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A.1 Step-by-Step Intuition for Iterative Procedure

To give more intuition, it helps to explicitly spell out the first few steps of the iterative pro-
cedure. For expositional simplicity, we abstract from the numerical refinements discussed
in Footnote 15.

Start with the boundary condition u(I, t0) = I since t0-equivalent income at t0 is just
initial income. For period t1, compute

log u(I, t1) ≈ log I − B(I, t0) · ∆ log pt0 ,

where we use the fact that I∗0 = u−1(u(I, t0), t0) = I. For values of I outside of [It0
, It0], we

cannot compute u(I, t1).1 We also exclude u(I, t1) if there does not exist I∗0 ∈ [It0
, It0] such that

u(I∗0, t0) = u(I, t1). This is to ensure there exists a suitable match (compensated household)
to (I, t1) in t0.

Next, calculate

log u(I, t2) ≈ log I − B(I∗1, t1) · ∆ log pt1 − B(I∗0, t0) · ∆ log pt0 ,

where I∗1 = u−1(u(I, t1), t1) = I and I∗0 = u−1(u(I, t1), t0). If necessary to form a candidate
I∗0, we extend u(I, t0) as a function of I using a loglinear approximation. To ensure there
is no extrapolation of the data, if I∗1 is not in [It1

, It1] or I∗0 is not in [It0
, It0], then we do

not calculate u(I, t2). We also exclude u(I, t2) if there does not exist I∗m ∈ [Itm
, Itm] such that

u(I∗m, tm) = u(I, t2) for m = 0 and m = 1. This ensures that there exists a suitable match
(compensated household) to (I, t2) in both t0 and t1. Note that, in contrast to u(I, t1), it is
possible to evaluate u(I, t2) for some I outside of [It0

, It0] since households are matched on
utility rather than nominal income.

Continue this iterative process until tM.

A.2 Proofs

Proof of Lemma 1. By definition,

log e(p, v(p̄, Ī)) = log e(p̄, v(p̄, Ī)) + log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī))

= log Ī + log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī)).

1This requirement is not very binding if the support of the income distribution is wide or moves slowly
from period to period (the latter is automatic if the data is smooth and the interval between each period is
short).
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Rewrite

log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī)) =

∫ t1

t0

∑
i∈N

∂ log e(ξt, v(p̄, Ī))
∂ log ξit

∂ log ξit

dt
dt,

where {ξt : t ∈ [t0, t1]} is a smooth path connecting p̄ and p as a function of a scalar t.
Finally, use Shephard’s lemma to express the price elasticity of the expenditure function
in terms of budget shares, and obtain (2). To obtain (1), switch p and p̄ as well as I and
Ī. �

Proof of Proposition 1. This follows immediately from the definition of u−1(·, s) which maps
incomes at t0 to equivalent income at time s. Hence, for some amount of t0 income, say
u(I, t), the equivalent income at time s is u−1(u(I, t), s). The uncompensated budget share
B(u−1(u(I, t), s), s) is just b(u(I, t), s). �

Proof of Proposition 2. Suppose that preferences �x vary by some observable characteristic
x. For example, x could be marital status. In this case, we can split our sample by x and
apply Proposition 1 to each subsample separately resulting in u(I, t|x) — money metrics
for different levels of expenditures I, at different points in time t, for different values of
the characteristic x. �

To prove Proposition 3 and Proposition 4, we make use of the following lemma.

Lemma A.1. Define ũ(I, t|κ) to be the solution to the integral equation (10). Then

∂ log u(I, t)
∂κ

=
−

∫ t

t0
Cov(ε(u(I, t), s), d log p

ds ) +
∫ t

t0

∂u(I∗(I,t,s),s)
∂κ Covb(

∂ log b(u(I,t),s)
∂ log u(I,t) ,

d log p
ds )[

1 +
∫ t

t0
Covb(

∂ log b(u(I,t),s)
∂ log u(I,t) ,

d log p
ds )

] ,

where Covb is a covariance using b in place of the probability weights.

Proof of Lemma A.1. Define the integral equation

log u(I, t|κ) = log I −
∫ t

t0

∑
i

Bi(I∗(I, t, s|κ), s) + κεi(I∗(I, t, s|κ), s)
d log pi

ds
ds

where
u(I∗(I, t, s|κ), s|κ) = u(I, t|κ).

Now differentiate this with respect to κ:

1
u(I, t|κ)

∂u(I, t|κ)
∂κ

= −

∫ t

t0

∑
i

[
∂Bi

∂I∗
∂I∗

∂κ
+ εi(I∗(I, t, s|κ), s) + κ

∂εi

∂I
∂I∗

∂κ

]
d log pi

ds
ds
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where
∂I∗(I, t, s|κ)

∂κ
=

∂u(I,t|κ)
∂κ −

∂u(I∗(I,t,s|κ),s|κ)
∂κ

∂u(I∗(I,t,s|κ),s|κ)
∂I

.

At κ = 0, this is
∂I∗(I, t, s|κ)

∂κ
=

∂u(I,t)
∂κ −

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

At κ = 0, we have

1
u(I, t)

∂u(I, t)
∂κ

= −

∫ t

t0

∑
i

[
∂Bi

∂I∗
∂I∗

∂κ

]
d log pi

ds
ds −

∫ t

t0

∑
i

εi(I∗(I, t, s), s)
d log pi

ds
ds

= −

∫ t

t0

∑
i

∂Bi(I∗(I, t, s), s)
∂I∗(I, t, s)

∂u(I,t)
∂κ −

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

 d log pi

ds
ds

−

∫ t

t0

∑
i

εi(I∗(I, t, s), s)
d log pi

ds
ds.

