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Appendix A Extension to Other Welfare Measures

Our baseline measure of welfare changes is equivalent variation under final preferences.
Alternatively, we could measure changes in welfare using compensating (instead of equiv-
alent) variation, or by using initial (rather than final) preferences. In this appendix, we
show how to calculate the alternative welfare measures. Note that if preferences are homo-
thetic, then the expenditure function can be written as e(p, u; x) = e (p; x) u, so for any x
equivalent and compensating variation are equal. If preferences are stable, then the expen-
diture function can be written as e(p, u; x) = e (p, u), so equivalent variation under initial
and final preferences are equal (and the same is the case for compensating variation).

Micro welfare changes We consider four alternative measures of micro welfare changes.
The compensating variation with initial preferences, which we discussed in Section 2.4, is

CVm(pt0 , It0 , pt1 , It1 ; xt0) = φ, where φ solves

v(pt1 , e−φ It1 ; xt0) = v(pt0 , It0 ; xt0). (A1)

The analog to (4) in Lemma 1 is given in equation (17). Whereas EVm weights price changes
by hypothetical budget shares evaluated at current prices for fixed final preferences and final
utility, CVm uses budget shares evaluated at current prices for fixed initial preferences and
initial utility. An alternative way of calculating CVm is to reverse the flow of time (the
final period corresponds to the initial period), calculate the baseline EV measure under
this alternative timeline, and then set CVm = −EVm.

For non-homothetic CES, CVm is equal to the exact hat-algebra price index with initial
shares bt0 :

CVm = ∆ log I − log

(
∑

i
bit0

(
pit1

pit0

)1−θ0
) 1

1−θ0

. (A2)

To a second-order approximation around t0 (without imposing non-homothetic CES, as in
Proposition 2)

∆ log CVm = ∆ log I −Ebt0
(∆ log p)− 1

2 ∑
i∈N

∑
j

∆ log pj
∂bi

∂ log pj
∆ log pi (A3)

Recall that changes in budget shares due to non-price factors are multiplied by 1/2 in real
consumption and by 1 in EVm. However, they are multiplied by 0 in CVm, since CVm is
based on budget shares at initial preferences and initial utility.
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Combining Proposition 2 and equation (A3), we see that up to a second order approxi-
mation (without imposing any specific form of preferences),

0.5× (EVm + CVm) ≈ ∆ log Y. (A4)

That is, locally changes in real consumption equal a simple average of equivalent variation
under final preferences and compensating variation under initial preferences.

Alternatively, we can measure the change in welfare using the micro equivalent variation
with initial preferences, EVm(pt0 , It0 , pt1 , It1 ; xt0) = φ where φ solves

v(pt1 , It1 ; xt0) = v(pt0 , eφ It0 ; xt0). (A5)

Globally, changes in welfare are given by (4) using Hicksian budget shares bi(pt, v(pt1 , It1 ; xt0); xt0).
Finally, the change in welfare measured using the micro compensating variation with final
preferences is CVm(pt0 , It0 , pt1 , It1 ; xt1) = φ where φ solves

v(pt1 , e−φ It1 ; xt1) = v(pt0 , It0 ; xt1). (A6)

Globally, changes in welfare are given by (17) using Hicksian budget shares bi(pt, v(pt0 , It0 ; xt0); xt1).
Note that to calculate EV with initial preferences or CV with final preferences, we must be
able to separate taste shocks from income effects.

Macro welfare changes For each alternative micro welfare measure there is a correspond-
ing macro welfare measure. For example, the macro compensating variation with initial pref-
erences is

CVM(At0 , Lt0 , At1 , Lt1 ; xt0) = φ,

where φ solves
V(At0 , Lt0 ; xt0) = V(At1 , e−φLt1 ; xt0).

In words, CVM is the proportional change in final factor endowments necessary to make
the planner with preferences �xt0

indifferent between the initial PPF (At0 , Lt0) and PPF
defined by (At1 , e−φLt1).

Equation (18) in Proposition 5 applies using Hicksian budget shares λ(A, L, ut0 , xt0),
the sales shares in a fictional economy with the PPF A, L but where consumers have stable
homothetic preferences represented by the expenditure function e(p, u) = e(p, ut0 , xt0)u
where ut0 = v(pt0 , It0 ; xt0). Growth accounting for welfare is based on Hicksian sales shares
evaluated at current technology but for fixed initial preferences and initial utility. The only
information on preference parameters we need to know is elasticities of substitution at the

A2



initial allocation.
Changes in welfare are, to a second-order approximation (the analogue of that in Propo-

sition 7)

CVM = ∑
i∈N

λi∆ log Ai +
1
2 ∑

i∈N
∑
j∈N

∆ log Aj
∂λi

∂ log Aj
∆ log Ai, (A7)

where ∂λ/∂ log A is the partial derivative of the Hicksian sales share with respect to tech-
nology, and all terms are evaluated at t0.

Proposition 8 can be used to compute CVM (instead of EVM). To do this, we need Hick-
sian sales shares λ(At, Lt, ut0 , xt0) as a function of t. These are solutions to the differential
equations in Proposition 8 with the terms involving taste shocks and income effects in (23)
set to zero. In this case, the boundary condition is that the Leontief inverse at t0 is equal
to the observed Leontief inverse Ψt0 at t0. Therefore, if Ψt0 is observed, we can calculate
Hicksian sales shares between t0 and t1 by starting (23) at t0 and going forward to t0. This
process does not require knowledge of either the income elasticities ε nor the taste shocks
∆ log x.

Appendix B Relation to Konüs Price Indices

A Konüs price index is defined as the ratio of the expenditure function at two different
price systems holding fixed utility and preferences:

Pt1(u, x)
Pt0(u, x)

=
e(pt1 , u; x)
e(pt0 , u; x)

.

Lemma 1 shows that EVm can be calculated by deflating nominal income changes by the
Konüs price index corresponding to final preferences and final utility (i.e. the final indif-
ference curve).A1

In the index number theory literature, it is common to work with Konüs price indices
for some intermediate preferences or utility levels. For example, Diewert (1976), Caves
et al. (1982), and Feenstra and Reinsdorf (2007). The advantage of this approach is that it
requires far less information. For example, Diewert (1976) shows that a Tornqvist index of
t0 and t1 measures the Konüs price index for a consumer with stable translog preferences
with utility level (ut0ut1)

1
2 ; Caves et al. (1982) and Feenstra and Reinsdorf (2007) prove a

similar result for homothetic but unstable CES or translog preferences. In contrast to EVm,

A1CVm can be calculated by deflating nominal income changes by the Konüs price index corresponding to
the initial indifference curve.
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these indices can all be computed without knowledge of any elasticities. In particular, these
papers show that, under some assumptions (translog or CES), commonly used indices like
Tornqvist and Sato-Vartia do answer an economically meaningful question.

However, whilst these papers provide an interpretation for these commonly used in-
dices, these indices do not measure EV or CV, which are of interest per se in applied micro
and macro welfare analysis. Furthermore, these indices are not money metrics, as we show
below. Our contribution, relative to common practice in the index number theory litera-
ture, is to instead characterize and analyze EV and CV, both for ex-post accounting and
ex-ante counterfactuals. Furthermore, we provide a unified analysis of non-homotheticity
and taste shocks, whereas the literature has tended to focus on one at a time under para-
metric assumptions or second-order approximations. We also show how to also develop a
general equilibrium measure of welfare.

