{int}(z) y_{int}(z) / \tau_{int} dz = W_{it} X_{it} + \Pi_{it}$
- - $\lambda_{int_0}(z)$: revenue share at t_0
- $d \log PPI_{it} = \sum_{n} \int_{\Omega_{i}} \lambda_{int_{0}}(z) \, dlog \, \bar{p}_{int}(z) \, dz$

- ► $d \log GDP_{it} = \sum_{n} \int_{\Omega_i} \lambda_{int_0}(z) (d \log p_{int}(z) d \log \tau_{int}) dz$
 - $\lambda_{int_0}(z)$: revenue share at t_0
- $d \log PPI_{it} = \sum_{n} \int_{\Omega_{i}} \lambda_{int_{0}}(z) \, dlog \, \bar{p}_{int}(z) \, dz$
- $\qquad \qquad \mathsf{dlog} \mathsf{RGDP}_{it} = \mathsf{dlog} \mathsf{GDP}_{it} \mathsf{dlog} \mathsf{PPI}_{it}$

- $GDP_{it} = \int_{\Omega_i} \sum_n p_{int}(z) y_{int}(z) / \tau_{int} dz = W_{it} X_{it} + \Pi_{it}$
- ► $d \log GDP_{it} = \sum_{n} \int_{\Omega_i} \lambda_{int_0}(z) (d \log p_{int}(z) d \log \tau_{int}) dz$
 - $\triangleright \lambda_{int_0}(z)$: revenue share at t_0
- $d \log PPI_{it} = \sum_{n} \int_{\Omega_{i}} \lambda_{int_{0}}(z) \, dlog \, \bar{p}_{int}(z) \, dz$
- $\qquad \qquad \mathsf{dlog} \mathsf{RGDP}_{it} = \mathsf{dlog} \mathsf{GDP}_{it} \mathsf{dlog} \mathsf{PPI}_{it} \\$

- ► $GDP_{it} = \int_{\Omega_i} \sum_n p_{int}(z) y_{int}(z) / \tau_{int} dz = W_{it} X_{it} + \Pi_{it}$
- ► $d \log GDP_{it} = \sum_{n} \int_{\Omega_i} \lambda_{int_0}(z) (d \log p_{int}(z) d \log \tau_{int}) dz$
 - $\lambda_{int_0}(z)$: revenue share at t_0
- $d \log PPI_{it} = \sum_{n} \int_{\Omega_{i}} \lambda_{int_{0}}(z) \, dlog \, \bar{p}_{int}(z) \, dz$
- $\qquad \qquad \mathsf{dlog}RGDP_{it} = \mathsf{dlog}GDP_{it} \mathsf{dlog}PPI_{it} \\$
- Plus tariff revenues evaluated at constant prices

Trade Costs and Aggregate Productivity

► Trade costs incurred abroad

Trade Costs and Aggregate Productivity

- ► Trade costs incurred abroad
 - $\bar{p}_{int}(z) = p_{int}(z)/\tau_{int} \Rightarrow dlogA_{it} = 0$
- ▶ Intuition: Δ productivity $\approx \Delta$ profits at constant prices
 - Evaluated at initial prices, profits fall
 - Evaluated at final prices, profits rise

Trade Costs and Aggregate Productivity

► Trade costs incurred abroad

$$\bar{p}_{int}(z) = p_{int}(z)/\tau_{int} \Rightarrow dlogA_{it} = 0$$

- ▶ Intuition: Δ productivity $\approx \Delta$ profits at constant prices
 - ► Evaluated at initial prices, profits fall
 - Evaluated at final prices, profits rise
- ► Trade costs incurred domestically

$$\bar{p}_{int}(z) = p_{int}(z) \Rightarrow d \log A_{it} = -\sum_{n} \lambda_{int_0} d \log \tau_{int}$$

 Aggregate productivity only captures, to a first order, changes in the domestic production set

Baseline: Real Consumption and Welfare

- Real consumption: expenditures deflated by CPI
- Benchmark assumptions
 - Homothetic preferences
 - Set of available goods and product quality fixed over time
- ▶ Theoretical price index \approx CPI
- Higher order terms from using fixed weights in CPI (substitution bias).

