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Abstract

We study a flexible class of trade models with international production net-

works and arbitrary wedge-like distortions like markups, tariffs, or nominal rigidi-

ties. We characterize the general equilibrium response of variables to shocks in

terms of microeconomic statistics. Our results are useful for decomposing the

sources of real GDP and welfare growth, and for computing counterfactuals. Us-

ing the same set of microeconomic sufficient statistics, we also characterize soci-

etal losses from increases in tariffs and iceberg trade costs and dissect the quali-

tative and quantitative importance of accounting for disaggregated details. Our

results, which can be used to compute approximate and exact counterfactuals,

provide an analytical toolbox for studying large-scale trade models and help to

bridge the gap between computation and theory.
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1 Introduction

Trade economists increasingly recognize the importance of using large-scale computational
general equilibrium models for quantitative policy analysis. A downside of relying on
purely computational methods is that it may be hard to know which forces in the model
drive specific results. On the other hand, stylized models, while transparent and parsimo-
nious, can lead to unreliable quantitative predictions compared to large-scale models.

This paper attempts to provide a theoretical map of territory usually explored by ma-
chines. It studies real GDP and welfare in open economies with disaggregated and inter-
connected production structures. We address two types of questions: (i) how to measure
and decompose the sources of output and welfare changes using ex-post sufficient statis-
tics, à la Solow (1957), and (ii) how to predict the responses of output, welfare, as well as
disaggregated prices and quantities, to changes in technologies or wedges using ex-ante
sufficient statistics, à la Jones (1965). Our analysis is fairly general (for example, nest-
ing most Armington-style models) and helps to isolate the common forces and sufficient
statistics necessary to answer these questions without committing to specific functional
forms. We use these results to show how accounting for the details of the production struc-
ture can theoretically and quantitatively change answers to a broad range of questions in
open-economy settings.

Our framework allows for arbitrary distorting wedges (like taxes, markups, or sticky
prices), and we derive comparative statics with respect to both wedges and technologies
in terms of primitives. We derive how every equilibrium price and quantity responds to
changes in technologies and wedges as a function of the input-output matrix, elasticities of
substitution, and wedges in the initial equilibrium.

Since our focus is on real GDP and welfare, we begin by showing that changes in real
GDP and welfare can be decomposed, to a first-order approximation, into a direct technol-
ogy effect of the shock, holding fixed the allocation of resources, and a pure reallocation
component. For real GDP, reallocation effects are irrelevant if the initial allocation is effi-
cient. If the initial allocation is inefficient, then reallocations can boost real GDP by reallo-
cating resources away from low marginal value firms towards high marginal value ones.
Furthermore, we show that these reallocations can be tracked using the change in factor
income shares in the domestic economy. For welfare, reallocation effects are non-zero even
when the equilibrium is efficient. Furthermore, we show that the reallocation effects for
welfare depend on what we call the factoral terms-of-trade, which depend on international
factor income shares.1 Our decompositions of welfare and real GDP can be applied ex-post

1We borrow the term “factoral terms-of-trade” from Viner (1937), though our formal definition coincides
with his only in very simple environments.
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to decompose the sources of welfare and output growth over time, or used as an interme-
diate step to answer ex-ante counterfactual questions.

To answer how welfare and real GDP respond to a counterfactual shock, we need to
know both the direct effect of the shock and the indirect (reallocative) effect of the shock.
To a first-order approximation, the direct effects of shocks are simple to understand and
rely only on input-output shares and wedges in the initial (pre-shock) equilibrium. Real-
location effects, on the other hand, are more complex, even to a first-order, and depend
on general equilibrium movements of factor income shares. We characterize the response
of factor income shares to exogenous shocks as a function of the input-output network,
the elasticities of substitution in production and consumption, returns-to-scale, and initial
wedges. Once in possession of changes in factor prices, then it is simple to calculate how
reallocation effects affect welfare and GDP to a first-order.

We also provide second-order approximations with respect to technology and wedges
for the world as a whole, and the real GDP of each country. These results show that losses
from tariffs or other distortions are approximately equal to a sales-weighted sum of dead-
weight loss (Harberger) triangles. We provide explicit formulas for these Harberger trian-
gles in terms of microeconomic primitives (the input-output network, elasticities of substi-
tution, and returns to scale).

Using a series of pen-and-paper examples, we show how microeconomic details, like
the presence of input-output linkages, complementarities in the domestic economy, fric-
tions to factor mobility across sectors, and nominal rigidities magnify the welfare losses
from negative trade shocks. For example, we show that a negative trade shock is much
more costly if domestic sectors are complements and domestic sectors have decreasing re-
turns to scale. This is especially relevant for thinking about disruptions in, for example,
the supply of energy as studied by Bachmann et al. (2022). We also show how nominal
rigidities can help to explain why, in the short-run, a disruption in trade can cause domes-
tic unemployment, as in Rodrı́guez-Clare et al. (2020), and result in complete pass-through
of tariffs into consumer prices, as in Fajgelbaum et al. (2020).

Our comparative static results, which generalize Jones’s hat-algebra beyond frictionless
2 × 2 × 2 no input-output economies, pin down how every price and quantity responds to
shocks. This means that repeated iteration on these first-order calculations also yields exact
nonlinear comparative statics, providing an alternative computational method to the exact
hat-algebra (e.g. Dekle et al., 2008) that is commonly used in the literature. Whereas exact
hat-algebra requires solving a large nonlinear system of excess demand equations once, our
differential approach requires solving a smaller linear system repeatedly. Computationally,
for large and highly nonlinear models, this differential equation approach is significantly
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faster.2 We use this method, and a quantitative multi-country, multi-sector model of the
world economy with input-output connections, to show that the analytical intuitions we
derive using simple examples remain valid in quantitatively more realistic environments.

The outline of the paper is as follows. In Section 2, we set up the model and define the
objects of interest. In Section 3, we derive some first-order growth-accounting results use-
ful for measurement and decompositions. In Section 4, we derive first-order comparative
statics in terms of microeconomic primitives, useful for prediction. In Section 5, we apply
the results in Section 4 to approximate societal losses from tariffs and technology shocks
to the second order. In Section 6, we provide analytical examples showing how different
mechanisms affect the transmission of trade shocks to welfare. Section 7 contains quantita-
tive examples showing that the intuition gleaned from the analytical examples is useful in
understanding larger scale models. We conclude in Section 8. Proofs are in the online ap-
pendix. Additional details can also be found in the appendix of the working paper version
of this paper, Baqaee and Farhi (2019).

Related Literature. This paper connects three different literatures: the literature on the
welfare effects of trade shocks, the literature on production networks, and the literature on
growth accounting. We discuss each literature in turn starting with the one on the gains
(or losses) from trade shocks. Our results generalize some of the results in Costinot and
Rodriguez-Clare (2014) to environments with non-linear input-output connections. We
generalize the input-output models emphasized in Caliendo and Parro (2015), Caliendo
et al. (2017), Morrow and Trefler (2017), Fally and Sayre (2018), and Bernard et al. (2019).
Our paper is also related to contemporaneous work by Huo et al. (2020), who decompose
bilateral GDP comovement into shock transmission and shock correlation.

A vast and active branch of the literature uses large-scale computational general equi-
librium (CGE) models for policy analysis. We refer readers to the CGE handbook, Dixon
and Jorgenson (2012), as well as to Corong et al. (2017), who provide a detailed overview
of the Global Trade Analysis Project, a standardized database and CGE modeling platform
for policy analysis. The analytical results in this paper complement the quantitative ap-
proach of this literature, and the welfare and GDP decompositions we provide can be used
to help interpret the output from large-scale models.

Our results about the effects of trade in distorted economies also relate to Berthou et al.
(2018) and Bai et al. (2018). Our results also relate to complementary work with non-

2We provide flexible Matlab code for performing these loglinearizations and numerically integrating the
results. Our computational approach, which, instead of solving a nonlinear system of equations, numerically
integrates derivatives, is similar to the way computational general equilibrium (CGE) models are sometimes
solved (for a survey, see Dixon et al., 2013).
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parametric or semi-parametric models of trade like Adao et al. (2017) and Allen et al. (2014).
These papers study reduced-form general equilibrium demand systems under assump-
tions that ensure this demand system is invertible and invariant to shocks. Our results
show how to construct these general equilibrium objects from microeconomic primitives,
building an explicit bridge from disaggregated microeconomic information to aggregate
objects. Our characterization of how factor shares and prices respond to shocks is related
to a large literature, for example, Trefler and Zhu (2010), Davis and Weinstein (2008), Feen-
stra and Sasahara (2017), Dix-Carneiro (2014), Galle et al. (2017), among others.

The literature on production networks has primarily been concerned with the prop-
agation of shocks in closed economies, typically assuming a representative agent. For
instance, Long and Plosser (1983), Acemoglu et al. (2012), Atalay (2017), Carvalho et al.
(2016), Baqaee and Farhi (2017a,b), Baqaee (2018), Carvalho and Tahbaz-Salehi (2018), Liu
(2017), among others. A recent focus of the literature, particularly in the context of open
economies, has been to model the formation of firm-to-firm links. This strand of the liter-
ature takes discreteness seriously, for example, Chaney (2014), Lim (2017), Tintelnot et al.
(2018), and Kikkawa et al. (2018). Our approach is different: rather than modeling the
formation of links as a discrete decision, we assume a differentiable form of adjustment
where the presence and strength of links is determined by cost minimization subject to a
smooth production technology. This means that we can only handle the extensive mar-
gin via choke prices. In exchange for this simplification, we provide a fairly general local
characterization of the equilibrium.

Our growth accounting results are related to closed-economy results like Solow (1957),
Hulten (1978), as well as to the literature extending growth-accounting to open economies,
including Kehoe and Ruhl (2008) and Burstein and Cravino (2015). Perhaps closest to us
are Diewert and Morrison (1985) and Kohli (2004) who introduce output indices that ac-
count for terms-of-trade changes. Our real income and welfare-accounting measures share
their goal, though our decomposition into pure productivity changes and reallocation ef-
fects is different. In explicitly accounting for the existence of intermediate inputs, our ap-
proach also speaks to how one can circumvent the double-counting problem and spill-
overs arising from differences in gross and value-added trade, issues studied by Johnson
and Noguera (2012) and Koopman et al. (2014). Relative to these other papers, our ap-
proach has the bonus of easily handling inefficiencies and wedges.