To relate the aforementioned results to ours, consider the economic question that changes
in nominal income between t1 and t0 deflated by a Konüs price index evaluated at some
intermediate level of utility answers. For any base period tb (which does not need to lie
between t0 and t1) we can write

log
It1

It0

− log
Pt1(ub, xb)

Pt0(ub, xb)
=

(
log

Itb

It0

− log
Ptb(ub, xb)

Pt0(ub, xb)

)
+

(
log

It1

Itb

− log
Pt1(ub, xb)

Ptb(ub, xb)

)
,

or

log
It1

It0

− log
Pt1(ub, xb)

Pt0(ub, xb)
= log

e(pt0 , utb ; xtb)

e(pt0 , ut0 ; xtb)
− log

e(pt1 , utb ; xtb)

e(pt1 , ut1 ; xtb)
.

The first summand on the right-hand side is EVm(pt0 , It0 , ptb , Itb ; xb) and the second sum-

mand is−EVm(pt1 , It1 , ptb , Itb ; xb).In words, log
It1
It0
− log

Pt1 (ub,xb)

Pt0 (ub,xb)
answers the question “For

a consumer with preferences �xtb
, what is the change in the t0 endowment that makes her

indifferent between her choice set at t0 and tb minus the change in the t1 endowment that
makes her indifferent between her choice set at t1 and tb?” In particular, note that the
first term is in units of t0 prices whereas the second one is in units of t1 prices. There-
fore, this is not a money metric that can be used to compare all choices. In sum, although
our approach has stronger information requirements, it characterizes a widely-studied and
fundamentally different object (i.e. a money metric) than what has commonly been studied
in the index number theory literature.

Deaton and Muellbauer (1980) write in reference to the Konüs at intermediate utility
result:

If we were willing to accept the reference indifference curve labelled by u∗ (note: the
geometric average of a ut0 and ut1) as the relevant one, this property of the Tornqvist
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index is attractive since the quadratic specification can provide a second-order approx-
imation to any arbitrary cost function. Without knowing the parameters of the cost
function, we lack more specific information about the reference indifferent curve (such
as what budget level and price vector correspond to it), and the result is of no help in
constructing a constant utility cost-of-living index series with more than two elements
[elements refer to time periods]. A chained series of pairwise Tornqvist indices can al-
ways be constructed, but this has a different reference indifference curve for every link
in the chain. (Deaton and Muellbauer, 1980, page 174)

That is, in practice most index numbers are constructed by chaining, but the intermediate
utility result does not apply to chained indices unless the path of prices is linear (Feenstra
and Reinsdorf, 2000). In our paper we characterize how equivalent variation at final prefer-
ences or compensating variation at initial preferences differ from chained (Divisia) indices
under arbitrary price and income paths.

Appendix C Comparison of Quality and Taste Changes

In this appendix, we discuss how our welfare results can be extended to environments with
unobserved quality changes. We also contrast the bias we identify with the “taste shock
bias” discussed by Redding and Weinstein (2020).

The standard approach to modeling quality is hedonics, where goods are bundles of
characteristics and consumers have preferences over characteristics. For example, for com-
puters, CPU speed is a characteristic that consumers value. If a computer increases its CPU
speed, the consumer can consume more of this characteristic. Choices made by consumers
over computers with different CPU speeds reveal how consumers value this characteris-
tic. Note that there is no reason to normalize the level of quality across goods because
the units of characteristics are observable (e.g. GHz). However, even after all the quality-
adjustments have been done, demand curves can still shift. We model such residual shifts
in demand curves as changes in tastes x and hold x constant in the comparison because
consumer preferences over x, if they exist, are by definition unobservable. Of course, if
consumers have some preferences over x and we can measure x, then x must be included
as part of the description of the commodity space rather than treated as a taste shifter.

To make this more concrete, suppose that consumers have CES preferences (indexed
by tastes x) over qici where i indexes a variety, and ci and qi are the quantity and quality
of each i. For example, each i is a different variety of chocolate, ci is the number of boxes
of chocolate, and qi is the weight of each box of chocolate i. So the characteristic that
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consumers have preferences over is the total weight of chocolate they purchase of each
type, and consumers do not care about how many boxes their chocolate came in.

Under these assumptions, quality changes are equivalent to changes in prices, so we can
write the quality-adjusted price of good i as pi = p̃i/qi, where p̃i is the observed market
price of good i. In our example, p̃i is the observed price per box and p̃i/qi is the price
per ounce. Changes in quality-adjusted prices are given by ∆ log pi = ∆ log p̃i − ∆ log qi.
On the other hand, changes in x indicate changes in preferences for the different varieties
of chocolate. Unlike changes in qi, which are measured in ounces per box (or any other
observable cardinal units such as grams per box), changes in x do not have interpretable
units and the effects on the utility index depend on the choice of cardinalization.

Substituting this into our various propositions allows us to isolate the way quality
changes affect our results and how they compare with changes in tastes. For example,
Proposition 3 in the paper becomes the following (for brevity, we assume homothetic CES
preferences):

Proposition A1 (Approximate Micro with Quality Change). Consider some perturbation in
demand ∆ log x, market prices ∆ log p̃, quality ∆ log q, and income ∆ log I. Then, to a second-
order approximation, the change in real consumption is

∆ log Y ≈ ∆ log I −Eb (∆ log p̃)− 1
2
(1− θ0)Varb(d log p̃)

+
1
2
(1− θ0)Covb(d log q, d log p̃)− 1

2
Covb(d log x, d log p̃),

and the change in welfare is

EVm ≈ ∆ log I −Eb (∆ log p̃− ∆ log q)− 1
2
(1− θ0)Varb (∆ log p̃)

− 1
2
(1− θ0)Varb (∆ log q) + (1− θ0)Covb (∆ log p̃, ∆ log q)− Covb (∆ log x, ∆ log p) ,

where Eb(·), Varb(·), and Covb(·) are evaluated using budget shares at t0 as probability weights.

Hence, by subtracting these two expressions, we can derive the gap between real con-
sumption and welfare up to a second order approximation as

EVm − ∆ log Y ≈ Eb (∆ log q)︸ ︷︷ ︸
average quality

+
1
2
(θ0 − 1)Varb (∆ log q)︸ ︷︷ ︸

dispersion in quality

+
1
2
(1− θ0)Covb (∆ log p̃, ∆ log q)︸ ︷︷ ︸

covariance of price and quality

− 1
2

Covb (∆ log x, ∆ log p̃)︸ ︷︷ ︸
covariance of taste and price

+ Covb (∆ log x, ∆ log q)︸ ︷︷ ︸
covariance of taste and quality

. (A8)

A6



The first term on the right-hand side captures how the average increase in quality raises
welfare relative to real consumption. The second term captures the fact that dispersion in
quality raises welfare if the elasticity of substitution is greater than one (since the consumer
substitutes towards goods with relatively higher quality, but quality is not captured by
market prices in real consumption). The third term is an interaction (cross-partial) effect
that raises welfare if market prices fall for goods whose quality rose, as long as the elasticity
of substitution is greater than one. The fourth term is the bias we have been emphasizing
in the paper so far. The final term is the interaction between quality and taste changes
— welfare is higher, at final preferences, if tastes increase for goods whose quality also
increase.