Real Consumption and Real GDP

- ► Abstract from other sources of final demand (e.g. investment)
- ▶ Real consumption \neq real GDP
 - trade imbalances
 - terms of trade

Real Consumption and Real GDP

- ► Abstract from other sources of final demand (e.g. investment)
- ▶ Real consumption \neq real GDP
 - trade imbalances
 - terms of trade
- World as a whole is a closed economy
- Change in variable trade costs, up to first order:

$$\sum_{i} E_{it_0} dlogRC_{it} = \sum_{i} GDP_{it_0}^{E} dlogRGDP_{it}^{E}$$

$$\frac{1}{E_{wt_0}} \sum_{i} GDP_{it_0}^E dlogRGDP_{it}^E = -\frac{1}{E_{wt_0}} \times \sum_{i} \sum_{n} \mathsf{Exports}_{int_0} \times d \log \tau_{in}$$

- Independent of where trade costs incurred
- \blacktriangleright World real GDP captures 1^{st} order effects of $\Delta \tau$ on welfare

"New" trade model

- ▶ Linear production functions: y = zI
- ▶ Variable trade costs incurred by exporter, same % of price for all *i*, *n* producers
- ► CES aggregator, monopolistic competition, constant markups

$$C_{nt} = \left[\sum_{i} \int_{\Omega_{int}} a_{int} (z)^{\frac{1}{\rho}} q_{int} (z)^{\frac{\rho-1}{\rho}} dz \right]^{\frac{\rho}{\rho-1}}$$

- ▶ Endogenous Ω_{int} , labor fixed costs to sell per destination
- ▶ Endogenous $a_{int}(z)$, labor cost h(z,a)
- Constant aggregate profits / value added (e.g. free entry)

Measured Aggregate Productivity

- ▶ PPI non-quality adjusted prices: $\frac{p_{int}(z)}{p_{int-1}(z)} = \frac{\tau_{int}}{\tau_{int-1}} \frac{W_{it}}{W_{it-1}}$
- - ightharpoonup $\bar{\lambda}_{int}$ revenue share of continuing goods

$$\blacktriangleright \frac{A_{it}}{A_{it-1}} = \frac{VA_{it}}{VA_{it-1}} \frac{1}{PPI_{it}/PPI_{it-1}}, \ VA_{it} = \bar{\kappa}_i W_{it} L_{it}$$

$$\frac{A_{it}}{A_{it-1}} = \frac{1}{\sum_{n} \frac{\tau_{int}}{\tau_{int-1}} \bar{\lambda}_{int}}$$

Measured Aggregate Productivity

▶ PPI non-quality adjusted prices: $\frac{p_{int}(z)}{p_{int-1}(z)} = \frac{\tau_{int}}{\tau_{int-1}} \frac{W_{it}}{W_{it-1}}$

ullet $\bar{\lambda}_{int}$ revenue share of continuing goods

$$\frac{A_{it}}{A_{it-1}} = \frac{1}{\sum_{n} \frac{\tau_{int}}{\tau_{int-1}} \bar{\lambda}_{int}}$$

- ► PPI quality-adjusted prices:
 - Same expression, up to 1st order, if $G \sim \text{Pareto}, \ h = z^{\eta} a^{\gamma}$

Aggregate productivity and reallocation

Standard productivity accounting:

$$\Delta A_{i} = \underbrace{\sum_{z \in Z_{cont}} \Delta \frac{rva_{i}(z)}{l_{i}(z)} \times \overline{\frac{l_{i}(z)}{L_{i}}}}_{\text{Own}} + \underbrace{\sum_{z \in Z_{cont}} \overline{\frac{rva_{i}(z)}{l_{i}(z)}} \times \Delta \frac{l_{i}(z)}{L_{i}}}_{\text{Reallocation}} \times \Delta \frac{l_{i}(z)}{L_{i}}$$

$$+ \underbrace{\sum_{z \in Z_{entry}} \frac{rva_{it}(z)}{l_{it}(z)} \frac{l_{it}(z)}{L_{it}}}_{\text{Entry}} - \underbrace{\sum_{z \in Z_{exit}} \frac{rva_{it-1}(z)}{l_{it-1}(z)} \frac{l_{it-1}(z)}{L_{it-1}}}_{\text{Exit}}$$

- ▶ Different variations of this decomposition, e.g. BJ 99 U.S., Pavnik 02 Chile, Trefler 04 Canada
 - Periods of large trade growth, "Reallocation" term large

Aggregate productivity decomposition

- Three specifications
- 1. Melitz with endogenous quality and cutoffs (all terms active)
- 2. Melitz with fixed quality and cutoffs (exit = 0)
- 3. Krugman (all firms the same, reallocation = 0)
- Two countries, trade shares 7% and 15%, trade elasticity = 3.5 (in i and iii), firm-size slope coefficient = 1.2, elasticity of exporters' quality to trade costs = 1.3 (in i)
- $\tau_t/\tau_{t-1} = 0.8$, trade volumes roughly double