Simplifying further gives

∂ log u(I, t)
∂κ

= −
∂u(I, t)
∂κ

∫ t

t0

∑
i

∂Bi

∂I∗
1

∂u(I∗(I,t,s),s)
∂I

 d log pi

ds
ds

+

∫ t

t0

∑
i

∂Bi

∂I∗

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

 d log pi

ds
ds −

∫ t

t0

∑
i

εi(I∗(I, t, s), s)
d log pi

ds
ds

∂ log u(I, t)
∂κ

=

∫ t

t0

∑
i

[
∂Bi
∂I∗

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

]
d log pi

ds ds −
∫ t

t0

∑
i εi(I∗(I, t, s), s)d log pi

ds ds[
1 + u(I, t)

∫ t

t0

∑
i

[
∂Bi
∂I∗

1
∂u(I∗(I,t,s),s)

∂I

]
d log pi

ds ds
] .

We know that
Bi(I∗(I, t, s), s) = bi(u(I, t), s)

Hence
∂Bi(I∗(I, t, s), s)

∂I∗
∂I∗

∂u(I, t)
=
∂bi(u(I, t), s)
∂u(I, t)

Therefore, we can write

∂ log u(I, t)
∂κ

=

∫ t

t0

∑
i

[
∂Bi(I∗(I,t,s),s)
∂(I∗(I,t,s))

[
∂u(I∗(I,t,s),s)

∂I

]−1 ∂u(I∗(I,t,s),s)
∂κ

]
d log pi

ds ds −
∫ t

t0

∑
i εi(I∗(I, t, s), s) d log pi

ds ds[
1 +

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂ log u(I,t)

]
d log pi

ds ds
]
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=

∫ t

t0

∑
i

[
∂Bi(I∗(I,t,s),s)
∂(I∗(I,t,s))

[
∂I∗(I,t,s)
∂u

]
∂u(I∗(I,t,s),s)

∂κ

]
d log pi

ds ds −
∫ t

t0

∑
i εi(I∗(I, t, s), s)d log pi

ds ds[
1 +

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂ log u(I,t)

]
d log pi

ds ds
]

=

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂u(I,t)

∂u(I∗(I,t,s),s)
∂κ

]
d log pi

ds ds −
∫ t

t0

∑
i εi(I∗(I, t, s), s)d log pi

ds ds[
1 +

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂ log u(I,t)

]
d log pi

ds ds
] .

The adding up constraint requires that
∑

i εi(I∗(I, t, s|κ), s) =
∑

i ∂bi/∂u = 0. Hence, we can
rewrite some of the inner products above as covariances as in the statement of Lemma
A.1 �

Proof of Proposition 3. Assume that for all I and s, we have

Cov(ε(I, s),
d log p

ds
) = 0.

Assume that for all s < t,we have

∂ log u(I, s)
∂κ

= 0

Then, using Lemma A.1, we know that

∂ log u(I, t)
∂κ

=

∫ t

t0

∑
i
∂u(I∗(I,t,s),s)

∂κ

[
∂bi(u(I,t),s)
∂u(I,t)

]
d log pi

ds ds[
1 +

∫ t

t0
Covb(

∂ log b(u(I,t),s)
∂ log u(I,t) ,

d log p
ds )ds

] .
This is equal to zero if ∂u(I∗(I,t,s),s)

∂κ is equal to zero for every s ≤ t. We also know that

∂ log u(I, t0)
∂κ

= 0.

Hence
∂ log u(I, t)

∂κ
= 0

by transfinite induction. �

Proof of Proposition 4. If, for every s and I, we have

Covb(
∂ log B(I, s)
∂ log I

,
d log p

ds
) = 0,
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then we know that, for every s, we have

Covb(
∂ log b(u(I, t), s)
∂ log u(I, t)

,
d log p

ds
) = 0.

Substituting this into Lemma A.1 yields

∂ log u(I, t)
∂κ

= −

∫ t

t0

Cov(ε(u(I, t), s),
d log p

ds
)ds.

�

Proof of Proposition 5. By Euler’s theorem of homogeneous functions, we know that

∂ log e
∂ log eX +

∂ log e
∂ log eY = 1.

Differentiating this identity with respect to eX and eY yields the following equations

∂2 log e(
∂ log eX

)2 = −
∂2 log e

∂ log eX∂ log eY =
∂2 log e(
∂ log eY

)2 .

Next, we know that

bX =
∑
i∈X

bi =
∑
i∈X

∂ log e
∂ log eX

∂ log eX

∂ log pi
=
∂ log e
∂ log eX

∑
i∈X

∂ log eX

∂ log pi
=
∂ log e
∂ log eX .

Hence, fixing utility, the total derivative of bX with respect to prices is

bXd log bX =
∂2 log e

(∂ log eX)2

∑
i∈X

∂ log eX

∂ log pi
d log pi +

∂2 log e
∂ log eY∂ log eX

∑
i∈Y

∂ log eY

∂ log pi
d log pi

=
∂2 log e

(∂ log eX)2

∑
i∈X

∂ log eX

∂ log pi
d log pi −

∑
i∈Y

∂ log eY

∂ log pi
d log pi


=

∂2 log e
(∂ log eX)2

∑
i∈X

bXid log pi −

∑
i∈Y

bYid log pi


Using the fact that

σ(p,u) = 1 −
1

(1 − bX)bX

∂2 log e(
∂ log eX

)2 ,
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we can rewrite this as

d log bX = (1 − bX)(1 − σ)

∑
i∈X

bXid log pi −

∑
i∈Y

bYid log pi

 ,
where we suppress the fact that σ is a function of prices and utility. For the set of values
where σ , 1, rearrange this to get

−
d log bX

1 − σ
+ (1 − bX)

∑
i∈X

bXid log pi + bX

∑
i∈X

bXid log pi =
∑
i∈X

bid log pi +
∑
i∈Y

bid log pi,

or

−
d log bX

1 − σ
+

∑
i∈X

bXid log pi =
∑
i∈X

bid log pi +
∑
i∈Y

bid log pi.