In our analysis, we assume that prices have already been adjusted for quality so the
only non-zero term is the fourth one. In other words, in the body of the paper, we assume
that ∆ log q = 0, which means that (A8) simplifies to

EVm − ∆ log Y ≈ −1
2

Covb (∆ log x, ∆ log p̃) . (A9)

Welfare is higher than real consumption if the covariance between taste shocks and prices
is negative. This is independent of the value of the elasticity of substitution.

Comparison to Redding and Weinstein (2020). We can use (A8) to contrast our approach
to that of Redding and Weinstein (2020). The “taste shifters” in that paper are mathemat-
ically equivalent to quality shocks (∆ log q 6= 0), and preferences are stable over “taste-
adjusted consumption” (∆ log x = 0). Equation (A8) simplifies to

EVm − ∆ log Y ≈ Eb (∆ log q) +
1
2
(θ0 − 1)Varb (∆ log q)− 1

2
(θ0 − 1)Covb (∆ log p̃, ∆ log q) .

(A10)
Comparing (A9) to (A10) elucidates the differences. First, the average level of ∆ log q

affects welfare but the average level of ∆ log x does not. Redding and Weinstein (2020)
assume that unweighted average of ∆ log q is zero.A2 Second, for shocks to ∆ log q, even
when they are mean zero, dispersion in q can raise or lower welfare depending on the elas-
ticity of substitution. Hence, shocks to q on their own can change welfare, holding prices
and income constant, and the sign of this effect depends on the elasticity of substitution.
This is in contrast to shocks to x which cannot change money-metric welfare on their own if
prices and income are held constant. Third, in both (A9) and (A10), the covariance of taste

A2As discussed earlier, if ∆ log q is interpreted as a taste shock rather than a quality shock, then there is
nothing in the data that pins down the average level of ∆ log q since it is not a primitive of the ordinal
preference relation.
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shifters and market prices matters, however, in (A10) the sign of the covariance depends
on whether the elasticity of substitution is greater than or less than one, whereas in (A9),
the sign is always the same.

Appendix D Non-homothetic CES preferences

In this appendix, we derive (14). We also compare EVm with the utility index (under a
popular cardinalization) in non-homothetic CES preferences and show that changes in the
utility index are not equal to changes in equivalent or compensating variation.

D.1 Derivation of Marshallian budget shares

This appendix provides a derivation of the log-linearized expression (14). When prefer-
ences are non-homothetic CES, the expenditure function can be written as

e(p, u; x) =

(
∑
i∈N

xi p
1−θ0
i uξi

) 1
1−θ0

, (A11)

with Hicksian demand implicitly defined by

ci = xi

(
pi

∑j pjcj

)−θ0

uξi , (A12)

and budget shares

bi(p, x, u) ≡ pici

∑j pjcj
= xiuξi

(
pi

∑j pjcj

)1−θ0

=
xiuξi p1−θ0

i

∑j∈N xjuξ j p1−θ0
j

(A13)

Differentiating (A11) and (A13) at any point t,

d log bit = d log xit + (1− θ0) (d log pit − d log It) + ξid log ut, (A14)

and

d log ut =
1− θ

∑j bjtξ j

[
d log It −∑

j
bjtd log pjt

]
− 1

∑j bjtξ j
∑

j
bjtd log xjt. (A15)
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Substituting (A15) into (A14),

d log bit = (1− θ0)

[
d log pit −∑

j
bjtd log pjt

]
+(εit − 1)

[
d log It −∑

j
bjtd log pjt

]
+ d log xit,

with demand shifters

d log xit = d log xit −
ξi

∑j bjtξ j
∑

j
bjtd log xjt, (A16)

and income elasticities

εit − 1 = (1− θ0)

(
ξi

∑j bjtξ j
− 1

)
. (A17)

This is a differential equation that pins down budget shares b as a function of prices, in-
comes, and primitives x, given budget shares and income elasticities at some point in time.

D.2 Comparison of welfare and changes in utility index

In this appendix, we discuss the difference between changes in welfare as measured by the
equivalent variation and changes in the utility index in non-homothetic CES preferences.
This utility index is used in Section IIIA of Redding and Weinstein (2020) as a welfare
measure. We show that there is no normalization of the parameters such that the equivalent
variation (or the compensating variation) is equal to changes in the utility index unless
preferences are homothetic and stable.

In this section, for brevity we assume away taste shocks (for taste shocks, see online
Appendix C). The micro equivalent variation is given by

EVm = log
e(pt0 , v(pt1 , It1))

e(pt0 , v(pt0 , It0))
,

where v(p, I) is the indirect utility function, initial prices and income are pt0 and It0 , and
final prices and income are pt1 and It1 .

The utility index u at t is equal to v(pt, It), and can be calculated by solving for u in
It = e(pt, u). Equivalently, one can calculate changes in ut using the price index Pt ≡
e(pt, ut)/ut. The change in the utility index between t0 and t1 is given by

U ≡ log
v(pt1 , It1)

v(pt0 , It0)
.

As this definition makes clear, EV and U are not generically the same. In particular,
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whereas EV can be defined in terms of a hypothetical choice and is independent of the
utility function chosen to represent preferences (how much income would the household
need to be given to make them indifferent), U will depend on the cardinal properties of the
utility function.

Consider the expenditure function in equation (A11). If preferences are homothetic

(ξi = ξ̄ for all i), then e (p, u) =
(

∑i ωi p
1−θ0
i

) 1
1−θ0 u

ξ̄
1−θ0 and we can write

EVm =
ξ̄

1− θ0
U.

So, when preferences are homothetic, in order for EVm = U we must cardinalize utility
by setting ξ̄ = 1− θ0 so that the expenditure function is homogeneous of degree 1 in u
(d log e/d log u = 1). In other words, although there are infinitely many utility functions
that represent these preferences, when preferences are homothetic, there is one representa-
tion where EVm = U.

We now consider the non-homothetic case, and we characterize the difference between
EVm and U to a first and second order. We write these results in terms of primitive shocks
(that is, changes in income and prices) rather than in terms of changes in endogenous
objects like budget shares.

Using Proposition 3, we have that to a first-order EVm is

dEVm = d log e− bd log p = d log Y,

where d log Y is the first-order change in real consumption as measured by Tornqvist or
Divisa (to a first-order, they are equivalent). Hence, to a first order, Tornqvist and EV are
the same. The second-order change in EVm is, by Proposition 3, equal to

d2EVm = d2 log e− dbd log p− (d log e− bd log p)Covb(ε, d log p)

= d2 log Y− (d log e− bd log p)Covb(ε, d log p),

where ε is the vector of income elasticities and d2 log Y is the change in real consumption
as measured by a Tornqvist or Divisa index (to a second-order, they are equivalent). On the
other hand, the first and second-order changes in the utility index are given by (derivations
are available upon request)

dU =
1− θ0

∑i bi ξ̄
(d log e− bd log p) ,
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d2U =
1− θ0

∑i biξi

[
d2 log e− dbd log p− (d log e− bd log p)∑

i
bi(εi − 1)d log pi

− 1
1− θ0

∑
i

biεi ((εi − 1)) (d log e− bd log p)2

]

The derivatives EVm and U are in general different. Whereas EVm is a function of ob-
servables, U depends on the cardinalization of the utility function. In particular ∑i biξi

affects the response of U but is not a primitive parameter of the ordinal preference relation,
and hence is not pinned down by observables, as discussed in Section D.1. A standard
approach in the literature to pin down ∑i biξi is to set one of the ξ to 1.

