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Abstract

We provide a method to measure consumer welfare, in money metric terms, taking

into account expectations about the future. Our two key assumptions are that the

expenditure function is separable between the present and the future, and that there is

a subset of households that do not face idiosyncratic undiversifiable risk. Our sufficient

statistics methodology allows for incomplete markets, lifecycle motives, non-rational

expectations, non-exponential time discounting, and arbitrary functional forms. To

apply our formulas, we require estimates of the elasticity of intertemporal substitution,

goods and services’ prices over time, and repeated cross-sectional information on

households’ income, balance sheets, and expenditures. We illustrate our method

using the PSID from the United States and find large deviations from CPI-based

measures. Our estimates can be used to study the welfare consequences of complex

shocks that affect households along different margins and time horizons. For example,

involuntary job loss is associated with a 20% reduction in money metric utility for

households younger than 60 years old.
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1 Introduction

Measuring consumer welfare is a central task of economics. In macroeconomics, it is
widely recognized that a comprehensive measure of welfare must be forward-looking —
it must account not just for present consumption, but also expected future consumption.
The typical macroeconomic model explicitly models intertemporal decision-making, and
welfare calculations take into account both time and uncertainty, as in Lucas (1987).

In this sense, theory is far ahead of measurement. Both at the individual and the aggre-
gate level, standard statistical measures of well-being, like real income, real consumption,
and money metric utility, are founded on a static and deterministic formulation of price
theory.1 Static measures are constructed by deflating nominal static income or expendi-
tures by a static price deflator.

Such measures do not account for the future, and can easily produce misleading
estimates of changes in intertemporal welfare. For example, households may lower
their consumption today even though their welfare overall rises.2 Although forward-
looking measures of welfare and inflation are theoretically appealing, they are almost
totally unheard of outside of fully specified structural models. The main difficulty is
that much of what one needs to observe in order to compute a measure of dynamic
welfare is not easily observable. Static measures require knowing prices and spending on
goods and services in different periods. In contrast, dynamic measures require knowing
future state-contingent spending plans, future state-contingent goods and asset prices,
and probabilities of different states being realized. This intractable measurement problem
is perhaps the central reason why forward-looking measures of real wealth have remained
firmly in the domain of economic theory rather than measurement practice.

This state of affairs, where structural work uses forward-looking wealth-like measures
of welfare but applied empiricists use income-like measures, has long been a source of
tension in economics. For example, Samuelson (1961) concludes his paper on dynamic
welfare measurement with this:

“When we work with simple and exact models, in which no extraneous statis-
tical difficulties of measurement could arise, the only valid measure of welfare
comes from computing wealth-like magnitudes not income magnitudes. In the

1For example, the Consumer Price Index manual (IMF, 2004) or the survey paper by Jorgenson (2018) on
“Production and Welfare Measurement”, have little to say about how expectations about the future should
influence the measurement of welfare and cost-of-living indices.

2This can happen, for example, if there is a beneficial shock in the future and the elasticity of intertem-
poral substitution is greater than one or if there is a negative shock today and a positive shock in the future
and the elasticity of intertemporal substitution is less than one.
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absence of perfect certainty, the futures prices needed for making the requisite
wealth-like comparisons are simply unavailable. So it would be difficult to
make operational the theorists’ desired measures. . . . I must stress and re-
stress that although wealth-like magnitudes offer no difficulties in theoretical
principle as compared with the statical case, the national income statistician is
very far from having even an approximation to the data needed for these com-
parisons. A vital difficulty is the hard and unchangeable fact of uncertainty.
Futures markets might enable us to salvage something even in the presence
of uncertainty; but futures markets are themselves of little quantitative impor-
tance in present-day economies.”

This paper develops a new approach to overcome some of these challenges. Usually,
welfare is measured in money metric terms by the shift in the budget constraint required
to keep consumers indifferent.3 When markets are incomplete, there is no single intertem-
poral budget constraint and the money metric will change depending on which budget
constraint is shifted. Therefore, the usual definition must be modified. We define the
money metric utility of an agent facing a dynamic stochastic problem to be the equivalent
one-time lump sum wealth that agent must be given in some base year to maintain the
same utility.4 If markets are complete and there is no risk, then this definition coincides
with the usual one.

We propose a sufficient-statistics methodology to estimate this forward-looking mea-
sure of welfare for a population with common preferences. In order to do this, we make
two key assumptions. The first assumption is that preferences are separable between the
present and the future and that the elasticity of intertemporal substitution is not equal
to one.5 The second assumption is that there is a subset of households that do not face
idiosyncratic undiversifiable risk, which we call “rentier” households. Given these two
assumptions, we can obtain forward-looking measures of welfare without further as-
sumptions about utility functions (e.g. CES across goods), risk preferences (e.g. expected
utility), time preferences (e.g. exponential discounting), beliefs (e.g. rational expecta-
tions), and financial frictions (e.g. complete markets), or first-order approximations.

3The money metric was introduced by McKenzie (1957), but popularized by Samuelson (1974). For a
textbook presentation, see also Deaton and Muellbauer (1980).

4To be more precise, for an agent facing a dynamic stochastic problem in year τ, we ask: what is the
one-time lump sum payment the agent must receive in some base year (with no other income sources
thereafter) such that the agent is indifferent between their initial problem and this counterfactual problem.
This amount of wealth is the money metric utility associated with the problem the agent faced in year τ in
the base year dollars.

5Specifically, our notion of time separability is that the expenditure function implied by intertemporal
preferences be separable between current and future prices.
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We sketch the basic idea of our approach. First, for the rentier subsample, we back
out the change in continuation value of the future relative to the present using changes in
consumption-savings choices, conditional on estimates of the elasticity of intertemporal
substitution (EIS). If the EIS is less than one, then an increase in the consumption-wealth
ratio suggests that inflation in the future bundle is falling relative to inflation in the present
bundle. This means that forward-looking measures of inflation that account for how all
prices, not just contemporaneous prices, change will be lower than static measures of
inflation. Accordingly, money metric utility will be higher than what is implied by
deflating wealth by static inflation.6

Importantly, to calculate dynamic welfare we must use changes in the compensated
consumption-wealth ratio of rentiers, which neutralizes wealth effects and responds only
to substitution effects. To back-out the compensated consumption-wealth ratio without
first specifying and estimating a dynamic model, we match rentiers in the cross-section
over time, building on ideas from Baqaee et al. (2024).

Next, we recover money metric utility for non-rentiers by relying on a generalization
of Engel’s law. Specifically, if the vector of budget shares is a one-to-one function of utility,
then two households are on the same intertemporal indifference curve if, and only if, their
budget shares in the same period are the same. This allows us to construct money-metric
values for non-rentiers by matching them with rentiers with with similar static budget
shares.7

In addition to measuring changes in forward-looking welfare, our method is also
useful as an input for reduced-form empirical work studying dynamic treatments. Many
policies and shocks have complex effects that affect households in ex-ante uncertain ways
along many dimensions and at different time horizons. For example, a monetary policy
shock affects goods prices, asset prices, and income in both the present and the future.
All of these effects must be aggregated together, via preferences, into a single number
representing the welfare change. Our paper provides a way to study the welfare effects
of such treatments without requiring that researchers enumerate, estimate, and aggregate
all the possible ways the treatment affects the household and how the household’s beliefs
and contingent plans change in response to that treatment. In particular, we can first
measure money-metric utility and then use it as an outcome variable in estimating the

6Our sufficient statistic formulas take changes in prices of goods and services and in consumption-wealth
ratios as given. For answers to counterfactual questions, one would have to provide counterfactual prices
and counterfactual changes in consumption-wealth ratios, which requires a more fully-specified structural
model.

7This requires that rentiers and non-rentiers are drawn from the same population (i.e. same preferences,
beliefs, and prices), given observed characteristics (e.g. gender, age, and location).
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average treatment effect of exogenous shocks.
Our method requires three pieces of information. First, a repeated cross-sectional

survey of static household expenditures that includes some rentier households whose
wealth is observed. Second, a time series of static price changes. Finally, knowledge of the
compensated elasticity of intertemporal substitution (which could be a constant or vary
as a function of wealth and time). We also require that households’ preferences are stable
functions of observable characteristics. That is, we rule out unobservable taste shocks,
where households with similar characteristics have different preferences.

To illustrate our method, we apply our results to the United States using the Panel
Study of Income Dynamics (PSID) and price data from the Bureau of Labor Statistics.
We begin by selecting a subsample of rentiers. We do this by computing a proxy for the
present value of expected future labor and transfer income for each household. We say
that a household is a rentier if the present value of their future labor and transfer income is
less than 10% of their total wealth. (these households tend to be older.) Taking estimates
of the EIS from Best et al. (2020), we recover an ideal cost-of-living index using changes
in consumption-wealth ratios for these households. We then extend the money metric to
cover non-rentiers by matching households in the same period together via static budget
shares as described above.

We find that static CPI measures are a poor approximation to the true dynamic cost-
of-living price index. Furthermore, we find significant heterogeneity in the cost-of-living
index across both the wealth distribution and by age group, although standard errors
are large for some groups due to small sample size. We then apply our method to
study the welfare consequences of job loss in our sample. We find that involuntary job
loss is associated with a roughly 20% reduction in money metric utility for households
younger than 60. For households above 60, the losses are smaller and less statistically
significant. Unlike alternative numbers from the literature, our results do not assume that
all households discount the future using market rates, or that households have perfect
foresight about the future.

Related Literature. The literature on consumer price indices is vast, but the majority of
it abstracts from time and risk. We build on several papers from this literature. Feenstra
(1994) inverts CES demand curves to infer the value of new goods and other missing
prices.8 We extend this idea to infer the value of missing future prices relative to present
prices using changes in consumption-wealth ratios.

8This approach is frequently used to infer the value of new goods or quality change in static settings,
see, for example Broda and Weinstein (2010), Aghion et al. (2019), Blaum et al. (2018), Argente and Lee
(2021), and Redding and Weinstein (2020).
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Hamilton (2001) matches households that are on the same indifference curve over
time via budget shares on food.9 Atkin et al. (2024) provide a micro-foundation for this
approach and use it to calculate welfare across the income distribution. We use a similar
idea to Hamilton (2001), but we match rentiers to non-rentiers within the same period
using static budget shares. This means that we do not have to correct for substitution
effects, as in Atkin et al. (2024).

Our paper is also related to a literature that non-parametrically measures static money
metric utility using repeated cross-sectional data, like Blundell et al. (2003), Jaravel and
Lashkari (2024), and Baqaee et al. (2024). Specifically, we generalize Baqaee et al. (2024)
to environments with intertemporal preferences and incomplete markets.

The literature on dynamic price indices is comparatively small, but can trace its origins
to the inception of index number theory. For example, Fisher and Pigou both recognized
that the ideal cost-of-living index should incorporate information about the future, though
they did not offer a specific remedy. Alchian and Klein (1973) argue that a proper definition
of the price index must be based on intertemporal consumption, and they propose includ-
ing asset prices in the CPI. Pollack (1975) studies conditions under which the intertemporal
cost-of-living index can be broken up into sub-indices. In the context of national income
accounting, Hulten (1979) points out that productivity shocks today drive capital accu-
mulation in the future, and so the Solow (1957) residual understates the importance of
technological change. He proposes to use interest rates to calculate a dynamic technology
residual. Relatedly, Basu et al. (2022) show that, to a first-order, the welfare of a country’s
infinitely-lived representative consumer can be summarized by the net-present value of
technology shocks plus the initial capital stock.

To measure dynamic measures of inflation and welfare, Reis (2005) and Aoki and
Kitahara (2010) calibrate parametric models of household preferences and beliefs, and
compute aggregate cost-of-living indices by feeding in the path of observed prices. Reis
(2005) uses additively time-separable homothetic preferences and considers only financial
wealth, whereas Aoki and Kitahara (2010) use Epstein and Zin (1989) preferences and
allow for both financial and non-financial wealth. Both papers use homothetic preferences
and assume that all assets can be traded — that is, they abstract from idiosyncratic
uninsurable risk and borrowing constraints. In contrast, our method accommodates
uninsurable risk, borrowing constraints, and non-homothetic preferences.

More recently, Fagereng et al. (2022) and Del Canto et al. (2023) use Taylor approxima-

9This approach, especially paired with an AIDS functional form, is frequently used to measure inflation
in historical settings and settings where data quality is low. See, for example, Costa (2001), Almås (2012),
Almås et al. (2018), and Nakamura et al. (2016).
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tions to calculate how consumer welfare responds to shocks to asset prices and monetary
policy, respectively. Fagereng et al. (2022) estimate how various asset prices changed over
time in Norway and weigh these changes in asset prices by discounted net asset sales.
Del Canto et al. (2023) estimate local projections of how monetary shocks change goods
and asset prices, and then weigh these price changes by discounted budget shares of
households.