Plug this back into Proposition 1 to get the desired result. Since the set of values where
σ = 1 is measure zero, we can ignore those points in the integral. It is important to note
that d log bX in the expression above is the compensated change in the budget share of X.

�

Proof of Proposition 6. Consider a perturbation to pk for k ∈ X holding fixed utils:

∂ log bX

∂ log pk
=

1
bX

∂
∂ log pk

∑
i∈X

∂ log e
∂ log eX

∂ log eX

∂ log pi


=

1
bX

∂
∂ log pk

∑
i∈X

∂ log e
∂ log eX bXi


=

1
bX

∑
i∈X

∂
∂ log pk

∂ log e
∂ log eX bXi +

∑
i∈X

∂ log e
∂ log eX

∂bXi

∂ log pk


=

1
bX

∑
i∈X

∂2 log e(
∂ log eX

)2 bXkbXi +
∑
i∈X

∂ log e
∂ log eX

∂bXi

∂ log pk


=

1
bX

∑
i∈X

∂2 log e(
∂ log eX

)2 bXkbXi +
∂ log e
∂ log eX

∂
∑

i∈X bXi

∂ log pk


=

1
bX

∂2 log e(
∂ log eX

)2 bXk,

where the last line uses the fact that ∂
∑

i∈X bXi
∂ log pk

= 0. Using the following relationship

∂2 log e(
∂ log eX

)2 = bX
∂ log bX

∂ log eX = bX(1 − bX)(1 − σ(p,u)),
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the compensated change in expenditures on X in response to a change in the price of k ∈ X
is given by

∂ log bX

∂ log pk
= (1 − bX)(1 − σ(p,u))bXk.

The following identity links the uncompensated and compensated budget share of X
goods:

BX(p, e(p,u)) = bX(p,u).

Differentiating both sides of this identity with respect to the price of some good k ∈ X
yields

∂ log BX

∂ log pk
=
∂ log bX

∂ log pk
−
∂ log BX

∂ log I
∂ log e
∂ log pk

,

=
∂ log bX

∂ log pk
−

∑
i∈X

bXi
∂ log bi

d log I
bK,

= (1 − bX)(1 − σ)bXk − bXbXk

∑
i∈X

bXi(ηi − 1),

where we use the fact that ∂ log e/∂ log pk = bk. Summing over all k ∈ X, we get

∑
k∈X

∂ log BX

∂ log pk
d log pk =

(1 − bX)(1 − σ) − bX

∑
i∈X

bXi(ηi − 1)


∑

k∈X

bXkd log pk

 .
Meanwhile, we also have

∑
k∈X

∂ log BX

∂ log pk
d log pk = εXd log pX, where d log pX =

∑
k∈X bXkd log pk

and εX = (1 − bX)(1 − σ(p,u)) − bX
∑

i∈X(ηi − 1)bXi. Rearranging this for σ(p,u) yields the
desired result

σ(p,u) = 1 −
εX + bX

∑
i∈X(ηi − 1)bXi

1 − bX
.

�

A.3 Existence and Uniqueness

Proposition A.1 (Uniqueness and Convergence). Consider the integral equation

u(I, t) = log I −
∫ t

t0

∑
i

bi(s,u(I, t))
d log pi

ds
ds.

Suppose that bi and ∂bi/∂u are smooth functions in all of their arguments and that p is absolutely
continuous in time. Then the integral equation has a unique solution in some closed interval
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[t0, t0 + h] where h > 0. Furthermore, the iterations defined by

un+1(I, t) = log I −
∫ t

t0

∑
i

bi(s,un(I, t))
d log pi

ds
ds

produces a sequence that converges uniformly to this solution on [t0, t0 + h].

Before showing the proof, we note that local uniqueness implies global uniqueness.
Suppose there exist two solutions to the integral equation u(I, t) and v(I, t). Pick the largest
s such that u(I, s) = v(I, s). Such an s must exist since u(I, t0) = v(I, t0) = I. We then apply
Proposition A.1 starting at s, and conclude that u(I, s + h) = v(I, s + h) for some h > 0. By
transfinite induction, u(I, t) = v(I, t) for all t and for every I.

Proof. To prove uniqueness, we use the contraction mapping theorem. We begin by
showing that there exists a sufficiently small compact set, around the boundary condition,
over which the integral equation is a continuous self-map. We then show that this self-
map is a contraction mapping if the compact set is sufficiently small. This shows local
uniqueness inside that set. Using the argument above, we can extend this to global
uniqueness.

Part (i): To begin, adopt the infinity norm, and define the operator:

T(v(I, t)) = log I −
∫ t

t0

∑
i

bi(s, v(I, t))
d log pi

ds
ds.

Choose h1 and α1 such that

R1 =
{
(t, y) : |t − t0| ≤ h1, |y − I| ≤ α1

}
.

It follows that bi, ∂bi/∂u, and pi all attain their supremum on R1. It follows that there exist
M > 0 and L > 0 such that

∀(t, y) ∈ R1,
∑

i

|bi
d log pi

ds
| ≤M and

∣∣∣∣∣∂bi

∂u
d log pi

ds

∣∣∣∣∣ ≤ L.