Now we compare the first and second-order derivatives in turn. The first order differ-
ence is

dU − dEVm =

(
1− θ0

∑i biξi
− 1
)
(d log e− bd log p) .

If we impose a normalization on utility parameters such that, in the initial point,

1− θ0

∑i biξi
= 1,

we have that dU = dEVm = d log Y. This normalization is effectively ensuring that
∂ log e/∂ log u = 1.

Now let’s consider the second-order difference and let’s impose the same normalization

d2U − d2EVm = − 1
1− θ0

∑
i

biεi(εi − 1) (d log e− bd log p)2

− (d log e− bd log p)

[
∑

i
bi(εi − 1)∑

i
bid log pi

]

= − 1
1− θ0

∑
i

biεi(εi − 1) (d log e− bd log p)2

= − 1
1− θ0

Varb(εi) (d log e− bd log p)2 6= 0,

where we used ∑i biεi = 1. Hence, unless preferences are homothetic (in which case εi = 1
for every i), the change in U and EVm are not the same even under the normalization. This

A11



is not to mention that globally, we cannot ensure that the normalization

1− θ0

∑i biξi
= 1

always holds. This means that the gap between EVm and U, which exists at the initial
equilibrium, only gets more severe if, once we commit to a specific normalization of utility,
1−θ0

∑i biξi
starts to change from 1.

Recall from Appendix A that changes in real consumption are equal to an average
of equivalent and compensating variation, up to a second order approximation. Since
changes in the utility index are not equal to a Tornqvist real consumption index, it follows
that the utility index is not equal to an average of EV and CV.

Appendix E Analytical Examples with Input-Output Con-

nections

We first discuss some differences between Proposition 3 and Proposition 7 in the presence
of intermediate inputs. Proposition 3 shows that if all price changes are the same, there
can be no gap between micro welfare EVm and real consumption. The general equilibrium
counterpart of this statement is not true. That is, there can be a gap between real GDP and
welfare even if all productivity shocks are the same. Specifically, suppose that productivity
growth is common across all goods (∆ log Ai = ∆ log A > 0) and denote the gross output
to GDP ratio by λsum = ∑i∈N λi ≥ 1. Then Proposition 7 implies that the gap between real
GDP and welfare is

EVM − ∆ log Y ≈ 1
2

[
∆ log x′

∂λsum

∂ log x
+ ∆ log V

∂λsum

∂ log u

]
∆ log A, (A18)

where the term in square brackets is the change in the gross-output-to-GDP ratio due to
demand-side forces only. In particular, if demand shifts towards sectors with higher value-
added as a share of sales, then EVM < ∆ log Y. Intuitively, this happens because welfare
is less reliant on intermediates than real GDP, and hence real GDP is more sensitive to
productivity shocks. Of course, in the absence of intermediate inputs, this effect disappears
because λsum will always equal one.

In our quantitative results in Application 1 (section 5.1), the reallocation in sales towards
sectors with lower intermediate input use accounts for roughly 18% of the gap between
constant-initial-sales shares TFP and aggregate TFP growth, and 35% of the gap between
aggregate TFP growth and welfare-relevant TFP growth.

A12



We now extend the analytic examples in Section 4.2 to show how input-output connec-
tions can amplify or mitigate the gap between macro welfare EVM and real GDP ∆ log Y.
For models with linear PPFs, input-output connections affect the gap between real GDP
and welfare in two ways: (1) the impact of technology shocks is bigger when there are
input-output linkages because Ψ ≥ Id and λi ≥ bi; (2) the production network “mixes” the
shocks, and this may reduce the correlation of supply and demand shocks by making the
technology shocks more uniform. However, since it is the covariance (not the correlation)
of the shocks that matters, this means the effects are, at least theoretically, ambiguous.

To see these two forces, consider the three economies depicted in Figure A1. Each of
these economies has a roundabout structure. Panel A1a depicts a situation where each
producer uses only its own output as an input, Panel A1b a situation where all producers
use the same basket of goods (denoted by M) as an intermediate input, and Panel A1c
a situation where each producer uses the output of the other producer as an input. We
compute the correction to GDP necessary to arrive at welfare for each of these cases using
Proposition 9. For clarity, we focus on demand shocks caused by instability rather than
non-homotheticity, though it should be clear that this does not affect any of the intuitions.

HH

· · ·1 N

(a)

HH

· · ·1 N

M

(b)

HH

1 2

(c)

Figure A1: Three different kinds of round-about economy. The arrows represent the flow of goods.
The only factor is labor which is not depicted in the diagram.

For Panel A1a, we get

EVM − ∆ log Y ≈ 1
2

Covb(∆ log xi, Ω−1
iL ∆ log Ai),

where the covariance is computed across goods i ∈ N and ΩiL is the labor share for i.
Hence, as intermediate inputs become more important, the necessary adjustment becomes
larger. This is because, for a given vector of preference shocks, the movement in sales
shares is now larger due to the roundabout nature of production.A3

A3Even if all productivity shocks are the same, there may still be an adjustment due to heterogeneity in labor
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On the other hand, for Panel A1b, we getA4

EVM − ∆ log Y ≈ 1
2

(
Covb(∆ log xi, ∆ log Ai)− Covb(∆ log xi, ΩiL)

∑i∈N ∆ log Ai

∑i∈N ΩiL

)
.

Hence, in this case, if the labor share ΩiL is the same for all i ∈ N, then the intermediate
input share is irrelevant. Intuitively, in this case, all producers buy the same share of ma-
terials, so a shock to the composition of household demand does not alter the sales of any
producer through the supply chain, and hence only the first-round non-network compo-
nent of the shocks matters.A5

Finally, consider Panel A1c. For clarity, we focus on the case where only producer 1
gets a productivity shock (∆ log A2 = 0). In this case, the difference between real GDP and
welfare is

EVM − ∆ log Y ≈ 1
2

1
1−Ω12Ω21

Covb

(
∆ log x,

[
1

Ω21

])
∆ log A1.

As the intermediate input share Ω21 approaches one, the adjustment goes to zero (since the
covariance term goes to zero). Intuitively, as Ω21 goes to one, the increase in demand for the
first producer from a change in preferences is exactly offset by a reduction in demand from
the second producer who buys inputs from the first producer. In this limiting case, changes
in consumer preferences have no effect on the overall sales share of the first producer.

To recap, in the first, second, and third example the gap between welfare and real
consumption increases, is independent of, and decreases in the intermediate input share.
Hence, the effect of input-output networks on the adjustment are potent but theoretically
ambiguous.

Appendix F Additional details on Application I

In this appendix, we use a structural nested-CES model to explore the change in welfare-
relevant TFP outside of the two polar extremes in Section 5.

