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Outline summary In Appendix A, we present the model with time period of length ∆. In Ap-
pendix B, we provide additional details on the equilibrium. In Appendices C and D, we provide
additional details of the BGP and transition dynamics, including the proofs of Proposition 1 and
Corollary 1. In Appendix E, we present the log-linearized system of equations that we use to solve
for a first-order approximation to the transition dynamics to a new BGP. In Appendix F, we de-
scribe how we calibrate the model. In Appendix G, we describe the experiments and present the
tables with the quantitative results.
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A Model setup

We present the model when the time period in calendar time is of length ∆. We have two reasons to
consider a flexible period length. First, the stability properties of the balanced growth path of the
model solved in discrete time depend upon the length of a time period. Second, the impact on the
incentives of incumbent firms to invest in improving their own products coming from variation in
the extent of business stealing due to changes in entry in the transition to a BGP also depends on
the length of a time period. In our computations, we set the time period to one month.

Final consumption good
∆Yt = ∆Ct + Kt+1 − exp(−∆δk)Kt, (1)

where (1− exp(−∆dk))/∆ represents the depreciation rate per unit time of physical capital. The
preferences of the representative agent are given by

∆
∞

∑
t=0

β∆t

1− γ
Lt (Ct/Lt)

1−γ (2)

with β < 1 and γ > 0. Population grows exogenously at rates gLt with Lt+1 = exp(∆gLt)Lt.
Aggregate output is produced according to the CES aggregator

Yt =

[
∑
z

yt(z)(ρ−1)/ρ Mt(z)

]ρ/(ρ−1)

, (3)

where ρ > 1, Mt(z) is the measure of intermediate goods with frontier technology indexed by z at
time t. To simplify our notation, we assume that the support of z is a grid with countable elements
zn for integers n with log zn+1 − log zn equally spaced. The production of each intermediate input
with productivity index z is given by

yt (z) = zkt (z) αlt (z)
1−α . (4)

With common markups and competitive factor markets, aggregate output can be written in equi-
librium as

Yt = Zt (Kt)
α (Lpt

)1−α , (5)

where total labor hours employed in production satisfy lptLt = ∑z lt(z)Mt(z) , the constraint on
physical capital requires Kt = ∑z kt(z)Mt(z), and Zt is the measure of aggregate productivity 1

given by

Zt =

[
∑
z

zρ−1Mt(z)

]1/(ρ−1)

. (6)

1This model-based measure of aggregate productivity, Zt, does not correspond to measured total factor productivity

(TFP), which is given by TFPt = GDPt/
(

Kα̃
t L1−α̃

t

)
, where the definition of GDP depends on the measurement standard

for expenditures on innovative investment being used (e.g., the definition of output of the final consumption good Yt
in equation (1) corresponds to the Bureau of Economic Analysis’ pre-2013 measurement of GDP, which did not include
expenditures on innovative investment), and 1− α̃ denotes the share of labor compensation in measured GDP. Our analytic
comparative statics can be used to construct alternative measures of TFP and GDP.
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Lastly, Mt = ∑z Mt(z) is the total measure of products available, and Zρ−1
t /Mt is the average

productivity index of existing intermediate goods.

Research good Output of the research good, which is the input used for innovative investment
by firms, is given by

Yrt = ArtZ
φ−1
t lrtLt. (7)

Here, Art represents the stock of freely available scientific progress, which grows at an exogenous
rate gAt = ḡA. The term Zφ−1

t with φ ≤ 1 reflects intertemporal knowledge spillovers in the production
of the research good.

Innovative investment by entering firms Entering firms purchase units of the research good to
invest in obtaining the frontier technology to produce an intermediate good. The resource require-
ment at t to enter and obtain a new product at t + 1 is ∆M−ψ

t units of the research good. When
ψ = 0, the investment of the research good required to invest in a new product is independent of
the number of existing products. Let xet Mt denote the measure of entering firms at t, where xet
denotes the measure of entering firms relative to the measure of existing products at t. Total ex-
penditure of the research good by entering firms is ∆xet M1−ψ

t . Note that when ψ = 1, the number
of resources required to create one new product falls with the number of existing products. When
ψ = 0, the investment of the research good required to invest in a new product is independent of
the number of existing products. The total expenditure by entering firms is ∆xet M1−ψ

t .
Each of these xet Mt entering firms acquires with probability 1− exp(−∆λ) a frontier technol-

ogy to produce at the start of period t + 1 an intermediate good with some productivity index z′.

Under these assumptions, the effective entry cost, ∆M−ψ
t

1−exp(−∆λ)
, is approximately unchanged with

∆ for small values of ∆.
With probability δe, this productivity index z′ drawn by the entrant at t + 1 is associated with

an intermediate good that was already being produced by an incumbent firm at t, but with a lower
productivity index. Since identical intermediate goods are perfect substitutes in the production of
the final consumption good, competition in the product market between the entering firm and
the previous incumbent producer of this intermediate good implies that the previous incumbent
producer ceases production of the good. In this case, the innovative investment by the entering
firm does not result in a net increase in the total measure of products available Mt. Instead, it
only results in a positive increment to the average productivity index across existing products. As
is common in the literature,we say that this intermediate good that is new to the entering firm
represents business stealing.

With the complementary probability 1− δe, this technology allows this entering firm to produce
an intermediate good that is new to society as a whole. In this case, the innovative investment by
the entering firm results in a net increase in the total measure of products available Mt+1. As
is common in the literature, we say that this intermediate good that is new to this entering firm
represents a contribution to productivity through expanding varieties.

Stolen products in entering firms at t + 1 have a productivity index z′ drawn from a distribu-
tion such that the expected value of the random variable z′ raised to the power of (ρ− 1) is equal
to Ez′ρ−1 = ηesZρ−1

t /Mt, with ηes > 1. New products in entering firms at t + 1 have a produc-
tivity index z′ drawn from a distribution such that Ez′ρ−1 = ηenZρ−1

t /Mt, with ηen > 0. These
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assumptions imply that the average value of z′ρ−1 across all products produced by entering firms
at t + 1 is given by Ez′ρ−1 = ηeZρ−1

t /Mt, where ηe ≡ δeηes + (1− δe)ηen.

Investments in new products by incumbent firms Incumbent firms have the opportunity to
invest in acquiring new products to their firm and to improve their existing products. We assume
that if an incumbent firm at t has the frontier technology to produce an intermediate good with
index z, it also has the capacity to invest ∆xmt(z) units of the research good to acquire an additional
product (new to the firm) at t + 1 with probability

1− exp

(
−∆h

(
xmt(z)

st(z)M1−ψ
t

))
,

where st (z) denotes the size of the firm. Here, h(·) is a strictly increasing and concave function
with h(0) = 0 and h(x) < 1 for all x.

As is the case with entry, acquisition of new products by incumbent firms may arise from busi-
ness stealing from other incumbent firms or from expanding varieties. Consider the productivity
index z′ for a newly acquired product that an incumbent firm obtains at t + 1 arising from inno-
vative investment associated with a product with index z at t. With probability δm, the product
acquired by the incumbent firm at t + 1 is stolen from another incumbent firm and has productiv-
ity index z′ at t+ 1 drawn at random from a distribution such that Ez′ρ−1 = ηmszρ−1, with ηms > 1.
With complementary probability 1− δm, the newly acquired product is new to society. We assume
that the productivity index z′ in this case is drawn from a distribution such that Ez′ρ−1 = ηmnzρ−1,
with ηmn > 0. The average value of (z′)ρ−1 of the new products acquired by an incumbent firm
investing based on a current product with frontier productivity z is Ez′ρ−1 = ηmzρ−1 where we
define ηm = δmηms + (1− δm)ηmn

Let ∆xmt M1−ψ
t denote the total expenditure by incumbent firms on acquiring new products.

Then aggregation gives
∆xmt M1−ψ

t ≡ ∆ ∑
z

xmt (z) Mt (z) .

Investment in continuing products by incumbent firms For each product that they produce at
t, incumbent firms can lose its production capacity at t + 1 either due to exogenous exit (with
probability (1− exp (−∆δ0))) or due to business stealing. For each product that they produce
at t, incumbents have research capacity that allows them to invest to improve the index z of that
product if they retain it at t+ 1. Specifically, if an incumbent firm with a product with productivity
z at t spends ∆xct(z) of the research good on improving that product, it draws a new productivity
index z′, conditional on not losing that product to exogenous exit or business stealing, from a
distribution such that

Ez′ρ−1 = exp

(
∆ζ

(
xct(z)

st(z)M1−ψ
t

))
zρ−1.

We assume that ζ(·) is a strictly increasing and concave function, with ζ(x) > 0 for all x ≥ 0. In
addition, we assume that ηes > exp(∆ζ(x)) and ηms > exp(∆ζ(x)) for all x in equilibrium. These
inequalities correspond to the requirement that a product that is stolen from incumbent firms is,
in expectation, produced with a higher z′ at t + 1 in its new firm than it would have had as a
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continuing product in the firm that previously produced it. Equivalently, stolen products have
larger average size than continuing products in incumbent firms. Note that these assumptions are
necessarily satisfied if ∆ is small enough.

We define the aggregate quantity of this type of innovative investment by incumbent firms as
∆xct M1−ψ

t . Again, aggregation gives

∆xct M1−ψ
t ≡ ∆ ∑

z
xct (z) Mt (z) .

With these definitions, we can write the resource constraint for the research good as

∆ (xct + xmt + xet) M1−ψ
t = ∆Yrt (8)

Dynamics of M and Z Under our assumptions, we show below that incumbent firms at every
date t in equilibrium choose investment according to

xmt(z) = st(z)xmt M1−ψ
t (9)

and
xct(z) = st(z)xmt M1−ψ

t . (10)

With these choices of innovative investment by incumbent firms proportional to product size st(z),
we have that the probability that each incumbent obtains a new product is constant across products
at 1− exp(−∆h(xmt)) and the expected rate of growth of zρ−1 for incumbent products that do not
exit is constant across products and given by exp(∆ζ(xct)).