Let g be a continuous function on R1 satisfying g(t, I) ≤ α1 for all (t, I) ∈ R1. Then

∣∣∣T(g(I, t)) − log I
∣∣∣ =

∣∣∣∣∣∣∣
∫ t

t0

∑
i

bi(s, g(I, t))
d log pi

ds
ds

∣∣∣∣∣∣∣
≤

∫ t

t0

∑
i

∣∣∣∣∣bi(s, g(I, t))
d log pi

ds
ds

∣∣∣∣∣
8



≤M|t − t0|.

Choose h such that 0 < h < min{h1,
α1
M ,

1
L }. Hence∣∣∣T(g(I, t)) − log I

∣∣∣ ≤ α1.

Hence, for the set
S = {g ∈ C([t0, t0 + h]) : ‖g − log I‖ ≤ α1},

the operator T is a self-map of continuous functions satisfying g(t, I) ≤ α1 over R1.
Part (ii): Now we show that T is a contraction mapping.

|T(v(I, t)) − T(u(I, t))| = |
∫ t

t0

∑
i

[bi(s, v(I, t)) − bi(s,u(I, t))]
d log pi

ds
ds|

≤

∫ t

t0

∑
i

∣∣∣∣∣[bi(s, v(I, t)) − bi(s,u(I, t))]
d log pi

ds
ds

∣∣∣∣∣ .
By the mean value theorem, there exists ũ(I, t) ∈ [v(I, t),u(I, t)] such that

|T(v(I, t)) − T(u(I, t))| ≤
∫ t

t0

∑
i

∣∣∣∣∣∂bi(s, ũ(I, t))
∂u

(u(I, t) − v(I, t))
d log pi

ds
ds

∣∣∣∣∣
≤

∫ t

t0

∑
i

L |(u(I, t) − v(I, t))| ds

≤

∑
i

L |(u(I, t) − v(I, t))| |t − t0|

= κ |(u(I, t) − v(I, t))|

where κ =
∑

i L|t − t0|. This holds if we choose h < 1/LN, so we have
∑

i L|t − t0| < hNL < 1.
Hence, T is a contraction mapping and we can apply the contraction mapping theorem. �

A.4 Additional Figures
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Figure A.1: Money metric e(p1974, v(p2017, I2017)) by household characteristic (annualized
pounds, log scale) for the UK data in Section 4.
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(b) Above and below median age

10,000 100,000

1,000

10,000

Income in 2017
19

74
In

co
m

e
th

at
gi

ve
s

th
e

sa
m

e
ut

ili
ty

as
in

20
17

below median age
above median age

Figure A.2: Money metric e(p1974, v(p2017, I)) and real consumption as a function of I in 2017
using LOWESS
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Notes: This figure is calculated using the recursive solution method rather than the iterative one. The 95%
confidence intervals are bootstrapped using 500 draws with replacement.
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Figure A.3: Results using more disaggregated spending categories

(a) Comparison of e(p2001, v(p2017, I)) computed using 17
and 85 spending categories.
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(b) Log difference between chain-weighted in-
flation and true cost-of-living inflation using 85
spending categories.

10% 20% 30% 40% 50% 60% 70% 80% 90%
−5

0

5

10

Income Percentile in 2017

Bi
as

(c) Log difference between chain-weighted in-
flation and true cost-of-living inflation using 17
spending categories.
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Notes: Figure A.3 uses the restricted sample from 2001 − 2017 using CPI price data.
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Figure A.4: Replication of Section 5 using a constant σ and the IV estimates.

(a) Money metric e(p1974, v(p2017, I)) and real con-
sumption as a function of I in 2017 assuming
σ = 0.5.
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(b) Percent difference in money-metric values
with observed and unobserved prices for dif-
ferent percentiles of the I distribution assuming
σ = 0.5
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(c) Money metric e(p1974, v(p2017, I)) and real con-
sumption as a function of I in 2017 using IV esti-
mates.
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(d) Percent difference in money-metric values
with observed and unobserved prices for dif-
ferent percentiles of the I distribution using IV
estimates.
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A.5 Additional Details of the UK Data Used in Section 4

We use two different datasets. One is a household-level expenditure survey and the other
is data on prices of different categories of goods. The first data set is Family Expenditure
Survey and Living Costs and Food Survey Derived Variables, which is a dataset of annual
household expenditures with demographic information compiled from various household
surveys conducted in the UK. Each sample includes about 5,000-7,000 households. The
spending categories in the survey correspond to RPI (Retail Price Index) categories. We
have continuous data from 1974 to 2017. Starting in 1995, the data are split into separate
files for adults and children, so we merge them into households by adding up their
expenditures.

Our algorithm does not require a representative sampling of the entire distribution of
households, and can recover the money metric for a subsample of observed households,
even if that subsample does not sample incomes at the same frequency as the population.
The expenditure survey samples from the entire income distribution except for top earners
and some pensioners. In order to correct for possible nonresponse bias, household weights
are provided since 1997.2 We use these weights to calculate the chained aggregate price
index, which we use to calculate real consumption as in the official statistics. However,
our approach for the money metric does not use household weights.

For the prices, we use the underlying data for the consumer price index (CPI) and the
retail price index (RPI). To construct the consumption deflator in the national accounts, the
Office of National Statistics switched from the Retail Price Index (RPI) to the Consumer
Price Index (CPI).3 By comparing the RPI and CPI with the consumption deflator provided
by the Office of National Statistics, we identify the switching point as 1998 and do the
same for our price data.