Our approach is general, and relies on duality, along the lines of Dixit and Norman
(1980). We differ from the classic analysis, however, in that, we state our comparative static
results in terms of observable microeconomic sufficient statistics: input-output shares,
changes in shares, and (microeconomic) elasticities of substitution. Our approach relies
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heavily on the notion of the allocation matrix, which helps give a physical (primal) inter-
pretation to the theorems, and is convenient for analyzing inefficient economies. In inef-
ficient economies, the absence of macro-level envelope conditions mean that the abstract
approach, like Dixit and Norman (1980) and Chipman (2008), runs into problems. How-
ever, our results readily extend to inefficient economies.

2 Framework

In this section, we set up the model and define the statistics of interest.

2.1 Model Environment

There is a set of countries C, a set of producers N producing different goods, and a set of
factors F. Each producer and each factor is assigned to be within the borders of one of
the countries in C. The sets of producers and factors inside country c are Nc and Fc. The
set Fc of factors physically located in country c may be owned by any household, and not
necessarily the households in country c. To streamline the exposition, we assume that there
is a representative consumer in each country.3

Distortions. Since tax-like wedges can implement any feasible allocation of resources in
our model, including inefficient allocations, we use wedges to represent distortions. These
tax wedges may be explicit, like tariffs, or they may be implicit, like markups, sticky prices,
or financial frictions. For ease of notation, to represent a wedge on i’s purchases of inputs
from k, we introduce a fictitious middleman k′ that buys from k and sells to i at a “markup”
µk′ . The revenues collected by these markups/wedges are rebated back to the households
in a way we specify below.4

Producers. Every good i ∈ N belongs to some country c ∈ C and is produced using a
constant-returns-to-scale production function

yi = AiFi

(
{xik}k∈N ,

{
li f
}

f∈Fc

)
,

3See Appendix L in the NBER working paper version of this paper for a discussion of how to extend the
results to heterogeneous households within countries.

4These fictitious middlemen are convenient for writing compact formulas, but adding them to the model
explicitly is computationally inefficient. In the computational appendix, Appendix D, we discuss these issues
in more detail.
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where yi is the total quantity of good i produced, xik is intermediate inputs from k, li f is
factor inputs from f , and Ai is an exogenous Hicks-neutral productivity shifter.5,6 Producer
i chooses inputs to minimize costs and sets prices equal to marginal cost times a wedge
pi = µi × mci. We capture bilateral wedges between say i and j by adding a fictional
intermediary that buys from i and sells to j at some markup.

Factors. Households earn income from primary factors and revenues generated by wedges.
A primary factor is a non-produced good whose supply is, for now, taken to be exogenous.7

To model revenues earned by wedges, for each country c ∈ C, we introduce a “fictitious”
factor that collects the markup/wedge revenue accruing to residents of country c. We de-
note the set of true primary factors by F and the set of true and fictitious factors by F∗.
(We will not use fictitious factors to define the equilibrium, but will refer to them in our
comparative statics). The C × (N + F) matrix Φ is the ownership matrix, where Φci is the
share of i’s value-added (sales minus costs) that goes to households in country c.

Households. The representative household in country c has homothetic preferences8

Wc = Wc({cci}i∈N),

and faces a budget constraint given by

∑
i∈N

picci = ∑
f∈F

Φc f w f L f + ∑
i∈N

Φci (1 − 1/µi) piyi + Tc,

where cci is the quantity of the good i consumed by household c, w f and L f is the wage and
quantity of factor f , pi is the price and yi is the quantity of good i, and Tc is an exogenous

5This is more general than it might appear. First, production has constant returns to scale without loss
of generality, because non-constant returns can be captured via fixed factors. Second, the assumption that
each producer produces only one output good is also without loss of generality. A multi-output production
function is a single output production function where all but one of the outputs enter as negative inputs.
Finally, productivity shifters are Hicks-neutral without loss of generality. To represent input-augmenting
technical change for i’s use of input k, introduce a fictitious producer buying from k and selling to i, and hit
this fictitious producer with a Hicks-neutral shock.

6We rule out fixed costs in our analysis. Our results accommodate an extensive margin of product entry-
exit, but only if it operates according to a choke-price, rather than a fixed cost. For an analysis of general
equilibrium models with fixed costs see Baqaee and Farhi (2020).

7In Section 4.3, we endogenize factor supply using a labor-leisure tradeoff. In Appendix K of the working
paper version of this paper, we discuss how to endogenize factor supply by using a Roy model and discuss
the connection of our results with those in Galle et al. (2017).

8In mapping our model to data, we interpret domestic “households” as any agent which consumes re-
sources without producing resources to be used by other agents. Specifically, this means that we include
domestic investment and government expenditures in our definition of “households”.
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lump-sum transfer. The right-hand side is consumer c’s income: the first summand is
income earned by primary factors, the second summand is income earned from wedges
(the “fictitious” factor for c), and the final summand is net transfers.

Iceberg Trade Costs. We capture changes in iceberg trade costs as Hicks-neutral produc-
tivity changes to specialized importers or exporters whose production functions represent
the trading technology. The decision of where trading technologies should be located is
ambiguous since they generate no income. It is possible to place them in the exporting
country or the importing country, and this would make no difference in terms of the wel-
fare of agents or the allocation of resources.9

Equilibrium. Given productivities Ai, wedges µi, and a vector of transfers satisfying

∑c∈C Tc = 0, a general equilibrium is a set of prices pi, intermediate input choices xij,
factor input choices li f , outputs yi, and consumption choices cci, such that: (i) each pro-
ducer chooses inputs to minimize costs taking prices as given; (ii) the price of each good
is equal to the wedge on that good times its marginal cost; (iii) each household maximizes
utility subject to its budget constraint taking prices as given; and, (iv) the markets for all
goods and factors clear so that yi = ∑c∈C cci + ∑j∈N xji for all i ∈ N and L f = ∑j∈N lj f for
all f ∈ F.

2.2 Definitions and Notation

In this subsection, we define the statistics of interest and introduce useful notation.

Nominal Output and Expenditure. Nominal output or Gross Domestic Product (GDP)
for country c is the total final value of the goods produced in the country. It coincides with
the total value-added earned by the producers located in the country:

GDPc = ∑
i∈N

piqci = ∑
f∈Fc

w f L f︸       ︷︷       ︸
income from factors

in country c

+ ∑
i∈Nc

(1 − 1/µi) piyi︸                     ︷︷                     ︸
income from wedges

in country c

,

where qci = yi1{i∈Nc} − ∑j∈Nc xji is the “final” or net quantity of good i ∈ N produced by
country c. Note that qci is negative for imported intermediate goods.

9We do not need to take a precise stand at this stage, but we note that this will matter for our conclusions
regarding country-level real GDP changes (as pointed out by Burstein and Cravino, 2015).

8



Nominal Gross National Expenditure (GNE) for country c, also known as domestic
absorption, is the total final expenditures of the residents of the country. In our model, it
coincides with nominal Gross National Income (GNI), which is the total income earned by
the factors owned by a country’s residents adjusted for international transfers:

GNEc = ∑
i∈N

picci = ∑
f∈F

Φc f w f L f︸            ︷︷            ︸
income from factors

owned by household c

+ ∑
i∈N

Φci (1 − 1/µi) piyi︸                         ︷︷                         ︸
income from wedges

accruing to household c

+ Tc︸︷︷︸
transfers

to household c

.

The right-hand side is just consumer c’s budget constraint.
To denote variables for the world, we drop the country-level subscripts. Nominal GDP

and nominal GNE are not the same at the country level, but they are the same at the world
level:

GDP = GNE = ∑
f∈F

w f L f + ∑
f∈N

(1 − 1/µi)piyi = ∑
i∈N

piqi = ∑
i∈N

pici,

where, for the world, final consumption coincides with net output ci = qi because ci =

∑c∈C cci = ∑c∈C qci = qi, and net transfers are zero, T = 0, because T = ∑c∈C Tc. Let world
GDP be the numeraire, so that GDP = GNE = 1. Hence, unless otherwise stated, all prices
and transfers are expressed in units of this numeraire.

Real Output and Expenditure. To convert nominal variables into real variables, as in the
data, we use Divisia indices throughout. To a first-order, the change in the real GDP of
country c and the corresponding GDP deflator are defined to be

d log Yc = ∑
i∈N

ΩYc,i d log qci, d log PYc = ∑
i∈N

ΩYc,i d log pi, (1)

where ΩYc,i = piqci/GDPc is good i’s share in the final output of country c.10 Throughout
the paper, for any variable x, we define d log x = d x/x. This is an abuse of notation, but it
allows us to write d log x even when x is a negative number.

The change in real GNE of country c and the corresponding deflator are

d log Wc = ∑
i∈N

ΩWc,i d log cci, d log PWc = ∑
i∈N

ΩWc,i d log pi, (2)

where ΩWc,i = picci/GNEc is good i’s share in country c’s consumption basket. By Shep-
hard’s lemma, changes in real GNE are equal to changes in welfare for every country.

10Our definition of real GDP coincides with the double-deflation approach to measuring real GDP, where
the change in real GDP is defined to be the sum of changes in real value-added for domestic producers.
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Discrete changes in real GDP and real GNE are given by integrating equations (1)
and (2). We denote the corresponding discrete changes by ∆ log Y, ∆ log Yc, ∆ log W, and
∆ log Wc. In the case of GDP, this is how these objects are typically measured in the data,
and in the case of GNE, this integral coincides with the nonlinear change in the welfare of
each agent c as measured by a money-metric (since preferences are homothetic).

As with the nominal variables, real GDP and real GNE are not the same at the country
level. However, these differences vanish at the world level so that, for the world, d log Y =

d log W and d log PY = d log PW .11 Conveniently, changes in country real GDP and real
GNE aggregate up to their world counterparts.12

Input-Output Matrices. The Heterogenous-Agent Input-Output (HAIO) matrix is the
(C + N + F) × (C + N + F) matrix Ω whose ijth element is equal to i’s expenditures on
inputs from j as a share of its total revenues/income

Ωij =
pjxij

piyi
1{i∈N} +

pjcij

GNEi
1{i∈C}.