Our paper differs from these papers in some important ways. First, we do not directly
estimate or model future asset or goods prices, beliefs, discount factors, and future hold-
ings of assets or purchases of goods. Instead, we back out the welfare impact of changes in
future prices and probabilities from changes in consumption-savings decisions. Second,
our approach allows for aggregate and idiosyncratic risk without assuming a specific func-
tional form for the stochastic discount factor. Third, we model non-homotheticities and
do not rely on first-order approximations (for which non-homotheticites do not matter).10

Finally, our paper is also related to generalizations of price theory to incomplete
markets. A notable example is Farhi et al. (2022), who decompose changes in demand in
an incomplete market world into income and substitution effects. Our paper is related
to this task since, to construct a money metric measure of welfare, we define and use a
notion of compensated demand that treats income and substitution effects differently.

Roadmap. Section 2 defines time separability of preferences and the compensated elas-
ticity of intertemporal substitution. Section 3 uses a simple complete-markets exam-
ple, with homothetic and additively time-separable utility, to illustrate how changes in
consumption-wealth ratios can be used to infer dynamic welfare changes. Section 4 intro-
duces the actual decision problem we are interested in, which features incomplete markets,
uninsurable risk, borrowing constraints, and non-homothetic preferences. Section 5 con-
tains the main results of the paper showing how to extend the basic idea in Section 3 to this
more complex environment, first for rentiers and then non-rentiers. Section 6 constructs
a measure of dynamic welfare for households in the PSID. Section 7 uses these measures
to study the dynamic welfare losses from job loss. We conclude in Section 8.

2 Time Separable Preferences

In this section, we define preferences and introduce a notion of time separability that
we make use of throughout the paper. This section only describes preferences, and we

10We document strong intertemporal non-homotheticities whereby wealthier households consume a
smaller share of their wealth per period. This is consistent with Straub (2019).
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delay specifying the decision problem to later sections. Agents have preferences � over
stochastic consumption streams represented by a utility function

U ({c,π}) , (1)

where c is a state-contingent stream of consumption bundles and π is the probability
distribution over states. Denote the sequence of shock realizations up to period t by
st = (s0, . . . , st), the set of goods available each period by N, and the consumption of
good n in history st by cn(st). Let π(st) denote the probability of drawing history st. The
preferences in (1) nest the common exponential discounting expected utility function as a
special case.

Given some preferences (1), define the following transformation of the utility function:

e(q,π,U) = min
c

{
q · c :U ({c,π}) = U

}
, (2)

where q has the same dimensionality as c. This transformation takes as an argument a
utility function U and probabilities π and returns a new function e. We refer to e as the
shadow intertemporal expenditure function and to q as shadow prices. We use the qualifier
“shadow” to emphasize that e is a purely theoretical construct and agents need not be
solving the expenditure minimization problem defined in (2) in practice.

Write qn(st) for the element of q corresponding to cn(st). Denote the maximizers in (2)
by c∗n(st

|q,π,U), and the share of spending in the first period, the present (superscript P),
to be

bP(q,π,U) =

∑
n∈N qn(s0)c∗n(s0

|q,π,U)
e(q,π,U)

.

The share of spending on the future (superscript F) is

bF(q,π,U) = 1 − bP(q,π,U).

Definition 1 (Compensated Elasticity of Intertemporal Substitution). The compensated
elasticity of intertemporal substitution (EIS), σ∗(q,π,U), is

1 − σ∗(q,π,U) =
∑
n∈N

∂ log
[
bP(q,π,U)/bF(q,π,U)

]
∂ log qn(s0)

.

That is, the compensated EIS captures how spending on the present versus the future
changes if the shadow price of every consumption good in the present rises by the same
amount, holding overall utility constant.
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Throughout the paper, we impose the following time-separability condition on pref-
erences.

Definition 2 (Time Separability). The expenditure function is time separable if the function
defined in (2) can be written as

e(q,π,U) = e
(
P
(
q(s0),U

)
,F

({
q(st)

}
t>0
,π,U

)
,U

)
, (3)

where P and F are scalar-valued functions that are increasing in q, homogeneous of degree
one in q, and non-decreasing in U.11

That is, preferences are time separable if, holding utility constant, the shadow expendi-
ture function e is separable between present and future shadow prices. When preferences
satisfy (3), spending shares across goods in the present depend on future prices only
through changes in U (i.e. wealth effects). Conversely, spending shares in the future
(across dates, states, and goods) depend on present prices only through wealth effects.
Condition (3) is violated if changes in intertemporal prices, say the real interest rate, cause
spending shares in the present to change even holding intertemporal utility constant. (See
Lemma 1 in Section 5 for more details.)

Equation (3) implies that future prices and probabilities are aggregated together into
a single scalar F, which acts like a certainty-equivalent that accounts for how changes in
future prices and risk affect expenditures on the future.

When preferences are homothetic, as is the case in the vast majority of the macroeco-
nomics literature, separability of the expenditure function is equivalent to the assumption
that the utility function is separable between present and future quantities.

Definition 3 (Homothetic Separability). If preferences are homothetic, then separability of
the expenditure function is equivalent to requiring that the utility function be expressible
as

U(c,π) = U
(
P

(
c(s0)

)
,F

({
c(st)

}
t>0
,π

))
,

where U is increasing and homogenous of degree one in its arguments, and P and F are
increasing and homogeneous of degree one in c.

Proof. This follows from Theorem 4.3 in Blackorby et al. (1998). �

11Separability of the expenditure function is sometimes referred to as “quasi-separability” (see, e.g.,
Atkin et al., 2024). Our notion of separability is stronger than that used by Atkin et al. (2024) because we
require prices in P to be separable from those in F and vice versa (given utility).
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Definition 3 implies that the typical preferences commonly used in macroeconomics,
like exponentially discounted expected utility or Epstein and Zin (1989), satisfy our notion
of time separability since they are homothetic and directly time separable.

The following is a parametric example that is time separable but non-homothetic.

Example 1 (Exponential Discounting Expected Utility). Suppose that the utility function
solves the following equation

U
σ−1
σ =

T∑
t=0

βtUεt
∑

st

π(st)

∑
n

ωntUεncn(st)
γ−1
γ


γ
γ−1

σ−1
σ

, (4)

where t denotes age, β is the discount factor, ωnt are taste parameters for good n at age t, γ
and ρ control substitution elasticities across goods, states, and time, and εt and εn govern
wealth effects for consumption at age t and consumption of good n.12 These preferences
are time separable.13

We impose time separability of preferences throughout the rest of the paper. Note that
time separability is a primitive condition on preferences, not on the decision problems
agent face. That is, preferences can be time separable without agents facing the decision
problem defined by (2) in practice.

3 An Illustrative Example

In this section, we consider a highly restrictive special case that demonstrates one of
the key ideas of this paper. We make some very strong assumptions: we assume there
is only one consumption good in each period, there is no uncertainty, preferences are
homothetic with constant relative risk aversion, and financial markets are complete. The
fact that financial markets are complete implies that households do not have idiosyncratic
uninsurable risk like non-pledgeable labor income. These are assumptions we relax in
Section 4.

12Note that life-cycle shifts in ωnt are not taste shocks since intertemporal preferences are stable.
13We can consider a non-homothetic extension of Epstein and Zin (1989):

U
(
st
) σ−1

σ
= C

(
st
) σ−1

σ
+ βt+1Uεt+1

[
EU

(
st+1

)] σ−1
σ , where U = U(s0),

EU
(
st+1

)
=

∑
st+1

π(st+1)U
(
st+1

) ρ−1
ρ


ρ
ρ−1

, and C
(
st
)

=

∑
n

ωntUεn cn(st)
γ−1
γ


γ
γ−1

.

The elasticity of substitution across time (σ) can differ from that across states (ρ). If σ = ρ, then we obtain
(4).
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Suppose that intertemporal preferences, in (1), take the form

U(c) =

T∑
t=0

βt (c(t))
σ−1
σ , (5)

where T is the agent’s horizon (potentially infinite), β is the discount factor, and σ , 1 is
the compensated elasticity of intertemporal substitution.

Consider an overlapping generations structure — at each calendar date τ ∈ R, there
is a cohort of agents with planning horizon T. We index each cohort’s decision problem
using the start date τ and define intertemporal prices and returns t periods after τ by
{p(t|τ),R(t|τ)}Tt=0. To keep the notation simple, we assume that each cohort makes discrete
time decisions, t ∈ {0, . . . ,T}, but prices, returns, and new cohorts arrive in continuous
time τ ∈ R.14

Each cohort τ faces a sequence of budget constraints, one for each period t ∈ {0, . . . ,T}:

p(t|τ)c(t|τ) + a(t + 1|τ) = R(t|τ)a(t|τ),

where c(t|τ) and a(t + 1|τ) are consumption and savings, R(t|τ) is the gross rate of return on
savings, and p(t|τ) is the price of the consumption good in calendar time τ+ t. To keep the
problem well-defined, savings in the final period cannot be negative: a(T|τ) ≥ 0. Denote
initial wealth by w = a(0|τ). Households choose consumption and savings to maximize
utility, taking prices and returns as given.

Our objective is to compare the choice set facing different cohorts of households, always
keeping the planning horizon fixed. For example, we compare the value of the choice
set available to 60 year olds in 2005 to value of the choice set available to 60 year olds in
2019. This comparison has to take into account not only wealth and present prices but
also future prices and returns. We do not compare the welfare of a single household at
different points in their life because preferences and planning horizons change along the
lifecycle.15 Since utility is only defined up to monotone transformations, we quantify the
value of choice sets using the money metric

The money metric converts wealth for a cohort at date τ into equivalent wealth under
a common base date τ0. That is, for each τ and w, define the τ0 money metric function

14Specifically, for every t ≥ 0, prices p(t|τ) and returns R(t|τ) in t + τ are absolutely continuous functions
of calendar time τ.

15As explained by Fisher and Shell (1968), welfare comparisons, based on revealed preference theory,
always involve comparisons of choice sets for the same preference relation — they do not involve intertem-
poral comparisons of interpersonal utility values.
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u(τ,w) as a solution to
V(τ,w) = V(τ0,u(τ,w)).

To compare two different choice sets, say (τ,w) and (τ′,w′), we compare u(τ,w) and
u(τ′,w′). The choice set defined by (τ′,w′) is preferred to (τ,w) if, and only if, u(τ′,w′) is
higher than u(τ,w). Since both of these numbers are in terms of τ0 dollars, we can also
meaningfully compare their magnitude and calculate the rate of growth between (τ,w)
and (τ′,w′) as u(τ′,w′)/u(τ,w).

Since financial markets are complete, we know that the shadow intertemporal price
for consumption at t for a household in cohort τ is the future price discounted back to the
present

q(t|τ) =

 t∏
z=0

R(z|τ)−1

 p(t|τ).

The wealth required in τ0 to reach the same indifference curve as V(τ,w) is just:

u(τ,w) = e(q(·|τ0),V(τ,w)) = e(q(·|τ0), 1)V(τ,w) = w
e(q(·|τ0, 1))
e(q(·|τ, 1))

, (6)

where the first equality follows from the definition, the second follows from the fact
that preferences are homothetic, and the third equality follows from the fact that w =

e(q(·|τ), 1)V(τ,w). In words, (6) shows that the money metric u(τ,w) deflates nominal
wealth w at date τ using a price index, e(q(·|τ0, 1))/e(q(·|τ), 1), between τ and τ0. This price
index depends on how prices and rates of return change between τ and τ0.

Denote the discounted expenditures of households in cohort τ in each period t relative
to wealth by

b(t|τ) =

 t∏
z=0

R(z|τ)−1

 p(t|τ)c(t|τ,w)
w

.

These discounted budget shares are not a function of wealth since preferences are homo-
thetic.

Using the fundamental theorem of calculus and Shephard’s lemma, rewrite (6) as

log u(τ,w) = log w −
∫ τ

τ0

T∑
t=0

b(t|x)

d log p(t|x)
dx

−

t∑
z=0

d log R(z|x)
dx

 dx. (7)

In words, order cohorts between τ and τ0 by date. For each cohort x between τ and τ0,
calculate the rate of change in prices d log p(t|x) and returns d log R(t|x) cohort x faces and
average these changes using discounted budget shares for each period of life t. Cumulate
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these changes over all cohorts x between τ0 and τ to arrive at the cumulative change in
the cost-of-living between τ0 and τ and use this to deflate nominal wealth at τ.

In a static world, where the horizon is just T = 1, (7) simplifies to a trivial calculation:

log u(τ,w) = log w −
∫ τ

τ0

d log p(0|x)
dx

dx = log w − log
p(0|τ)
p(0|τ0)

.