Because the CPI and RPI consider different baskets of goods and services, we merged
various sub-categories to obtain a consistent set of categories over time. For example, “al-
cohol” in the RPI includes some items served outdoors, which is included in “restaurants”
in the CPI. In this case, we merged “Catering and Alcohol” in the RPI and matched it with
“Restaurant and Alcohol” in the CPI. We end up with 17 categories that are available for
the entire period for both RPI and CPI. Table A.2 summarizes how we integrated the CPI

2Prior to 1997, benefit unit weights are provided instead of household weights. Since a benefit unit is a
single person or a couple with any dependent children, there can be more than one benefit unit weight in
a household. For example, if a couple with their children and the father’s parents live together, then two
benefit unit weights are recorded. In this case, we use the simple average as the household weight.

3https://webarchive.nationalarchives.gov.uk/ukgwa/20151014001957mp_

/http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/cpi-and-rpi/

mini-triennial-review-of-the-consumer-prices-index-and-retail-prices-index.pdf.
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and RPI baskets.

Figure A.5: Comparison of aggregate annual inflation reported by the UK Office of
National Statistics and aggregate inflation calculated in our dataset following the same
methodology.
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Table A.1: Comparison of ONS and our microdata.

Decile Difference
2 3 4 5 6 7 8 9 D9-D2

ONS 2.8% 2.7% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% -0.5%
Microdata 2.6% 2.6% 2.5% 2.4% 2.4% 2.3% 2.2% 2.1% -0.5%

Notes: We report average annual inflation 2005-2017, in percentages. The ONS data is from Table 9 of “Data
tables for the CPI consistent inflation rate estimates for UK household groups” Release date: 15th February
2023. We do not compare the 1st and 10th decile since those deciles are sensitive to how the tails of the
distribution are treated. The last column is the difference between the ninth and second deciles.

Figure A.5 shows that our aggregated microdata closely matches the official consump-
tion price deflator series for the UK. Table A.1 compares average chain-weighted inflation
by expenditure decile reported by the ONS to similar statistics calculated using our micro-
data. We do not compare the 1st and 10th decile since those deciles are sensitive to how
the tails of the distribution are treated. Once again, our microdata matches the official
rates reasonably closely.
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Integrated Categories RPI CPI

Bread & Cereals Bread, Cereals and Biscuits Bread & cereals

Meat & Fish
Meat, Fish, Beef, Lamb and Pork Meat & fish

Poultry and Other meat -

Milk & Eggs
Butter, Cheese and Eggs Milk, cheese & eggs

Fresh milk and Milk products -

Oils & fats Oils & fats Oils & fats

Fruit Fruit Fruit

Vegetable Potatoes and Other vegetables
Vegetables including potatoes

& other tubers

Other food

Sweets & Chocolates Food Products

Other Foods Sugar, jam, honey, syrups,

chocolate & confectionery

Non-Alcoholic Beverages
Tea and Soft drinks

Non-Alcoholic Beverages
Coffee & other hot drinks

Tobacco Cigarettes & tobacco Tobacco

Catering
Catering Catering services

Alcoholic drink Alcoholic beverage

Household & Fuel

Housing except mortgage interest

Housing, water and fuelsFuel & light

(-)Dwelling insurance & ground rent

Clothing Clothing & footwear Clothing & footwear

Household Goods
Household goods Furniture and household equipment

domestic services & routine repair of house

Postage & Telecom
Postage

Communication
Telephones & Telemessages

Personal Goods

Personal goods & services Health

Fees & subscriptions Miscellaneous goods and service

Dwelling insurance & ground rent -

Transport
Motoring expenditure Transport

Fares & other travel costs -

Leisure Goods & Service

Leisure goods Recreation & culture

Leisure services Education

- Accommodation service

Table A.2: RPI and CPI Correspondence Table
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A.6 Testing for Separability Between X and Y goods

In this appendix, we sketch-out one way to test separability between X and Y goods,
expanding on Footnote 30. After running our method, we bin households by money
metric values. Then, for each money metric bin h, we run regressions of the form

∆ log bhit − ∆ log bhjt = βk∆ log pkt + controls + errorht,

where i, j ∈ Y and k ∈ X, and t is time. If this regression can be estimated without omitted
variable bias, then we expect that the estimates for β should be equal to zero for every
k. Intuitively, the relative compensated budget shares of i and j should not respond to
changes in the price of k. The same should hold if we swap the role of Y and X, although
the latter is not testable if prices in Y are missing.

Table A.3 provides an example, estimated using OLS in the UK data, where Y is
“Catering” and “Leisure Goods & Service” and X is the 15 remaining product categories
(see table A.2). We find that almost all coefficients are insignificant, except for “personal
goods” and “other food” when we include the relative price within Y as a control, which
is significant at the 10 percent level. We view this as tentative evidence that separability
is not strongly violated in this example.
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Table A.3: Illustration of test of separability using UK data

(1) (2) (3) (4) (5) (6) (7) (8)
Bread & Cereals 0.038 0.038 0.040 0.044 0.097 0.097 0.122 0.125

(0.056) (0.056) (0.080) (0.081) (0.060) (0.061) (0.087) (0.088)

Meat & Fish −0.013 −0.012 −0.027 −0.023 0.026 0.027 0.017 0.020
(0.064) (0.065) (0.079) (0.080) (0.070) (0.070) (0.085) (0.086)

Milk & Eggs 0.021 0.022 0.019 0.021 0.065 0.065 0.077 0.079
(0.042) (0.042) (0.059) (0.060) (0.046) (0.046) (0.065) (0.065)

Oilfats −0.059 −0.058 −0.072 −0.071 −0.025 −0.025 −0.037 −0.036
(0.052) (0.052) (0.058) (0.058) (0.055) (0.055) (0.061) (0.062)