The HAIO matrix Ω includes the factors of production and the households, where factors
consume no resources (zero rows), while households produce no resources (zero columns).
The Leontief inverse matrix is

Ψ = (I − Ω)−1 = I + Ω + Ω2 + . . . .

Whereas the input-output matrix Ω records the direct link from one agent or producer to
another, the Leontief inverse matrix Ψ records the direct and indirect exposures through the
production network.

Denote the diagonal matrix of wedges by µ (where non-taxed quantities have wedge
µi = 1) and define the cost-based HAIO matrix and Leontief inverse to be

Ω̃ = µΩ, Ψ̃ = (I − Ω̃)−1.

It will sometimes be convenient to treat goods and factors together and index them by
k ∈ N + F where the plus symbol denotes the union of sets. To this effect, we slightly
extend our definitions. We interchangeably write yk and pk for the quantity Lk and wage
wk of factor k ∈ F.

11Real GDP and real GNE for the world are defined by aggregating across all countries, so d log Y =
∑i∈N(piqi/GDP)d log qi, d log PY = ∑i∈N(piqi/GDP)d log pi, d log W = ∑i∈N(pici/GNE)d log ci, and
d log PW = ∑i∈N(pici/GNE)d log pi,.

12Namely, d log Y = ∑c∈C(GDPc/GDP)d log Yc and d log W = ∑c∈C(GNEc/GNE)d log Wc.
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Input-Output Exposures. Each i ∈ C + N + F is exposed to each j ∈ C + N + F through
revenues Ψij and through costs Ψ̃ij. Intuitively, Ψij measures how expenditures on i affect
the sales of j (due to backward linkages), whereas Ψ̃ij measures how the price of j affects
the marginal cost of i (due to forward linkages). In the absence of wedges, µi = 1 for every
i, these two objects coincide.

When i is a household, we use special notation to denote backward and forward exposure.
In particular, let household c’s exposures to k be

λWc
k = Ψc,k = ∑

i∈N
Ωc,iΨik, λ̃Wc

k = Ψ̃c,k = ∑
i∈N

Ω̃c,iΨ̃ik.

In words, c’s exposure to k is the expenditure share weighted average of the exposure of
c’s suppliers to k.

By analogy, the forward and backward exposure of country c’s GDP (as opposed to
welfare) is defined as

λYc
k = ∑

i∈N
ΩYc,iΨik, λ̃Yc

k = ∑
i∈N

ΩYc,iΨ̃ik,

where recall that ΩYc,i = piqci/GDPc is the share of a good i in GDP. As usual, the world-
level backward and forward exposure to k are denoted by suppressing the country sub-
script: that is, λY

k and λ̃Y
k respectively.

We sometimes denote exposure to factors with capital letters, Λ or Λ̃, to distinguish
them from non-factor producers, lower-case λ or λ̃. In other words, when f ∈ F, we write
ΛYc

f = λYc
f , ΛWc

f = λWc
f , and Λ̃Wc

f = λ̃Wc
f to emphasize that f is a factor.

Sales and Income Shares. Exposures of GDP to a good or factor k at the country and
world levels have a direct connection to the sales of k:

λYc
k = 1{k∈Nc+Fc}

pkyk
GDPc

, λk =
pkyk
GDP

,

where 1 is an indicator function. Hence, the exposure of world GDP λY
k to k is just the

sales share (or Domar weight) of k in world output λk = pkyk/GDP. Similarly, the ex-
posure of country c’s GDP to k is the local Domar weight of k in country c, that is λYc

k =

1{k∈Nc+Fc}(GDP/GDPc)λk.
We also define factor income shares: the share of factor f ∈ F∗ in the income of country c

is denoted by

Λc
f = 1{ f∈F}

Φc f w f L f

GNEc
+ 1{ f∈F∗−F} ∑

i∈N

Φci(1 − 1
µ i
)piyi

GNEc
,
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recalling that f ∈ F∗ − F is a fictitious factor that simply collects wedge revenue but is not
used in production. The share of each factor in world income is Λ f , where we suppress the
c superscript.

3 Comparative Statics: Ex-Post Sufficient Statistics

In this section, we characterize the response of real GDP and welfare to shocks. We state our
results in terms of changes in endogenous, but observable, sufficient statistics. In the next
section, we solve for changes in these endogenous variables in terms of microeconomic
primitives.

Allocation Matrix. To better understand the intuition for the results, we introduce the
allocation matrix, which helps give a physical (primal) interpretation of the theorems. Fol-
lowing Baqaee and Farhi (2017b), define the allocation matrix X as follows: let Xij = xij/yj

be the share of good j used by i, where i and j index households, factors, and producers.
Every feasible allocation is defined by a feasible allocation matrix X , a vector of productiv-
ities A, and a vector of factor supplies L. In particular, the equilibrium allocation gives rise
to an allocation matrix X (A, L, µ, T) which, together with A, and L, completely describes
the equilibrium.13

Given an allocation matrix, we decompose changes in any quantity, say welfare Wc of
country c, into changes due to the technological environment, for a given allocation matrix,
and changes in the allocation matrix, for given technology. In vector notation, this is

d log Wc =
∂ log Wc

∂ log A
d log A +

∂ log Wc

∂ log L
d log L︸                                          ︷︷                                          ︸

∆ technology

+
∂ log Wc

∂X dX︸            ︷︷            ︸
∆ allocation

.

Real GDP. We start by considering how real GDP responds to shocks, stated in terms of
country c variables. To state the result, we introduce special notation for the exposures
of domestic production to imported intermediate inputs. Define country c’s input-output
matix Ωc to be the Nc × Nc sub-matrix of the global input-output matrix Ω corresponding
to producers in country c with associated Leontief inverse Ψc = (I − Ωc)−1. Define the
country-level cost-based matrices Ω̃c and Ψ̃c in a similar way. When k is an imported inter-

13Since there may be multiple equilibria, technically, X (A, L, µ, T) is a correspondence. In this case, we
restrict attention to perturbations of isolated equilibria. As shown by Debreu (1970), equilibria are generically
locally isolated.
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mediate input (k ∈ N − Nc), with some abuse of notation, define the following variables

ΛYc
k = ∑

i∈Nc

∑
j∈Nc

ΩYc,iΨc
ijΩjk = − pkqck

GDPc
, and Λ̃Yc

k = ∑
i∈Nc

∑
j∈Nc

ΩYc,iΨ̃c
ijΩ̃jk.

Note that ΛYc
k is equal to the value of imports k divided by GDP. It is important that the

summations in the expressions above run over only domestic goods Nc and not all goods
N. That is, these variables are partial exposures of GDP to intermediate input k, only ac-
counting for how domestic producers are exposed to k but not accounting for the fact that
the value of k is subtracted from GDP. Theorem 1 decomposes real GDP changes into di-
rect technology effects (due to changes in domestic productivity, domestic factors, and im-
ported materials) and reallocation effects (due to reshuffling of resources across domestic
producers holding fixed domestic productivity, factors, and imported materials).

Theorem 1 (Real GDP). The change in real GDP of country c in response to productivity shocks,
factor supply shocks, transfer shocks, and shocks to wedges is, to a first-order,14

d log Yc = ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

k∈N−Nc

(
Λ̃Yc

k − ΛYc
k

)
d log(qck)︸                                                                                         ︷︷                                                                                         ︸

∆ technology

− ∑
i∈Nc

λ̃Yc
i d log µi −

F

∑
f∈Fc

Λ̃Yc
f d log ΛYc

f + ∑
k∈N−Nc

(
ΛYc

k − Λ̃Yc
k

)
d log ΛYc

k︸                                                                                            ︷︷                                                                                            ︸
∆ allocation

. (3)

The change in world real GDP d log Y can be obtained by simply suppressing the country index c.
That is,

d log Y = ∑
i∈N

λ̃Y
i d log Ai + ∑

f∈F
Λ̃Y

f d log L f︸                                       ︷︷                                       ︸
∆ technology

− ∑
i∈N

λ̃Y
i d log µi −

F

∑
f∈F

Λ̃Y
f d log ΛY

f︸                                        ︷︷                                        ︸
∆ allocation

.

Theorem 1 generalizes Proposition 1 from Burstein and Cravino (2015) to economies
with arbitrary input-output linkages and distortions. To understand equation (3), we con-
sider a series of simple cases. First, consider the case where there are no wedges in the
initial equilibrium. Then forward and backward exposures are the same Λ̃Yc

i = ΛYc
i . Fur-

thermore, since revenues generated by wedges exactly offset the reduction in primary fac-

14Transfer shocks do not directly affect real GDP, but they can influence real GDP through the other terms
in (3).
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tor income shares ∑i∈Nc λ̃Yc
i d log µi = −∑F

f∈Fc
ΛYc

f d log ΛYc
f = −∑F

f∈Fc
Λ̃Yc

f d log ΛYc
f , there

are no reallocation effects. Therefore, Theorem 1 simplifies to the following corollary.

Corollary 1 (Real GDP without Initial Wedges). In the absence of domestic wedges in the initial
equilibrium, Theorem 1 simplifies to

d log Yc = ∑
i∈Nc

λYc
i d log Ai + ∑

f∈Fc

ΛYc
f d log L f . (4)

When there are no initial (domestic) wedges, country c’s real GDP is equal to a Domar-
weighted sum of domestic productivity and domestic factor endowment shocks. In this case,
changes in the allocation matrix do not affect real GDP. Intuitively, when there are no do-
mestic wedges, there is an envelope theorem for real GDP (the competitive equilibrium
maximizes the joint profits of all domestic firms for given prices). Hence, without wedges,
reallocations cannot affect real GDP to a first-order. Furthermore, in the absence of wedges,
foreign shocks, like shocks to iceberg costs outside c’s borders, do not affect real GDP. This
is because productive efficiency ensures that the marginal revenue product of foreign in-
puts is exactly equal to their cost. Hence, an increase in imported materials raises domestic
production and imports by exactly the same offsetting amount.15

If there are pre-existing wedges, there are some major changes. First, there is a new term
on the first line of equation (3), adding to technology effects (holding fixed the distribution
of resources). Second, there are now reallocation effects. To understand the presence of
the new “technology” term involving total imported intermediates, consider the following
special case which eliminates reallocation effects.