Aggregate productivity decomposition

	Krugman	Melitz fixed	Melitz endog.
Aggr Prod. Fisher	0.26	0.20	0.26
Aggreg. product. $t_0 = 0$	0.15	0.16	0.16
% contribution:			
own	100%	94%	78%
reallocation	0	6%	99%
entry	0	0	0
exit	0	0	-77%

- ► Different composition, same total
 - ► Cannot conclude ↑ A smaller in absence of reallocation

Measured productivity and variable markups

$$\frac{A_{it}}{A_{it-1}} = \frac{1 - \frac{Prof_{t-1}}{VA_{t-1}}}{1 - \frac{Prof_t}{VA_t}} \frac{1}{\sum_{n} \frac{\tau_{int}}{\tau_{int-1}} \frac{\overline{mkup_{int}}}{mkup_{int-1}}} \overline{\lambda}_{int}}$$

- Reduction in Prof/VA reduces growth in measured productivity
 - Models in ACDR: Prof/VA unchanged
- ▶ Reduction in markups ↑ measured productivity
 - ▶ ↓ in trade costs: markups ↑ for exporters, ↓ for domestic

CPI versus Welfare-based price index

- So far, standard substitution bias
- New trade models:
 - Discontinued, newly produced, newly imported goods
 - Quality changes mismeasured in prices
- ▶ Next: CPI biases cancel-out, to a first order, at the world level
 - Country-by-country under stronger assumptions
 - ▶ With or without quality adjustment under stronger assumptions

Real consumption and welfare

- Assumptions
 - ightharpoonup CES, CRS, $\frac{Profits}{VA}$ constant, $\frac{trade\ cost}{price} = all\ i,n\ producers$
- ► Change in variable trade cost, up-to first order:

$$\begin{split} \sum_{i} E_{it_0} dlogRC_{it} &= \sum_{i} E_{it_0} dlogC_{it} \\ &= -\frac{1}{E_{wt_0}} \times \sum_{i} \sum_{n} \mathsf{Exports}_{int_0} \times d \log \tau_{in} \end{split}$$

► Envelope condition on firms' exit, export, and quality (Atkeson-Burstein 2010)

Real consumption and welfare: stronger assumptions

- Change in variable trade cost
- $G \sim \text{Pareto} \text{ and } h = z^{\eta} a^{\gamma}$
 - ▶ World RC ≅ theoretical consumption whether prices in CPI quality adjusted or not
- Fixed costs, quality costs incurred in destination markets, $G \sim \text{Pareto}, h = z^{\eta} a^{\gamma}$, TB/GDP constant (ACR Prop 2)
 - ▶ $\Delta RC_i \cong \Delta theoretical C_i$

Small ↓ trade costs

Fixed and quality-related costs use domestic labor

Real consumption				
	$t_0 = 0$ wghts	$t_0 = 1$ wghts	Fischer	
Small country	0.15	0.15	0.15	
Large country	0.07	0.07	0.07	
World	0.10	0.10	0.10	
Welfare				
Small country	0.16			
Large country	0.07			
World	0.10			

Real consumption				
	$t_0 = 0$ wghts	$t_0 = 1$ wghts	Fischer	
Small country	0.17	0.35	0.27	
Large country	0.07	0.15	0.12	
World	0.10	0.21	0.16	
Welfare				
Small country	0.26			
Large country	0.11			
World	0.15			

► Substitution bias more important than varieties, quality biases

Adjusting price indices for quality and variety

	Marginal $\Downarrow \tau$	Large $\psi \tau$
Real consumption		
No adjustments	0.15	0.27
All quality adjustment	0.16	0.29
Imports variety adjusted	0.20	0.35
Imports variety & quality adjustment	0.30	0.53
Welfare	0.16	0.26

Measured real consumption closer to welfare if neither import nor domestic price indices adjusted for Δ in quality, variety

Taking stock

Aggregate productivity

- Captures shifts in domestic production possibility set, not changes in prices or trade costs incurred abroad
- Sufficient statistics, different margins, same total

► Consumption deflators versus welfare-based price index

- $ightharpoonup \Delta$ variable trade cost: substitution bias more important than bias due to Δ varieties or mismeasured quality
- Aggregate productivity captures 1st order effects of Δau on welfare at world level, not country-by-country
- ► Empirical link between trade and real GDP not likely to change much if consumption deflators used instead of output deflators, since these are highly correlated

Caution

- In using results on equivalence between RC and welfare to interpret in a welfare sense the observed relation between real consumption and trade in data
- Many restrictions underlying our results may not be met in practice (e.g. changes in trade shares are not only driven by changes in variable trade costs)
- Our results establishing theoretical benchmark under which real consumption is a good measure of welfare in response to trade liberalization
- Measurement procedures in individual countries may differ from US and recommended by UN