With this pattern of investment by incumbents, the evolution of the total measure of interme-
diate products Mt is given by log Mt+1 − log Mt = H(xmt, xet; ∆) where

H(xmt, xet; ∆) ≡ log (exp (−∆δct) + 1− exp (−∆h (xmt)) + (1− exp (−∆λ)) xet) (11)

and exp(−∆δct) is the probability that a product remains in the same incumbent firm at t + 1,
where δct = δc(xmt, xet) is defined by the equation

exp(−∆δc(xmt, xet)) = exp (−∆δ0)− δm (1− exp (−∆h (xmt)))− δe (1− exp (−∆λ)) xet. (12)

In the continuous time limit, we have δc(xmt, xet) = δ0 + δmh(xmt) + δeλxet and2

Ṁt

Mt
= −δ0 + (1− δm) h(xmt) + (1− δe) λxet. (13)

Likewise, the evolution of aggregate productivity is given by log Zt+1− log Zt = G(xct, xmt, xet; ∆)
where

G(xct, xmt, xet; ∆) ≡ (14)

1
ρ− 1

log (exp(−∆δct) exp(∆ζ(xct)) + ηm(1− exp(−∆h(xmt)) + ηe(1− exp(−∆λ))xet) .

2For any variable Xt, we define Ẋt = lim∆→0
Xt+1−Xt

∆ , which we refer to as the continuous time limit.
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In the continuous time limit,

Żt

Zt
=

1
ρ− 1

(ζc(xct)− δc(xmt, xet) + ηmh(xmt) + ηeλxet) . (15)

In our derivations below, we make use of the share of production labor employed in new firms
(that is, firms that just entered) as t + 1, which is given by

Set+1 (∆) = ηe
Zρ−1

t

Zρ−1
t+1

Met+1

Mt
=

Zρ−1
t

Zρ−1
t+1

(1− exp (−∆λ)) ηexet. (16)

In the continuous time limit,

lim
∆→0

Set+1(∆)
∆

= ηeλxet.

B Equilibrium

Here we describe additional equilibrium details omitted from the text. These equilibrium condi-
tions take into account the length of the time period, ∆.

Final consumption good producers Final consumption good producers purchase intermediate
goods to produce using the technology in equation (3). These firms are competitive and choose
output and inputs to maximize profits taking the price of the final consumption good (which we
normalize to one) and the prices of intermediate goods, pt(z), as given. They receive a production
subsidy τy per unit sold.

Profit maximization implies standard CES input demands for each intermediate good with
demand elasticities determined by ρ. Because the technology in equation (3) is constant returns to
scale, these firms have no profits in equilibrium.

Physical capital stock holding firm The physical capital stock is managed by competitive firms
that rent out physical capital to intermediate goods producing firms and invest in physical capital.
Each firm takes the price of the final consumption good, the rental rate for physical capital Rkt,
and intertemporal prices for the final consumption good {Qt} as given, and is subject to a corpo-
rate profits tax τcorp with expensing for investment in physical capital of λk. These firms seek to
maximize the discounted present value of after-tax dividends, with dividends given by

∞

∑
t=0

Qt∆Dkt,

with dividends per unit of time of

Dkt = (1− τcorp)RktKt −
(
1− τcorpλk

) 1
∆
(Kt+1 − exp(−∆dk)Kt) (17)
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Intermediate goods producers Intermediate goods firms’ dividends at time t per unit of time
associated with a product with frontier technology z are given by

Dt(st(z)) = (1− τcorp)
µ− 1

µ
(1 + τy)Ytst(z)− (1− τcorpλI)Prt [(1− τc)xct(z) + (1− τm)xmt(z)] ,

(18)
which can be written as Dt (st (z)) = Dtst (z), where

Dt = (1− τcorp)
µ− 1

µ

(
1 + τy

)
Yt −

(
1− τcorpλI

)
Prt M1−ψ

t [(1− τc) xct + (1− τm) xmt] (19)

Given this strategy for investment, each incumbent product remains in the same firm at t + 1
with probability exp(−∆δct) and has expected size conditional on survival in the same firm equal
to exp(∆ζ(xct))st(z)Zρ−1

t /Zρ−1
t+1 . In addition, this firm anticipates acquiring a new product with

expected size of ηmst(z)Zρ−1
t /Zρ−1

t+1 with probability 1− exp(−∆h(xmt)). Thus, under this invest-
ment strategy, the expected discounted present value of dividends associated with a product of
size st(z) at t inclusive of the dividend at t is directly proportional to the size of the product; that
is it can be written as Vtst(z) where the factors of proportionality {Vt} satisfy the recursion

Vt = ∆Dt + exp(−∆Rt)Vt+1
Zρ−1

t

Zρ−1
t+1

[exp (−∆δct) exp (∆ζ (xct)) + ηm (1− exp (−∆h (xmt)))] (20)

and where the interest rate Rt is defined by exp(−∆Rt) ≡ Qt+1/Qt.
Now consider the first-order conditions that govern the investment choices of an incumbent

firm managing a product with frontier technology z at t conditional on following our assumed
investment strategy in equations (9) and (10) from period t + 1 on. The current dividend that the
firm earns is given as a function of its investment choices in equation (18). The expected value of
the products at t + 1 that the firm expects to gain from these investments is given by

Vt+1
Zρ−1

t

Zρ−1
t+1

[
exp (−∆δct) exp

(
∆ζ

(
xct (z)

st(z)M1−ψ
t

))
+ ηm

(
1− exp

(
−∆h

(
xmt (z)

st (z) M1−ψ
t

)))]
st(z).

Taking the first-order conditions trading off the impact of investment on dividends at t and ex-
pected value at t + 1 confirms that the optimal choice of innovative investment at t is of the form
(9) and (10) where xmt and xct satisfy

(1− τcorpλI)(1− τm)Prt M1−ψ
t = exp (−∆Rt)Vt+1

Zρ−1
t

Zρ−1
t+1

ηm exp (−∆h (xmt)) h′ (xmt) (21)

and

(
1− τcorpλI

)
(1− τc) Prt M1−ψ

t = exp (−∆Rt)Vt+1
Zρ−1

t

Zρ−1
t+1

exp (−∆δct) exp (∆ζ (xct)) ζ ′ (xct) . (22)
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Entering firms We now consider the incentives of entering firms. As described above, an in-
vestment of ∆M−ψ

t units of the research good at t yields a new product with probability of 1−
exp(−∆λ) and expected size ηeZρ−1

t /MtZ
ρ−1
t+1 . Thus, in equilibrium, we must have

(
1− τcorpλE

)
(1− τe) Prt M1−ψ

t ≥ 1− exp (−∆λ)

∆
exp (−∆Rt)Vt+1

Zρ−1
t

Zρ−1
t+1

ηe, (23)

where this expression is an equality if there is positive investment in entry in period t.
In any period t with positive entry, we can combine equations (21) and (23) to obtain a static

equation determining xmt given by(
1− τcorpλI

)
(1− τm)(

1− τcorpλE
)
(1− τe)

1− exp (−∆λ)

∆
ηe

ηm
= exp (−∆h (xmt)) h′ (xmt) . (24)

This condition implies that xmt is constant in any periods in which entry is positive. Likewise, in
any period t with positive entry, we can combine equations (22) and (23) to obtain a static equation
relating xet, xmt, and xct given by(

1− τcorpλI
)
(1− τc)(

1− τcorpλE
)
(1− τe)

1− exp (−∆λ)

∆
ηe = exp (−∆δc (xmt, xet)) exp (∆ζ (xct)) ζ ′ (xct) . (25)

Since xmt is constant in all periods t in which entry is positive, equation (25) defines an implicit
function xc (xet) that determines xct as a function of xet in every period in which entry is positive.
Note that the derivative on this function is given by

dxc

dxe
=

∆ζ ′ (xc)
∂

∂xe
δc (xm, xe)

∆ζ ′ (xc) +
ζ ′′(xc)
ζ ′(xc)

. (26)

As ∆ → 0, ∂
∂xe

δc(xm, xe) approaches a constant (see equation (12)). Then, dxc/dxe → 0, even if
there is business stealing. This result implies that as ∆ → 0, xct is constant in all periods t with
positive entry.

Household and government expenditures The intertemporal budget constraint for the house-
hold is given by

∞

∑
t=0

Qt

[
Ct + Tt + (1− τcorpλE)(1− τe)Prt M−ψ

t xet

]
≤

∞

∑
t=0

Qt [WtLt + Dkt + Dt] .

Government fiscal expenditures net of corporate tax receipts is

∆Et = ∆Prt M1−ψ
t [τcxct + τmxmt + τexet] + ∆τcorpλE (1− τe) Prt M1−ψ

t xet

−τcorp [∆RktKt − λk (Kt+1 − exp(−∆dk)Kt)]

−τcorp∆
[

µ− 1
µ

(1 + τy)Yt − λI Prt M1−ψ
t [(1− τc)xct + (1− τm)xmt]

]
.

The government budget constraint is Tt = Et for all t.
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Definition of equilibrium The economy starts with initial conditions for K0, Z0, andM0 as given.
The paths for {Lt} and {Art} are given exogenously as well.

An allocation in this model is a sequence of variables
{

Kt+1, lpt, lrt, Ct, Yt, Yrt, Zt+1, Mt+1, δct
}

and innovative investments {xct, xmt, xet}. An allocation is feasible if it satisfies equations 1-14.
The vector of prices and values in this economy are {Qt, Wt, Rkt, Prt, Vt, Dkt, Dt} together with a
markup of price over marginal cost µ.

The policies in this economy are the corporate tax rate τcorp, subsidy rates for innovative in-
vestment τc, τm, and τe, a subsidy rate for output of the final consumption good τy, and expensing
allowances for physical investment λK, innovative investment by incumbents λI , and innovative
investment in entry λE.

An equilibrium given policies is a feasible allocation together with a vector of prices and values
and a markup such that firms producing the final consumption good, intermediate goods, and the
research good, as well as the holding company for physical capital maximize profits, households
maximize utility given their budget constraint, and the government budget constraint is satisfied
each period.