Corollary 2 (Real GDP with a Representative Firm). Consider a domestic economy with a sin-
gle representative firm, indexed by 1, that uses domestic labor, Lc, and foreign materials, Mc, has
productivity shifter Ac, and charges a markup µc. Then Theorem 1 simplifies to

d log Yc = λYc
1 d log Ac + µcΛYc

L d log Lc + (µc − 1)
pMc Mc

GDPc
d log Mc.

The first two terms are just the pure technology effects as in (4), the only difference
being that now there is a gap between the revenue-based ΛYc

L and cost-based Λ̃Yc
L exposure

to labor. The final term, involving imported materials, is new and reflects the fact that
imported intermediates are netted out of GDP using their cost rather than their marginal
revenue product. In this simple example, this gap is just (µc − 1). If µc > 1, then an

15Since discrete changes in real GDP are obtained by integration of infinitesimal changes, as long as effi-
ciency is maintained, we conclude that even large foreign shocks do not affect domestic real GDP holding
fixed domestic technology and factor supply.
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increase in imported materials will raise domestic production (at constant prices) by more
than imports (at constant prices), and hence an increase in Mc raises real GDP. Note that
for this example, the allocation of resources across domestic producers is, by construction,
efficient and unchanging since there is only one producer in the domestic economy.16

Having understood the first line of (3), now focus on the second line capturing reallo-
cations. The second line of (3) implies that, ceteris paribus, a reduction in primary factor
income shares and spending on imported materials boosts real GDP. Intuitively, this is be-
cause a reduction in primary factor income shares and expenditures on imported materials
signals a reallocation of resources towards producers with relatively high markups/wedges.
These producers are inefficiently too small to begin with, so such reallocations boost real
GDP (and profits) but reduce spending on primary factors and imported materials. These
reallocations have first-order effects on real GDP even holding fixed microeconomic pro-
ductivities, factor endowments, and the total quantity of imported materials.

Welfare. We now turn our attention to changes in welfare (real GNE).

Theorem 2 (Welfare). The change in welfare of country c in response to productivity shocks, factor
supply shocks, and transfer shocks can be written as:

d log Wc = ∑
i∈N

λ̃Wc
i d log Ai + ∑

f∈F
Λ̃Wc

f d log L f︸                                          ︷︷                                          ︸
∆ technology

− ∑
i∈N

λ̃Wc
i d log µi + ∑

f∈F∗

(
Λc

f − Λ̃Wc
f

)
d log Λ f +

d Tc

GNEc︸                                                                        ︷︷                                                                        ︸
∆ allocation

, (5)

where Λ̃Wc
f = 0 whenever f is a fictitious factor. The change d log W of world real GNE is obtained

by suppressing the country index c. That is,

d log W = ∑
i∈N

λ̃W
i d log Ai + ∑

f∈F
Λ̃W

f d log L f︸                                         ︷︷                                         ︸
∆ technology

− ∑
i∈N

λ̃W
i d log µi − ∑

f∈F
Λ̃W

f d log Λ f︸                                         ︷︷                                         ︸
∆ allocation

.

As with real GDP, changes in welfare can be broken into technological effects (hold-
ing fixed the distribution of resources) and reallocation effects (holding fixed technology).
However, unlike real GDP, reallocation effects are first-order even when there are no wedges.

16This effect means that when there are markups, aggregate TFP (measured by the Solow residual) re-
sponds to external shocks even in the absence of cross-sectional misallocation. See Gopinath and Neiman
(2014) for an example.
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This is because, unlike real GDP, even in the absence of wedges, there is no envelope the-
orem for the welfare of a given country. We discuss the intuition for the technology and
reallocation effects in turn.

The direct technology effect of a shock depends on each household’s exposure to the
technology shock. Since households consume foreign goods, either directly or indirectly
through supply chains, this means that technology shocks outside of a country’s borders
affect the household in that country holding fixed the allocation matrix.

The second line in Theorem 2 captures reallocation effects. These reallocation effects
bundle together three different forces, each of which corresponds to one of the summands
on the second line of (5). The first term is the direct effect of changes in wedges on con-
sumer prices: an increased wedge d log µi raises the price of the consumption basket by
λ̃Wc

i d log µi, holding fixed factor prices. The second reallocation term in (5) captures how
changes in factor rewards affect household c. These terms are related to Viner’s factoral
terms-of-trade and capture household c’s net exposure to each factor’s price. Recall that
Λc

f is the share of country c’s income from factor f , whereas Λ̃Wc
f is the share of country

c’s consumption costs that depend on factor f . The consumption exposure Λ̃Wc
f captures

the total reliance of household c on f , taking into account direct and indirect exposures
through supply chains. The factoral terms-of-trade effects consider, for each factor f , how
the income earned by the factor changes d log Λ f , and whether household c is a net seller
Λc

f − Λ̃Wc
f > 0 or a net buyer Λc

f − Λ̃Wc
f < 0.17 Since the summation runs over F∗, this

means that income earned by wedge revenues are included here. However, even without
wedges, factoral terms-of-trade terms are generally non-zero since they reallocate resources
across households. The final term in (5) is simply the change in net transfers.

Once we aggregate to the level of the world, if there are no pre-existing wedges, the
reallocation effects will be zero. That is, starting at an efficient equilibrium, reallocation
effects are zero-sum distributive changes only and have no aggregate consequences. How-
ever, when there are pre-existing wedges, reallocation effects are no longer zero-sum, since
they can make everyone better or worse off by changing the efficiency of resource alloca-
tion. Although Theorem 1 and Theorem 2 are different country by country, they coincide
when applied to the whole world.

Difference Between Welfare and Output. To see the difference between Theorems 1 and
2, consider a productivity shock d log Ai to a foreign producer i < Nc. Suppose there

17Formally, ∑ f∈F(Λc
f − Λ̃Wc

f )d log w f generalizes the “double factoral terms-of-trade” in Viner (1937).
When factor supply is fixed, d log L f = 0, there are no transfers or wedges, dT = d log µ = 0, then the
reallocation effect in (5) is the same as this factoral terms-of-trade (because d log Λ f = d log w f for every
factor f ).
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are no wedges and all production and utility functions are Cobb-Douglas. Since there
are no wedges, Theorem 1 implies that domestic real GDP does not respond to the for-
eign productivity shock d log Yc = 0. The change in welfare, according to Theorem 2, is
d log Wc = λWc

i d log Ai , 0. Intuitively, even though there are no reallocation effects (be-
cause of the Cobb-Douglas assumption), an increase in foreign productivity increases the
overall amount of goods the world economy can produce and this increases the welfare of
country c to the extent that the consumption basket of country c relies on i (directly and
indirectly through global supply chains).18 This, however, does not affect the real GDP of
country c.

Comparison to Terms-of-Trade Decomposition. Theorem 2 should be contrasted with a
more common decomposition of welfare (e.g. Dixit and Norman, 1980), which frames wel-
fare changes as arising due to changes in domestic production (real GDP) and deviations
of absorption from production (i.e changes in net payments and the terms of trade):

d log Wc = κc d log Yc︸        ︷︷        ︸
∆Real GDP

+ κc d log PYc − d log PWc︸                          ︷︷                          ︸
∆Terms of Trade

+
d Tc

GNEc
+ ∑

f∈F
(Λc

f − κcΛYc
f )d log Λ f︸                                           ︷︷                                           ︸

∆Transfers and Net Factor Payments

, (6)

where κc is GDPc/GNEc.19 To make the comparison between (6) and Theorem 2 more
straightforward, assume there are no transfers or net factor payments. In this case, both
decompositions split welfare into a component representing production and a component
representing relative price changes. In the case of Theorem 2, we look at relative factor
prices whereas (6) depends on relative goods prices. However, as shown in the empirical
application in Section 7.1, the factoral terms-of-trade need not be the same sign or magni-
tude as the standard terms-of-trade.

18Theorems 1 and 2 suggest that the elasticities of substitution generically matter for real GDP and welfare.
This is because these elasticities of substitution discipline changes in factor income shares, and through these,
reallocations. In a closed-economy with one consumer and one primary factor, Liu (2017) provides conditions
under which the elasticities of substitution are irrelevant for welfare. This irrelevance does not extend to our
setup since we have multiple factors, multiple consumers, and distorting wedges are not offset by non-
pecuniary costs.

19Using the definitions in (1) and (2), the terms-of-trade term in (6) can equivalently be written as

κc d log PYc − d log PWc = ∑
i∈N

pi nxic
GNE

d log pi,

where nxic is the quantity of net exports by country c of each good i. That is, for domestically produced goods,
nxic is the export quantity, and for foreign goods, nxic is the total quantity imported for final consumption
and intermediates. Domestically produced and consumed goods prices cancel since they appear in both the
GDP deflator and the GNE deflator. Hence, the expression for the terms-of-trade in (6) is a measure of the
price of net exports.
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While both are useful, Theorem 2 does have some advantages over (6). First, the de-
composition in Theorem 2 is not sensitive to “irrelevant” changes in how producers are
assigned to countries. For example, assuming that iceberg trade costs are logged in the
country that imports a good or the country that exports it has no bearing on equilibrium
allocations or welfare. However, this choice affects real GDP, and by extension, the terms-
of-trade since the sum of the two effects must equal the change in welfare. Similarly, if a
firm changes the country where it books its profits, this affects the decomposition in (6)
but not the one in Theorem 2. Second, even in inefficient environments, the breakdown
between production and reallocation in Theorem 2 is maintained. However, if there are
domestic distortions, real GDP is no longer purely a measure of physical productivity and
itself will contain reallocative effects caused by wedges.

4 Comparative Statics: Ex-Ante Sufficient Statistics

Section 3 shows that the response of welfare and real GDP to shocks depend on changes in
ex-post and endogenous sufficient statistics (like changes in factor income shares). In this
section we characterize these ex-post sufficient statistics in terms of microeconomic prim-
itives: the HAIO matrix and elasticities of substitution in production and consumption
(ex-ante sufficient statistics). The results of this section can then be combined with Theo-
rems 1 and 2 to answer counterfactual questions about welfare and real GDP. We focus on
two types of shocks: productivity shocks, which nest iceberg shocks, and wedge shocks,
which nest tariff changes.

4.1 Setup

To clarify exposition, we specialize production and consumption functions to be nested-
CES aggregators, with an arbitrary number of nests and elasticities. This is for clarity, not
tractability. Appendix E, in the working paper, shows that it is very straightforward to
generalize the rest of the results in the paper to non-nested-CES economies.