Fruit 0.043 0.043 0.042 0.044 0.083 0.083 0.084 0.085
(0.073) (0.073) (0.079) (0.079) (0.078) (0.078) (0.084) (0.084)

Vegetables −0.018 −0.018 −0.022 −0.022 0.019 0.019 0.016 0.015
(0.048) (0.048) (0.052) (0.052) (0.055) (0.055) (0.060) (0.060)

Other food 0.092 0.093 0.107 0.108 0.128∗ 0.129∗ 0.147∗ 0.148∗

(0.064) (0.064) (0.074) (0.075) (0.068) (0.068) (0.079) (0.079)

Non-Alcoholic Beverages 0.026 0.026 0.025 0.025 0.056 0.055 0.058 0.058
(0.054) (0.054) (0.065) (0.065) (0.056) (0.056) (0.067) (0.067)

Tobacco −0.081 −0.081 −0.115 −0.112 −0.014 −0.014 −0.037 −0.033
(0.069) (0.070) (0.086) (0.086) (0.076) (0.076) (0.094) (0.094)

Household & Fuel −0.052 −0.051 −0.087 −0.083 0.035 0.036 0.031 0.035
(0.052) (0.052) (0.070) (0.071) (0.063) (0.064) (0.091) (0.091)

Clothing 0.052 0.051 0.075 0.078 0.042 0.041 0.045 0.049
(0.046) (0.047) (0.082) (0.083) (0.046) (0.047) (0.084) (0.084)

Household Goods 0.062 0.063 0.075 0.079 0.096 0.097 0.117 0.121
(0.067) (0.067) (0.093) (0.093) (0.069) (0.069) (0.095) (0.096)

Postage & telecoms 0.002 0.003 −0.003 −0.000 0.061 0.062 0.070 0.073
(0.045) (0.045) (0.055) (0.055) (0.052) (0.052) (0.065) (0.065)

Personal Goods 0.056 0.056 0.088 0.092 0.103∗ 0.103∗ 0.175 0.179
(0.056) (0.056) (0.100) (0.101) (0.060) (0.061) (0.111) (0.111)

Transport 0.066 0.067 0.079 0.082 0.111 0.112 0.136 0.139
(0.070) (0.070) (0.089) (0.090) (0.075) (0.075) (0.097) (0.097)

Quantile FE N Y Y N N Y Y N
Decade FE N N Y N N N Y N
Quantile×Decade FE N N N Y N N N Y
Relative price within Y N N N N Y Y Y Y
N 41, 427 41, 427 41, 427 41, 427 41, 427 41, 427 41, 427 41, 427

Notes: Standard errors are clustered at the household level.
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A.7 Comparison with Blundell et al. (2003)

In this appendix, we exposit and apply the welfare bounds in Blundell et al. (2003) to
artificial and real data. We start by discussing how we implement their methodology
since, due to a typographical error in the algorithm for the lower-bound in the published
paper, we do not exactly implement their procedure.

A.7.1 Description of Bounding Algorithm

To bound the cost-of-living, Blundell et al. (2003) provide an algorithm for an upper-bound
and a lower-bound. Following the notation in their paper, let qt(I) be bundle of goods
consumed by a household with income I in period t. Blundell et al. (2003) assume that
qt(I) is an injective function (each I maps to a unique bundle of quantities in each period).

Algorithm A (Upper-bound). To recover an upper-bound for e(ps, v(pt, It)), start by defin-
ing q∗ = qt(It) and let T be the set of periods for which we have data.

(1) Set i = 0 and F(i) = {qi
s = qs(ps · q∗)}s∈T.

(2) Set F(i+1) = {qi+1
s = qs(minq∈F(i) ps · q)}s∈T.

(3) If F(i+1) = F(i), then set QB(q∗) = F(i) and stop. Else set i = i + 1 and go to step (2).

We have that e(ps, v(pt, It)) ≤ minq{ps · q : q ∈ QB(q∗)}. For the income levels It for which F(0)

is empty for s , t (because there are no households at s whose spending at s is as high or
as low as ps · q∗), we cannot calculate an upper-bound.

Intuitively, the cost of living in period s associated with q∗, e(ps, v(pt, It)), is weakly less
than ps · q∗. Hence, for every s, we must have that q0

s = qs(ps · q∗) is weakly preferred to q∗.
This collection of bundles, {q0

s }s∈T, all of which are preferred to q∗, is F(0) defined in step (1).
In step (2), we search across all of these bundles to find the cheapest one in each period
s. We update each qi

s to be the bundle that households with that level of income actually
picked in each period (which is still better than q∗). We continue this indefinitely until this
procedure converges, at which point we have our upper-bound.

As mentioned above, the lower-bound algorithm provided by Blundell et al. (2003)
has a typographical error. We provide an amended version below.
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Amended Algorithm B (Lower-bound). To recover a lower-bound for e(ps, v(pt, It)), start
by defining q∗ = qt(It) and let T be the set of periods for which we have data.

(1) Set i = 0, and let F(i) = {Ii
s : pt · qs(Ii

s) = It}s∈T.

(2) Set F(i+1) = {maxIk∈F(i){Ii+1
s : Ik = pk · qs(Ii+1

s )}}s∈T.

(3) If F(i+1) = F(i), then set QW(q∗) = {qs(Ii
s)}s∈T and stop. Else set i = i + 1 and go to step (2).