C Balanced growth path

We now describe how to solve for a balanced growth path (BGP) of this economy given policies
and model parameters. On a BGP, taxes are constant, and the exogenous sequences for Art and Lt
grow at constant rates ∆ḡA and ∆ḡL. Output Yt, physical capital Kt+1, and consumption Ct grow
at a common rate ∆ḡy. Aggregate productivity Zt+1 and the measure of products Mt grow at rates
∆ḡZ and ∆ḡM. Innovative investment rates per product remain constant over time at x̄c, x̄m, and
x̄e. This last assumption implies from equation (8) that the product Yrt Mψ−1

t remains constant over
time as well.

C.1 BGP growth rates

We consider the variable Jt ≡ Z1−φ
t M1−ψ

t together with the physical capital stock Kt as the endoge-
nous state variables of the economy. By construction, we have

ḡJ = (1− φ)ḡZ + (1− ψ)ḡM. (27)

Since the product Yrt Mψ−1
t is constant over time on a BGP, equations (7) and (8) imply that the

growth rate of J on a BGP depends only on the sum of the growth of scientific progress and pop-
ulation and not on policies:

ḡJ = ḡA + ḡL. (28)

The division of the growth of J into components due to growth in aggregate productivity Z
and growth in the number of products M depends on the parameters φ and ψ and on policies as
follows. The value of x̄m on a BGP with positive entry is determined from equation (24), while the
implicit function x̄c(xe) is determined from equation (25). The BGP level of x̄e is then determined
from the equation

∆ḡJ = (1− φ) G (x̄c (x̄e) , x̄m, x̄e) + (1− ψ) H (x̄m, x̄e) . (29)
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Recall that as ∆ → 0, x̄c(xe) approaches a constant. This implies that for small enough ∆, as long
as ηe > δeζ(∆x̄c) and δe ≤ 1, then the right-hand side of this expression is strictly increasing in x̄e,
so at most one positive solution to this equation exists.

Once one solves for innovative investments x̄c, x̄m, and x̄e, the growth rates of aggregate pro-
ductivity and the measure of products are given by

∆ḡZ = G(x̄c(x̄e), x̄m, x̄e), (30)

∆ḡM = H(x̄m, x̄e), (31)

and
ḡY = ḡZ/(1− α) + ḡL. (32)

Impact of a change in population growth on productivity growth Here we derive the expres-
sion for the impact of changes in the growth rate of population gL and scientific progress gAr on
the BGP growth rate of aggregate productivity,

dḡZ
dḡL

=
ΘG
ΘJ

=
1

(1− φ) + (1− ψ) ΘH
ΘG

, (33)

where ΘG, ΘH and ΘJ are defined in the next Subsection (and in the main paper). To derive this
expression, observe that a change in the growth rate of labor has no impact on equations (24) and
(25) that determine x̄m or on the implicit function xc(xe). Thus, we can differentiate equations (28)
and (29) to get:

dḡL = dḡJ = ΘJd log x̄e (34)

From the definitions of ΘG and ΘH , we have dḡZ = ΘGd log x̄e and dḡM = ΘHd log x̄e. Using
dḡJ = (1− φ) dḡZ + (1− ψ) dḡM and dḡM = ΘH/ΘGdḡZ, we obtain (34).

C.2 BGP levels

We now describe how to solve for the equilibrium levels of variables on a BGP given levels of
Art and Lrt. The level of Jt ≡ Z1−φ

t M1−ψ
t is determined on a BGP, but the levels of Zt and Mt

individually on the BGP are not pinned down by BGP equations alone. As discussed below, these
are determined by the initial conditions of the economy and the transition path to the new BGP.
We use the following equations to solve for the level of variables on a BGP.

The consumer’s intertemporal Euler equation gives

exp(∆R̄) = β−∆ exp (γ∆ (ḡY − ḡL)) . (35)

From equation (19), dividends from intermediate goods firms relative to output inclusive of pro-
duction subsidies are given by d̄ ≡ Dt/

((
1 + τy

)
Yt
)

where

d̄ = (1− τcorp)
µ− 1

µ
− (1− τcorpλI) p̄r [(1− τc)x̄c + (1− τm)x̄m] (36)

and

p̄r ≡
Prt M1−ψ

t(
1 + τy

)
Yt

. (37)
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From equation (20), the value of a product relative to output is given by v̄ ≡ Vt/Yt where

v̄ =
∆d̄

1− exp (−∆ (R̄− ḡY)) (1− S̄e (∆))
, (38)

where S̄e(∆) is given as a function of innovative investments and the growth rate of productivity
from equation (80) below. The BGP value of p̄r is then found as the solution to the BGP version of
the free entry condition

(
1− τcorpλE

)
(1− τe) p̄x̄e = exp (−∆ (R− ḡY)) v̄

S̄e (∆)
∆

. (39)

The innovation intensity of the economy on a BGP is given by PrtYrt/
((

1 + τy
)

Yt
)
= p̄r (x̄c + x̄m + x̄e) ,

and the allocation of labor to research is given by

l̄r
l̄p

=
µ

1− α

1
1 + τy

p̄r (x̄c + x̄m + x̄e) . (40)

The ratio of physical capital to output is given by the standard Euler equation from the profit
maximization problem of the physical capital holding company:

exp(∆R̄) = ∆

(
1− τcorp

)(
1− τcorpλK

) α
(
1 + τy

)
µ

Yt+1

Kt+1
+ exp (−∆δK) . (41)

Finally, from equations (7) and (8), together with the definition of Jt, we get that the level of Jt on
a BGP is given by

x̄c + x̄m + x̄e = Art l̄rLt/ J̄t. (42)

The equilibrium sequence of innovative investments {xct, xmt, xet} implies, through the func-
tions H and G defined above in equations (11) and (14), a sequence of growth rates of the log of
Mt+1 and Zt+1. This sequence of growth rates can then be used to trace out the paths for the levels
of Mt+1 and Zt+1 from their initial conditions to their levels on the BGP (should the equilibrium
converge to a BGP). We use a first-order approximation of these dynamics to solve for the levels
of Zt and Mt on a BGP as follows.

Consider a first-order approximation to the dynamics of {Jt+1, Zt+1, Mt+1} from initial condi-
tion J0 = Z1−φ

0 M1−ψ
0 , Z0, and M0 to its BGP path { J̄t} taking as given a path for investment in

entry {xet} that converges to its BGP level x̄e. We use the fact that the initial and BGP values of Jt
are known to solve, up to a first-order approximation, for the BGP values of Zt and Mt.

The elasticity of the growth of aggregate productivity with respect to entry is defined as

ΘG =
1
∆

[
∂

∂xc
G (x̄c (x̄e) , x̄m, x̄e)

d
dxe

xc (x̄e) +
∂

∂xe
G (x̄c (x̄e) , x̄m, x̄e)

]
x̄e. (43)

Note that, given the expression for exp (−∆δct (xm, xc)) in equation (12), we have

1
∆

∂

∂xe
G (x̄c (x̄e) , x̄m, x̄e) x̄e =

1
ρ− 1

(
1− δe

ηe
exp (∆ζ (x̄c))

)
S̄e(∆)

∆
(44)
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and
1
∆

∂

∂xc
G (x̄c (x̄e) , x̄m, x̄e) =

1
ρ− 1

Sc (∆) ζ ′ (x̄c) . (45)

The derivative d
dxe

xc(xe) is given in equation (26). Similarly, define the elasticity of the growth in
the number of products with respect to entry by

ΘH =
1
∆

∂

∂xe
H (x̄m, x̄e) x̄e = (1− δe)

Fe (∆)
∆

. (46)

Note that as ∆→ 0,

ΘG →
1

ρ− 1

(
1− δe

ηe

)
ηeλx̄e, (47)

ΘH → (1− δe)λx̄e. (48)

By the definition of J, we have

log Jt+1 − log Jt

∆
≡ (1− φ)

1
∆

G (xct, xmt, xet) + (1− ψ)
1
∆

H (xmt, xet) . (49)

Thus, we can define the elasticity ΘJ of the growth rate of J with respect to changes in entry from

ΘJ = (1− φ)ΘG + (1− ψ)ΘH . (50)

The following expressions allow us to pin down, up to a first-order approximation, the BGP
levels of aggregate productivity and the measure of products, Z̄0 and M̄0, from initial conditions
Z0 and M0 as follows:

log Z̄0 = log Z0 +
ΘG
ΘJ

(log J̄0 − log J0) (51)

log M̄0 = log M0 +
ΘH
ΘJ

(log J̄0 − log J0) (52)

where ΘG, ΘH and ΘJ are evaluated at the BGP.
These expressions are derived as follows. To a first-order approximation, we have

(log Jt+1 − log J̄t+1)− (log Jt − log J̄t) = ∆ΘJ (log xet − log x̄e) , (53)

(log Zt+1 − log Z̄t+1)− (log Zt − log Z̄t) = ∆ΘG (log xet − log x̄e) (54)

and
(log Mt+1 − log M̄t+1)− (log Mt − log M̄t) = ∆ΘH (log xet − log x̄e) . (55)

Substituting equation (53) into (54) and (52), we obtain

(log Zt+1 − log Z̄t+1)−
ΘG
ΘJ

(log Jt+1 − log J̄t+1) = (log Zt − log Z̄t)−
ΘG
ΘJ

(log Jt − log J̄t) , (56)

(log Mt+1 − log M̄t+1)− ΘH
ΘJ

(log Jt+1 − log J̄t+1) = (log Mt − log M̄t)− ΘH
ΘJ

(log Jt − log J̄t). (57)
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By direct recursion, we have

(log Zt+1 − log Z̄t+1)−
ΘG
ΘJ

(log Jt+1 − log J̄t+1) = (log Z0 − log Z̄0)−
ΘG
ΘJ

(log J0 − log J̄0) (58)

and

(log Mt+1 − log M̄t+1)− ΘH
ΘJ

(log Jt+1 − log J̄t+1) = (log M0 − log M̄0)− ΘH
ΘJ

(log J0 − log J̄0). (59)

To be consistent with convergence to the BGP path, we must have that (log Zt+1 − log Z̄t+1) and
(log Mt+1 − log M̄t+1) converge to zero as (log Jt+1 − log J̄t+1) converges to zero. Setting the left-
hand side in equations (58) and (59) to zero, the unique values of the initial conditions (log Z0 − log Z̄0)
and (log M0 − log M̄0) consistent with this terminal condition are given by equations (51) and (52).