In practice, both substitution effects and non-homotheticities are likely to play an im-

shares. In particular, if demand shocks are higher for sectors with higher labor shares, then EVM < ∆ log Y
when technology shocks are positive.

A4For this example, we assume that there are no productivity shocks to the intermediate bundle ∆ log AM =
0 and we assume that ΩiM = 1/N for each i ∈ N.

A5As indicated in Footnote A3, if the labor share is heterogeneous across producers, there is an additional
adjustment which depends on the covariance between demand shocks and labor shares. If the demand
shocks reallocate expenditures towards sectors with high labor shares, then welfare becomes less sensitive to
productivity shocks than real GDP.
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portant role in explaining structural transformation. To dig deeper into the size of the
welfare adjustment outside our two polar cases, we use a simplified version of the model
introduced in Section 4 calibrated to the US economy, accounting for input-output linkages
and complementarities, and use the model to quantify the size of the welfare-adjustment
as a function of the elasticities of substitution. We calculate TFP by industry in the data
allowing for cross-industry variation in capital and labor shares. For simplicity, we feed
these TFP shocks as primitive shocks into a one-factor model.

Proposition 5 implies that to compute the welfare-relevant change in TFP, we must only
supply the information necessary to compute Hicksian sales shares at the terminal indiffer-
ence curve. That is, since we know sales shares in the terminal period 2014, we do not need
to model the non-homotheticities or demand-shocks themselves, and the exercise requires
no information on the functional form of non-homotheticities or the slope of Engel curves
or magnitude of income elasticities conditional on knowing the elasticities of substitution.

We map the model to the data as follows. We assume that the constant-utility final de-
mand aggregator has a nested-CES form. There is an elasticity θ0 across the three groups
of industries: primary, manufacturing, and service industries. The inner nest has elastic-
ity of substitution θ1 across industries within primary (2 industries), manufacturing (24
industries), and services (35 industries).A6 Production functions are also assumed to have
nested-CES forms: there is an elasticity of substitution θ2 between the bundle of interme-
diates and value-added, and an elasticity of substitution θ3 across different types of inter-
mediate inputs. For simplicity, we assume there is only one primary factor of production
(a composite of capital and labor). We solve the non-linear model by repeated application
of Proposition 8 in the fictional economy with stable and homothetic preferences.

We calibrate the CES share parameters so that the model matches the 2014 input-output
tables provided by the BEA. For different values of the elasticities of substitution (θ0, θ1, θ2, θ3)

we feed changes in industry-level TFP (going backwards, from 2014 to 1947) into the model
and compute the resulting change in aggregate TFP. This number represents the welfare-
relevant change in aggregate TFP. We report the results in Table A1.

The first column in Table A1 shows the change in welfare-relevant TFP assuming that
there are no substitution effects (all production and consumption functions are Cobb-Douglas).
In this case, all changes in sales shares in the data are driven by non-homotheticities or
demand-instability, and hence welfare-relevant TFP has grown more slowly than measured
TFP, exactly as discussed in the previous section. The other columns show how the results

A6In order to map this nested structure to our baseline model, good 0 is a composite of good 1-3, where
good 1 is a composite of primary industries, good 2 is a composite of manufacturing industries, and good 3 is
a composite of service industries. Goods 4-65 are the disaggregated industries. Finally, good 66 is the single
factor of production.
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Table A1: Percentage change in measured and welfare-relevant TFP in the US from 1947 to 2014.

(θ0, θ1, θ2, θ3) (1,1,1,1) (0.5,1,1,1) (1,0.5,1,1) (1,1,0.5,1) (1,1,1,0.5)

Welfare TFP 46% 46% 54% 48% 55%
Measured TFP 60% 60% 60% 60% 60%

change given lower elasticities of substitution. As we increase the strength of complemen-
tarities (so that substitution effects are active), the implied non-homotheticities required to
match changes in sales shares in the data are weaker. This in turn reduces the gap between
measured and welfare-relevant productivity growth.

Table A1 also shows that not all elasticities of substitution are equally important. The
results are much more sensitive to changes in the elasticity of substitution across more
disaggregated categories, like materials, than aggregated categories, like agriculture, man-
ufacturing, and services.

To see why the results in Table A1 are differentially sensitive to changes in different
elasticities of substitution, we use Proposition 9 to obtain the following second-order ap-
proximation:

∆ log TFPev ≈∑
i

λi∆ log Ai +
1
2 ∑

j∈{0}+N
(θj − 1)λjVarΩ(j,:)

(
∑

k∈N
Ψ(:,k)∆ log Ak

)
, (A19)

where λ, Ω, and Ψ are evaluated at t1. The second term is half the sum of changes in Domar
weights due to substitution effects (i.e. changes in welfare-relevant sales shares) times
the change in productivities. Note that changes in these welfare-relevant sales shares are
linear in the microeconomic elasticities of substitution. The importance of some elasticity
θ depends on

∑
j

λjVarΩ(j,:)

(
∑

k∈N
Ψ(:,k)∆ log Ak

)
,

where the index j sums over all CES nests whose elasticity of substitution is equal to θ (i.e.
all j such that θj = θ). Therefore, elasticities of substitution are relatively more potent if:
(1) they control substitution over many nests with high sales shares λj, or (2) if the nests
corresponding to those elasticities are heterogeneously exposed to the productivity shocks.

We compute the coefficients in (A19) for our model’s various elasticities using the IO
table at the end of the sample. The coefficient on (θ0 − 1), the elasticity of substitution be-
tween agriculture, manufacturing, and services in consumption is only 0.01. This explains
why the results in Table A1 are not very sensitive to this elasticity. On the other hand,
the coefficient on (θ1 − 1), the elasticity across disaggregated consumption goods, is much
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higher at 0.21. The coefficient on (θ2− 1), the elasticity between materials and value-added
bundles is 0.07. Finally, the coefficient on (θ3 − 1), the elasticity between disaggregated
categories of materials is 0.25. This underscores the fact that elasticities of substitution are
more important if they control substitution in CES nests which are very heterogeneously
exposed to productivity shocks — that is, nests that have more disaggregated inputs.

According to equation (A19), setting θ1 = θ2 = θ3 = 1 (which is similar to abstracting
from heterogeneity within the three broader sectors and heterogeneity within intermediate
inputs), then θ0 is the only parameter that can generate substitution effects in the model.
This may help understand why more aggregated models of structural transformation (e.g.
Buera et al., 2015 and Alder et al., 2019) require low values of θ0 to account for the extent
of sectoral reallocation in the data.

Appendix G Within-Industry Supply and Demand Shocks

In this appendix, we introduce a specification of our model with an explicit firm-industry
structure. We show that within-industry supply and demand shocks can also drive a
wedge between welfare and real GDP, and we show that this gap is linearly separable
(to a second-order) from across-industry biases. For simplicity, we abstract from non-
homotheticities.

Definition A1 (Industrial Structure). An economy has an industry structure if the following
conditions hold:

i. Each firm i belongs to one, and only one, industry I. Firms in the same industry share
the same constant-returns-to-scale production function up to a firm-specific Hicks-
neutral productivity shifter Ai.

ii. The representative household has homothetic preferences over industry-level goods,
where the Ith industry-level consumption aggregator is

cI =

(
∑
i∈I

b̄iI xic
ζ I−1

ζ I
i

) ζ I
ζ I−1

,

where ci are consumption goods purchased by the household from firm i in industry
I and xi are firm-level demand shocks.
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iii. Inputs purchased by any firm j from firms i in industry I are aggregated according to

mjI =

(
∑
i∈I

s̄iIm
σI−1

σI
ji

) σI
σI−1

,

where mji are inputs purchased by firm j from firm i, and s̄iI is a constant.