That is, in a static world, we simply need to deflate nominal wealth by the change in
the price of the consumption good between τ and τ0. However, even in the simplest
dynamic setting (T > 1), with no uncertainty, complete markets, homothetic preferences,
and a single consumption good in each period, measuring (7) directly is difficult. This
is because it requires knowing discounted future budget shares, future prices, and future
rates of return for each cohort.

One of the key ideas in this paper is to infer changes in future rates of returns and
future prices by relying on changes in consumption-savings choices. Changes in the
consumption-wealth ratio over time depend on the change in the price of the consumption
good in period 0 relative to a budget-share weighted average of the price of consumption
across all future dates:

d log b(0|τ)
dτ

= (1−b(0|τ))(1−σ)

d log p(0|τ)
dτ

−

T∑
t>0

b(t|τ)
1 − b(0|τ)

d log p(t|τ)
dτ

−

t∑
z=0

d log R(z|τ)
dτ


 .

This expression can be rearranged to solve for the budget-share weighted changes in
future prices:

T∑
t>0

b(t|τ)

d log p(t|τ)
dτ

−

t∑
z=0

d log R(z|τ)
dτ

 = (1 − b(0|τ))
d log p(0|τ)

dτ
−

1
1 − σ

d log b(0|τ)
dτ

.

Substitute this into (7) to arrive at the following simple result.

Proposition 1 (Money Metric for Special Case). Money metric welfare for a household in cohort
τ with wealth w, in terms of τ0 dollars, is given by:

log u(τ,w) = log w − log
p(0|τ)
p(0|τ0)

−
1

σ − 1
log

b(0|τ)
b(0|τ0)

. (8)

To understand Proposition 1, suppose that σ < 1 so that consumption goods in different
periods are complements. In this case, if cohort τ is saves a smaller fraction of wealth
than cohort τ0, then this indicates that the price of consuming in the future is lower than
consuming in the present for cohort τ than for cohort τ0. This allows us to back out
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the change in future prices, comparing cohort τ and τ0, using the change in savings rate
and the elasticity of intertemporal substitution. The bigger the difference in savings rates
between the two cohorts, the bigger is the difference in the future prices relative to current
prices.

To arrive at (8), we made some very strong assumptions. We assumed that there is only
one consumption good in each period, we assumed away uncertainty, we assumed that
financial markets are complete, we assumed that household preferences are homothetic,
and we assumed that the utility function exhibits constant relative risk aversion (CRRA).
The rest of the paper is devoted to relaxing all of these assumptions and showing that
when these assumptions are relaxed, the basic intuition behind (8) still applies and can be
used to measure money metric growth and inflation.

Proposition 1 can also be derived as a consequence of Feenstra (1994). However, this
lengthier proof generalizes when we relax the assumptions of this example. See Appendix
C for more discussion.

4 Environment and Measure of Welfare

In this section, we set up the economic environment. We relax the assumption that
preferences are homothetic and CRRA, that financial markets are complete, that all assets
are pledgeable, and that agents have perfect foresight. We generalize the notion of money
metric welfare to this environment and use it to define our measure of welfare and the
cost-of-living.

4.1 Decision Problem of Households

Decision makers face a planning horizon of length T < ∞. Preferences, the money metric,
and choices are all indexed by the length of the planning horizon T, which reflects the
household’s age. Welfare comparisons are carried out holding T constant. To streamline
notation, we omit the dependence on T.

Let the first date be τ. We index the consumer’s decision problem using the start
date. That is, define st(τ) to be history of shock realizations t periods after the start date τ.
Let π(st

|τ) be the probability of history st being realized conditional on starting at τ. Let
c(st
|τ) ∈ RN be the vector of consumption goods in history st conditional on starting at τ.
Consumers choose their consumption decisions and portfolio of assets to maximize

utility (1) subject to a sequence of state-contingent budget constraints. Denote the price of
good n ∈ N in period t given history st with initial condition τ by pn(st

|τ). The first period
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budget constraint is ∑
n∈N

pn(s0
|τ)cn(s0

|τ) +
∑
k∈K

ak(s0
|τ) = w, (9)

where, with some abuse of notation, pn(s0
|τ) and cn(s0

|τ) is the price and consumption
of good n in the initial period, which we assume are known with certainty. There are K
different asset types and the quantity the household chooses to purchase is denoted by
ak(s0
|τ). The price of every asset is normalized to be one, and the scalar w is the initial

wealth. If there are durable goods, say housing, then the stock of durables must be
included as an asset, ak, and the user-cost of service flows must be included as a price, pk.
This is how we treat housing in our empirical application.

At each subsequent history st, the agent faces the budget constraint∑
n∈N

pn(st
|τ)cn(st

|τ) +
∑
k∈K

ak(st
|τ) =

∑
k∈K

Rk(st
|τ)ak(st−1

|τ) + y(st
|τ), (10)

where Rk(st
|τ) is the return of asset k in history st and y(st

|τ) is an exogenous payoff. We
think of y(st

|τ) as the payoff from assets that cannot be bought or sold (e.g. human capital
that pays a wage every period but cannot be sold). If y(st

|τ) = 0 for every st, we say that
the household is a rentier.16 We also impose borrowing constraints requiring that∑

k

ak(st
|τ) ≥ −X(st

|τ) (11)

for some exogenous state-contingent borrowing constraint X(st
|τ) ≥ 0. We require that

X(sT) = 0 for every sT to ensure the agent cannot end the problem in debt.
The decision problem faced by households are indexed by the tuple of prices, returns,

probabilities, borrowing constraints, and wealth:
{
p,R,π,X,w

}
. Define the value function

associated with each problem to be

V
(
{p,R, y,π,X,w}

)
= max

c,a
{U ({c,π}) : constraints (9), (10), (11) are satisfied} . (12)

The value function ranks decision problems according to underlying preference relation.
In a static, deterministic environment, the value function in (12) collapses to the indirect
utility function in consumer theory, which ranks static budgets sets, defined by static
prices and wealth, into utils.

16Alternatively, we could define a rentier to be agents whose exogenous payoffs y(st
|τ) are spanned by

financial markets and who do not face borrowing constraints (outside of the no-Ponzi condition). Under
complete markets, every household is a rentier.
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4.2 Measuring Welfare and the Cost-of-Living

We measure welfare using a notion of the money metric generalized to allow for forward-
looking decisions, uncertainty, and incomplete markets.

Definition 4 (Dynamic Money Metric). Consider a reference period τ0, with reference
prices, returns, and probabilities about the future:

{
p(·|τ0),R(·|τ0),π(·|τ0)

}
, with p(·|τ0) > 0

and R(·|τ0) > 0. The money metric, in τ0 dollars, associated with a decision problem
{p,R, y,π,X,w} is a scalar-valued function u that satisfies the following equation

V
({

p,R, y,π,X,w
})

= V
({

p(·|τ0),R(·|τ0), 0,π(·|τ0),X,u
})
.

In words, the money metric, u, maps the decision problem {p,R, y,π,X,w} into the
equivalent one-off lump-sum payment the household would need, under the baseline τ0,
to ensure indifference. Denote this money metric by u

(
{p,R, y,π,X,w}|τ0

)
. In a static

deterministic world, the generalized money metric coincides with the traditional money
metric.17

In classical consumer theory, the money metric cardinalizes utility. The same holds for
the generalized notion of the money metric defined above.

Proposition 2 (Money metric cardinalizes utility). The money metric is a cardinalization of
the value function.

We require that p(·|τ0) > 0 and R(·|τ0) > 0 to ensure the value function is well-defined
under baseline prices and returns.

Given the money metric, we can also define changes in the cost-of-living for different
cohorts in the following way.

Definition 5 (Dynamic Cost-of-Living). Consider two cohorts τ and τ′, each with reference
prices, returns, and probabilities about the future. Define the change in the cost-of-living
between τ and τ′ for a household facing problem {p(·|τ),R(·|τ), y,π(·|τ),X(·|τ),w}st in cohort
τ to be

u
(
{p(·|τ),R(·|τ), y,π(·|τ),X(·|τ),w}|τ′

)
u
(
{p(·|τ),R(·|τ), y,π(·|τ),X(·|τ),w}|τ

) .
That is, we use the money metric to convert {p(·|τ),R(·|τ), y,π(·|τ),X(·|τ),w}st into equiv-

alent lump-sum payments in τ and τ′ and compare the ratio of these numbers. In a static

17In principle, there are many different ways one could measure welfare. For example, we could
convert each problem into an certainty equivalent annuity value. We focus on equivalent one-off lump-sum
payments because this is the welfare measure that we can recover from the data given our assumptions.
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deterministic environment, the change in the cost-of-living collapses to the traditional
ideal (Konüs) price index of consumer theory.

The objective in this paper is to infer the money metric u by combining cross-sectional
survey data on household consumption and finances along with goods and services prices
over time.

5 Main Results

We present our main result in steps. First, we start with some preliminaries in Section
5.1. In Section 5.2 we present a method for recovering the generalized money metric for
households whose non-market cashflows are negligible. In Section 5.3 we show how to
recover the money metric for households whose non-market cashflows are not negligible.

5.1 Shadow Prices and Compensated Demand

In this section, we establish that for every decision problem there is a corresponding dual
shadow expenditure minimization problem where the shadow prices and shadow wealth
rationalize the household’s consumption choices. This duality is useful because it allows
us to define the notion of a “compensated” elasticity of intertemporal substitution and
“compensated” budget shares. These objects are important in allowing us to recover the
generalized money metric.

Since prices, returns, and budget constraints are indexed by the initial condition, τ,
with some abuse of notation, we write the value function as V(τ,w, y), where τ indexes the
goods and asset prices and budget constraints, given initial wealth w and state-contingent
cashflows from non-marketable assets y. The next proposition shows that for every
decision problem (τ,w, y), there exists a set of shadow prices q∗(τ,w, y) that rationalize the
allocations in (12).

Proposition 3 (Dual Problem). There exist q∗(τ,w, y) such that, for every st and n, the following
holds:

c∗n(st
|q∗,π,V(τ,w, y)) = cn(st

|τ,w, y).

Moreover, we can set shadow prices for goods in the first period equal to their observed prices:

q∗n(s0
|τ,w, y) = pn(s0

|τ),

for every n ∈ N.
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In other words, if the household faced shadow prices q∗(τ,w, y) and minimized shadow
expenditures subject to a utility constraint, then the consumption plan the household
would choose coincides with the ones they choose when facing (12).

In a static deterministic environment, cn(st
|τ,w, y) collapses to uncompensated (Mar-

shallian) demand for good n. On the other hand, the shadow quantity c∗n(st
|q∗,π,V(τ,w, y))

collapses to compensated (Hicksian) demand for good n when the environment is static
and deterministic. One of the important differences between c∗n and standard Hicksian
demand is that it depends on shadow prices, rather than actual prices, and these shadow
prices, in principle, depend on the household’s indifference curve.

Proposition 3 makes it possible to define a notion of compensated elasticity of intertem-
poral substitution for an agent facing the problem (τ,w, y).

Definition 6 (Elasticity of Intertemporal Substitution). The compensated EIS for a house-
hold facing problem (τ,w, y) is defined to be

σ(τ,w, y) = σ∗(q∗(·|τ,w, y),π(·|τ),V(τ,w, y)),

where q∗ are shadow prices given in Proposition 3.

That is, the compensated EIS for a household facing (τ,w, y) is defined to be how
spending on consumption versus savings changes, for this household, if the shadow
price of every consumption good in the present rises by the same amount, holding utility
constant. The compensated EIS is a crucial statistic that we will need for our main results.

5.2 Recovering Money Metric for Rentiers

The next proposition limits attention to the subset of rentiers. Rentiers are households for
whom y is identically equal to 0 in every state of nature, and are denoted by (τ,w, 0).

Before stating the proposition, we introduce some notation. For each household with
wealth w, cashflows y, in period τ, denote current expenditures by

E(τ,w, y) =
∑
n∈N

pn(s0
|τ)cn(s0

|τ,w, y)

and the share of budget spent on good n by

Bn(τ,w, y) =
pn(s0
|τ)cn(s0

|τ,w, y)
E(τ,w, y)

.
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Denote the consumption to wealth ratio by

BP(τ,w, y) =
E(τ,w, y)

w
.

The following proposition characterizes the money metric utility of rentiers as the solu-
tion to an integral equation. To do this, assume that, for every state st, prices pn(st

|τ), asset
returns Rk(st

|τ), and probabilities π(st
|τ) are absolutely continuous functions of calendar

time τ.