With these solutions for the BGP levels of aggregate productivity and the measure of products,
it is straightforward to solve for the BGP level of the physical capital stock given the BGP allocation
of labor to current production obtained from equation (40) and the BGP physical-capital-to-output
ratio obtained from equation (41).

D Characterizing dynamics of J, Z, and M

We now consider the dynamics of aggregate productivity implied by our model when the path
of research labor {lrtLt} is taken as exogenous such that the fraction of labor allocated to research
converges to its BGP value l̄r and population Lt converges to its BGP path {L̄rt}. We assume that

the ratios (1−τcorpλI)(1−τm)

(1−τcorpλE)(1−τe)
and (1−τcorpλI)(1−τc)

(1−τcorpλE)(1−τe)
remain constant.

Equations (7), (8), (11), (14), (24), (25), and (49) can be used to solve for the path
Zt = {Yrt, xet, xmt, xct, Jt+1, Zt+1, Mt+1} given initial conditions for J0, Z0, M0 and the path of
research labor {lrtLt}. As discussed above, equation (24) implies that with positive entry, xmt =
x̄m. Thus, equations (7), (8), and (25) imply that, to a first-order approximation

(log xet − log x̄e) = A
[ (

log lrt − log l̄r
)
+ (log Lt − log L̄t)− (log Jt − log J̄t)

]
, (60)

where

A ≡ x̄c + x̄m + x̄e

x̄e

[
1

d
dxe

xc (x̄e) + 1

]
(61)

and d
dxe

xc(x̄e) is given by equation (26) evaluated at the BGP values of investment. Since in the
limit, as ∆ approaches zero xc is independent of xe, then the continuous time limit of A is

A =
x̄c + x̄m + x̄e

x̄e
. (62)

Define
Θ ≡ AΘJ . (63)

From equation (53), we have

log Jt+1 − log J̄t+1 = ∆Θ
[(

log lrt − log l̄r
)
+ (log Lt − log L̄t)

]
+ (1− ∆Θ) (log Jt − log J̄t) . (64)
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The initial condition of this AR1 process for J, log J0 − log J̄0, is given (since the BGP level J̄t and
growth rate ḡJ are both pinned down).

The analog of equation (24) in Proposition 1 of the paper, allowing for a length of time period
∆, is

log Jt+1 − log J̄t+1 =
t

∑
j=0

∆Θ (1− ∆Θ) j [(log lrt−j − log l̄r
)
+
(
log Lt−j − log L̄t

)]
+ (65)

+ (1− ∆Θ) t+1 (log J0 − log J̄0) .

Once we solve for the dynamics of J, the dynamics of aggregate productivity and the measure
of products are given by

log Zt − log Z̄t =
ΘG
ΘJ

(log Jt − log J̄t) (66)

log Mt − log M̄t =
ΘH
ΘJ

(log Jt − log J̄t) . (67)

Equations (66) and (67) are implied by equations (58) and (59) together with the initial condition
from Proposition 1, (log Z0 − log Z̄0) =

ΘG
ΘJ

(log J0 − log J̄0) and (log M0 − log M̄0) =
ΘH
ΘJ

(log J0 − log J̄0).

Note that the dynamics of aggregate productivity to the BGP, as given by log Zt − log Z̄t, do not
depend, to a first-order approximation, on the initial decompositon of J0 into Z0 and M0.

The analog of equation (27) in Corollary 1 of the paper, allowing for a length of time period ∆,
is

log Zt+1 − log Z0 − tḡZ = ∆AΘG

t

∑
j=0

(1− ∆Θ) j (log lrt−j − log lr0
)

(68)

Proof of Corollary 1: Under the assumptions that the growth rates of scientific knowledge and
population are unchanged, we have that the terms log Lt−j− log L̄t = 0 in equation (65). Likewise,
we have that the path of {Art} is unchanged. Note that since we assume that the economy starts
on an initial BGP, the terms lr0, J0, and Z0 correspond to the levels of these variables at t = 0
on that initial BGP. The terms l̄r, J̄0, and Z̄0 correspond to the values of these variables on the
new BGP. The term ḡZ corresponds to the growth rate of aggregate productivity on the new BGP.
Under the assumption that the allocation of innovative investment x̄c,x̄m, and x̄e is unchanged, we
have that the growth rate of productivity on the new BGP is equal to its growth rate on the initial
BGP. In addition, under the assumption that the allocation of investment is unchanged, we have
x̄c + x̄m + x̄e = Ȳr = Yr0, and hence from equation (42), we have that log J0 − log J̄0 = log lr0 =
log l̄r. Using these equations and equations (63) and (66), we can then rewrite equation (65) as

log Zt+1 − log Z̄t+1 =

ΘG
ΘJ

[
t

∑
j=0

∆Θ (1− ∆Θ) j [(log lrt−j − log lr0
)
+
(
log lr0 − log l̄r

)]
+ (1− ∆Θ) t+1 (log lr0 − log l̄r

)]
=

∆AΘG

t

∑
j=0

(1− ∆Θ) j (log lrt−j − log lr0
)
+ log Z0 − log Z̄0
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Using the fact that log Z̄t+1 − log Z̄0 = (t + 1)ḡZ, and that the growth rate of aggregate produc-
tivity on the initial and the new BGP is the same, this gives us equation (68). This proves the
result.

When solving for the allocation of labor to production and research on the optimal BGP, assume
that the production subsidy τy is set as required to undo the distortions of corporate taxes and
markups on the accumulation of physical capital in equation (41). That is, we assume that τy is set
so that, on the BGP

τy = µ

(
1− τcorpλK

1− τcorp

)
− 1. (69)

The log of the consumption-equivalent variation in welfare that arises from a perturbation of the
BGP allocation is given, to a first-order approximation, by

log ξ ≈ (1− exp (∆ (ḡY − R̄)))
∞

∑
t=0

exp (t∆ (ḡY − R̄))
Ȳ
C̄

[(
log Z′t − log Z̄t

)
− (1− α)

l̄r
l̄p

(
log l′rt − log l̄r

)]

The allocation of labor to production and research on the optimal BGP is such that log ξ = 0, which
implies

l̄∗r
l̄∗p

=

(
1

1− α

)
AΘG

∆ exp (∆ (ḡY − R̄))
1− exp (∆ (ḡY − R̄)) (1− ∆Θ)

. (70)

In the continuous time limit we have

l̄∗r
l̄∗p

=

(
1

1− α

)
AΘG

1
R̄− ḡY + Θ

,

where the continuous time expressions for A and ΘG are given above.

E System of linearized equations

To solve for the transitional dynamics of the model economy from its initial conditions to a new
BGP, we log-linearize the equations of the model around the new BGP. We treat the variables Jt
and Kt as the endogenous state variables of the model. When we consider demographic changes,
we consider exogenously specified paths for the growth rate of populations denoted by gLt =
log Lt+1 − log Lt. We assume that the sequence {gLt} converges to a new BGP growth rate ḡ′L.

The log-linearized versions of the model equations are as follows. The log-linearized versions
of equation (1) are given by

0 = ỹt −
C̄
Ȳ

c̃t + exp(−∆δK)
K̄

∆Ȳ
k̃t − exp(∆ḡY)

K̄
∆Ȳ

k̃t+1,

where a tilde over a variable indicates the difference between the log of a variable and the log of
its level on the BGP. Equation (5) becomes

0 = −ỹt + z̃t + αk̃t + (1− α)
(
l̃pt + L̃t

)
.
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The resource constraint on labor is
0 = l̄r ˜lrt + l̄p l̃pt.

As discussed above, equations (7), (8), (11), (14), (24), (25), and (49) give us equation (64) here
written as

j̃t+1 = ∆Θ
[
l̃rt + L̃t

]
+ (1− ∆Θ) j̃t,

together with

z̃t =
ΘG
ΘJ

j̃t

m̃t =
ΘH
ΘJ

j̃t.

From equation (60) we have
Ax̃et = l̃rt + L̃t − J̃t,

where A is defined in equation (61) and

x̃ct =
dxc

dxe

x̄c

x̄c
x̃et,

where d
dxe

xc(x̄e) is given by equation (26) evaluated at the BGP values of investment.
From equation (16), we have

s̃et+1 = (ρ− 1) (z̃t − z̃t+1) + x̃et.

The first-order condition for consumption is the standard equation

0 = ∆R̄R̃t − γ(c̃t+1 − L̃t+1) + γ(c̃t − L̃t).

The Euler equation for physical capital is the standard equation

R̄R̃t =
exp(∆R̄)− exp(−∆δk)

exp(∆R̄)∆
[
ỹt+1 − k̃t+1

]
.

Finally, we derive the Euler equation governing investment in entry by log-linearizing equa-
tions (20) and (23). We let vt = Vt/Yt, dt = Dt/Yt and pt = Prt/Mψ−1

t Yt. The equations to be
log-linearized include

pt =
1− α

µ

1
Art JtlptLt

,

which is derived from the first-order condition of the profit maximization problem of the firm
producing the research good and the formula for the fraction of output of the final consumption
good paid as wages, as well as

dt = (1− τcorp)
µ− 1

µ
(1 + τy)− (1− τcorpλI)pt [(1− τc)xct + (1− τm)xmt] ,

which is derived from equation (19), the equation

vt = ∆dt + exp(−∆Rt)vt+1
Yt+1

Yt
[1− Set+1(∆)] ,
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which is derived from equation (20), (14), and (16), and the zero-profits entry condition derided
from (23)

(1− τcorpλE)(1− τe)prtxet = exp(−∆Rt)vt+1
Yt+1

Yt

Set+1(∆)
∆

.

We use the zero-profits entry condition as the second intertemporal Euler equation in the model.
We use this condition to substitute into the equation for the value function to get

vt = ∆dt + ∆(1− τcorpλE)(1− τe)prtxet
[1− Set+1(∆)]

Set+1(∆)
.