Input-output and production network models that are disciplined by industry-level
data typically have an industry structure of the form defined above. For such economies,
the following proposition characterizes the bias in real GDP relative to welfare.

Proposition A2 (Aggregation Bias). For models with an industry structure, in response to firm-
level supply shocks ∆ log A and demand shocks ∆ log x, we have

∆ log EVM ≈ ∆ log Y +
1
2 ∑

I
bICovb(I)

(∆ log x, ∆ log A) + Θ,

where bI is industry I’s share of final demand and b(I) is a vector whose ith element is bi/bI if i
belongs to industry I and zero otherwise. The scalar Θ is defined in the proof of the proposition, and
represents the gap between real GDP and welfare in a version of the model with only industry-level
shocks.

In words, Proposition A2 implies that if firms’ productivity and demand shocks are
correlated with each other (but not necessarily across firms), then there is a gap between
real GDP and welfare that does not appear in an industry-level specification of the model.
Furthermore, this bias is, to a second-order, additive. That is, the overall bias is the sum
of the industry-level bias (that we studied in the previous section) plus the additional bias
driven by within-industry covariance of supply and demand shocks. Note that if supply
and demand shocks at the firm level are correlated and persistent, then the bias grows over
time, as in our product-level data discussed below.

Proof of Proposition A2. Start by setting nominal GDP to be the numeraire. To model the
industry-structure, for each industry I, add two new CES aggregators. One buys the good
for the household and one buys the good for firms. Let firm i′s share of industry I from
household expenditures be biI . Let the expenditure share of other firms on firm i be siI . We
have

∑
i∈I

biI = 1

∑
i∈I

siI = 1.
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Let λc
I and λ

f
I be sales of industry I to households and firms. Then we have

dλI = dλc
I + dλ

f
I .

The sales of an individual firm i in industry I is given by

λi = biIλ
c
I + siIλ

f
I , (A20)

dλi = dbiIλ
c
I + biIdλc

I + dsiIλ
f
I + siIdλ

f
I , (A21)

dbiI = CovbI (d log x + (1− ζ I)d log A, Id(:,i)),

dsiI = CovsI ((1− σI)d log A, Id(:,i)),

where Id(:,i) is a vector of all zeros except for its ith element which is equal to one, bI is a
vector of market shares in final sales of industry I, and sI is a vector of market shares in
non-final sales of industry I.

The gap between macro welfare and real GDP, EVM − ∆ log Y, is approximately given
by

1
2

d log x
∂λ

∂ log x
d log A =

1
2 ∑

i∈N

[
∑
j∈N

d log xj
∂λi

∂ log xj

]
d log Ai.

Using (A21), the sums can be re-written as

∑
i∈N

[
∑
j∈N

d log xj
∂λi

∂ log xj

]
d log Ai = ∑

i∈N

[
d log x

∂biI

∂ log x
λc

Id log Ai + biId log x
∂λc

I
∂ log x

d log Ai

+d log x
∂siI

∂ log x
λ

f
I d log Ai + siId log x

∂λ
f
I

∂ log x
d log Ai

]
,

where now the subscript I indicates the industry that the firm i belongs to.
The individual terms can be written out as

∑
i∈N

[
d log x

∂biI

∂ log x
λc

Id log Ai

]
= ∑

i∈N
CovbI (d log x, Id(:,i))λ

c
Id log Ai

= CovbI (d log x, ∑
i∈N

Id(:,i)d log Ai)λ
c
I

= CovbI (d log x, d log A)λc
I ;

∑
i∈N

[
biId log x

∂λc
I

∂ log x
d log Ai

]
= EbI (d log A) d log x

∂λc
I

∂ log x
;
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∑
i∈N

d log x
∂siI

∂ log x
λ

f
I d log Ai = 0;

and

∑
i

siId log x
∂λ

f
I

∂ log x
d log Ai = EsI (d log A) d log x

∂λ
f
I

∂ log x
.

Of the four terms, two depend on changes on industry-level sales shares, one of them is
zero, and the remaining one (the first term) is the within-industry covariance of supply
and demand shocks that is highlighted in the statement of the proposition. Hence, the
remaining terms in the statement of the proposition are

Θ = ∑
I

[
EsI (d log A) d log x

∂λ
f
I

∂ log x
+ EbI (d log A) d log x

∂λc
I

∂ log x

]
.

Appendix H Additional Details on Application II

In this appendix, we provide additional details on how we treat the Nielsen data when con-
structing Figure 4, and we perform some robustness exercises with respect to the elasticity
of substitution.

Details on the construction of Figure 4 The Nielsen Consumer Panel data are provided
under subscription through the Kilts Center for Marketing at the University of Chicago.
A first file provides quantity and expenditures net of discount by UPC (universal product
code) for each shopping trip recorded by roughly 60,000 households in the panel.A7 Ad-
ditional files record the date of each shopping trip and describe household characteristics,
including the Nielsen-defined market in which each household resides. Nielsen provides a
set of weights so that each household in the panel can be understood to represent a certain
number of households in their market for a given panel year. Nielsen also provides a file
with descriptions of each product, including a set of Nielsen-defined product categories.
The lowest level of product categorization in this scheme is known as a module. The Kilts
Center tracks UPCs over time, assigning UPC version numbers that record if characteris-
tics associated with a given barcode change over time. Thus, a UPC-version has a fixed set
of product characteristics over time, and we use this stable-characteristic notion of UPCs.

This makes it unlikely that the good undergoes quality changes over time. First, as

A7In the period 2004 to 2006 the panel has roughly 40,000 households.
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pointed out by Redding and Weinstein (2020), this is because firms prefer to use different
barcodes for products with different observable characteristics for inventory and stock con-
trol purposes. Second, even if a product keeps the same barcode but undergoes a change
in one of the observable characteristics tracked by the Kilts Center, then it is not treated as
the same product in our sample.

We construct our sample as follows. After dropping trips with non-positive quantity or
non-positive expenditure net of discounts, we collapse household-trip-UPC observations
by summing to household-quarter-UPC observations. For each household-quarter-UPC,
we calculate the average unit value (expenditures/quantity) and drop observations that
are more than three times or less than one third the median unit value for observations in
the same market-quarter-UPC, as well as those for which the quantity purchased is more
than 24 times the median within the same market-quarter-UPC.

In turn, we collapse the household-quarter-UPC data to a year-UPC panel by summing
(scaled by the Nielsen household projection factor) quantities and expenditures by UPC
and by year. Annual price is defined as the ratio of annual expenditures and annual quan-
tity.

We calculate the growth rate of each good’s price and expenditure between adjacent
years (e.g. 2013 price / 2012 price), and identify observations with “extreme growth rates”
as instances where the price and/or expenditure growth rate are outside the 1st and 99th
percentiles among all year-to-year price and expenditure growth rates for goods with non-
zero expenditures in all 8 quarters in adjacent years.