Nested CES economies can be written in many different equivalent ways. As in Baqaee
and Farhi (2017a), we adopt the following standard-form representation. We treat every CES
aggregator as a separate producer and rewrite the input-output matrix accordingly, so that
each producer has a single elasticity of substitution associated with it; the representative
household in each country c consumes a single specialized good which, with some abuse
of notation, we also denote by c. Importantly, note that this procedure changes the set of
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producers, which, with some abuse of notation we still denote by N.20 In other words,
every k ∈ C + N has an associated cost function

pk =
µk
Ak

(
∑

j∈N+Fc

Ω̃kj p
1−θk
j

) 1
1−θk

,

where θk is the elasticity of substitution.
For nested-CES economies, the input-output covariance turns out to be a central object.

Input-Output Covariance. We use the following matrix notation throughout. For a ma-
trix X, we define X(i) to be its ith row and X(j) to be its jth column. We define the input-
output covariance operator to be

CovΩ̃(k)(Ψ(i), Ψ(j)) = ∑
l∈N+F

Ω̃klΨliΨl j −
(

∑
l∈N+F

Ω̃klΨli

)(
∑

l∈N+F
Ω̃klΨl j

)
.

This is the covariance between the ith and jth columns of the Leontief inverse using the kth
row of Ω̃ as the probability distribution.

4.2 Comparative Statics

Sales Shares and Prices. The following characterizes how prices and sales shares, includ-
ing factor income shares, respond to perturbations in an open-economy.21

Theorem 3 (Prices and Sales Shares). For a vector of perturbations to productivity d log A and
wedges d log µ, the change in the price of a good or factor i ∈ N + F is, to a first-order,

d log pi = ∑
k∈N

Ψ̃ik (d log µk − d log Ak) + ∑
f∈F

Ψ̃i f d log Λ f . (7)

To a first-order, the change in the sales share of a good or factor i ∈ N + F is

d log λi = ∑
k∈N+F

(
1{i=k} −

λk
λi

Ψki

)
d log µk + ∑

k∈N

λk
λi

µ−1
k (1 − θk)CovΩ̃(k)(Ψ(i), d log p)

+ ∑
g∈F∗

∑
c∈C

λWc
i − λi

λi
ΦcgΛg d log Λg, (8)

20See Appendix C.1 for a worked-out example showing how to map a specific nested-CES economy in
standard-form.

21Theorem 3 generalizes Propositions 2 and 3 from Baqaee and Farhi (2017b) to open-economies.
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where d log p is the (N + F) × 1 vector of price changes in (7). The change in wedge income
accruing to household c (represented by a fictitious factor) is

d log Λc = ∑
i

Φciλi

Λc

(
µ−1

i d log µi + (1 − µ−1
i )d log λi

)
. (9)

Recall that for every factor i ∈ F, we interchangeably use λi or Λi to denote its Domar
weight. This means that (8) pins down the change in primary factor income shares and (9)
pins down changes in “fictitious” factor income shares. Therefore, substituting the vector
of price changes (7) into (8) results in an F∗ × F∗ linear system in factor income shares
d log Λ. The solution to this linear system gives the equilibrium changes in factor shares,
which can be plugged back into equations (7) and (8) to get the change in the sales shares
and prices for every (non-factor) good, and into Theorems 1 and 2 to get real GDP and
welfare.

We discuss the intuition in detail below, but at a high level, equation (7) captures forward
propagation of shocks — shocks to suppliers change the prices of their downstream con-
sumers. On the other hand, equation (8) captures backward propagation of shocks — shocks
to consumers change the sales of their upstream suppliers. Each term in these equations
has a clear interpretation.

To see this intuition, start by considering the forward propagation equations (7): the
first set of summands shows that a change in the price of k, caused either by wedges
d log µk or productivity d log Ak, affects the price of i via its direct and indirect exposures
Ψ̃ik through supply chains. The second set of summands in (7) capture how changes in fac-
tor prices, which are measured by changes in factor income shares, also propagate through
supply chains to affect the price of i. These expressions use the cost-based HAIO matrix Ω̃,
instead of the revenue-based HAIO matrix Ω, because Shephard’s lemma implies that the
elasticity of the price of i to the price of one of its inputs k is given by Ω̃ik and not Ωik.

For the intuition of backward propagation equations (8), we proceed term by term. The
first term captures how an increase in a downstream wedge d log µk reduces expenditures
on suppliers i. If µk increases, then for each dollar k earns, relatively less of it makes it to i,
and this reduces the sales of i.

The second term captures the fact that when relative prices change d log p , 0, then
every producer k will substitute across its inputs in response to this change. Suppose that
θk > 1 so that producer k substitutes (in expenditure shares) towards those inputs that
have become cheaper. If those inputs that became cheap are also heavily reliant on i, then
CovΩ̃(k)(Ψ(i), d log p) < 0. Hence, substitution by k towards cheaper inputs will increase
demand for i. These substitutions, which happen at the level of each producer k, must be
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summed across all producers.
The last set of summands, on the second line of (8), captures the fact that changes in fac-

tor prices change the distribution of income across households in different countries. This
affects the demand for i if the different households are differently exposed, directly and
indirectly, to i. The overall effect can be found by summing over countries c the increase
in c’s share of aggregate income ∑g∈F∗ ΦcgΛg d log Λg multiplied by the relative welfare
exposure (λWc

i − λi)/λi to i. If every household has the same consumption basket, the last
term disappears.

Two-Country Example. This example uses the forward and backward propagation equa-
tions in Theorem 3 to linearize a two-country economy. Each country has one factor, so
C = F = 2. Denote foreign variables by an asterisk and let L index the home factor and
L∗ the foreign factor. Assume that there are no wedges so that Ω = Ω̃, and consider a
productivity shock d log Aj to some producer j. Substituting (7) into (8) gives the following
change in the domestic factor share

d log ΛL

d log Aj
=

∑k(θk − 1)λkCovΩ(k)

(
Ψ(j),

Ψ(L)
ΛL

)
1 + ΛL

(1−ΛL)
∑k(θk − 1)λkVarΩ(k)

(Ψ(L)
ΛL

)
−
(

ΛW
L − ΛW∗

L

) .

The numerator is a partial equilibrium effect and captures the way d log Aj redirects expen-
ditures towards (or away) from L due to expenditure-switching (holding fixed relative fac-
tor wages). Note that it is a sum over all producers k, and the kth term is positive if d log Aj

causes k to redirect its spending towards the home factor L. This happens if k’s inputs are
substitutes θk > 1 and exposure to j and L positively covary CovΩ(k)(Ψ(j), Ψ(L)) > 0. In
this case, as k substitutes to use inputs most heavily exposed to j, it boosts demand for the
home factor L and raises its income share.

The feedback from general equilibrium (i.e. factor markets clearing) is the denomina-
tor. The terms involving the elasticities of substitution in the denominator capture the fact
that the partial equilibrium effect, by changing factor prices, triggers its own substitution
effects. If inputs are substitutes θk > 1 and k is heterogeneously exposed to the home factor
through its suppliers, VarΩ(k)(Ψ(L)) > 0, then the endogenous increase in the price of L
will cause k to substitute away from L. This mitigates the partial equilibrium effect in the
numerator if θk > 1 and amplifies it if θk < 1. The final term in the denominator reflects
factoral home-bias. An increase in the price of L redistributes income towards the home
consumer who, in all likelihood, has home-bias for the domestic factor (ΛW

L > ΛW∗
L ) and

this effect magnifies the partial equilibrium effect.
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Quantities, Real GDP, and Welfare. Since Theorem 3 pins down how prices and expen-
ditures respond to shocks, it can also be used to derive how individual quantities respond
to shocks.

Corollary 3. ( Quantities) The changes in the quantity of a good or factor i in response to a pro-
ductivity shock to i is given by:

d log yi =d log λi − d log pi,

where d log λ and d log p are given in Theorem 3.

Among other things, Corollary 3 can be used to predict how changes in imported in-
termediates respond to exogenous shocks, which is a necessary input for predicting the
response of real GDP, per Theorem 1, if the initial equilibrium has wedges.

4.3 Extensions of Theorem 3

We describe some simple extensions of Theorem 3, and take advantage of them for the
analytical and quantitative applications in Sections 6 and 7.

Endogenous factor supply. Theorem 3 takes changes in factor supplies as exogenous.
Theorem 3 can easily be extended to account for endogenous factor supply. For exam-
ple, suppose that labor in each country depends on real wages and real income L f =

G(w f /PWc , Wc). Let ζ f = ∂ log G f /∂ log w f and γ f = −∂ log G f /∂ log Wc be the price and
income elasticity of supply. The results so far assumed that γ f = ζ f = 0 for all factors.
More generally, equilibrium in the factor market implies that

d log L f =
ζ f

(1 + ζ f )
d log Λ f +

ζ f − γ f

(1 + ζ f )
d log Wc. (10)

Equation (10) can be combined with Theorem 3 to determine all equilibrium outcomes.
Equation (10) itself can be derived as a consequence of a standard labor-leisure choice prob-
lem where ζ f and γ f are determined by preferences.

Sticky wages. Nominal rigidities, like sticky wages, are a mainstay of business cycle anal-
ysis but have received comparably less attention from trade economists with some recent
and notable exceptions like Rodrı́guez-Clare et al. (2020).22 In principle, trade policy is

22Rodrı́guez-Clare et al. (2020) show that sticky wages are important for understanding the regional effects
of the China shock in the US.
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persistent and its effects operate at horizons where nominal rigidities do not matter. In
practice, a major political consideration for trade policy is its effect on employment. For
example, both the recent US tariffs against China and Germany’s resistance to a trade em-
bargo on Russia were justified, at least by politicians, on the grounds that such a policy
would boost or harm domestic employment. Nominal rigidities, such as sticky wages,
provide a natural explanation for why this might be the case in the short run.