The log-linearized versions of these equations are

p̃t = − J̃t − l̃pt − L̃t

d̃t = −
(1− τcorpλI) p̄ [(1− τc)x̄c + (1− τm)x̄m]

d̄
p̃t −

(1− τcorpλI) p̄(1− τc)x̄c

d̄
x̃ct

ṽt = [1− exp(−∆(R̄− ḡY)) (1− S̄e(∆)))] d̃t + exp (−∆(R̄− ḡY)) [1− S̄e(∆)] [ p̃rt + x̃et]− exp (−∆(R̄− ḡY)) s̃et+1

and
p̃rt + x̃et = −∆R̄R̃t + ṽt+1 + ỹt+1 − ỹt + s̃et+1.

F Calibration

Our calibration strategy is similar, but not identical, to that in Atkeson and Burstein (2018) (hence-
forth AB2018). We impose the following restrictions on policies on the initial BGP. Incumbent firms
can deduct all of their innovative investments (λI = 1), while entering firms cannot (λE = 0) since
they are not incorporated at the time of their investments. We follow Barro and Furman (2018)
in setting the corporate profit tax rates, τcorp = 0.38 (and, in the corporate profits tax experiment,
we set the new tax rate to τ′corp = 0.26).3 We set the extent of physical investment expensing λk
as discussed below. We set τc = τm = τe = τrd = 0.03 as in AB2018. We allow for a production
subsidy τy to remove the distortions in the allocation of physical capital induced by the markup
and the corporate profits tax. The choice of τy only affects our welfare calculations.

We set the time period to 1 month, ∆ = 1/12, and λ = 1 (without loss of generality for our
model’s loglinearized dynamics, as long as λ > 0). We consider three combinations of the spillover
parameters φ and ψ: {0.96, 1}, {−1.6, 1}, and {0.96, 0}. We set ρ = 4 and γ = 1 as in AB2018. We
set ḡL = 0.007 and ḡM = 0.01 as in AB2018, and choose ḡA so that ḡY = 0.025 as in AB2018, where

ḡY =
ḡZ

1− α
+ ḡL

and
(1− φ)ḡZ + (1− ψ)ḡM = ḡA + ḡL,

. We set β to satisfy (by equation (35))

exp(−∆R̄) = β exp (−γ∆ (ḡY − ḡL))

3In contrast to AB2018, we do not pick the corporate profit tax rates to match the ratio of payments of taxes on income
and wealth relative to the tax base of the corporate profits tax in the data.
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with R̄ = log (1 + 0.04) as in AB2018.
As in AB2018, we use the annual growth of the measure of products gA

Mt = log(Mt+1/Mt), the
fraction of products that are continuing products in incumbent firms f A

ct+1, the fraction of products
that are new to incumbent firms measured as the sum of those that are new to society and stolen
f A
mt+1, and the fraction of products that are produced in entering firms measured as the sum of

those that are new to society and stolen f A
et+1 = 1− f A

ct+1 − f A
mt+1, the aggregate size of continuing

products in incumbent firms sA
ct+1, the aggregate size of products that are new to incumbent firms

measured as the sum of those that are new products and those that are stolen sA
mt+1, and the

aggregate size of products that are new to entering firms measured as the sum of those that are
new products and those that are stolen sA

et+1 = 1− sA
ct+1 − sA

mt+1. Time averages of these variables
are denoted with a bar. In the next Subsection F.1, we show how to convert these annual measures
to per unit of time measures f̄i (∆) and s̄i (∆) for i = e, m, c. For simplicity, in what follows we
omit the argument (∆), so f̄i = f̄i (∆) and s̄i = s̄i (∆).

We calibrate δ0, ηe, ηm and the initial BGP values of δ̄c, h(x̄m), ζ(x̄c), x̄e to satisfy the following
equations:

f̄e = exp(−∆ḡM)(1− exp(−∆λ))x̄e

f̄m = exp(−∆ḡM)ηm (1− exp(−∆h(x̄m)))

1− f̄e − f̄m = exp(−∆ḡM) exp(−∆δ̄c)

s̄e = exp(−(ρ− 1)∆ḡZ)(1− exp(−∆λ))ηe x̄e

s̄m = exp(−(ρ− 1)∆ḡZ)ηm (1− exp(−∆h(x̄m)))

s̄c = exp(−(ρ− 1)∆ḡZ) exp(−∆δ̄c) exp(∆ζ(x̄c))

exp(−∆δ̄c) = exp(−∆δ0)− δm(1− exp(−∆h(x̄m)))− δe(1− exp(−∆λ))x̄e

In the specification without business stealing, we set δm = δe = 0. In the specification with
business stealing, we set δm = δe so that, as in AB2018,

(ḡZ − G(x̄c, x̄m, 0))
ḡZ

= 0.257,

where

G(xc, xm, 0) =
1

ρ− 1
log
(

exp(−∆δ0
c ) exp(∆ζ(xc)) + ηm(1− exp(−∆h(xm))

)
and

exp(−∆δ0
c ) = exp(−∆δ0)− δm(1− exp(−∆h(x̄m))).

We calibrate ζ ′(x̄c) and h′(x̄m) using equations (24) and (25):

(
1− τcorp

) (1− exp(−∆λ))

∆
ηe = ηm exp(−∆h(x̄m))h′(x̄m)

(
1− τcorp

) 1− exp(−∆λ)

∆
ηe = exp(−∆δ̄c) exp(∆ζ(x̄c))ζ

′(x̄c).
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We specify the functions h(·) and ζ(·) as

h (xm) = h1xh2
m

ζ (xc) = ζ0 + ζ1xζ2
c .

In order to calibrate the parameters h1, h2, ζ1, and ζ2, we must know the values of x̄c and x̄m. Our
calibration procedure uses as an input a measure of (x̄c + x̄m) /Ȳr and implies a value of x̄e/Ȳr, but
does not pin down x̄c and x̄m separately. To determine the value of x̄c, we follow the same logic as
in AB2018. The contribution of investment in acquiring products each period to firm value must
be nonnegative. That is, on a BGP, we must have v̄ at least as large as the value that the firm would
obtain if it were to set investment into acquiring new products equal to zero in every period. Given
the assumption that h(0) = 0, this alternative value ṽ of incumbent firms on a BGP is given by

ṽ =
∆

1− exp (∆ (ḡY − R̄)) s̄c

(
1− τcorp

) [(µ− 1
µ

)
− (1− τrd) p̄r x̄c

]
,

and the value of the firm v̄ is given by

v̄ =
∆

1− exp (∆ (ḡY − R̄)) (1− s̄e)

(
1− τcorp

) [(µ− 1
µ

)
− (1− τrd) p̄r (x̄c + x̄m)

]
.

The requirement that ṽ ≤ v̄ implies that the research expenditures of incumbents on improving
continuing products relative to value added must lie between the bounds

p̄r (x̄c + x̄m) ≥ p̄r x̄c ≥ (71)

1− exp (∆ (ḡY − R̄)) s̄c

1− exp (∆ (ḡY − R̄)) (1− s̄e)
p̄r (x̄c + x̄m)−

exp (∆ (ḡY − R̄)) s̄m

1− exp (∆ (ḡY − R̄)) (1− s̄e)

1
(1− τrd)

(
µ− 1

µ

)
.

In our calibration, we set p̄r x̄c in the middle point between the two bounds. Given values of x̄m,
h (x̄m), and h′ (x̄m), we determine the values of h0 and h1. Given values of x̄c, ζ (x̄c), and ζ ′ (x̄c)
(which are assigned as described above, independently of ζ2) and a value of 0 < ζ2 < 1, we
determine the values of ζ0 and ζ1. We set ζ2 halfway between its two bounds, that is, ζ2 = 0.5.

We now describe how we set {α, δk, µ, λk}. We set δk such that exp(−δK) = 1 − 0.055 as in
AB2018. We choose µ so that Tobin’s q is equal to 1.15, where Tobin’s q is defined as

q̄ =
v̄ + v̄k

K̄
Ȳ(1+τy)

(72)

given the expressions for values and dividends above,

v̄ =
∆d̄

1− exp (∆ (ḡY − R̄)) (1− s̄e)

v̄k =
∆d̄k

1− exp (∆ (gY − R̄))

d̄ =
(
1− τcorp

) [µ− 1
µ
− (1− τrd) p̄r (x̄c + x̄m)

]
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d̄k =
Dkt(

1 + τy
)

Ȳt
= (1− τcorp)

RktK̄
Ȳt
(
1 + τy

) − (1− τcorpλk)
K̄t+1 − exp (−∆dk) K̄t+1

∆Ȳt
(
1 + τy

)
= (1− τcorp)

α

µ
− (1− τcorpλk)

K̄
Ȳ
(
1 + τy

) (exp
(
∆ḡy

)
− exp(−∆dk)

∆

)

and where we set K̄
Ȳ(1+τy)

= 2.12 and p̄r (x̄c + x̄m) = 0.061 as in AB2018. We solve for α using

(1−α)
µ =

W̄t L̄pt

(1+τy)Ȳt
= 0.654 (as in AB2018) and for λK using

exp (∆R̄)− exp (−∆δK)

∆
=

(
1− τcorp

1− τcorpλK

)
α

µ

Ȳ
(
1 + τy

)
K̄

.

In some exercises, we set τy in order to remove the distortion on the Euler equation for physical
capital as given in equation (69).

We calculate unmeasured investment by entrants p̄r x̄e as

p̄r x̄e =
s̄e

(1− τ̄rd)
exp (∆ (ḡY − R̄)) v̄

, total innovative investment as
īr = p̄r (x̄c + x̄m + x̄e) ,

and the ratio of production to research labor as

l̄r
l̄p

=
µ

1− α
īr.

F.1 Firm dynamics at an annual frequency on a BGP

Given a choice of ∆, we calibrate our model to statistics on firm dynamics at an annual frequency.
Let ∆ = 1/N for some integer N. Thus, if Mt is the measure of products at the beginning of
the year, then Mt+N is the measure of products at the beginning of the next year. On a BGP, we
assume that all per-period growth rates, entry rates, and exit rates are constant. We now describe
the method we use to match parameters governing per-period rates to data at an annual frequency.