We set t1 = 2019, and t0 = 2004, ..., 2018. For each t0 we construct a balanced sample of
UPCs with non-extreme growth rates and non-zero expenditures in every quarter between
t0 and 2019. In addition, we impose a balanced panel of modules that have at least two
unique UPCs available in every quarter from 2004 to 2019. This panel of modules also
excludes so-called magnet series and "unclassified" module categories. For t0 = 2018, the
balanced sample includes 822 modules and 247, 611 products (average of 301 products per
module, median of 137 products per module). For t0 = 2004, the balanced sample includes
the same 822 modules and 32, 030 products (average of 39 products per module, median of
17 products per module).

For each t0 (x-axis in the figure) we construct chained-Tornqvist and “welfare-relevant”
(equivalent variation at t1 = 2019 or t0 preferences) prices indices for each module includ-
ing only those goods in the corresponding t0 balanced sample. These module price indices
are combined into a single aggregate index by weighting each module’s price index by
expenditures among continuing goods in that module (for the chained-weighted index,
module weights vary by year t, and for the welfare-relevant indices, module weights are
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fixed at t1 or t0 given the assumption that the elasticity of substitution between modules is
1). For the chained-Tornqvist, for each module we construct year-by-year Tornqvist price
indices and cumulate them between t0 and t1.For welfare, we assume for each module a
homothetic-CES aggregator with elasticity of substitution θ0 = 4.5 (we report robustness
to lower and higher values of θ0). For each module, the welfare-relevant price index based
on t1 = 2019 preferences, given price changes between t0 and t1, is

− log

(
∑

i
bit1

(
pit0

pit1

)1−θ0
) 1

1−θ0

where bit1 denotes the t1 budget share of good i within its module among goods in the
t0-continuing goods sample. The welfare-relevant price index based on t0 preferences is

log

(
∑

i
bit0

(
pit1

pit0

)1−θ0
) 1

1−θ0

.

Figure 4 reports all three price indices for t0 = 2004, ..., 2018. Note that, for each t0, all three
price indices are based on the same sample of products but the sample varies with t0 due
to product entry and exit.

Robustness Figure A2 replicates Figure 4 using lower and higher values for the elasticity
of substitution across products within modules. The size of the bias gets smaller as we
get closer to Cobb-Douglas. This is because in the data changes in prices and changes
in expenditure shares are approximately uncorrelated. When demand is Cobb-Douglas,
changes in expenditure shares are taste shocks, and since taste shocks are uncorrelated
with price changes, following the logic of Proposition 3, the bias is small.

Figure A3 replicates Figure 4 using monthly data. We set t1 = June 2019 and consider
monthly t0s rolling back to June 2004. For each t0, we further restrict the sample of products
to those sold in every month between t0 and t1 (and in every month of the year of t0) and
that have a monthly log price change lower than one. The monthly price series are more
volatile than the annual ones, but the welfare-relevant numbers are similar to the ones in
Figure 4, but the chained-index is much closer to initial tastes than final tastes for longer
horizons. This indicates that the second-order approximation is less accurate using higher
frequency data, and so the chained measure is not as close to the average of initial and final
tastes.
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Figure A2: Welfare-relevant and chain-weighted price index for continuing products. The welfare-
relevant rate is computed assuming that the elasticity of substitution across UPCs in the same mod-
ule is 2.5 in the left panel and 6.5 in the right panel.
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Figure A3: Welfare-relevant and chain-weighted inflation rates for continuing products using
monthly data. The welfare-relevant rates are computed assuming that the elasticity of substitution
across UPCs in the same module is 4.5 and the elasticity of substitution across modules is one.

Appendix I Non-CES Functional Forms

In this appendix, we generalize Propositions 3 and 8 beyond CES functional forms. To do
this, for each producer k with cost function Ck, we define the Allen-Uzawa elasticity of
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substitution between inputs x and y as

θk(x, y) =
Ckd2Ck/(dpxdpy)

(dCk/dpx)(dCk/dpy)
=

εk(x, y)
Ωky

,

where εk(x, y) is the elasticity of the demand by producer k for input x with respect to
the price py of input y, and Ωky is the expenditure share in cost of input y. Note that the
Allen-Uzawa elasticity of substitution is symmetric for any two input pair sx and y.

For the household k = 0, we use the household’s expenditure function in place of the
cost function. That is, for the household (k = 0), we have θk(x, y) = εH

x,y/by, where εH
x,y is

the Hicksian cross-price elasticity and by is the budget share on y. The Hicksian cross-price
elasticity is, in turn, related to the Marshallian cross-price elasticity by way of Slutsky’s
equation: εH

xy = εM
xy + εw

x by, where εM
xy is the Marshallian cross-price elasticity.

Following Baqaee and Farhi (2019), define the input-output substitution operator for pro-
ducer k as

Φk(Ψ(i), Ψ(j)) = − ∑
1≤x,y≤N+1+F

Ωkx[δxy + Ωky(θk(x, y)− 1)]ΨxiΨyj, (A22)

(A23)

where δxy is the Kronecker delta.
We can generalize all of our results beyond CES simply by replacing the terms involv-

ing covariances with the substitution operator above. Since Φj shares many of the same
properties as a covariance (it is bilinear and symmetric in its arguments, and is equal to
zero whenever one of the arguments is a constant), the intuition for the more general case
is very similar to the CES case.

That is, Proposition 3 can be generalized to the following.

Proposition A3 (General Approximation of Micro Welfare). For a consumer with non-homothetic
preferences to a second-order approximation, the change in real consumption is

∆ log Y ≈ ∆ log I −Ebt0
(∆ log p)− 1

2
Φ0 (∆ log p, ∆ log p)

− 1
2

Covbt0
(∆ log x, ∆ log p)− 1

2

[
∆ log I −Ebt0

(∆ log p)
]

Covbt0
(ε, ∆ log p) ,
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and the change in welfare is

EVm ≈ ∆ log I −Ebt0
(∆ log p)− 1

2
Φ0 (∆ log p, ∆ log p) (A24)

− Covbt0
(∆ log x, ∆ log p)−

[
∆ log I −Ebt0

(∆ log p)
]

Covbt0
(ε, ∆ log p) .

In the expressions above, d log xt is the residual in the Marshallian budget share not
explained by income or substitution effects (these are caused by taste shocks). Formally,
this is

d log xit = d log bit −Φ0(−d log pt, Id(:,i))− Covbt(εt, I(:,i)) (d log It −Ebt [d log pt]) .

Proposition 8 generalizes as follows:

Proposition A4. At any point in time t, changes in the relevant variables are pinned down by the
following system of equations

d log pit = − ∑
j∈N

Ψijtd log Ajt + ∑
f∈F

ΨF
i f td log λ f t. (A25)

Changes in sales shares for goods and factors are

λitd log λit = ∑
j∈{0}+N

λjtΦj

(
−d log pt, Ψ(:,t),t

)
(A26)

+ CovΩ(0,:),t

(
d log xt, Ψ(:,i),t

)
+ CovΩ(0,:),t

(εt, Ψ(:,i),t)

(
∑

k∈N
λktd log Akt

)
.