Theorem 3 can easily be used to study models with sticky wages. To do so, we must
introduce nominal variables into the model. We have so far treated world nominal GDP as
the numeraire. We re-express all prices in a new numeraire, called dollars, and define ec to
be the nominal exchange rate between dollars and country c’s currency. By definition, the
change in the nominal wage of factor f in country c’s currency, denoted by wc

f , is

d log wc
f = d log Λ f + d log GDP − d log L f + d log ec,

where d log Λ f is the share of aggregate spending on factor f , GDP is world nominal GDP
in dollars, L f is the quantity of factor f , and ec is the nominal exchange rate. If the wage
of factor f is rigid in local currency, then d log wc

f = 0. Substituting this into the previous
equation yields the change in employment of factor of f

d log L f = d log Λ f + d log GDP + d log ec. (11)

Hence, changes in employment are given by changes in nominal spending (in local cur-
rency) on f . Equation (11) determines employment for factor f as a function of changes
in factor income shares, determined by Theorem 3, and C new nominal variables: C − 1
nominal exchange rates and world GDP in dollars.

The behavior of these nominal variables is determined by the conduct of monetary
policy. Following Woodford (2011), we can close the model by assuming the central bank
in each country can directly target nominal variables in local currency.23 For example, each
country’s central bank stabilizes a weighted average of domestic inflation and the nominal
exchange rate:

αcd log (pcecGDP) + βcd log ec = 0, (12)

23Although not necessary to compute comparative statics, we can imagine that to implement its target, say
(12), each country’s central bank adjusts money supply. To see this, assume that a cash-in-advance constraint
connects money supply to nominal spending (see, e.g., Galı́, 2015). That is, consumer c’s spending in local
currency must equal local money-supply mc. The change in consumer c’s spending, expressed in dollars, is
∑ f Λc

f d log Λ f + d log GDP. Hence, the cash-in-advance constraint dictates that d log mc = ∑ f Λc
f d log Λ f +

d log GDP − d log ec, where mc is an exogenous variable controlled by the central bank. By choosing mc, the
central bank can choose ec, and hence can implement (12).
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where αc and βc are parameters and d log pc is the price of the domestic consumption bas-
ket (relative to world nominal GDP) given by Theorem 3. The central bank targets zero
domestic inflation if αc > 0 and βc = 0, and it stabilizes the exchange rate if βc > 0 and
αc = 0.

Theorem 3, combined with (11) and (12), pin down all equilibrium outcomes. Theorems
1 and 2 can then be used, without modification, to derive the real GDP and real GNE effects
(if there is disutility of labor, then welfare and real GNE no longer coincide). We provide a
worked-out example in Section 6.

Sticky prices. Similarly, Theorem 3 can also be used to study economies with sticky
prices, since a sticky price is just a wedge between price and marginal cost. Specifically,
for every producer i whose prices are sticky in terms of country c’s currency, we create a
fictitious sticky-price intermediary, denoted by î, who sells good i on behalf of i. The change
in the wedge charged by î is endogenously determined by d log µî = −(1 − δi)(d log pi +

d log GDP + d log ec), where d log ec is the nominal dollar exchange rate and d log GDP is
the change in world nominal GDP in dollars. The parameter δi ∈ [0, 1], called the Calvo
parameter, controls how sticky the price of i is. If δi = 0, then the price of i is completely
rigid in currency c, and if δi = 1, then the price of i is flexible.24 As above, to close the
model and pin down nominal variables, we need to specify monetary policy as in (12).

Differential Exact-Hat Algebra. Theorem 3, which is a generalization of hat-algebra (Jones,
1965), is useful for studying small shocks and gaining intuition. For large shocks, the trade
literature instead relies on exact-hat algebra (e.g. Dekle et al., 2008; Costinot and Rodriguez-
Clare, 2014), which requires solving the non-linear system of supply and demand relation-
ships. Theorem 3 provides an alternative way to make hat-algebra exact by “chaining”
together infinitesimal effects. This amounts to viewing Theorem 3 as a system of differen-
tial equations that can be solved by iterative means (e.g. Euler’s method). In our quan-
titative exercises in Section 7, we find that the differential approach is significantly faster
than using state-of-the-art nonlinear solvers to perform exact hat-algebra. The improve-
ment is larger when the number of variables increases and production functions become
more non-log-linear. Furthermore, Theorem 3 can be generalized to non-CES production
and consumption functions. See Appendices E and F in the working paper for more details
about this computational approach.

24To see this, note that the price charged by î in local currency, denoted pc
i , is d log pc

i = d log(pîGDPec) =
d log µî + d log pi + d log GDP + d log ec = δi(d log pi + d log GDP + d log ec). When δi = 0, the local price of
i is rigid. When δi = 1, the local price of i is flexible (i.e. reflects marginal cost). For more information, see
Rubbo (2022), who uses a similar methodology to model and calibrate a closed economy with sticky prices
and input-output networks.
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Other Uses of Theorem 3. Theorem 3 can also be used to characterize other statistics of
interest like factor demand and trade elasticities. We pursue some examples in the work-
ing paper version of this paper. For example, Appendix H provides the elasticity of the
international factor demand system with respect to factor prices and iceberg shocks as a
linear combination of microeconomic elasticities of substitution with weights that depend
on the input-output table. This relates to insights from Adao et al. (2017), who show that
the factor demand system is sufficient for performing certain counterfactuals. Appendix I
of the working paper writes trade elasticities at any level of aggregation as a linear combi-
nation of underlying microeconomic elasticities of substitution with weights that depend
on the input-output table.

5 Comparative Statics: Nonlinearities

The previous sections show how welfare and real GDP respond to changes in technologies
and wedges to a first-order approximation. In this section, we extend these results to a
second-order approximation for real GDP (for each country and the world) and world
welfare around efficient allocations.25

Before stating our results, we begin by defining world welfare. To measure world wel-
fare, we use a simple Bergson-Samuelson (BS) social welfare function

WBS(W1, . . . , WC) = ∑
c

χW
c log Wc,

where χW
c is the initial income share of country c at the efficient equilibrium.26 These

welfare weights are chosen so that there is no incentive to redistribute across agents at
the initial equilibrium. To a first-order approximation, world welfare is the same as world
GDP. However, differences arise starting at the second-order.

To measure the effect of a shock on world welfare, we use consumption equivalents:
what fraction of consumption would society be prepared to give up to avoid the shock.

25We do not provide second-order approximations far from efficiency. We also do not provide second-
order approximations for country-level welfare (except in symmetric cases where country and world welfare
coincide). The reason is that a second-order approximation of country-level welfare, or real GDP away from
efficiency, involves second-derivatives of factor shares and goes beyond what can be characterized using
Theorem 3. Such results would require using super-elasticities of substitution (elasticities of elasticities of
substitution). We leave this analysis for future work.

26We introduce this welfare function because at the world level, non-infinitesimal changes in real GDP (or
real GNE) do not coincide with a well-defined social welfare function. This is because individual household
preferences across all countries are generally non-aggregable (see, for example, Baqaee and Burstein, 2021).
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Formally, we measure changes in welfare by ∆ log δ, where δ solves the equation

WBS(δW1, . . . , δWC) = WBS(W1, . . . , WC),

where Wc and Wc are the values at the initial and final equilibrium.

Theorem 4 (World Welfare). Starting at an efficient equilibrium in response to changes in wedges
or technologies, changes in world welfare are given up to the second-order by

∆ log δ ≈ ∆ log Y + CovΩ
χW

(
∆ log χW

c , ∆ log PWc

)
.

Here, ∆ log χW
c and ∆ log PWc are the change in country c’s nominal GNE and consumer price

index respectively.

In words, the change in world welfare is the sum of the change in world real GDP
and a redistributive term. This redistributive term depends on the covariance of two first-
order approximations: changes in expenditures by each country and changes in the price
of each country’s consumption basket. The redistributive term in Theorem 4 is positive
whenever the covariance between the changes in household income shares and the changes
in consumption price deflators is positive. It captures a familiar deviation from perfect risk-
sharing. It would be zero if households could engage in perfect ex-ante risk-sharing.

Since we only need to know ∆ log χW
c and ∆ log PWc to a first order, we can express

the redistributive term in terms of primitives using Theorem 3. To do this, note that the
change in consumer c’s income is ∆ log χW

c ≈ ∑g∈F ΦcgΛg∆ log Λg + ∑i∈N Φciλi∆ log µi,
and the change in the consumer price index of country c is ∆ log PWc ≈ ∑i∈N λWc

i ∆ log µi +

∑g∈F ΛWc
g ∆ log Λg. Hence, to express world welfare in terms of microeconomic primitives,

it remains to understand the change in real GDP to a second-order. Hence, we now dis-
cuss how each country’s GDP, as well as world GDP (and by virtue of Theorem 4 world
welfare) are affected, to a second-order, by productivity and wedge shocks. We start with
productivity shocks and then turn to wedge shocks.

5.1 Productivity/Iceberg Changes

For productivity changes, like iceberg shocks, we can use an idea similar to Baqaee and
Farhi (2017a). Absent wedges, Domar weights give the first-order response of real GDP
to productivity shocks (as in Corollary 1). Hence, changes in Domar weights capture, in
equilibrium, the effect of nonlinearities on real GDP. Therefore, we have the following.
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Corollary 4 (Real GDP Response to Technology Shocks). In the absence of wedges, the response
of real GDP for each country c to productivity, factor endowment, and wedge shocks is, to a second-
order approximation,

∆ log Yc ≈ ∑
i∈Nc

λYc
i ∆ log Ai + ∑

f∈Fc

ΛYc
f ∆ log Li +

1
2 ∑

i∈Nc

∆λYc
i ∆ log Ai +

1
2 ∑

f∈Fc

∆ΛYc
f ∆ log L f .

For world GDP, suppress the country subscript c.

Corollary 4 implies that, to a second-order approximation, the microeconomic details
of production matter only in so far as they affect the change in the sales shares of the goods
experiencing shocks. For example, fragilities in supply chains amplify the negative effect
of a shock to some producer j only to the extent that they increase the sales shares of j in
equilibrium. Corollary 4 can be expressed in terms of microeconomic primitives (the HAIO
matrix and microeconomic elasticities of substitution) using the following relationship

d λYc
j

d log Ai
= λYc

j

(
d log λj

d log Ai
− ∑

f∈Nc

ΛYc
f

d log Λ f

d log Ai

)
,

where d λj/ d log Ai and d log Λ f / d log Ai are given by Theorem 3.

5.2 Tariffs/Wedge Changes

The way tariffs and other wedge-like distortions affect output is more subtle. We pro-
vide approximations for small wedges ∆ log µi around the efficient equilibrium, log µ = 0.
Throughout this section, the HAIO matrix can be evaluated at the no-distortion point or
at the point with small distortions, since both are valid second-order approximations.27

The former is relevant for approximating how introducing small wedges affects output,
whereas the latter is relevant for approximating how eliminating existing wedges affects
output.