Let exp(−δ̄c)Mt denote the measure of products produced at t + N that were produced by the
same incumbent firm at t. Let Fc denote the ratio of this measure to Mt+N or, equivalently, the
fraction of products at t + N that are incumbent products (from period t) in incumbent firms. This
fraction satisfies

exp(−δ̄c) exp(−ḡm) = Fe. (73)

Then we can interpret exp(−δc) as the probability at an annual frequency that any product at t
continues in the same firm until t + N. The corresponding per period survival rate is exp(−∆δc).
We assume that this per period survival rate is constant across all incumbent products.

Let Fm Mt+N denote the measure of products produced at t + N that are produced in incum-
bent firms (firms that existed at t) but that are new to that firm. Then (Fm + Fc) Mt+N is the
measure of products at t + N that are produced in incumbent firms (firms that existed at t). Let
(1− exp(−∆h(xm)) denote the probability each period that incumbent firms add new products
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per product that they currently produce. Let MI
t+j denote the measure of products at t + j pro-

duced in firms that existed at time t. These firms will add (1− exp(−∆h(xm))MI
t+j products in

period t + j + 1 and lose (1− exp(−∆δ̄c))MI
t+j products so that

MI
t+j+1 =

[
exp(−∆δ̄c) + (1− exp(−∆h(xm))

]
MI

t+j.

Note that MI
t+j = Mt for j = 0 and MI

t+N = (Fm + Fc) Mt+N or j = N . Thus, the total measure of
products produced at t + N in firms that existed at t is given by

(Fc + Fm) =
[
exp(−∆δ̄c) + (1− exp(−∆h(xm))

]N exp(−ḡm).

Hence, the total measure of products produced at t + N in firms that existed at t that are new to
those firms is

Fm =
[
exp(−∆δ̄c) + (1− exp(−∆h(xm))

]N exp(−ḡm)− exp(−δ̄c) exp(−ḡm). (74)

We have that the fraction of products at t + N that are produced in firms that did not exist at t is
then given by Fe = 1− Fc − Fm.

Note that these equations imply that if we define Fc(∆) to be the fraction of products at t + 1
that were produced in the same firm at t and t + 1, we have

Fc(∆) = exp(−∆δ̄c) exp(−∆ḡm) = F∆
c (75)

and if we define Fc(∆) + Fm(∆) to be the fraction of products at t + 1 that are produced in a firm
that operated at t and t + 1, we have

Fc(∆) + Fm(∆) =
[
exp(−∆δ̄c) + (1− exp(−∆h(xm))

]
exp(−∆ḡm) = (Fc + Fm)

∆ .

Thus, we have

Fm(∆) = (Fc + Fm)
∆ − F∆

c = (1− exp(−∆h(xm)) exp(−∆ḡm). (76)

Finally, we have that the fraction of products at t + 1 produced in firms that did not exist at t is
given by

Fe(∆) = 1− Fc(∆)− Fm(∆) = (1− exp(−∆λ))x̄e exp(−∆ḡm), (77)

where this last equation follows from equations (11) and (12).
We proceed in a parallel fashion to convert annual employment shares Sc, Sm, and Se to per-

period shares Sc(∆), Sm(∆), Se(∆).
Let Sc denote the fraction of employment at t + N in firms producing products that they also

produced at t. As shown above, there are exp(−δ̄c)Mt of these products. These products had
an average value of zρ−1 of Zρ−1

t /Mt. The average value of zρ−1 for these products grew at
rate exp(∆ζ(x̄c)) for N periods, so these products end up with an average value of zρ−1 equal
to exp(ζ(x̄c))Zρ−1

t /Mt. Thus, we have

Sc(∆) = exp(−∆δ̄c) exp(∆ζ(x̄c)) exp(−∆(ρ− 1)ḡz) = S∆
c . (78)
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Let Sc + Sm denote the fraction of employment at t + N in firms that were also active at t. By
definition, Sm is the share of employment in these firms at t + N producing products that they did
not produce at t. Parallel arguments to those above give

Sc(∆)+Sm(∆) =
[
exp(−∆δ̄c) exp(∆ζ(x̄c)) + ηm(1− exp(−∆h(xm))

]
exp(−∆(ρ− 1)ḡz) = (Sc + Sm)

∆ .

Thus, we have

Sm(∆) = (Sc + Sm)
∆ − S∆

c = ηm(1− exp(−∆h(xm)) exp(−∆(ρ− 1)ḡz). (79)

Finally, we have

Se(∆) = 1− Sc(∆)− Sm(∆) = ηe(1− exp(−∆λ))x̄e exp(−∆(ρ− 1)ḡz), (80)

where this last equation follows from equation (14).

G Quantitative results

Here we report the responses of aggregate productivity and output, welfare, the allocation of labor
in research, the share of production and incumbents’ research labor compensation in output (i.e.,
(1− α)/µ + pr(xc + xm)), the share in employment of entrants (i.e., Se), the valuation of firms as
measured by Tobin’s q defined in equation (72), and the elasticities (ΘG, ΘH , ΘJ , and AΘG) for the
experiments that we consider in Sections 5 and 6 of the paper.

G.1 Uniform increase in innovation subsidies

We consider a uniform increase in innovation subsidies to implement an increase in the innovation
intensity of the economy from 0.090 on the initial BGP to 0.102 on the new BGP. The correspond-
ing allocation of labor to research rises from l̄r/l̄p = 0.139 on the initial BGP to a value of 0.155
on the new BGP. We show results from this experiment in Tables 1 - 8. The responses of aggregate
productivity at 20 and 100 years along the equilibrium transition path shown in Table 2 are similar
to those shown in our experiment in Table 1 in the main paper. The responses of aggregate output
shown in Table 3 are smaller than the corresponding responses of aggregate productivity because
the amount of labor allocated to current production is permanently reduced. As shown in Table
4, this innovation policy experiment has very little impact on the valuation of firms as measured
by Tobin’s q, except for the case of the first generation endogenous growth research technology.
In this case, the valuation of firms drops considerably. This is because the share of employment in
entering firms rises for a very long time along the transition in the case with the first generation
endogenous growth research technology, as shown in Table 6. This persistent increase in entry
leads to a decline in the ratio of product value Vt to dividends Dt along the transition. As shown
in Table 5, the share of labor compensation (including both production and research labor by in-
cumbents) in output rises slightly due to the increase in the incumbents’ innovation intensity of
the economy.

As shown in Table 1, this uniform increase in innovation subsidies leads to a significant increase
in welfare in the specification of the model with the first generation endogenous growth research
technology, a more moderate increase in welfare with the J/K/S research technology, and a decline
in welfare with the second generation endogenous growth research technology.
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Table 1: Welfare gains, uniform subsidy experiment

Long-run
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 1.230 1.029 0.999

With business stealing 1.076 1.019 0.992

Table 2: Aggregate productivity, uniform subsidy experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.056 0.036 0.011 0.254 0.037 0.011

With business stealing 0.021 0.021 0.005 0.099 0.037 0.005
Note: The values in each column are in log deviations relative to the initial trend.

Table 3: Aggregate output, uniform subsidy experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.050 0.031 0.000 0.313 0.035 0.000

With business stealing 0.010 0.007 −0.008 0.114 0.034 −0.007
The values in each column are in log deviations relative to the initial trend.

Table 4: Tobin’s q, uniform subsidy experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 1.014 1.160 1.151 1.034 1.149 1.149

With business stealing 1.059 1.139 1.150 1.065 1.151 1.149
Note: The values in each column are in levels. The initial BGP level is equal to 1.15.
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Table 5: Labor share, uniform subsidy experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.717 0.723 0.724 0.718 0.724 0.724

With business stealing 0.717 0.721 0.724 0.717 0.724 0.724
Note: The values in each column are in levels. The initial BGP level is 0.716.

Table 6: Employment share of entrants, uniform subsidy experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.036 0.027 0.027 0.035 0.027 0.027

With business stealing 0.036 0.032 0.027 0.035 0.027 0.027
Note: The calculation of the employment share of entrants corresponds to the annual share at the be-

ginning of the 20th year after the policy shock. The values in each column are in levels. The initial BGP
level is 0.027.

Table 7: Allocation of labor Lr/Lp, uniform subsidy experiment
20 years 100 years

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)
No business stealing 0.154 0.155 0.155 0.154 0.155 0.155

With business stealing 0.154 0.158 0.155 0.154 0.155 0.155
Note: The values in each column are in levels. The initial BGP level is 0.139

Table 8: Elasticities, uniform subsidy experiment
ΘG ΘH

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)
No business stealing 0.009 0.009 0.009 0.08 0.08 0.08

With business stealing 0.003 0.003 0.003 0.064 0.064 0.064
ΘJ Impact elasticity

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)
No business stealing 0.000 0.024 0.081 0.028 0.028 0.028

With business stealing 0.000 0.009 0.064 0.011 0.011 0.011
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G.2 Increase in markup µ

We calibrate the increase in the markup µ so that the change in the allocation of labor to research
from the initial to the new BGP is the same as that we considered with the uniform innovation
subsidies. In this experiment, we set to zero the production subsidy, τy. We report the results in
Tables 9-16.

A permanent increase in the markup µ has qualitatively the same effects as a uniform increase
in innovation subsidies. Again, if we hold all other parameters and policies fixed, we find that
the new BGP has the same allocation of innovative investment x̄c, x̄m, and x̄e and hence the same
growth rates of aggregate productivity and the measure of products. As was the case with a
uniform change in innovation subsidies, however, on the new BGP, the economy has a higher
innovation intensity of the economy measured as the ratio of expenditures on innovative invest-
ment relative to output as a result of the increase in markups. In particular, this change moves the
innovation intensity of the economy from 0.090 on the initial BGP to 0.100 on the new BGP.

By comparing Table 7 and Table 15, we can see that the change in the allocation of labor to
research at the 20-year and 100-year horizons is also very similar across experiments. From Table
2 and Table 10, these similar perturbations to the allocation of labor to research produce similar
responses of the level of aggregate productivity relative to trend at horizons of 20 and 100 years.
However, because markups are higher in this case, as indicated in Tables 3 and 11, the response of
aggregate output at the 20- and 100-year horizons is smaller. The increase in markups discourages
the accumulation of physical capital. In Table 12, we see that Tobin’s q is higher in this experi-
ment than what we found with uniform innovation subsidies. The increase in markups has a very
similar impact on the share of labor compensation in output as a uniform increase in innovation
subsidies. The impact of this experiment on firm dynamics as measured by the share of employ-
ment in entrants is also very similar to that found with a uniform change in innovation subsidies.
The impact of this change in markups on welfare is only very slightly smaller than that found with
uniform innovation subsidies.