We have that maxqs∈QW(q∗) ps · qs ≤ e(ps, v(pt, It)). For the income levels It for which F(0) is
empty for s , t (because there are no households at s whose consumption bundle costs It

at t prices), we cannot calculate a lower-bound.
Intuitively, in step (1), for each period s, we find the income level I0

s such that pt ·qs(I0
s ) =

It. The bundle qs(I0
s ) was affordable at t but was not purchased. Hence, the true cost-of-

living in period s must be greater than I0
s . The collection of income levels constructed in

this step is F(0) and all are less than the true cost-of-living. In step (2), for each period s,
we search over Ii

k and find the maximum level of income Ii+1
s such that Ii

k = pk · qs(Ii+1
s ) is

satisfied. The new Ii+1
s is weakly greater than Ii

s but we still know that Ii+1
s is less than the

true cost-of-living. We continue this indefinitely until this procedure converges, at which
point we have our lower-bound.
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A.7.2 Results with UK Data
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Figure A.6: Upper- and lower-bound using the amended Blundell et al. (2003) algorithm
for the UK data in Section 4. Our algorithm produces the blue line. We can obtain bounds
using the Blundell et al. (2003) algorithm for all households in the 2017 sample except for
the top 1 percentile and the bottom 0.1 percentile.
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A.8 Comparison with Jaravel & Lashkari (2022)

In this appendix, we apply the first-order and second-order algorithms described in Jaravel
and Lashkari (2022) (JL) to some artificial examples and compare the performance with
our method.4 We start with the example in Section 3.3, where both methods perform
well. We then provide other examples where the errors in their methodology are very
large. These examples are selected to contrast the mathematical properties of our two
methodologies when the support of the cross-sectional distribution of utilities changes
over time.

We compute the errors for each method relative to the truth for the entire range
over which each method produces estimates. We do this because identifying the set of
households over which the money metric can be reliably estimated (without extrapolation)
is a contribution of our methodology. The JL method purports to estimate the money
metric for all households in the sample and does not provide a way to know if they are
performing out-of-sample extrapolations, so we calculate the error accordingly.

Table A.4 shows that both methodologies perform very well for the simple example
in Section 3.3, even though the support of the cross-section distribution of utilities is not
constant over time. However, if we change parameter values, then the two methods can
perform very differently.

4By setting the base year in the Jaravel and Lashkari (2022) algorithm to t0, their definition of real
consumption (which differs from our definition of real consumption) matches our money metric. Our
method only requires repeated cross-sections. However, the second-order JL method requires a panel to
construct household-specific inflation indexes. Therefore, to apply their method we create panels by the
most disaggregated income quantile possible (i.e. if we have N households per period, then we form panels
based on income N-quantiles). Finally, for the polynomial fitting stage of the Jaravel and Lashkari (2022)
method, we use Matlab’s polyfit function because it gives lower errors than a naive OLS regression.
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Table A.4: Comparison of errors for simple example in Section 3.3

Jaravel and Lashkari (2022) method:
Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.03 0.03 8.7 × 10−3 8.3 × 10−3

2 0.02 0.02 1.6 × 10−3 1.4 × 10−3

4 0.01 0.01 1.2 × 10−3 1.0 × 10−3

6 7.8 × 10−4 4.0 × 10−4 6.4 × 10−4 1.5 × 10−4

8 3.6 × 10−3 4.4 × 10−3 6.6 × 10−4 2.5 × 10−4

12 1.1 × 10−3 7.0 × 10−4 6.4 × 10−4 1.5 × 10−4

Baqaee, Burstein, Koike-Mori method:
Infinity Norm Root Mean Square Error

Iterative Recursive Iterative Recursive

7.8 × 10−3 1.5 × 10−4 5.0 × 10−3 7.7 × 10−6

Notes: The Jaravel and Lashkari (2022) methodology is applied to the artificial example in Section 3.3. We
report two different norms (infinity norm and root mean square error) of the percentage difference between
the true money metric and the estimate in the final period (e.g. 0.03 stands for 3% difference). The first
column is their “first-order” algorithm and the second column is their “second-order” algorithm. The
parameter K is the order of the polynomial used. The sample has 1000 households and annual data.
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One example is provided in Table A.5. Our method, which tracks the boundary
of overlapping support, does not produce any numbers for this example because there
is no overlap in the support of the utility distribution between t0 and T. However,
the Jaravel and Lashkari (2022) algorithm does produce estimates and they are very
inaccurate. Furthermore, these estimates do not improve as we increase the sample size
or frequency of observation. Importantly, the Jaravel and Lashkari (2022) methodology
does not provide a way to know whether their estimates are reliable (like in Table A.4)
or unreliable like in (Table A.5). On the other hand, our methodology does not produce
estimates that are not guaranteed to be reliable (given our assumptions).

Table A.5: Errors in Jaravel and Lashkari (2022) method with different parameters

Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.27 0.27 0.25 0.24
2 0.47 0.43 0.44 0.40
4 0.38 0.41 0.34 0.36
6 1.5 × 10104 Polyfit error 4.6 × 10102 Polyfit error
8 1.08 1.17 0.97 1.06

12 Polyfit error Polyfit error Polyfit error Polyfit error

Notes: This table shows the accuracy of the Jaravel and Lashkari (2022) algorithm for different values
of K (polynomial degree), as defined in the notes for Table A.4. The expenditure function is e

(
p,U

)
=(∑

i ωiUεi(1−γ)p1−γ
i

)1/(1−γ)
where

(
γ, ε1, ε2, ε3

)
= (5, 0.3, 1, 2) andω is all 1. There are 1000 households uniformly

distributed in the income distribution over [1, 1.1]. Average nominal income is the numeraire and the income
distribution does not change over time. There are 40 periods and the price of the three goods rise (relative
to income) at a constant rate from (1, 1, 1) to (2, 3, 4). If Matlab fails to find a unique polynomial due to
(numerical) multi-collinearity, we write “Polyfit error.” Although we do not report the numbers, the errors
in these cases are large. Quadrupling the number of households and doubling the frequency of observation
does not appreciably change the results in this table.
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In Table A.5, there is no overlapping support, so our method produces no estimates.
In the next example, the distribution of money metric values in the final period is, by
construction, a subset of the one in the initial period. This means that our method produces
estimates for every household in the sample. That is, we compare the performance of our
method to JL for the same set of households (since all households in the final period are
in a region of overlapping support). The results are reported in Table A.6. Once again,
increasing the frequency of observation and number of households do not appreciably
change the estimates.