Proposition 4 (Money Metric for Rentiers). If preferences are time separable and σ(x,w, 0) , 1
almost everywhere, the money metric satisfies the following integral equation

log u(τ,w, 0) = log w −
∫ τ

τ0

∑
n∈N

Bn(x,w∗x, 0)
d log pn

dx
+

1
σ(x,w∗x, 0) − 1

d log BP(x,w∗x, 0)
dx

 dx,

(13)
where w∗x solves the equation

u(x,w∗x, 0) = u(τ,w, 0). (14)

for each cohort x ∈ [τ0, τ]. The boundary condition is that u(τ0,w, 0) = w.

Proposition 4 generalizes the results in Baqaee et al. (2024) to a dynamic stochastic
environment. It shows that the money metric can be recovered by deflating nominal
wealth at τ using cumulative inflation between τ and τ0 with an adjustment for changes
in expenditures out of wealth. Both inflation and changes in expenditures out of wealth
at x ∈ [τ0, τ] must be calculated using compensated demand, at u(τ,w, 0), because the
household is kept indifferent between (τ,w, 0) and (τ0,u(τ,w, 0), 0).

Proposition 4 is a fixed-point problem in terms of observables and the EIS. The observ-
ables are wealth w, budget shares Bn on goods as a function of time and wealth, changes
in goods prices from period to period d log pn/dt, and changes in expenditures relative to
wealth BP as a function of time and wealth. Given these observables, and estimates of the
EIS, we can solve (13) for the generalized money metric.

Solution Method. To apply Proposition 4, we begin by guessing a solution u0(τ,w, 0), for
example, using a static price index. We then use this initial guess on the right-hand side
of (13) to get a new guess. We then iterate on this until convergence. This procedure will
always converge since the fixed point to (13) is, locally, a contraction mapping. Details
are provided in the appendix.
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Boundaries. Proposition 4 can only be applied reliably inside a suitable boundary. This is
because the budget shares B(τ,w, 0) and consumption-wealth ratios BP(τ,w, 0) are observed
only for some subset of wealth levels, say w ∈ [wx,wx] for x ∈ [τ0, τ]. This limits the
range of values of w for which we can calculate the money metric without out-of-sample
extrapolation. Intuitively, if for cohort τ and wealth w, the money metric value u(τ,w, 0) is
not in [u(x,wx, 0),u(x,wx, 0)] for some x ∈ [τ0, τ], then we cannot recover u(τ,w, 0) without
extrapolation. This is because there are no households in cohort x ∈ [τ0, τ] that are on the
same indifference curve as the rentier with wealth w at time τ.

Fortunately, Proposition 4 automatically provides the boundary over which the money
metric can be calculated without extrapolation. The initial boundary at t = τ0 is just the
range in the data: [wτ0

,wτ0]. As we solve (13) forward, for each τ > τ0, we can update
the boundary because the information required to compute only depends on previous
values of the money-metric (see Baqaee et al., 2024 for a discussion of this issue in a static
context).

Sketch of Proof. To better understand Proposition 4, we sketch the proof. (The formal
proof is in Appendix B). First, we establish that the dual shadow prices, defined by
Proposition 3, associated with (τ,w, 0) can alternately be written to depend on τ and
V(τ,w, 0) instead of w directly. That is, for each history st, for rentiers we can write (in an
abuse of notation)

q∗(st
|τ,w, 0) = q∗

(
st
|τ,V(τ,w, 0)

)
. (15)

This is intuitive since w and V(τ,w, 0) are monotone. Therefore, we can think of q∗ as
a “Hicksian” or compensated shadow price because it depends on utility rather than
wealth. One of the reasons we focus on rentiers is that (15) need not hold for non-rentiers.
For households with idiosyncratic undiversifiable income (i.e. non-rentiers), the shadow
prices do not just depend on wealth and calendar time, they also depend on expected
cashflows and borrowing constraints.

Next, using the Hicksian shadow prices, we show that the money metric, u(τ,w, 0) can
be expressed using the shadow expenditure function as

u(τ,w, 0) = e(q∗ (·|τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0)).

That is, for rentiers, the money metric value coincides with the shadow expenditures that a
household would need to be given to reach the utility level u(τ,w, 0) when facing Hicksian
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shadow prices. We can manipulate this expression to get

log u(τ,w, 0) = log w − log
e(q∗ (·|τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))

e(q∗ (·|τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0))
.

That is, the money metric is nominal wealth at date τ deflated using an appropriate
price index that holds utility fixed and tracks changes in Hicksian shadow prices and
probabilities.18

Next, we re-express the last term in the equation above, using the fundamental theorem
of calculus, as

log u(τ,w, 0) = log w +

∫ τ0

τ

T∑
t=0

∑
st

(
∂ log e(q∗ (st

|x,u(τ,w, 0)) ,π(st
|x),u(τ,w, 0))

∂ log q∗(st|x,u(τ,w, 0))
·

d log q∗ (st
|x,u(τ,w, 0))
dx

+
∂ log e(q∗ (st

|x,u(τ,w, 0)) ,π(st
|x),u(τ,w, 0))

∂π(st|x)
·

dπ(st
|x)

dx

)
dx. (16)

The integral, which is equal to the change in the ideal price index, consists of two sets
of terms. The first set of integrands, on the top line, track how the expenditure function
responds to changes in shadow prices in all possible times and states as calendar time,
indexed by x, moves from the base year τ0 to τ. In a static deterministic environment,
this collapses to how the expenditure function responds to changes in static prices. The
second set of integrands, on the second line, track how the expenditure function responds
to changes in probabilities in all possible future dates and states as calendar time, indexed
by x, moves from the base year τ0 to τ. These terms have no counterparts in the standard
static deterministic framework.

These summands in the integral are very high-dimensional, potentially infinite-dimensional,
sums over all possible dates and states. Equation (16) elucidates the enormous complexity
of forward-looking measures of inflation as compared to the traditional static objects. The
forward-looking measure depends on how all possible future shadow prices and proba-
bilities change as time moves forward. This complexity is compounded by the fact that
we must weigh changes in all of these unobservable shadow prices and probabilities by
the elasticities of the shadow expenditure function with respect to shadow prices and
probabilities respectively.

Fortunately, we can cut through much of this complexity as long as preferences are
time separable. When preferences are time separable, the complicated integrand in (16)

18In a static, deterministic environment, this price deflator collapses to an ideal price index, also known
as a Konüs (1939) price index.
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can be rewritten as

∂ log e(q,π,U)
∂ log q

·d log q+
∂ log e(q,π,U)

∂π
·dπ = −

d log bP(q,π,U)
1 − σ∗(q,π,U)

+
∑
n∈N

bn(q(s0),U)d log qn(s0).

Intuitively, changes in shadow prices and probabilities change the shadow expenditure
function to the extent that they move the compensated future bundle F

({
q(st)

}
t>0 ,π,U

)
relative to the present bundle P

(
q(s0),U

)
. This compensated relative price, in turn, changes

consumption relative to savings rates if the EIS is not equal to one. Hence, we can infer
changes in the prices and probabilities relevant for the future by observing changes in
saving behavior, as long as we know the EIS.

Plugging this equation back into (16) and manipulating leads to Proposition 4. The
last step uses the insight from Baqaee et al. (2024) that, with the addition of (14), we can
treat (16) as a fixed point problem. Proposition 4 implies that for rentiers, we can recover
u(τ,w, 0) as a function of time τ and wealth w.

A crucial fact about Proposition 4 is that it defines a fixed point problem. This is
because, to arrive at u(τ,w, 0), we need to integrate compensated budget shares and
compensated changes in savings rate. On the other hand, to perform the necessary
compensation, we need to know u(τ,w, 0). This fixed point problem disappears when we
specialize preferences to be homothetic.

To build intuition, we consider the homothetic special case of Proposition 4.

Corollary 1 (Homothetic Preferences). If preferences are homothetic and separable, then the
money metric satisfies the following equation

log u(τ,w, 0) = log w −
∫ τ

τ0

∑
n

Bn(x)
d log pi

dx
+

1
σ(x, 0) − 1

d log BP(x, 0)
dx

 dx. (17)

When preferences are homothetic, the integrand in (13) simplifies. First, the share of
spending on each good Bn(x,w∗x, y) is only a function of the time period x, so we write it
as Bn(x). This is a consequence of homotheticity and time separability. Time separability
means that budget shares on present consumption do not respond to changes in future
prices. Homotheticity implies that budget shares on present consumption do not depend
on wealth. Since all households face the same within-period relative prices, this means
that Bn(x,w, y) is the same for all households at time x.

Second, the compensated change in the consumption share of wealth d log BP(x,w∗x, 0)/dx
simplifies to the uncompensated change in the consumption share of wealth d log BP(x, 0)/dx.
This is because the consumption share of wealth BP(x,w, y) is the same for all households
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for whom y = 0. This is a consequence of homotheticity, whereby the rate at which
households with only marketable wealth substitute between spending and saving is the
same regardless of their level of marketable wealth. Notably, we still require that non-
marketable wealth, y, be zero.

Corollary 1 simplifies further if we assume that the EIS is constant (as in the illustrative
example in Section 3):

log u(τ,w, 0) = log w −
∫ τ

τ0

∑
i

Bn(x)
d log pi

dx
dx −

log
(
BP(τ, 0)/BP(τ0, 0)

)
σ − 1

.

Compared to Corollary 1, the final term is now a simple log difference in the consumption
share of wealth, comparing households in the initial period, τ0, to households in period τ.

Justifying use of static deflators. There are two cases of Proposition 4 where the use
of a static deflator for dynamic welfare is justifiable (outside of the obvious case where
households are fully myopic). The first one is if the EIS is infinite, in which case, (13)
simplifies to

log u(τ,w, 0) = log w −
∫ τ

τ0

∑
n∈N

Bn(x,w∗x, 0)
d log pn

dx
dx. (18)

That is, dynamic welfare is given by nominal wealth deflated using a deflator that relies
only on static price changes between τ0 and τ.

The second case is when the EIS is zero and preferences are homothetic, in which case
(13) can be rewritten as

log
u(τ′,w′, 0)
u(τ,w, 0)

= log
E(τ′,w′, 0)
E(τ,w, 0)

−

∫ τ′

τ

∑
n∈N

Bn(x, 0)
d log pn

dx
dx.

That is, the growth in money metric wealth from (τ,w) to (τ′,w′) is just the growth in
nominal expenditures deflated by a chained static price deflator between τ and τ′ (i.e.
chained real consumption growth). This is consistent with Reis (2005), who argues that
when the EIS is zero and agents are rentiers, then static real consumption growth coincides
with dynamic welfare growth. This result breaks down however, even when the EIS is
zero, if households are non-rentiers or if preferences are non-homothetic.

When preferences are non-homothetic and the EIS is zero, then (13) can be rewritten
as

log E(τ0,u(τ,w, 0), 0) = log E(τ,w, 0) −
∫ τ

τ0

∑
n∈N

Bn(x,w∗x, 0)
d log pn

dx
dx.
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This implies that nominal expenditures deflated by static inflation (calculated using com-
pensated budget shares) is equal to the expenditures of the compensated household in
τ0. If expenditures are increasing in wealth, then this is also a money metric since it is a
monotone transformation of utility. This would justify the empirical approach taken by
Baqaee et al. (2024), which ignores time, as long as we also assume that all households are
rentiers.

5.3 Non-Rentiers

A challenge for the applicability of Proposition 4 is that, in practice, many households in
the sample are non-rentiers (i.e. y , 0). Fortunately, we can exploit non-homotheticity of
preferences to extend u(τ,w, 0) to households with non-marketable assets. To do so, we
first make the following observation.

Lemma 1 (Compensated Budget Shares). If preferences are time separable, then the budget
share of each good in the initial period, τ, can be expressed as a function of only present prices and
overall utility:

Bn(τ,w, y) = bn(p(s0
|τ),V(τ,w, y)).

We refer to bn as the compensated budget share of n.

Importantly, Lemma 1 implies that the budget share of each good in the present
Bn(τ,w, y) does not directly depend on marketable wealth w and the stream of payoffs
from non-marketable asset y.

The next proposition makes it possible to extend u(τ,w, 0) to cover households with
non-marketable assets. To do so, with some abuse of notation, index money-metrics by
their base period. That is, let uτ0(τ,w, 0) denote the money metric value for the problem
faced by an agent at calendar time τ, with marketable wealth w, non-marketable cashflows
y in terms of the base period τ0.

Proposition 5 (Money Metric is a Function of Budget Shares and Time). Suppose that the
vector-valued function b

(
p,V

)
is an injective function of V. Then, there exists a function m

satisfying
uτ(τ,w, y) = m(B(τ,w, y), τ),

for every τ, w, and y.

The compensated budget shares b
(
p,V

)
are an injective function of V if no two distinct

values of V result in the same vector of budget shares. Notably, this rules out homothetic
preferences, since once we fix time τ, then the budget shares are constant for every value

24



of V. In words, Proposition 5 implies that, if budget shares are one-to-one with V, then
holding time τ fixed, there exists a function m(B, τ) mapping vectors of budget shares B
at date τ into the equivalent lump sum wealth at date τ (i.e. uτ(τ,w, y)).