Table 9: Welfare gains, markup experiment

Long-run
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 1.230 1.028 0.998

With business stealing 1.075 1.018 0.991
Table 10: Aggregate productivity, markup experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.057 0.036 0.011 0.254 0.037 0.011

With business stealing 0.021 0.021 0.005 0.100 0.037 0.005
Note: The values in each column are in log deviations relative to the initial trend.
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Table 11: Aggregate output, markup experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.046 0.026 −0.005 0.308 0.03 −0.005

With business stealing 0.005 0.003 −0.013 0.109 0.029 −0.013
Note: The values in each column are in log deviations relative to the initial trend.

Table 12: Tobin’s q, markup experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 1.070 1.218 1.209 1.091 1.209 1.209

With business stealing 1.113 1.196 1.209 1.119 1.21 1.209
Note: The values in each column are in levels. The initial BGP level is is 1.15.

Table 13: Labor share, markup experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.719 0.726 0.726 0.72 0.726 0.726

With business stealing 0.719 0.723 0.726 0.72 0.726 0.726
Note: The values in each column are in levels. The initial BGP level is 0.716.

Table 14: Employment share of entrants, markup experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.036 0.027 0.027 0.035 0.027 0.027

With business stealing 0.036 0.032 0.027 0.035 0.027 0.027
Note: The calculation of the employment share of entrants corresponds to the annual share at the be-

ginning of the 20th year after the policy shock. The values in each column are in levels. The initial BGP
level is 0.027.
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Table 15: Allocation of labor Lr/Lp, markup experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.154 0.155 0.155 0.154 0.155 0.155

With business stealing 0.154 0.158 0.155 0.154 0.155 0.155
Note: The values in each column are in levels. The initial BGP level is 0.139

Table 16: Elasticities, markup experiment
ΘG ΘH

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)
No business stealing 0.009 0.009 0.009 0.08 0.08 0.08

With business stealing 0.003 0.003 0.003 0.064 0.064 0.064
ΘJ Impact elasticity

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)
No business stealing 0 0.024 0.081 0.028 0.028 0.028

With business stealing 0 0.009 0.064 0.011 0.011 0.011

G.3 Reduction in corporate profits tax rate

We follow Barro and Furman (2018) (henceforth BF2018) in changing the corporate profit tax rate
from τcorp = 0.38 to τ′corp = 0.26. We choose the new value λ′k = 1.05 to match the change in the
user cost of capital across BGPs implied by the BF2018 calibration (so that the increase in the log of
the output-capital ratio across BGPs is equal to 0.08). We set to zero the production subsidy, τy. In
addition to the values for the three specifications for the research technology, we show results in a
specification of the model in which innovative investments by entering and incumbent firms are
fixed exogenously at their initial BGP levels, so that aggregate productivity grows exogenously in
BF2018. We also consider a specification of our model in which innovation by incumbent firms is
fixed at the initial BGP levels, and only innovation by entrants responds to the policy change. We
report the results in Tables 17-25.

Consider first the results from our version of a standard model with exogenous productivity.
By construction, the response of aggregate productivity reported in the first row of Table 17 is zero
at all horizons. In the first row of Table 18, we find that output per worker rises by 2.4% in a
horizon of 20 years relative to the path for output per worker that would have occurred without
the policy change and 2.5% in a horizon of 100 years. So the response of aggregate output is
relatively modest and the convergence to the new BGP is fast. The welfare impact of the change
in corporate profits taxes in this version of our model is reported in the first row of Table 20. Here,
the consumption equivalent change in welfare is 0.4%.

In the specification of the model where firms change their innovation policies after the reduc-
tion in the corporate profits’ tax, the allocation of labor to research rises from l̄r/l̄p = 0.139 on
the initial BGP to a value of approximately 0.144 across all specifications. In addition, innova-
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tion investments by incumbents fall in the new BGP. In the first two specifications of the research
technology, whether or not reallocation of investment toward entry is desirable depends on the
extent of business stealing and the extent to which the initial corporate profits tax policies had
favored investment by incumbent firms over investment by entering firms on the initial BGP. The
change in aggregate productivity over a 20- and 100-year horizon can be either positive (without
business stealing) or negative (with business stealing). In the 20-year horizon, the change in ag-
gregate productivity relative to trend is between +3.5% and 5.3% without business stealing and
roughly −2% with business stealing. The change in output per worker over a 20-year horizon is
between +6.3% and 7.7% without business stealing and roughly −0.5% with business stealing.
The implications for productivity and output over a 100-year horizon and for long-term welfare
are very large in absolute terms (positive without business stealing and negative without business
stealing), especially under the first research technology.

For the third specification of the research technology (second generation endogenous growth),
the reallocation towards innovation by entrants implies a reduction in the BGP growth rate of
productivity, with very negative implications for aggregate productivity, output and welfare (with
or without business stealing).

Another way of understanding the role of reallocation of innovation from incumbents to en-
trants is to compare the implications of the baseline model with the alternative specification in
which innovative investments by incumbents are exogenously fixed at their initial BGP level (see
Tables 26-25). We can see in Table 26 that aggregate productivity rises in all cases, in contrast to
the baseline model in which investments by incumbents respond to the policy change. The im-
pact elasticity on aggregate productivity in this case is identical to that in our uniform subsidy
experiment. The change in aggregate productivity is slightly smaller than under the uniform in-
novation subsidy experiment reported in Table 2 due to a smaller extent of labor reallocation from
production to research.

As shown in Table 19, this experiment implies a large increase in the valuation of firms (as
measured by Tobin’s q) in all cases except for the first generation endogenous growth research
technology. The increase in valuation occurs because the market share of incumbents is relatively
stable so the value of the firm scales almost one to one with the after-tax value of profits, which
rises with the reduction in the corporate profits tax. In contrast, in the first generation endoge-
nous growth research technology, the valuation of firms drops considerably because the share of
employment in entering firms rises for a very long time.

As shown in Table 21, despite the overall increase in the research intensity induced by the
change in corporate profit taxation, the share of labor compensation (including both production
and incumbents’ research labor) in output drops slightly. This is because the research share is
reallocated to entrants, and the wage bill of entering firms is not measured in aggregate output.
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Table 17: Aggregate productivity, corporate profits tax experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0 0 0 0 0 0

No business stealing 0.053 0.035 −0.042 0.265 0.038 −0.315

With business stealing −0.023 −0.02 −0.056 −0.103 −0.03 −0.33

Note: The values in each column are in log deviations relative to the initial trend. In the second gen-
eration endogenous growth models, the growth rate of TFP gZ falls from 0.0136 to 0.0102 and that of
products M increases from 0.0100 to 0.0101.

Table 18: Aggregate output, corporate profits tax experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0.024 0.024 0.024 0.025 0.025 0.025

No business stealing 0.077 0.063 −0.022 0.36 0.071 −0.382

With business stealing −0.007 −0.004 −0.04 −0.112 −0.02 −0.401
Note: The values in each column are in log deviations relative to the initial trend. In the second genera-

tion endogenous growth models, the growth rate gY/L falls from 0.0181 to 0.0136.

Table 19: Tobin’s q, corporate profits tax experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 1.281 1.281 1.281 1.273 1.273 1.273

No business stealing 1.086 1.256 1.299 1.106 1.235 1.278

With business stealing 1.248 1.156 1.297 1.235 1.15 1.278
Note: The values in each column are in levels. The initial BGP level is 1.15.

Table 20: Welfare gains, corporate profits tax experiment
Long-run

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0)
Exogenous Growth 1.004 1.004 1.004

No business stealing 1.257 1.043 0.764

With business stealing 0.913 0.97 0.751
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Table 21: Labor share, corporate profits tax experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0.716 0.716 0.716 0.716 0.716 0.716

No business stealing 0.698 0.702 0.709 0.698 0.702 0.709

With business stealing 0.698 0.696 0.709 0.698 0.695 0.709
Note: The values in each column are in levels. The initial BGP level is 0.716.

Table 22: Employment share of entrants, corporate profits tax experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0.027 0.027 0.027 0.027 0.027 0.027

No business stealing 0.047 0.039 0.028 0.046 0.038 0.028

With business stealing 0.047 0.051 0.028 0.047 0.054 0.028
Note: The calculation of the employment share of entrants corresponds to the annual share at the be-

ginning of the 20th year after the policy shock. The initial BGP level is 0.027.

Table 23: Allocation of labor Lr/Lp, corporate profits tax experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0.139 0.139 0.139 0.139 0.139 0.139

No business stealing 0.144 0.144 0.142 0.144 0.144 0.143

With business stealing 0.144 0.143 0.143 0.144 0.145 0.143
Note: The values in each column are in levels. The initial BGP level is 0.139.

Table 24: Elasticities, corporate profits tax experiment
ΘG ΘH

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)
No business stealing 0.013 0.013 0.01 0.115 0.115 0.085

With business stealing 0.007 0.007 0.004 0.129 0.129 0.067

ΘJ Impact elasticity
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing 0.001 0.035 0.085 0.026 0.026 0.023

With business stealing 0.000 0.019 0.067 0.012 0.012 0.009
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Table 25: Welfare gains, corporate profits tax experiment with fixed innovation decisions by in-
cumbents

Long-run
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 1.004 1.004 1.004

No business stealing 1.193 1.027 1.004

With business stealing 1.068 1.020 0.999
Table 26: Aggregate productivity, corporate profits tax experiment with fixed innovation de-
cisions by incumbents

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0 0 0 0 0 0

No business stealing 0.042 0.028 0.009 0.214 0.030 0.009

With business stealing 0.016 0.016 0.004 0.084 0.030 0.004
Note: The values in each column are in log deviations relative to the initial trend. In the second genera-

tion endogenous growth models, the growth rates gZ and gM are unchanged between BGPs.