Changes in welfare-relevant variables are pinned down by the same set of differential equations
above where the second line of (A26) is set to zero and the boundary conditions are that Ω = Ωt1

and Ψ = Ψt1 .

Appendix J Dynamic Economies

We consider a dynamic multi-sector model with production of consumption goods and
investment goods similar to the models that are often used to study structural transfor-
mation (Herrendorf et al., 2013). For simplicity, we abstract from growth and restrict our
discussion to non-homothetic CES preferences.A8

A8For further discussion of welfare measures in dynamics economies with stable and homothetic prefer-
ences, see Licandro et al. (2002), Durán and Licandro (2018), and Duernecker et al. (2021).
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Consider a perfectly competitive dynamic economy indexed by the initial period t with
a representative agent whose intertemporal preferences are given by

Ut =
∞

∑
s=t

βs−tU(Cs), ∑
i

ωi0xit

(
cis

Cξi
s

) θ0−1
θ0

= 1,

where Cs is a non-homothetic (and potentially unstable) CES aggregator. The economy has
the same set of goods every period, and every good i in period s is produced according to
constant returns production technology with arbitrary input-output connections

yis = AisGi

({
mijs

}
j∈N , H(lis, kis)

)
,

where Ais is a productivity shifter, lis and kis are labor and capital inputs, and H is constant
returns to scale.

Labor Ls in each period is inelastically supplied, and capital is accumulated according
to a capital accumulation technology

Ks+1 = (1− δ) (Ks + Xs) ,

where Xs is aggregate investment. Investment goods are produced according to a constant
returns technology with arbitrary input-output connections

Xs = AIsX
({

mI js
}

j∈N , H(lIs, kIs)
)

.

The intertemporal PPF of economy t is defined by an initial capital stock inherited
from the past, a path of future labor endowments, and a path of vectors of productivi-
ties: (Kt, {Ls}∞

s=t, {As}∞
s=t). This economy has infinitely many factors: the initial capital

stock and the path of labor endowments (Kt, {Ls}∞
s=t). The welfare change between t0 and

t1 is the proportional change in factor endowments of the t0 economy required to make the
household indifferent between that and the t1 economy. We say that economy t is in steady-
state if the vector of productivities As, labor endowments Ls, per-period utility U(Cs), and
capital stocks Ks are constant over time.

The following proposition shows that computing the welfare change between t0 and t1

is straightforward if the economy is in steady-state in both t0 and t1.

Proposition A5 (Dynamic Welfare Change). Consider two dynamic economies, denoted t0 and
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t1, that are in steady-state. The change in macro welfare is given by

EVM = log
(

∑i pit1cit1

∑i pit0cit0

)
+ log

(
∑

i
bit1

(
pit0

pit1

)1−θ0
) 1

1−θ0

. (A27)

In words, macroeconomic welfare in this dynamic economy is equal to the change in
nominal consumption expenditures deflated by the exact-algebra CES price index associ-
ated with the t1 indifference curve, exactly as for the partial equilibrium microeconomic
welfare in expression (9), despite the fact that this is a dynamic general equilibrium econ-
omy with infinitely many factors.

Proof of Proposition A5. Consider intertemporal preferences

V(A,L, K0) =
∞

∑
s=t

βs−tu(Cs).

Comparing economies t and t′, macro EV solves the following equation:

V(A, φL, φK0) =
∞

∑
s=t

βs−tu(Cs (A, φL, φK0)) =
∞

∑
s=t′

βs−t′u(Cs
(
A′,L′, K′0

)
) = V(A′,L′, K′0).

Since the economy t′ is in steady-state, we are looking for

∞

∑
s=t

βs−tu (Cs (A, φL, φK0)) =
1

1− β
u
(
C
(
A′,L′, K′0

))
.

Furthermore, since (A, φL, φK0) is also a steady-state (by Lemma A1 below), we are search-
ing for

u (C (A, φL, φK0)) = u
(
C
(
A′,L′, K′0

))
or

C (A, φL, φK0) = C
(
A′,L′, K′0

)
.

Let v(p, I) be the static indirect utility function. Then we know that we are searching for

v(p(A, φL, φK0), m) = v(p(A,L, K0), φm) = v(p(A′,L′, K′0), m′),

where the first equality uses the fact within period relative goods prices do not depend on
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within period preferences (since the static PPF is linear). Hence,

φ =
e(p(A,L, K0), vt1)

e(p(A,L, K0), vt0)
=

e(p(A,L, K0), vt1)

e(p(A,L, K0), vt0)

e(p(A′,L′, K′0), vt1)

e(p(A′,L′, K′0), vt1)

=
e(p(A′,L′, K′0), vt1)

e(p(A,L, K0), vt0)

e(p(A,L, K0), vt1)

e(p(A′,L′, K′0), vt1)

= exp EVm.

Hence, we can use micro EVm to calculate the change in macro welfare.

Lemma A1. The steady-state choice of capital (and investment) is the same for any homothetic and
stable within-period preferences.

Proof. Suppose intertemporal welfare is given by

Ut =
∞

∑
s=t

βs−tu(Cs),

where Cs is some homothetic aggregator of within-period consumption goods. Since all
goods are produced with constant-returns to scale and every good uses the same homoth-
etic bundle of capital and labor, we can write the consumption aggregator as depending
on

Cs = G(Lcs, Kcs)

for some function constant-returns-to-scale function G. Similarly, investment goods are cre-
ated according to some constant returns to scale function

Xs = X(LXs, KXs),

and the capital accumulation equation is

Ks+1 = (1− δ)(Ks + Xs).

The Lagrangean is

L =
∞

∑
s=t

βs−t [u(Cs) + µs(G(Lcs, Kcs)− Cs) + κs(Ks+1 − (1− δ)(Ks + X(LXs, KXs)))

+ρs(Ls − Lcs − LXs) + ψt(Ks − Kcs − KXs)]
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The first order conditions are

∂L
∂Cs

: u′(Cs) = µs

∂L
∂Ks+1

: κs − βκs+1(1− δ) + βψs+1 = 0

∂L
∂KXs

: −κs(1− δ)
∂Xs

∂KXs
= ψs = µs

∂G
∂Kcs

∂L
∂Kcs

: µs
∂G

∂Kcs
= ψs

∂L
∂Lcs

: µs
∂G

∂Lcs
= ρs

∂L
∂LXs

: −κs(1− δ)
∂X

∂LXs
= ρs.

Hence
−κs(1− δ) = µs

∂G/∂Kcs

∂Xs/∂KXs

κs = βκs+1(1− δ)− βψs+1

u′(Cs) = β(1− δ)u′(Cs+1)
∂G/∂Kcs+1

∂G/∂Kcs
∂Xs/∂KXs

[
(∂Xs/∂KXs+1)

−1 + 1
]

.

In steady state we have
1 = β(1− δ) [1 + ∂Xs/∂KXs] .

Hence, the capital stock and investment in steady-state are pinned down by the following
5 equations in 5 unknowns (KC, KX, K, LC, LI) :

1 = β(1− δ) [1 + ∂X/∂KX] ,
KC

LC
=

KX

LX
,

K = KC + KX,

L = LC + LX,

δK = (1− δ)X(LX, KX).

Since G does not appear in any of these equations, the steady-state investment and capital
stock do not depend on the shape of the within-period utility function G.
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