Hence, if we know the function m, and we observe budget shares B(τ,w, y) at time τ,
then we can deduce the money-metric utility uτ(τ,w, y) for a household facing the problem
(τ,w, y). Given uτ(τ,w, y) we can then use Proposition 4 to convert this to money-metric
utility for some other base date uτ0(τ,w, y).

How do we learn the shape of the function m? We use the identity that uτ(τ,w, 0) = w
for rentiers. Given this, we can learn the shape of m by solving the following least-squares
problem

arg min
m̂∈M
‖w − m̂(B(τ,w, 0), τ)‖,

where M is a set of functions that contains m. In words, we fit a flexible function that
relates budget shares to wealth for rentiers. We then use this fitted relationship to impute
uτ(τ,w, y) for non-rentiers given their static budget shares. Intuitively, if there exists a
subset of rentiers and non-rentiers with the same preferences, beliefs about the future,
and static prices, given observable characteristics, then we can infer their money metric
wealth using their static budget shares. Proposition 6 formalizes this idea.

Proposition 6 (Money Metric for Non-Rentiers). Let

B(τ) =
{
B(τ,w, 0) : w ∈ [wτ,wτ]

}
,

where [wτ,wτ] is the support of the wealth distribution of the rentiers at date τ. Let m|B(τ) be the
function m restricted to the domain B(τ). We have that

m(·, τ)|B(τ) ∈ argmin
m̂∈M

∫ wτ

wτ

(w − m̂(B(τ,w, 0), τ))2 dw.

A special case of Proposition 5 and Proposition 6 is the case where the budget share of
a specific good, usually food, is known to be strictly monotone in utility.

Corollary 2 (Engel’s Law). Suppose that there exists a good i ∈ N whose budget share,
bi(p(s0

|τ),V(τ,w, y)), is strictly monotone in V. Then

u(τ,w, y) = u(τ,w∗, 0), if, and only if, Bi(τ,w, y) = Bi(τ,w∗, 0).

In this simple case, if the compensated budget share of i is monotone in utility, then we
can deduce that two households (τ,w, y) and (τ,w∗, 0) have the same utility if, and only if,
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their budget shares on good i coincide.
Propositions 4, 5, and 6 can be combined to recover u(τ,w, y) for every u(τ,w, y) inside

the boundary where we can solve (13) (without extrapolation).

Common Preferences, Prices, and Probabilities. We assume that, conditional on observ-
ables like age, gender, location, etc., rentiers and non-rentiers have the same preference
relation both in the cross-section within each period and across cohorts at different times.
To see what can go wrong, suppose that the preference relation of cohorts is changing
over time. Then, changes in consumption-wealth ratios or budget shares may be due to
changes in preference parameters (e.g. discount factor changes), and not due to changes
in welfare-relevant variables like prices, returns, or probabilities.

Note that preference stability is a typical maintained assumption in the literature on
static welfare measures. To deal with preferences instability, e.g. taste shocks over time,
we would need to specify a model of demand to purge out changes in choices that are
driven by taste shocks as opposed to income and substitution effects, as discussed in
Baqaee and Burstein (2023).

We also assume that static prices that households face each period can only vary as a
function of observables (e.g. location). Similarly, cohorts of rentiers at each point in time
hold common beliefs about future prices and rates of return. Of course, beliefs can change
over time but, within a period, they can only vary for rentiers as a function of observable
characteristics. We do not require, however, that rentiers and non-rentiers hold the same
beliefs about future prices and returns (only that they face the same static prices). For
example, rentiers may have access to different assets or hold different beliefs about the
returns on those assets than non-rentiers.

Finally, we do not require that households’ beliefs about the future be “objective” in
any sense. All that matters is that π(·|τ) is the lottery that households in cohort τ believe
they face — this may or may not be the result of a rational expectations equilibrium.

6 Illustrative Application to US Data

In this section, we apply our method to data from the US. In the next section, we use our
estimates of money metric wealth to study how welfare responds to job loss.
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6.1 Data

We require data on households and on prices. For data on households, we use the Panel
Study of Income Dynamics (PSID) spanning the years 2005 to 2019. For the price data, we
use consumption price data from the Bureau of Labor Statistics (BLS). We describe each
dataset in turn.

The household data must be accurate, but it does not need to be representative of
the underlying population in terms of sampling frequency. Therefore, we can use the
raw data from the PSID without sampling weights. The PSID contains repeated cross-
sectional data on household expenditures by category, household-level balance sheets
(assets and liabilities), household incomes, and demographic information. Since lifecycle
considerations are important, we split the household sample by age. Ideally, with enough
observations, we could treat each age separately. Unfortunately, our dataset is not very
large, so we split the sample into only two groups: above or below sixty years old, and
assume that households in each age group at each point have the same preferences and
face the same prices and probabilities. We provide sensitivity with respect to this cutoff

in the appendix.19

The PSID includes household expenditure surveys, broken down into seven cate-
gories. A major omission is the user cost of owner-occupied housing. To remedy this,
we impute equivalent owner-occupied housing costs by matching home owners in each
period to renters with similar observable characteristics and spending behavior. That is,
we predict rental expenditures using household characteristics and spending behavior
using a regression estimated on renters in the same period. This procedure is theoretically
justified by Proposition 5. In the final year of our sample, 2019, the PSID asked home
owners to report the rental value of their property if they were to rent it out. We use the
answers to this question, in 2019, to validate our imputation procedure. When we regress
surveyed housing costs on our imputed measure of housing costs (both relative to current
expenditures), we find a coefficient of 1.03 and an R2 value is 0.59. See Appendix A for
details.20

We combine the price data from the BLS with the expenditure survey from the PSID
via a correspondence between PSID spending categories and categories of goods in the
Consumer Price Index (CPI). For more details about how specific variables are constructed,
see Appendix A.

19Similarly, with more data, we could split the sample along other observed characteristics that may
influence preferences, like gender, household size, location, etc.

20We abstract from other durable consumer goods, for which the user cost would have to be estimated
in a similar way.
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6.2 Classifying Rentiers

To apply Proposition 4, we need to observe a sample of rentier households. To classify
rentiers, we first estimate a proxy measure of total wealth for all households in the sample.
Our proxy for total wealth is the sum of financial wealth (net asset value including home
equity and defined contribution pension savings) and the present discounted value of
labor and transfer income. If the head of the household is unemployed and looking for a
job, then we exclude this household from the sample of rentiers.

To calculate the present discounted value of labor and transfer income, we predict
each household’s expected lifetime income profile based on observed characteristics, and
discount the resulting flows using a real discount rate of 4% following Catherine et al.
(2022). The construction of net assets and capitalized income is detailed in Appendix A.
We say that a household is a potential rentier if net financial assets constitute more than
90% of total wealth.

In practice, we do not know with certainty who the rentiers are. Our results can
suffer from bias if we include non-rentiers in the sample of rentiers. On the other hand,
our estimates will have higher variance if we accidentally exclude true rentiers from the
sample of rentiers. Since sampling uncertainty can be quantified, we choose to be more
conservative in terms of minimizing bias by further limiting the set of rentiers. To do so,
we exclude households from the rentier set if their current consumption-wealth ratio is
more than 20% on the basis that, for these households, we may be underestimating the
value of their non-financial wealth. To further limit the role of outliers, we also exclude
households whose net assets are in the top and bottom 2.5%.21

For the sample of potential rentiers, following Propositions 5 and 6, we regress mea-
sured total wealth at date τ on a polynomial of budget shares at date τ for each age group
separately:

wh,τ = α0,τ +

2∑
k=1

N∑
i=1

αi,τ,kBk
i,h,τ + errorh,τ, (19)

where α’s are regression coefficients. If a potential rentier is an outlier in this regression, so
predicted and measured total wealth differ significantly, then we exclude these households
from the set of rentiers. A potential rentier is an outlier if the Cook’s distance value is
greater than one (we check sensitivity to this assumption by varying this cutoff value in
the appendix).

21In Appendix D, we show that our results are robust to varying these cut-off values.
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6.3 Money Metric Wealth for Rentiers

Figure 1 shows a scatterplot of log consumption wealth ratios against log wealth for
rentiers in the two age groups. As might be expected, there are many more rentiers in the
older age group, since this group contains retirees as compared to the younger group. As
we show later, this results in much more sampling uncertainty of money metric wealth
for the younger group than for the older group.22

Figure 1: Log consumption-wealth against log wealth
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Both panels of Figure 1 show a strong decreasing relationship between consumption-
wealth ratios and wealth. The relationship is approximately loglinear and the slope
is roughly the same for both age groups. These findings are consistent with those of
Straub (2019) who documents that the consumption-wealth ratio strongly declines in
permanent income. Whereas static non-homotheticity is a cornerstone of the literature on
consumption, dynamic non-homotheticity, like the one depicted in Figure 1, is relatively
understudied. However, as our estimates of money metric wealth show, in our dataset,
dynamic non-homotheticity is an order of magnitude more powerful than static non-
homotheticity.23

To compute money metric values for rentiers using Proposition 4, we need to evaluate
consumption-wealth ratios and static budget shares as a function of date and wealth for

22Our sample includes 300 rentiers below sixty years old (38 per year on average) and 1610 above sixty
years old (201 per year).

23As we discuss below, a possible reason why static non-homotheticity is mild in our dataset is that
our expenditure data is heavily aggregated (seven expenditure categories). It is possible that with more
disaggregated data, static non-homotheticity might play a more important role.
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each age group. To do this, we fit smooth curves that relate consumption-wealth ratios
and budget shares to date and wealth level in each period. That is, let h index rentiers
and τ index dates. For each age group, we use locally weighted scatterplot smoothing
(LOWESS) to fit cross-sectional mapping from wealth and age to consumption-wealth
ratios:

log BP
h,τ = B̂(log wealthh,τ, τ) + errorh,τ, . (20)

Similarly, for each good i ∈ N, we use LOWESS to fit the cross-sectional mapping from
wealth and date to budget shares on each good for each age group. We choose the
smoothing parameter of LOWESS by cross-validation (i.e. maximize out-of-sample pre-
dictive success).

We use our estimated cross-sectional curves in Proposition 4 to recover money metric
utility as a function of date and wealth for each age group.24 For illustration, we use the
initial year, t0 = 2005, as the base year, so that money metric wealth values map nominal
wealth in each year t into equivalent wealth in 2005. For our benchmark results, we set the
EIS, σ, equal to 0.1, which are the benchmark estimates of Best et al. (2020) for the UK. They
also estimate that the EIS is relatively homogeneous in the cross-section of households,
with point estimates that are uniformly between 0.05 and 0.15 across different quartiles of
age and income.

Unfortunately, Best et al. (2020) do not estimate Hicksian elasticities but Marshallian
ones. Luckily, theoretically, Slutsky’s equation implies that, if consumption is a normal
good, then the Hicksian intertemporal elasticity should be smaller in magnitude than the
Marshallian one. Since the elasticity is bounded below by zero, we experiment with lower
values of σ in the appendix and find that our results are not sensitive to using values of
σ lower than 0.1. In the appendix we provide sensitivity of our results to setting σ = 0.2
and σ = 0.05.25

Figure 2 plots the money metric, for each age group, as a function of 2019 wealth for
2005 base prices. For comparison, we also plot a naive calculation that deflates nominal
wealth in 2019 by the official CPI inflation between 2005 and 2019. The confidence bands
are calculated by bootstrap. As expected, sampling uncertainty is higher for the younger
age group where we have significantly fewer rentiers than for the older age group. In
both cases, non-homotheticity is important since both red lines cross the black line. When
the red line is above the black line, static official inflation overstates the true inflation rate.

24To recover the money metric, we need to solve the integral equation in Proposition 4. To do so, we use
the “recursive” methodology described in Baqaee et al. (2024).

25Even though in this paper we do not estimate the compensated EIS, we note that in principle it can be
estimated using changes in present prices, without knowledge of unobserved future prices and beliefs (for
a related discussion, see Proposition 6 in Baqaee et al. (2024).
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Conversely, when the red line is below the black line, the official inflation rate understates
the true inflation rate.

For the younger group, true inflation is higher for most wealth levels than CPI inflation.
On the other hand, for the older group, true inflation is lower than CPI inflation for
households with wealth above 2 million dollars and higher for poorer households. Of
course, all of these conclusions are subject to a high degree of sampling uncertainty (this
sampling uncertainty would diminish if our dataset were larger).