Table 27: Aggregate output, corporate profits tax experiment with fixed innovation decisions
by incumbents

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0.024 0.024 0.024 0.025 0.025 0.025

No business stealing 0.059 0.047 0.024 0.289 0.054 0.026

With business stealing 0.016 0.016 0.004 0.084 0.030 0.004
Note: The values in each column are in log deviations relative to the initial trend. In the second genera-

tion endogenous growth models, the growth rate gY is unchanged between BGPs.

Table 28: Allocation of labor Lr/Lp, corporate profits tax experiment with fixed innovation
decisions by incumbents

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

Exogenous Growth 0.139 0.139 0.139 0.139 0.139 0.139

No business stealing 0.152 0.152 0.152 0.152 0.152 0.152

With business stealing 0.152 0.154 0.152 0.152 0.152 0.152

Note: The values in each column are in levels. The initial BGP level is 0.139.
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G.4 Population growth decline

We consider a gradual and permanent reduction in the population growth rate gLt. In particular,
the growth rate of the population falls by half a percentage point (broadly consistent with the
projections by the Congressional Budget Office summarized in Shackleton et al. (2018)) from the
old BGP rate of 0.7% to 0.2% with an AR1 coefficient of 0.93 on an annual basis. This implies that
the half-life of the transition of the population is roughly 10 years. We report the results in Tables
29-36.

Changes in the BGP growth rates, reported in Table 29, are calculated using the two sufficient
statistics discussed in the main paper. Given the large response of the growth rate in the first
generation endogenous growth research technology, we do not present results in this case.

The reallocation of labor away from research implies that aggregate productivity falls relative
to the initial BGP trend. As shown in Table 30, the magnitude of the reduction in the first 20
years is quite modest. Output per capita falls by less than productivity (or rises slightly) due to
the reallocation of labor toward production. As shown in Tables 32 and 33, the decline in the
population growth rates has a very small impact on the valuation of firms as measured by Tobin’s
q. The share of labor compensation in output over a 20-year horizon falls slightly due to the
increase in the innovation intensity of the economy.

Table 29: BGP growth rates, population growth experiment

Z M Y/L
(φ, ψ) (−1.67, 1) (0.96, 0) (−1.67, 1) (0.96, 0) (−1.67, 1) (0.96, 0)

No business stealing 0.012 0.013 −0.007 0.005 0.016 0.017

With business stealing 0.012 0.013 −0.024 0.005 0.016 0.018

Note: The values in the table can be computed analytically and are highly sensitive to the specification of the research
technologies (see Section 4 in the main paper). The BGP rates gZ, gM, and gY/L are 0.0136, 0.01, and 0.0181 initially.

Table 30: Aggregate Productivity, population growth experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − −0.025 −0.013 − −0.174 −0.058

With business stealing − −0.009 −0.006 − −0.130 −0.028

Note: The values in the table are log deviations relative to the initial trend, corresponding to gL = 0.0067.
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Table 31: Output per capita

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − −0.001 0.012 − −0.196 −0.047

With business stealing − 0.013 0.020 − −0.138 −0.009

Note: The values in the table are in levels. The BGP value, corresponding to gL = 0.0067, is 0.7162.

Table 32: Tobin’s q, population growth experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − 1.148 1.127 − 1.140 1.125

With business stealing − 1.179 1.131 − 1.206 1.130

Note: The values in each column are in levels. The BGP value, corresponding to a growth rate in population of
0.0067., is 1.15.

Table 33: Labor share, population growth experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − 0.717 0.714 − 0.717 0.714

With business stealing − 0.720 0.714 − 0.725 0.714

Note: The values in each column are in levels. The BGP value, corresponding to a growth rate in population of
0.0067, is 0.7162.

Table 34: Employment share of entrants, population growth experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − 0.022 0.025 − 0.021 0.025

With business stealing − 0.024 0.025 − 0.013 0.025

Note: The calculation of the employment share of entrants corresponds to the annual share at the beginning of the
20th year after the policy shock. The values in each column are in levels. The BGP value, corresponding to a growth
rate in population of 0.0067, is 0.027.
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Table 35: Allocation of labor Lr/Lp, population growth experiment

20 years 100 years
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − 0.130 0.130 − 0.130 0.130

With business stealing − 0.135 0.130 − 0.131 0.130

Note: The initial BGP value is 0.0139.
Table 36: Elasticities, population growth experiment

ΘG ΘH

(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − 0.007 0.009 − 0.064 0.076

With business stealing − 0.002 0.003 − 0.030 0.059

ΘJ Impact elasticity
(φ, ψ) (0.96, 1) (−1.67, 1) (0.96, 0) (0.96, 1) (−1.67, 1) (0.96, 0)

No business stealing − 0.019 0.076 − 0.026 0.028

With business stealing − 0.004 0.059 − 0.009 0.011
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H Declining Entry Rates and Aggregate Productivity

The model predicts a specific relationship between the dynamics of aggregate productivity and
business formation, depending on the nature of the shock driving innovation decisions. For this
reason, the model can be used to study the implications of the recent decline in firm entry on
aggregate productivity. In this section, we consider three alternative counterfactual changes in
policies or the economic environment that might account for the observed decline in entry. In
our first counterfactual exercise, we assume that the decline in entry is driven by a decrease in
innovation subsidies that is uniform in the sense that (1 − τc)/(1 − τe) and (1 − τm)/(1 − τe)
are unchanged across the initial and new BGPs. In our second counterfactual exercise, we assume
that the decline in entry is driven by a decrease in innovation subsidies for entry, with subsidies for
innovative investment by incumbents left unchanged. This counterfactual exercise is similar to a
change in the corporate income tax, where entrants can not expense at the same rate as incumbents
their R&D investments. In our third counterfactual exercise, we assume that the decline in entry
is driven by a decline in the BGP growth rate of population, ḡ′L, chosen in each specification so
that the entry rate on the new BGP is S̄′e = 1.64%. In Tables 37 and 38, we report the inputs Θ′G,
log S̄′e − log S0, and ḡ′Z − ḡZ needed to implement the formula in equation (31) in the main paper
for the model-implied cumulative change in aggregate productivity relative to initial trend over
the first 20 years of transition, log Z20 − log Z0 − 20ḡZ.

EXPERIMENT RESEARCH TECH. Θ′G log S̄′e/Se0 ḡ′Z − ḡZ logZ20/Z0 − 20ḡZ

UNIFORM INNOVATION TAX FIRST GEN. EG 0.009 0 0 -0.0466
J/K/S 0.009 0 0 -0.0466
SECOND GEN. EG 0.009 0 0 -0.0466

ENTRY TAX FIRST GEN. EG 0.0055 -0.5 0 0.0280
J/K/S 0.0055 -0.5 0 0.0280
SECOND GEN. EG 0.0055 -0.5 0.0257 0.5428

DECLINE IN POP.GROWTH FIRST GEN. EG - - - -
J/K/S 0.0055 -0.5 -0.0036 -0.0436
SECOND GEN. EG 0.0055 -0.5 -0.0036 -0.0436

Table 37: Reduction in firm entry and aggregate productivity: without business stealing

We draw three lessons from the results of this experiment. First, if the decline in the employ-
ment share of new firms is the result of a decline in innovative investment by entrants with no
change in innovative investment by incumbents, as in our first experiment with a uniform tax on
innovative investment, then the predicted decline in aggregate productivity over a 20 year horizon
is relatively small (less than 2% with business stealing and less than 5% without business stealing).

Second, if the decline in the employment share of new firms is the result of a reallocation of
innovative investment, decreasing investment by entrants and raising innovative investment by
incumbents, as in our second experiment with a tax on innovative investment by entrants, then
the model predicts an increase in aggregate productivity over a 20 year horizon. This predicted
increase is small if the long run growth rate is unchanged as with the J/K/S research technology.
This predicted increase can be extremely large if the long run growth rate changes as with the
Second Generation Endogenous Growth technology for research. The intuition for this result is as
follows. At the new levels of innovative investment for incumbents and entrants induced by the
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EXPERIMENT RESEARCH TECH. Θ′G log S̄′e/Se0 ḡ′Z − ḡZ logZ20/Z0 − 20ḡZ

UNIFORM INNOVATION TAX FIRST GEN. EG 0.003 0 0 -0.0176
J/K/S 0.003 0 0 -0.0176
SECOND GEN. EG 0.003 0 0 -0.0176

ENTRY TAX FIRST GEN. EG 0.0021 -0.5 0 0.0106
J/K/S 0.0021 -0.5 0 0.0106
SECOND GEN. EG 0.0021 -0.5 0.0256 0.5316

DECLINE IN POP.GROWTH FIRST GEN. EG - - - -
J/K/S 0.0021 -0.5 -0.0014 -0.0168Z
SECOND GEN. EG 0.0021 -0.5 -0.0014 -0.0168

Table 38: Reduction in firm entry and aggregate productivity: with business stealing

entry tax, the economy can sustain the same or even higher BGP growth rate of aggregate produc-
tivity with a much smaller share of employment in entering firms. In our second experiment, the
employment share of entrants in the 20 years of the transition is higher than the new BGP share
of employment. Thus, since our model predicts that innovative investment by incumbents rises
immediately to its new BGP level with the imposition of the entry tax, it also predicts that produc-
tivity should grow faster than its BGP growth rate as long as observed entry in the transition is
above the new BGP level of entry.

Third, if the decline in the employment share of new firms is the result of a decline in the popu-
lation growth rate, then the model’s prediction for the response of aggregate productivity over 20
years is the sum of two separate effects, one negative and one positive. For the two technologies
for research that we consider, a reduction in the population growth rate reduces the BGP growth
rate of productivity. If the economy adjusts to its new BGP growth rate immediately (by having
the entry rate drop immediately to the new BGP employment share in entering firms), then the
decline in aggregate productivity at 20 years should be 20 times the reduction in the BGP growth
rate of productivity. But, to the extent that the employment share of entrants is above its BGP level
during the first 20 years of the transition, then, as in our entry tax experiment, the model predicts
an offsetting positive impact of entry on productivity during the transition to the new BGP.
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