We start by showing that losses due to wedges are approximately equal to a Domar-
weighted sum of deadweight-loss triangles. We then express these deadweight-loss trian-
gles in terms of microeconomic primitives.

27Formally, consider output as a function of wedges. Up to a second-order approximation in log µ the
distance to the efficient outcome is

log
Y(log µ)

Y(0)
≈ 1

2
∆ log µ′ ∂

2 log Y(0)
∂ log µ2 ∆ log µ ≈ 1

2
∆ log µ′ ∂

2 log Y(∆ log µ)

∂ log µ2 ∆ log µ,

where the derivatives involve the HAIO matrix and elasticities of substitution at either the undistorted point
or the point with small distortions.
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Theorem 5 (Real GDP). Starting at an efficient equilibrium, up to the second-order, in response to
the introduction of small tariffs or other distortions, changes in the real GDP of country c are given
by

∆ log Yc ≈
1
2 ∑

i∈Nc

λYc
i ∆ log yi∆ log µi.

Changes in world real GDP (and real GNE) are given by suppressing the country subscript.

Hence, for both the world and for each country, the reduction in real GDP from tariffs
and other distortions is given by the sum of all the deadweight-loss triangles 1/2∆ log yi∆ log µi

weighted by their corresponding local Domar weights.28,29

That is, the way output changes when tariffs change is only a function of three statistics:
the Domar weight of taxed goods, the size of the tax, and the change in the quantity of
taxed goods. All other details (e.g. elasticities of substitution, returns to scale, input-output
linkages, non-taxed goods production, etc.) matter only in so far as they play a role in
determining the equilibrium value of these sufficient statistics.

Starting at an efficient equilibrium, the introduction of tariffs or other distortions leads
to changes ∆ log yi in the quantities of goods i ∈ Nc in country c and to changes in the
wedges ∆ log µi between prices and marginal costs. The price-cost margin pi∆ log µi mea-
sures the wedge between the marginal contribution to country real GDP and the marginal
cost to real GDP of increasing the quantity of good i by one unit. Hence, λYc

i ∆ log µi is
the marginal proportional increase in real GDP from a proportional increase in the output
of good i. Integrating from the initial efficient point to the final distorted point, we find
that (1/2)λYc

i ∆ log yi∆ log µi is the contribution of good i to the change in real GDP. Pro-
duction networks can magnify losses from tariffs both because they can make the triangles
1/2∆ log yi∆ log µi larger, and because they raise λYc

i , sales relative to GDP, used to weigh
each triangle.

We now re-express Theorem 5 in terms of primitives: microeconomic elasticities of sub-
stitution and the HAIO matrix. To do this, we combine Theorem 5 with Theorem 3 and
Corollary 3.30

28Theorem 5 holds in general equilibrium, but it has a more familiar partial equilibrium counterpart (Feen-
stra, 2015). For a small open economy operating in a perfectly competitive world market, import tariffs
reduce the welfare by ∆W ≈ (1/2)∑i λi∆ log yi∆ log µi, where µi is the ith gross tariff (no tariff is µi = 1),
yi is the quantity of the ith import, and λi is the corresponding Domar weight (see Appendix J in the work-
ing paper for details). Theorem 5 shows that this type of intuition can be applied (to real GDP) in general
equilibrium as well.

29Harberger (1964) argues that an equation like the one in Theorem 5 can be used to measure welfare as
long as there are compensating transfers to keep the distribution of income across households fixed. Theorem
5 shows that a similar formula can be used for changes in real GDP, even in the absence of compensating
transfers. Theorem 4 shows that Harberger’s formula must be altered for aggregate welfare in the absence of
compensating transfers.

30Whereas Theorem 5 does not have a counterpart in Baqaee and Farhi (2017b), Theorem 6 generalizes
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Theorem 6 (Real GDP). Starting at an equilibrium without distortions, in response to the intro-
duction of small tariffs or other distortions, the change in real GDP of country c is

∆ log Yc ≈ −1
2 ∑

l∈Nc

∑
k∈N

∆ log µk∆ log µl ∑
j∈N

λYc
j θjCovΩ(j)(Ψ(k), Ψ(l))

− 1
2 ∑

l∈Nc

∑
g∈F

∆ log Λg∆ log µl ∑
j∈N

λYc
j θjCovΩ(j)(Ψ(g), Ψ(l))

+
1
2 ∑

l∈Nc

∑
c∈C

χW
c ∆ log χW

c ∆ log µl(λ
Wc
l − λl)/χY

c ,

Changes in world real GDP/GNE are similar if we suppress the c subscript.

First, all the terms scale with the square of the tariffs or other distortions ∆ log µ. There
is therefore a sense in which misallocation increases with the tariffs and other distortions.
Second, all the terms scale with the elasticities of substitution θ of the different producers.
There is therefore a sense in which elasticities of substitution magnify the costs of these
tariffs and other distortions. Third, all the terms also scale with the sales shares λ of the
different producers and with the square of the Leontief inverse matrix Ψ. There is therefore
also a sense in which accounting for intermediate inputs magnifies the costs of tariffs and
other distortions. Fourth, all the terms mix the wedges, the elasticities of substitution, and
the properties of the network.

For a given producer l ∈ N, there are terms in ∆ log µl on the three lines. Taken to-
gether, these terms sum up to the Harberger triangle (1/2)λl∆ log µl∆ log yl correspond-
ing to good l in terms of microeconomic primitives. The three lines break it down into
three components, corresponding to three different effects responsible for the change in
the quantity ∆ log yl of good l.

The term −∑k∈N ∆ log µk ∑j∈N λjθjCovΩ(j)(Ψ(k), Ψ(l)) on the first line corresponds to
the change ∆ log yl in the quantity of good l coming from substitutions by all producers j
in response to changes in all tariffs and other distortions ∆ log µk, holding factor wages
constant.

The term ∑g∈F ∆ log Λg ∑j∈N λjθjCovΩ(j)(Ψ(g), Ψ(l)) on the second line corresponds to
the change ∆ log yl in the quantity of good l coming from substitutions by all producers j in
response to the endogenous changes in factor wages ∆ log wg = ∆ log Λg brought about by
all the changes in tariffs and other distortions.

The term ∑c∈C χW
c ∆ log χW

c (λWc
l −λl) on the third line corresponds to the change ∆ log yl

in the quantity of good l coming from redistribution across agents with different spending

Proposition 5 from that paper to open-economies.
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patterns, in response to the endogenous changes in factor wages brought about by all the
changes in tariffs and other distortions.

6 Analytical Examples

In this section, we consider stylized examples to hone intuition and illustrate questions
our framework can be used to answer. In each example, we consider a trade shock, either
an iceberg or tariff shock, and discuss how different assumptions affect the answer. We
consider the role that input-output linkages, domestic complementarities, returns to scale,
and nominal rigidities play in affecting the way welfare responds to trade shocks. We
revisit some of these issues in the next section, Section 7, using a calibrated quantitative
model with non-symmetric countries and show that the intuitions derived from the simple
examples are useful in understanding the quantitative results.

Example I: input-output networks. This example shows how input-output connections
amplify the losses from iceberg trade costs and tariffs. Consider the example depicted in
Figure 1. The two countries are symmetric, Ω is imports as a share of sales at the initial
equilibrium, and θ is the elasticity of substitution between intermediates and labor. To
map this example economy into the framework in Section 2, note that each country has
one consumer, one producer, and one factor. Hence, the HAIO matrix has six rows and
columns.

H1 H2y2y1

L1 L2

Figure 1: Solid lines show the flow of goods. Green, purple, and white nodes are factors,
households, and goods. Boundaries of countries are represented by dashed boxes.

Suppose that we raise iceberg trade costs in both countries by ∆ log τ. By symmetry,
changes in country real output, country welfare, world real output, and world welfare are
all the same. Corollary 4 implies that to a second-order approximation:

∆ log W ≈ −(λ12 + λ21)∆ log τ − 1
2
(∆λ12 + ∆λ21)(∆ log τ)2

≈ − Ω
(1 − Ω)

∆ log τ − 1
2
(1 − θ)Ω2

(1 − Ω)
(∆ log τ)2,
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where λij is the sales share of country j to country i. The second line uses Theorem 3 to
write the welfare change in terms of primitives, using the fact that, by symmetry, λ12 = λ21.
This expression shows that a higher intermediate input share raises both the first-order and
the second-order effect. Losses are increasing in Ω for two reasons. First, a higher Ω means
that goods effectively cross the border more times and this inflates the expenditure share
on imports relative to GDP at the initial equilibrium λ12 = λ21 = Ω/[2(1 − Ω)]. Second,
a higher Ω also implies that a given iceberg cost is paid many times as the good recrosses
the border, and this increases the relative price of imports more, given the iceberg shock,
leading to a larger change in the expenditure share of traded goods. Losses are decreasing
in the elasticity of substitution because the sales share of traded goods rises by less in
response to the shock when the elasticity of substitution is high.

Now consider a symmetric tariff, ∆ log µ, instead. Theorems 5 and 6 imply that up to a
second-order approximation, the reduction in real GDP and welfare are

∆ log W = ∆ log Y ≈ −1
2
(λ12∆ log y12∆ log µ+λ21∆ log y21∆ log µ) ≈ −θ

Ω
2(1 − Ω)2 (∆ log µ)2,

where yij is the quantity of imports from country j by country i, λij is the corresponding
sales share, and by symmetry y12 = y21. There are some similarities but also major differ-
ences compared to the iceberg shock. First, unlike iceberg shocks, there are no first-order
effects, since starting at a point with no wedges, reallocations are zero-sum to a first-order.
Second, unlike iceberg shocks, the losses are increasing in the elasticity of substitution θ.
This is because a given tariff causes a bigger change in quantities when price elasticities are
higher. Formally, the change in quantity is −∆ log y12 = −∆ log y21 = [θ/(1 − Ω)]∆ log µ.
However, similar to iceberg shocks, losses are increasing in the intermediate input share
Ω. The reasons are also similar. First, a higher Ω raises the expenditure share on imports
relative to GDP at the initial equilibrium. Second, a higher Ω also implies that a given tariff
must be paid many times as the good recrosses the border, and this increases the relative
price of imports more, for a given tax, leading to a larger reduction in quantities. In other
words, more input-output linkages enlarge each Harberger triangle and raise the Domar
weights used to aggregate the triangles.