Figure 2: Money metric wealth in 2005 base prices
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The true inflation rate for a household with wealth w at time τ, in log terms, is defined
100 × log w/(u(τ,w)). We plot this in Figure 3. For younger households, the inflation rate
is relatively stable as a function of wealth, ranging from 2% for the poorest households to
3% for the richest households. On the other hand, for the older group, there is a stronger
negative relationship with wealth, and inflation ranges from 3% for the poorest to 1% for
the richest. As in Figure 2, sampling uncertainty is significantly higher for the younger
group.

To understand the patterns in Figure 3, we decompose the welfare-relevant inflation
rate, in equation (13), into a present and a future part. Specifically, for a household with
wealth w in 2019, the change in the ideal cost-of-living index between 2005 and 2019 is:

log
w

u(2019,w)
=

∫ 2019

2005

∑
n∈N

Bn(x,w∗x, 0)
d log pn

dx
dx︸                                  ︷︷                                  ︸

static inflation

+
1

σ − 1
log

(
BP(2019,w, 0)

BP(2005,w∗2005, 0)

)
︸                               ︷︷                               ︸

future relative to static inflation

,

where w∗x ensures that we are using compensated consumption-wealth ratios and budget
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Figure 3: Annualized dynamic inflation between 2005 and 2019 as a function of wealth in
2019
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shares. The first summand is a static measure of inflation — the cumulative change in the
compensated price of the present bundle. The second summand is related to expected
future inflation relative to present inflation. If the second term is positive, then the rate at
which the price of the future bundle changes is higher than the rate at which the price of
the present bundle changes.

Figure 4: Decomposition of annualized inflation between 2005 and 2019 for each wealth
in 2019
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This decomposition is shown in Figure 4. The static inflation term is not exactly the
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same as aggregate CPI because it weighs changes in static prices using compensated
budget shares rather than aggregate budget shares. Nevertheless, the static component
is very close to aggregate CPI inflation at around 2% per year for all wealth levels. The
very slight downward slope reflects the non-homotheticity of static preferences, and static
inflation is slightly higher for poorer households, consistent with other studies of the US,
like Jaravel and Lashkari (2024), that show that the static cost-of-living index has tended
to rise more quickly for poorer households. Nevertheless, the slope of the static inflation
line is very mild compared to the slope of the dynamic inflation measure.26

The component corresponding to future inflation is different for the two age groups and
exhibits a strong dependence on wealth. For most of the households in the younger group,
future prices are expected to rise more quickly than present prices, which explains why
the dynamic all-encompassing cost-of-living index is mostly above the static inflation line
in panel 6a. Furthermore, the richer households expect higher inflation than the poorer
households, which is why the line has an upward slope. On the other hand, for the
older group, these patterns are reversed. Future inflation is expected to be lower than
static inflation for very wealthy households and higher than static inflation for poorer
households.

The future component of our dynamic inflation measure is proportional to the compen-
sated change in the log consumption wealth ratio. Figure 5 plots both the compensated
and uncompensated log change in the consumption wealth ratio between 2005 and 2019
as a function of nominal wealth for both age groups. In both cases, the uncompensated
change in the consumption wealth ratio is much more positive than the compensated
one. This is because there is a strong wealth effect whereby the consumption wealth ratio
declines as households become richer. For a given nominal level of wealth, households in
2005 are on a higher indifference curve than households with that level of wealth in 2019
because of positive inflation. Therefore, the wealth effect means that such households
would have higher consumption wealth ratios in 2019 than in 2005, even if relative prices
do not change. The changes in compensated consumption wealth ratios, which are purged
of wealth effects, are lower and reflect only substitution effects. This figure underscores
the importance of accounting for wealth effects when using consumption wealth ratios to
infer changes in relative prices.

26There may be several reasons why the contribution of static non-homotheticity is so mild in our exercise.
First, this sample is limited to rentiers — this means that we are looking at a relatively rich set of households
compared to studies focusing on static inflation, which typically include very poor households in the sample.
Second, we construct a price index as a function of wealth, rather than as a function of current expenditures,
as is done in static studies of the cost-of-living. Third, our sample period of fourteen years is reasonably
short compared to previous studies, which compute changes over 50 years or longer. Finally, we have only
seven spending categories, and static non-homotheticities may be stronger at more disaggregated levels.
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Figure 5: Change in log consumption wealth ratios between 2005 and 2019 for each wealth
in 2019
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Our methodology does not identify which future prices or beliefs are responsible for
the patterns in Figure 4. However, the differences in the dynamic measure of inflation
need not be caused by differential exposures to future goods prices alone. Even if all
households are symmetrically exposed to future goods prices, the future component of
inflation can differ across households because of differences in expected returns of assets
(see Fagereng et al., 2022). For example, if poor rentiers in the younger group and rich
rentiers in the older group are more reliant on, say, real estate to finance their consumption,
then an increase in return to real estate will lower the future component of inflation for
such households.

6.4 Non-Rentiers

We now turn our attention to the remaining households — the non-rentiers. Proposition
4 does not apply to these households. To recover the money metric for these households,
we rely on Propositions 5 and 6 instead. For each date τ and each age group, we use (19)
to predict money metric wealth for the non-rentiers conditional on their budget shares.

This is analogous to Hamilton (2001), and more recently Atkin et al. (2024), who use
relative budget shares within a subset of goods, in their case food, to infer changes in
welfare in a static context. Unlike Atkin et al. (2024), who compare relative budget shares
across time (adjusted for substitution effects) to infer changes in money metric income
over time, we compare relative budget shares within each period across rentier and non-
rentier households. Since rentiers and non-rentiers face the same relative prices at each
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point in time, we do not have to correct relative budget shares for substitution effects and
can deduce money metric wealth for non-rentiers from the rentiers.

Figure 6: Distribution of money metric wealth in 2019 by age group
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Notes: Bars with asterisk are households whose estimated money metric wealth in $2019 dollars is outside
of the wealth range of rentiers in that year.

Figure 6 displays the distribution of money metric wealth, in 2019, for both age groups.
The median household in the younger age group is richer than the median household in
the older age group.27 As explained above, we are unable to estimate money metric wealth
for households whose estimated wealth values are outside of the support of the rentier
wealth distribution (unless we extrapolate). Since there are many fewer rentiers in the
younger age group, the set of households for whom we cannot estimate money metric
wealth values is much larger.

If financial markets are complete, instead of using Equation (19), we can calculate
nominal money metric wealth by forecasting future expected labor income and transfer
payments, discounting those payments back to the present using market interest rates,
and adding this to net financial assets (e.g. as in Catherine et al., 2022).28 This is the proxy
wealth measure we initially use to separate rentiers from non-rentiers. Figure 7 plots the
money metric wealth, from (19), against this alternative measure of wealth.

For the rentier subsample, the line of best fit is the 45-degree line for both age groups.
This is mechanical because (19) is estimated using the rentiers. The fact that the R2 in these
regressions is positive shows that budget shares do contain information about wealth, as in

27Even for the set of rentiers, the median household in the younger age group is wealthier than the
median household in the older age group.

28See Appendix A for more details.
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Proposition 5. For non-rentiers, the fit is much worse. Notably, there are some households
that seem to have little wealth as judged by their assets and future predicted income flows,
but have high wealth as judged by their static spending shares.

Figure 7: Capitalized wealth against money metric wealth (in logs)
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Once in possession of money metric wealth for non-rentiers at each date, we convert
these estimates into a single base year using the money metric functions in Figure 2. Figure
8 plots the growth rate for the median money metric wealth for both age groups. The
median grew by around 1% per year for both age groups. Figure 8 also shows the growth
rate if we deflate median wealth using official CPI inflation instead. The CPI implies very
different growth rates for the two age groups, with the median for the younger group
growing more than 2% per year and the median for the older group being close to zero.
However, according to our estimates, the CPI understates inflation for the median in the
younger group and overstates inflation for the median in the older group. The last two
bar graphs show growth in nominal median income deflated by CPI for our sample of
households. This is a static flow measure, which simply deflates income flows by static
inflation. This measure has stagnated between 2005 and 2019 for the median household
if we pool age groups, but it has been negative for the younger group and positive for the
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older group.

Figure 8: Growth for the median household
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7 Treatment Effect on Welfare

Many policies and shocks affect households along many margins simultaneously. For
example, job training programs, changes in tax policy, changes in monetary policy, or job
loss all plausibly have dynamic effects on many different relevant variables for households.
For example, Del Canto et al. (2023) show that monetary policy shocks affect households
through goods price inflation, labor market outcomes, changes in equity prices, house
prices, bond prices, and so on.

To understand the welfare effect of a complex shock, like the ones described above,
researchers can estimate the dynamic effects of the shock on each of the different relevant
variables and then use changes in those variables, weighted by predicted pre-shock house-
hold behavior, to calculate the welfare effect. This is the approach taken by Del Canto
et al. (2023). Other than requiring the researcher to enumerate, measure, and estimate all
the relevant variables through which the shock affects households, the resulting welfare
estimates are first-order approximations around perfect-foresight allocations.

Our methodology provides a complementary approach. Instead of enumerating and
estimating all potentially relevant margins, we back out the component of welfare that
depends on expectations about the future from observed changes in consumption-savings
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behavior. We illustrate this by studying the welfare effects of job loss using the PSID. We
regress log money metric wealth for households on a dummy variable for job loss for the
head of the household. Our measure of job loss is equal to one if the head of household
loses her job and reports that she is searching for a new job in that period. To control for
confounds and selection, we include year fixed effects, demographic controls, and lagged
log money metric wealth.

Table 1: Percent change in money metric wealth due to job loss

log nominal money metric wealth log money metric wealth in 2019 dollars
(1) (2) (3) (4) (5) (6)

Job loss -0.203*** -0.209*** -0.212*** -0.194*** -0.200*** -0.214***
(0.014) (0.015) (0.015) (0.020) (0.021) (0.021)

Job loss × 1(age ≥ 60) 0.127*** 0.114** 0.112** 0.106**
(0.046) (0.048) (0.046) (0.049)

Lagged LHS Yes Yes No Yes Yes No

Controls Yes Yes Yes Yes Yes Yes
Observations 84,398 84,398 84,398 61,321 61,321 61,321

Standard errors of the estimates coefficients across 500 bootstraps in parentheses

* p< 0.10, ** p< 0.05, *** p< 0.01

Notes: Standard errors are bootstrapped. Controls are year fixed effects, age group, marital status of head
of household, industry, and education level.

The first three columns of Table 1 report the results in nominal terms and the last three
columns report the results in terms of 2019 dollars. The results are very similar. In both
cases, job loss is associated with a reduction in money metric wealth of around 20 log
points for the younger age group. This reduction is only around 8 log points for the older
age group (and less statistically significant). The identifying variation in these regressions
comes from changes in household’s static budget shares. When household’s lose their
job, their spending patterns change in a way that, had they been rentiers, would suggest
a 20% reduction in their total wealth. For older household heads, the change in spending
patterns following job loss suggest a less drastic reduction in wealth than for younger
households. However, for both groups, the welfare losses are very large. Nevertheless,
they are still much smaller than the effect on household income (which falls by around
85% in that period).

We can compare our estimate to the dynamic consequences of job loss in Davis and
Von Wachter (2011). They estimate the present-value of earnings losses after mass-layoff
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events to be around 12% of counterfactual earnings (using a 5% discount rate). This is an
alternative approach to our methodology for condensing the effect of a dynamic shock,
like job loss, into a single welfare-relevant number. Our point estimates are larger than
the present-value earnings losses estimated by Davis and Von Wachter (2011).

The fact that our point estimates are somewhat different to theirs is not surprising,
because it is only under very strong assumptions that our estimates would coincide with
their present-value calculation. First, our calculation does not assume complete markets
and if the household’s marginal utility is high in states where earnings are low, as is
probably realistic, then a constant discount factor understates the welfare losses of job
loss. Second, Davis and Von Wachter (2011) estimate ex-post earnings losses whereas
we estimate ex-ante welfare losses. If households do not have perfect foresight, then
ex-ante welfare losses can be larger than average ex-post losses due to risk-aversion.
Relatedly, we do not impose rational expectations, so households’ ex-ante beliefs about
the consequences of job loss may be more pessimistic than what Davis and Von Wachter
(2011) estimate. Third, we do not assume exponential discounting — if households are
present-biased, then welfare losses from job loss are amplified since households care more
about the near-term, when earnings are low. Finally, they focus on mass lay-off events
whereas we consider any job loss. It is plausible that the welfare losses associated with
unconditional job loss are different to those caused by mass lay-offs.