Table A.6: Comparison of errors for non-homothetic CES example with different param-
eters

Jaravel and Lashkari (2022) method:
Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.15 0.15 0.08 0.07
2 0.17 0.13 0.05 0.05
4 1.2 × 1091 Not converged 1.8 × 1089 Not converged
6 4.9 × 10124 Polyfit error 7.0 × 10122 Polyfit error
8 NaN Polyfit error NaN Polyfit error

12 Polyfit error Polyfit error Polyfit error Polyfit error

Baqaee, Burstein, Koike-Mori method:
Infinity Norm Root Mean Square Error

Iterative Recursive Iterative Recursive

1.4 × 10−3 2.5 × 10−6 1.3 × 10−3 1.7 × 10−6

Notes: This table shows the accuracy of the Jaravel and Lashkari (2022) algorithm for different values
of K (polynomial degree), as defined in the notes for Table A.4. The expenditure function is e

(
p,U

)
=(∑

i ωiU(1−γ)εi p1−γ
i

)1/(1−γ)
where

(
γ, ε1, ε2, ε3

)
= (5, 1.6, 2, 3.3) and ω = (1, 1, 1). There are 5000 households

equally distributed in the income distribution and 100 periods. The initial income distribution is [0.8, 1.4].
Between period 1 and 50, the income distribution uniformly and linearly changes to [0.003, 34.4]. Between
period 51 and 75, the income distribution uniformly and linearly changes to [0.5, 8.2]. Between period 76
and 100, the income distribution uniformly and linearly changes to [2.7, 2.9]. The price vector changes from
(1, 1, 1) to (2, 3, 4). If the second-order algorithm does not converge within 100 iterations, we write “Not
converged.” If the estimated values of the money metric explode, we write “NaN” for not a number. If we
fail to find a unique polynomial (due to numerical multi-collinearity), we write “Polyfit error.” Although
we do not report the numbers, the errors in these cases are large. Results are similar for higher order
polynomials, if we quadruple the number of households, or double the frequency of observations.
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Figure A.7: The elasticity of substitution as a function of utility for the example in Table
A.7
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Our final example uses a more nonlinear demand system. Let preferences be defined
by

e
(
p,U

)
=

∑
i

ωi
(
Uεipi

)1−γ(U)

1/(1−γ(U))
, (1)

where we allow the elasticity of substitution γ to depend on utility, as in Fally (2022).
To keep the preferences well behaved, we constrain the elasticity of substitution to be
between a lower- and upper-bound value. For example, the most straightforward way to
do this is to set

γ (U) = max
{
min

{
γ, γ0 − η log U

}
, γ̄

}
. (2)

The Jaravel and Lashkari (2022) propositions require smoothness, so we instead use the
following functional form

γ(U) =

γχ1−1
+

([
γ
χ2−1
χ2 + (γ0 − η log(U))

χ2−1
χ2

] χ2
χ2−1

)χ1−1
1

χ1−1

, (3)

where we set χ1 = 100 and χ2 = 0.01. This function is plotted in Figure A.7 and smoothly
approximates the maximum and minimum functions. In practice, the errors are similarly
large whether we use (2) or (3).

We simulate artificial data using this demand system and report the results in Table
A.7. The Jaravel and Lashkari (2022) methodology has substantially larger errors and
does not seem to converge as we increase the number of parameters in the polynomial

25



approximation or the sample size. Our methodology, in contrast, produces very small
errors.

Table A.7: Comparison of Jaravel and Lashkari (2022) and Baqaee, Burstein, Koike-Mori
errors for more complex example

Jaravel and Lashkari (2022) method:
Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.17 0.17 0.11 0.10
2 0.25 0.25 0.16 0.15
4 14 Not converged 0.53 Not converged
6 1.9 × 10205 Not converged 6.0 × 10203 Not converged
8 3.1 × 1092 Polyfit error 9.9 × 1090 Polyfit error

12 Polyfit error Polyfit error Polyfit error Polyfit error

Baqaee, Burstein, Koike-Mori method:
Infinity Norm Root Mean Square Error

Iterative Recursive Iterative Recursive

7.4 × 10−3 1.7 × 10−5 4.6 × 10−3 1.1 × 10−5

Notes: This table shows the accuracy of the Jaravel and Lashkari (2022) algorithm for different values
of K (polynomial degree), as defined in the notes for Table A.4. The expenditure function is (1) with
ε = [0.2, 1, 1.65] and ωi calibrated so that the budget share of each good for the median household in the
first period is the same. The parameters in (3) are γ0 = 10, γ = 1.5 γ̄ = 5, η = 2, χ1 = 100 and χ2 = 0.01.
The income distribution starts as a uniform distribution between [2, 50] and grows uniformly by a factor of
14 over 40 periods. The price vector changes from (1, 1, 1) to (7, 5, 3). If the second-order algorithm does
not converge, we write “Not converged.” If Matlab fails to find a unique polynomial (due to numerical
multi-collinearity), we write “Polyfit error.” Although we do not report the numbers, the errors in these
cases are large. Results are similar for higher order polynomials, if we quadruple the number of households,
or double the frequency of observations.
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