8 Conclusion

We provide a methodology for measuring welfare and the cost-of-living for households
that accounts for dynamics, uncertainty, market incompleteness, borrowing constraints,
and non-homotheticities. Our methodology requires repeated household consumption,
income, and wealth surveys, as well as prices. The key assumptions we make are that
preferences are intertemporally separable and, given observable characteristics, all house-
holds have common preferences and face the same prices and beliefs in each period. To
calculate money-metrics and cost-of-living, we also require that some subset of house-
holds be rentiers, with negligible idiosyncratic undiversifiable income risk (e.g. risky
labor income). Our approach provides a way to non-parametrically measure dynamic
welfare, making it useful for studying the welfare effect of shocks that have dynamic
stochastic effects on many variables that affect households and researchers do not wish to
fully specify the economic environment.
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A Data Construction

We use two different datasets. One is a household-level survey (PSID) and the other is
data on prices of different categories of goods (CPI). The PSID is a longitudinal survey,
interviewing households annually until 1997 and biennially thereafter. Each sample
includes about 7,000-9,000 households. We use seven spending categories and merge
them with CPI categories. We describe how we construct the variables needed for our
methodology below.

Net Assets:

The wealth module of the PSID tracks the value of components of household balance
sheets (business equity, stocks, mutual funds, bonds, automobiles, pensions, cash, etc.).
Home equity data are recorded as the value of a household’s home minus its mortgage
obligations. The PSID aggregates these variables, imputes missing values, and reports
the comprehensive variables WEALTH1 and WEALTH2. WEALTH1 represents wealth
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excluding home equity, while WEALTH2 is the sum of WEALTH1 and home equity. As
Cooper et al. (2019) note, these measures exclude the value of defined-contribution (DC)
account. We define net assets as WEALTH2 plus the value of DC account (recorded
separately in the PSID) to incorporate as much of the household’s assets as possible.29

Capitalized wealth proxy:

We construct a proxy for total wealth by adding the capitalized value of labor income
and transfers to net assets. Define household income as labor income plus the variables
recorded as social security income and other welfare income. First, we estimate the age-
specific income profile for each period τ using cross-sectional data. To do this, we regress
a quadratic of the age of the head of household on log income controlling for household
characteristics (marital status, state of residence, race of household head, gender, and
occupation) and year fixed effects. We then use this regression to predict each household’s
income profile as their age increases. We inflate these predictions of the household’s
income in the future by an estimate of expected nominal per capita GDP growth. The
expected growth in nominal GDP comes from the Congressional Budget Office’s real-time
(contemporaneous) forecast of nominal GDP growth and the population growth rate uses
realized population growth rates for the United States, assuming a constant growth after
2019. We discount these nominal income flows back to the present using a nominal rate
of 6%, consisting of a 4% real rate, following Catherine et al. (2022), and a 2% expected
inflation rate. We assume that income flows are zero beyond age 90.

Owner-occupied housing:

For renters, we use the housing expenditures variable in the PSID (which includes utilities).
For owner-occupied housing, we impute housing costs by matching homeowners to
renters using static budget shares in each period. This procedure should yield accurate
estimates as long as preferences are time separable.

Specifically, for each year, we run the following regression for renters:

housingh,τ =
∑

i,housing

αi,τspendingi,h,τ + β1,τageh,τ + β2,τage2
h,τ + stateFEh,τ + εh,τ,

where the left-hand side variable is expenditures on housing (including utilities), and co-

29Cooper et al. (2019) report that adding DC account information to WEALTH2 generally matches the
total assets reported in the Survey of Consumer Finances (SCF). If no value was provided and the value was
given in bins, the median household value between the bins was used for imputation.
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variates are households’ spending on non-housing categories, age, and state fixed effects.
We then use this regression to impute (predict) rental expenditures for homeowners based
on their age, spending on non-housing categories, and state of residence.

In 2019, a new question was added to the PSID survey which asks the following:

If someone were to rent this (apartment/mobile home/home) today, how much do
you think it would rent for per month, unfurnished and without utilities?

We use the responses to this question to validate our procedure. A regression of the survey
values (including utilities) on our imputed values, both relative to current expenditures,
has a coefficient of 1.03 with an R2 value of 0.59. This suggests that our imputation
performs well.

Budget shares:

We align the seven categories of the PSID (food, housing, transportation, education, health,
clothing, and recreation) with the CPI.30 As mentioned above, for homeowners, we impute
housing costs. The relative budget share is defined as the spending on each category
divided by total spending. We compute the consumption-wealth ratio of households by
dividing total spending in each year by wealth.

B Proofs

Proof of Proposition 2. Since ∂V/∂w > 0 as long as p(τ0) , 0 and R)(τ0) > 0, u is monotone
increasing in V. �

Proof of Proposition 3. The existence of q∗ follows from the separating hyperplane theorem,
since the constraint set and indifference curves are both convex (the constraint set is an
intersection of convex sets). Furthermore, since the solution is a convex optimization
problem, the Karush-Kuhn-Tucker conditions must be satisfied. The Lagrangian for
households is:

L(p,R, y,π,w) =U(c,π) − λ(s0
|τ)[

∑
n∈N

pn(s0
|τ)cn(s0

|τ) +
∑
k∈K

ak(s0
|τ) − w]

+
∑

st

λ(st
|τ)

∑
n∈N

pn(st
|τ)cn(st

|τ) +
∑
k∈K

ak(st
|τ) −

∑
k∈K

Rk(st
|τ)ak(st−1

|τ) + y(st
|τ)


30The corresponding codes for CPI are CPIFABSL, CPIHOSSL, CPITRNSL, CPIEDSL, CPIMEDSL, CPI-

APPSL, and CPIRECSL, respectively. Education includes child care. Recreation includes Trips & vacations
and Recreation & entertainment in PSID.
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−

∑
st

µ(st
|τ)

∑
k

ak(st
|τ) − X(st

|τ)


=U(c,π) + λ(s0

|τ)w +
∑

st

λ(st
|τ)y(st

|τ)

−

sT∑
st=s0

λ(st
|τ)

∑
n∈N

pn(st
|τ)cn(s0

|τ)

−

sT∑
st=s0

λ(st
|τ)

∑
k∈K

ak(st
|τ) +

∑
st

λ(st
|τ)

∑
k∈K

Rk(st
|τ)ak(st−1

|τ)

−

∑
st

µ(st
|τ)

∑
k

ak(st
|τ) +

∑
st

µ(st
|τ)X(st

|τ)

The first order conditions for asset holdings are

−

[
λ(st
|τ) + µ(st

|τ)
]

=
∑
st+1

λ(st+1
|τ)Rk(st+1

|τ)

Substituting this back in, we get that the Lagrangian is equal to

L(p,R, y,π,w) =U(c,π) + λ(s0
|τ)w +

∑
st

λ(st
|τ)y(st

|τ) −
sT∑

st=s0

λ(st
|τ)

∑
n∈N

pn(st
|τ)cn(s0

|τ) +
∑

st

µ(st
|τ)X(st

|τ).

Define the indirect utility function to be v that satisfies this equation:

e(q,π, v) = W.

From standard duality, we know that we can also write

v(q,π,W) = max
c
{U(c,π) : q · c = W}.

Call the maximizers above c∗∗(q,π,W). The Lagrangian for intertemporal indirect utility
function is

L
∗∗(q,π,W) =U ({c,π}) − µ

[
q · c −W

]
.

Set

qn(st) =
λ(st
|τ)

λ(s0|τ)
pn(st
|τ)

and

W = w +
∑

st

λ(st
|τ)

λ(s0|τ)
y(st
|τ) +

∑
st

µ(st
|τ)

λ(s0|τ)
X(st
|τ)
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Hence

L
∗∗(q,π,W) =U ({c,π})+µ

w +
∑

st

λ(st
|τ)

λ(s0|τ)
y(st
|τ) +

∑
st

µ(st
|τ)

λ(s0|τ)
X(st
|τ) −

∑
st

∑
n∈N

λ(st
|τ)

λ(s0|τ)
pn(st
|τ)cn(st

|τ)

 .
These problems have the same solution because the Lagrangian is the same. Hence

c∗∗(q,π,W) = c(st
|τ,w, y),

where qn(st) = λ(st
|τ)pn(st

|τ) and W = λ(s0
|τ)w +

∑
st λ(st

|τ)y(st
|τ) +

∑
st µ(st

|τ)X(st
|τ). By

standard duality arguments, we also know that

c∗∗(q,π,W) = c∗(q,π, v(q,π,W)) = c∗(q,π,V(q,π,W)).

�

Proof of Proposition 4. For the proof, we define the following function:

bn(q(s0),U) =
cn(s0)qn(s0)

e(q,π,U)bP(q,π,U)
.

We proceed in steps, using a series of lemmas.

Lemma 2. If preferences are time separable, then the following holds

bP(q,π,U) ≡
∑
n∈N

cn(s0)qn(s0)
e(q,π,U)

=
∂ log e(q,π,U)

∂ log P
,

bF(q,π,U) ≡ 1 − bP(q,π,U) =
∂ log e(q,π,U)

∂ log F
,

and
∂ log P

∂ log qn(s0)
=

cn(s0)qn(s0)
e(q,π,U)bP(q,π,U)

.

Proof. By the envelope theorem,

∂ log e(q,π,U)
∂ log qn(s0)

=
cn(s0)qn(s0)
e(q,π,U)

,

and for t > 0

∂ log e(q,π,U)
∂ log qn(st)

=
cn(st)qn(st)
e(q,π,U)

.
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Then, we know that

bP(q,π,U) =
∑
n∈N

cn(s0)qn(s0)
e(q,π,U)

=
∑
n∈N

∂ log e(q,π,U)
∂ log qn(s0)

=
∂ log e(q,π,U)

∂ log P

∑
n∈N

∂ log P
∂ log qn(s0)

=
∂ log e(q,π,U)

∂ log P

and

bF(q,π,U) =
∑
st|t>0

∑
n∈N

cn(st)qn(st)
e(q,π,U)

=
∑
st|t>0

∑
n∈N

∂ log e(q,π,U)
∂ log qn(st)

=
∂ log e(q,π,U)

∂ log F

∑
st|t>0

∑
n∈N

∂ log F
∂ log qn(s0)

=
∂ log e(q,π,U)

∂ log F

where the last steps use homogeneity of degree 1 in q of P and F.
Next, we show that

∂ log P
∂ log qn(s0)

= bn(q(s0),U).

To do this, use the following equality,

∂ log e(q,π,U)
∂ log qn(s0)

=
∂ log e(q,π,U)

∂ log P
∂ log P

∂ log qn(s0)

=
cn(s0)qn(s0)
e(q,π,U)

= bP(q,π,U)
∂ log P

∂ log qn(s0)
.

Rearranging yields

∂ log P
∂ log qn(s0)

=
cn(s0)qn(s0)

e(q,π,U)bP(q,π,U)
.

�

Lemma 3. When preferences are time separable, the elasticity of intertemporal substitution is
given by

1 − σ∗(q,π,U) =
∂2 log e/

(
∂ log P

)2

bF(q,π,U)bP(q,π,U)
.

Proof. We start with

∂ log bP(q,π,U)
∂ log qn(s0)

=
1

bP(q,π,U)
∂

∂ log qn(s0)

∑
k∈N

∂ log e(q,π,U)
∂ log P

∂ log P
∂ log qk(s0)

 ,
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=
1

bP(q,π,U)
∂

∂ log qn(s0)

∑
k∈N

∂ log e(q,π,U)
∂ log P

bk(q,U)

 ,
=

1
bP(q,π,U)

∑
k∈N

∂
∂ log qn(s0)

∂ log e(q,π,U)
∂ log P

bk(q,U) +
∑
k∈N

∂ log e
∂ log P

∂bk(q,U)
∂ log qn(s0)

 ,
=

1
bP(q,π,U)

∑
k∈N

∂2 log e(q,π,U)
(∂ log P)2 bn(q,U)bk(q,U) +

∂ log e
∂ log P

∑
k∈N ∂bk(q,U)
∂ log qn(s0)

 ,
=

1
bP(q,π,U)

∂2 log e(q,π,U)
(∂ log P)2 bn(q,U)

∑
k∈N

bk(q,U)

 ,
=

1
bP(q,π,U)

∂2 log e(q,π,U)
(∂ log P)2 bn(q,U).

Summing over all n ∈ N yields

∑
n

∂ log bP(q,π,U)
∂ log qn(s0)

=
1

bP(q,π,U)
∂2 log e(q,π,U)

(∂ log P)2

∑
n

bn(q,U),

=
1

bP(q,π,U)
∂2 log e(q,π,U)

(∂ log P)2 .

Since bP + bF = 1,we have that

∂ log bF(q,π,U)
∂ log qn(s0)

= −
bP(q,π,U)
bF(q,π,U)

∂ log bP(q,π,U)
∂ log qn(s0)

.

By Definition 1,

1 − σ(q,π,U) =
∑

n

∂ log bP(q,π,U)
∂ log qn(s0)

−

∑
n

∂ log bF(q,π,U)
∂ log qn(s0)

,

=
1

bP(q,π,U)
∂2 log e(q,π,U)

(∂ log P)2 +
bP(q,π,U)
bF(q,π,U)

∂ log bP(q,π,U)
∂ log qn(s0)

,

=
1

bF(q,π,U)bP(q,π,U)
∂2 log e(q,π,U)

(∂ log P)2 .

�

Lemma 4. When preferences are time separable, the following equation holds:

∂ log e(q,π,U)
∂ log q

d log q +
∂ log e(q,π,U)

∂π
dπ = −

d log bP(q,π,U)
1 − σ∗(q,π,U)

+
∑
n∈N

bn(q(s0),U)d log qn(s0)
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Proof. From Lemma 2, we know that

∂ log e(q,π,U)
∂ log q

d log q +
∂ log e(q,π,U)

∂π
dπ = bP(q,π,U)

∑
n∈N

bn(q,U)d log q(s0)

+bF(q,π,U)
∑
st|t>0

∑
n∈N

∂ log F
∂ log qn(st)

d log qn(st) +
∂ log F
∂π(st)

dπ(st)

 .
Next, from homogeneity of degree one, we know that

∂ log e(q,π,U)
∂ log P

+
∂ log e(q,π,U)

∂ log F
= 1.

Differentiating this identity with respect to P and F yields the following equation

∂2 log e(q,π,U)(
∂ log P

)2 = −
∂2 log e(q,π,U)
∂ log P∂ log F

=
∂2 log e(q,π,U)(

∂ log F
)2 .

Hence, fixing utility, the total derivative of bP(q,π,U) with respect to q and π is

bPd log bP(q,π,U) =
∂2 log e(q,π,U)

(∂ log P)2

∑
n∈N

∂ log P
∂ log qn(s0)

d log qn(s0)

+
∂2 log e

∂ log F∂ log P

∑
st|t>0

∑
n∈N

∂ log F
∂ log qn(st)

d log qn(st) +
∂ log F
∂π(st)

dπ(st)


=
∂2 log e(q,π,U)

(∂ log P)2


∑

n∈N bn(q,U)d log qn(s0)−∑
st|t>0

(∑
n∈N

∂ log F
∂ log qn(st)d log qn(st) +

∂ log F
∂π(st) dπ(st)

)  .
(21)

From Lemma 2 and Lemma 3, we can rewrite this as

d log bP(q,π,U)
(1 − σ∗(q,π,U))

= (1 − bP(q,π,U))


∑

n∈N bn(p,U)d log qn(s0)−∑
st|t>0

(∑
n∈N

∂ log F
∂ log qn(st)d log qn(st) +

∂ log F
∂π(st) dπ(st)

)  ,
Rearranging this gives

bP(q,π,U)
∑

n∈N bn(p,U)d log qn(s0) − bF(q,π,U))×∑
st|t>0

(∑
n∈N

∂ log F
∂ log qn(st)d log qn(st) +

∂ log F
∂π(st) dπ(st)

) = −
d log bP(q,π,U)
1 − σ∗(q,π,U)

+
∑
n∈N

bn(q(s0),U)d log qn(s0).
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Plug this back into (21) to get the desired result. �

Lemma 5. The shadow prices q∗(τ,w, 0) can be written as a function of τ and V(τ,w, 0). That is,
we can write

q∗(τ,w, 0) = q∗ (τ,V(τ,w, 0)) .

Furthermore,
V(τ,w, 0) = v(q∗ (τ,V(τ,w, 0)) ,π(·|τ),w)

for every τ and w.

Proof. The first part follows from the fact that the value function V(τ,w, 0) is monotone in
w. Hence, we can substitute the inverse of V(τ,w, 0) with respect to w into q∗(τ,w, 0) to get
q∗ (τ,V(τ,w, 0)) = q∗(τ,V−1(V(τ,w, 0)), 0).

For the second part, we know from Proposition 3, that

c(τ,w, 0) = c∗(q∗(τ,V(τ,w, 0)),π(·|τ),V(τ,w, 0)).

Hence

V(τ,w, 0) =U(c(τ,w, 0),π(·|τ))

=U(c∗(q∗(τ,V(τ,w, 0)),π(·|τ),V(τ,w, 0)),π(·|τ)

= v(q∗ (τ,V(τ,w, 0)) ,π(·|τ),w).

�

Lemma 6. The following holds

e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0)) = w.

Proof. From the proof of Proposition 3, we know that

e(q∗
(
τ,u(τ,w, y)

)
,π(·|τ),u(τ,w, y)) = w +

∑
st

λ(st
|τ)y(st

|τ) +
∑

st

µ(st
|τ)X(st

|τ),

where λ(st
|τ) are lagrange multipliers on state-contingent budget constraints and µ(st

|τ)
are lagrange multipliers on borrowing constraints. Since y(st

|τ) = 0, we know that

e(q∗
(
τ,u(τ,w, y)

)
,π(·|τ),u(τ,w, y)) = w +

∑
st

µ(st
|τ)X(st

|τ).
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We prove the desired result by showing that µ(st) ≡ 0. To do this, we use backward
induction. Suppose that for some t,we know that, for every t′ > t,we have

∑
k ak(st′

|τ) ≥ 0.
That is, the borrowing constraint is slack for every st′ following st. For the sake of deriving
a contradiction, suppose that µ(st

|τ) , 0. Then∑
n∈N

pn(st+1
|τ)cn(st+1

|τ) +
∑

k

ak(st+1
|τ) =

∑
k∈K

Rk(st
|τ)ak(st−1

|τ) < −
[
min

k
Rk(sT

|τ)
]

X(sT−1
|τ) < 0.

This implies that ∑
k

ak(st+1
|τ) < 0,

which is a contradiction. Hence, we know that∑
k

ak(st+1
|τ) ≥ 0.

This implies that µ(st
|τ) = 0. We finish by observing that we know that for every sT, the

no-Ponzi scheme condition implies that∑
k

ak(sT
|τ) ≥ 0.

This is the first step of the backward induction.
�

With these preliminaries out of the way, we are ready to prove Proposition 4. We start
with the definition of the money metric. That is, u(τ,w, 0) solves the following equation:

V(τ,w, 0) = V(τ0,u(τ,w, 0), 0).

From Lemma 5, we know

v(q∗ (τ,V(τ,w, 0)) ,π(·|τ),w) = V(τ,w, 0) = V(τ0,u(τ,w, 0), 0) = v(q∗ (τ0,V(τ,w, 0), 0) ,π(·|τ0),u(τ,w, 0)).

Hence, u(τ,w, 0) solves

v(q∗ (τ,V(τ,w, 0)) ,π(·|τ),w) = v(q∗ (τ0,V(τ,w, 0), 0) ,π(·|τ0),u(τ,w, 0)).

Without loss of generality, by Proposition 2, cardinalize the value function using the
money metric (since the value function is only defined up to monotone transformations).
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Therefore

v(q∗ (τ,u(τ,w, 0)) ,π(·|τ),w) = v(q∗ (τ0,u(τ,w, 0), 0) ,π(·|τ0),u(τ,w, 0)).

Using the shadow expenditure function, we can write

u(τ,w, 0) =e(q∗ (τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0)),

=e(q∗ (τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0))
e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))
e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))

,

=e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))
e(q∗ (τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0))
e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))

,

=w
e(q∗ (τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0))
e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))

,

where the last line uses Lemma 6. Logging both sides gives

log u(τ,w, 0) = log w + log
e(q∗ (τ0,u(τ,w, 0)) ,π(·|τ0),u(τ,w, 0))
e(q∗ (τ,u(τ,w, 0)) ,π(·|τ),u(τ,w, 0))

,

= log w +

∫ τ0

τ

(
∂ log e(q∗ (x,u(τ,w, 0)) ,π(·|x),u(τ,w, 0))

∂ log q∗
d log q∗

dx

+
∂ log e(q∗ (x,u(τ,w, 0)) ,π(·|x),u(τ,w, 0))

∂ logπ(·|x)
d logπ(·|x)

dx

)
dx,

where the second equality uses the fundamental theorem of calculus for line integrals.
Using Lemma 4, we can rewrite the last line as

log u(τ,w, 0) = log w −
∫ τ

τ0

∑
n∈N

bn(p(·|x),u(τ,w, 0))
d log pn

dx

+
d log bP(q∗ (x,u(τ,w, 0)) ,π(·|x),u(τ,w, 0))
σ∗(q∗ (τ,u(τ,w, 0)) ,π(·|x),u(τ,w, 0)) − 1

1
dx

)
dx,

= log w −
∫ τ

τ0

∑
n∈N

Bn(x,w∗x, 0)
d log pn

dx
+

1
σ(x,w∗x, 0) − 1

d log BP(x,w∗x, 0)
dx

 dx.

where for the last step, we replaced compensated budget share with uncompensated
budget share.

�

Proof of Lemma 1. Need to show that

Bn(τ,w, y) = bn(p(s0
|τ),V(τ,w, y)).
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By Proposition 3, we know that

Bn(τ,w, y) =
pn(s0
|τ)cn(s0

|τ,w, y)∑
m∈N pm(s0|τ)cm(s0|τ,w, y)

=
q∗n(s0)c∗n(s0

|q∗,π,V(τ,w, y))∑
m∈N qm(s0|τ)c∗m(s0|q∗,π,V(τ,w, y))

≡ bn(q∗,π,V(τ,w, y)).

Next, we know, from Shephard’s lemma that for each n ∈ N

q∗n(s0)c∗n(q∗,π,V(τ,w, y))
e(q∗,π,V(τ,w, y))

=
∂ log e(q∗,π,V(τ,w, y))

∂ log q∗n(s0)

=
∂ log e

(
P
(
q∗(s0),V(τ,w, y)

)
,F

({
q∗(st)

}
t>0 ,π,V(τ,w, y)

)
,V(τ,w, y)

)
∂ log P

∂ log P(q∗(s0),V(τ,w, y))
∂ log q∗n(s0)

.

Hence, we have that

q∗n(s0)c∗n(s0
|q∗,π,V(τ,w, y))∑

m∈N qm(s0|τ)c∗m(s0|q∗,π,V(τ,w, y))
=

∂ log P(q∗(s0),V(τ,w,y))
∂ log q∗n(s0)∑

m∈N
∂ log P(q∗(s0),V(τ,w,y))

∂ log q∗m(s0)

,

which is only a function of q∗(s0) = p(s0
|τ) and V(τ,w, y) as needed. �

Proof of Proposition 5. From Lemma 1, we know that

B(τ,w, y) = bn(p(s0
|τ),V(τ,w, y)).

By definition of uτ(τ,w, y), it follows that

B(τ,w, y) = bn(p(s0
|τ),V(τ,uτ(τ,w, y), 0)).

Since b is an injective function, we can write

V(τ,uτ(τ,w, y), 0)) = b−1
n

(
p(s0
|τ),B(τ,w, y)

)
.

Since V is monotone in wealth, we can write

uτ(τ,w, y) = V−1
(
τ, b−1

n

(
p(s0
|τ),B(τ,w, y)

)
, 0

)
= m(B(τ,w, y), τ).

�
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Proof of Corollary 2. Lemma 1 shows that

Bi(τ,w, y) = bi(p(s0
|τ),V(τ,w, y)).

Hence, if bi is monotone in V, then

Bi(τ,w, y) = bi(p(s0
|τ),V(τ,w, y)) = bi(p(s0

|τ),V(τ,w∗, 0)) = Bi(τ,w∗, 0)

if, and only if,
V(τ,w, y) = V(τ,w∗, 0).

�

C Relating Proposition 1 to Feenstra (1994)

Proposition 1 is also a consequence of the Feenstra (1994) approach to imputing the value
of missing prices. Feenstra (1994) introduced this approach to adjust CES price indices
for the value of new goods. The Feenstra (1994) approach applies because with complete
markets, the consumers’ problem is equivalent to a static problem where consumers
make all their consumption choices at date 0. In this case, the preferences in (5) are a CES
aggregator over dates. Hence, demand for consumption in the first period, relative to
total wealth, follows CES demand:

log
b(0|τ)
b(0|τ0)

= (1 − σ)
[
log

p(0|τ)
p(0|τ0)

−
e(q(·|τ0, 1))
e(q(·|τ, 1))

]
. (22)

Rearrange this equation and combine it with (6) to arrive at (8). The proof we offer for
Proposition 1 is different and much longer. Instead of inverting the demand curve to
solve for the ideal price index, as in (22), we use demand for time 0 consumption to
solve for relative prices between time 0 and the future. We then substitute this expression
into (7) and integrate. The reason we do so is because this alternative, lengthier, proof
generalizes when we relax the assumptions in this section. Outside of the CES special
case, the demand curve for present consumption does not directly depend on the ideal
price deflator as in (22). Hence, we cannot simply invert the demand curve to solve for
the ideal price index.
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D Sensitivity Analysis for Results in Section 6

TBA
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