Example II: complementarities and factor mobility. Arkolakis et al. (2012) show that, in
a broad range of one-sector economies, the welfare costs of trade shocks depend on import
shares and trade elasticities. We use a simple example to show how these costs also depend
on features of the domestic economy like sectoral complementarities and factor mobility
across domestic industries. Indeed, complementarities and factor mobility can strongly
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interact with one another to make trade shocks more costly. For example, a disruption
in energy imports is much more costly if energy is a strong complement to other goods
and if the importing economy is incapable of expanding production in domestic energy
generation by reallocating factors.

Consider a symmetric two country model. Households consume non-traded “services”
and traded “commodities”. The elasticity of substitution between varieties of commodities
is θ and the elasticity of substitution between services and commodities is σ < θ. The initial
(pre-shock) household budget share of commodities is β, and the share of domestic com-
modities as a share of global commodities is Ω. We adopt the Ricardo-Viner assumption
that every good is produced using a Cobb-Douglas composite of two factors: generic la-
bor that can move between commodities and services and sector-specific labor that cannot.
The expenditure share on generic and sector-specific factor is α and 1 − α.31

Corollary 5. For this example, the change in welfare of country c due to a universal iceberg shock,
∆ log τ, is

∆ log Wc ≈ −β(1 − Ω)∆ log τ

− 1
2

β(1 − Ω)

[
(1 − σ)(1 − β)(1 − Ω)

1 − (1 − σ)(1 − α)
+ (1 − θ)Ω

]
∆ log τ2, (13)

to a second-order approximation.

The first term in (13) is the first-order effect and the second term is the second-order
effect. We obtain the second-order effect since world and country-level welfare coincide
in this example. To obtain Corollary 5, note that Theorem 2 shows that to a first-order
approximation, the change in welfare is

d log Wc = −λWc
T d log τ + ∑

f∈F

(
Λc

f − ΛWc
f

)
d log Λ f ,

where λWc
T is the exposure to the traded good. The first term captures the “mechanical”

effect of the iceberg shock, holding fixed the allocation of resources, and the remaining
terms capture reallocation effects due to changes in relative factor rewards.

Since this example is symmetric and efficient, reallocation effects always sum to zero,
so the change in welfare, to a first-order approximation, is just

∆ log Wc ≈ −λWc
T ∆ log τ = −β(1 − Ω)∆ log τ.

31The sector-specific factor assumption, popularized by Jones (1971, 1975), is usually used to understand
the distributional effects of trade (e.g. Kovak, 2013). Here, our focus is on the aggregate consequences of this
assumption.
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This is just the import share of consumption times the iceberg shock. Unsurprisingly, the
higher the share, the more costly is the iceberg shock.

To derive the nonlinear part, we note it is given by the change in the trade share (since
the trade share is the first-order effect). Theorem 3 determines this change. To understand
the intuition for the nonlinear part, consider three extreme cases. First, suppose there is
only one sector (σ = θ) and one factor (α = 1). This matches the simplest environment
considered by Arkolakis et al. (2012). In this case, the cost of an iceberg shock, to second-
order, is

∆ log Wc ≈ −λWc
T ∆ log τ − 1

2
(1 − λWc

T )λWc
T (1 − θ)∆ log τ2.

Conditional on the import share λWc
T , the iceberg shock is more costly the lower is the trade

elasticity θ, exactly as in Arkolakis et al. (2012).
Now suppose that there are two separate sectors (σ < θ) but factors are still fully mobile

across commodities and services (α = 1). In this case, (13) becomes

∆ log Wc ≈ −λWc
T ∆ log τ − 1

2
β(1 − Ω) [(1 − σ)(1 − β)(1 − Ω) + (1 − θ)Ω]∆ log τ2. (14)

We now also have to consider the elasticity of substitution between commodities and ser-
vices σ. In particular, if σ < 1, then this amplifies the cost of the iceberg trade shock relative
to the first-order approximation. In other words, complementarities in the domestic econ-
omy can amplify the negative consequences of the iceberg shock.

Finally, suppose that α = 0, so that commodities and services factors are completely
immobile. In this case, we get

∆ log Wc ≈ −λWc
T ∆ log τ − 1

2
β(1 − Ω) [(1/σ − 1)(1 − β)(1 − Ω) + (1 − θ)Ω]∆ log τ2.

As before, complementarity in the domestic economy σ < 1 amplifies the negative conse-
quences of the iceberg shock. However, this effect is much more potent than (14) when σ

is close to zero. When σ < 1, if factors are mobile across sectors, reduced trade in com-
modities causes factors to move into producing commodities to maintain consumption. If
factors are immobile across sectors, the reduction in welfare from reduced trade is much
greater since the domestic economy cannot reorganize itself to maintain consumption of
commodities. This amplification effect depends on both complementarity across sectors in
the domestic economy (σ < 1) and factor specificity (α < 1). If commodities and services
are neither complements nor substitutes (σ = 1), then whether or not factors are mobile
across sectors is irrelevant, since even if factors could be moved from one sector to another,
they would not. Similarly, the effects of the complementarity are much milder if factors
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Figure 2: The change in welfare implied by (13) for the case with no non-traded goods
(σ = θ), generic factor only (α = 1), and sector-specific factors only (α = 0). In all cases, the
import share of consumption is kept constant at λWc

T = 1/6, so the different specifications
are all first-order equivalent. The elasticity of substitution across traded goods is θ = 5 and
across sectors is σ = 0.1.

can freely move across sectors to reinforce production of traded goods. Figure 2 numeri-
cally illustrates these three cases. We supplement this intuitive example with a quantitative
exercise in Section 7.

Example III: sticky wages. To see how nominal rigidities can raise the costs of trade
shocks, suppose countries are symmetric and that each country has an endowment of cap-
ital and labor. Assume all producers have the same capital-labor intensity. The wage paid
to labor is rigid in domestic currency, but the rental rate of capital is flexible. Consider
a universal increase in iceberg trade costs d log τ. Theorem 2 implies that the change in
welfare of each country c is

d log Wc = − ∑
i∈N

λWc
i d log τ + ∑

f∈N
ΛWc

f d log L f + ∑
f∈F

(
Λc

f − ΛWc
f

)
d log Λ f

= − ∑
i∈N

λWc
i d log τ + ∑

f∈F
ΛWc

f d log L f . (15)

The second line follows from the absence of factoral terms-of-trade movements, which is
a consequence of symmetry. Intuitively, welfare falls for two reasons: (i) the mechanical
effect of the iceberg shock on domestic consumers, and (ii) the endogenous reduction in
employment due to sticky wages. Assume that every central bank targets zero domestic
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inflation. Using (11) and (12), the change in employment of labor in each country is

d log Llabor = −∑k∈N λWc
k d log τk

1 − ΛYc
labor

.

In words, employment falls more the bigger is the mechanical effect of the iceberg shock
on consumer prices. Furthermore, the reduction in employment is greater when labor’s
share of income is higher. Intuitively, the central bank combats the inflationary impulse of
the iceberg shock by reducing nominal spending, and this reduction in nominal spending
reduces the rental price of capital and helps stabilize the price level (since nominal wages
are rigid). The smaller is capital’s share of income, the more the price of capital has to fall
to stabilize inflation, and the larger is the necessary reduction in nominal spending. These
reductions in nominal spending reduce employment one-for-one since nominal wages are
fixed. Substituting this into (15) implies that the welfare effect of the iceberg shock is

d log Wc = −∑i∈N λWc
i d log τi

1 − Λlabor
. (16)

When the sticky factor’s share of income is zero, Λlabor = 0, welfare responds only to the
direct effect of the iceberg shock. As we increase the sticky factor’s share of income, the
losses in welfare become larger because of the reduction in employment.

Example IV: protectionism with and without nominal rigidities. So far, we have fo-
cused on symmetric examples where income redistribution, through factoral terms-of-
trade, does not play a role. We end this section by considering a non-symmetric example of
protectionism inspired by Fajgelbaum et al. (2020) who document complete pass-through
of US tariffs on China into US consumer prices. This finding is at odds with a typical full-
employment neoclassical model since an American tariff, by reducing demand for Chinese
labor, should depress Chinese wages and hence lower the before-duty prices of Chinese
goods.32 This example shows that sticky-wages and a managed exchange rate can ratio-
nalize the complete pass-through result of Fajgelbaum et al. (2020). This example also
shows that these ingredients qualitatively change the welfare consequences of the tariff.

For this example, consider a two country economy each with a single factor (labor) in
free trade. Suppose that the domestic country (US) imposes a vector of good-specific taxes

32The Fajgelbaum et al. (2020) result is robust to the inclusion of different combinations of fixed-effects.
Specifically, they find complete pass-through of the tax into US prices even in the absence of country-origin
× time fixed effects. In other words, they do not find evidence that Chinese wages fell in response to the tariff.
See Table A.13 of their paper. Amiti et al. (2019) also study this episode, though their empirical specifications
always include country-origin × time fixed effects.
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d log µ and collects revenues that are rebated to the domestic household lump-sum. With
some abuse of notation, for any variable x, denote the home variable by x and the foreign
counterpart by x∗. We start by discussing the flexible wage economy before turning our
attention to the sticky wage economy.

Flexible wages: As usual, according to Theorem 2, the change in domestic welfare is

d log W = ∑
i

(
λY

i − λW
i

)
d log µi +

(
1 − ΛWc

L

)
(d log ΛL − d log ΛL∗) . (17)

The first term in (17) captures the mechanical increases in income and prices caused by the
tariffs and the second term captures the change in the factoral terms-of-trade for factors L
and L∗ induced by the tariffs. This can be further be simplified to

d log Wc = ∑
i

(
λY

i − λW
i

)
d log µi +

1 − ΛW
L

1 − ΛL

(
d log ΛL + ∑

i
λid log µi

)
. (18)

Home welfare can increase because of the first summand: tariffs could generate income
in excess of the increase in consumer prices, holding fixed primary factor rewards; or the
second summand: tariffs can raise the home wage relative to the foreign wage.

Appendix C.2 uses Theorem 3 to re-express (18) in terms of microeconomic primitives
and discusses the intuition. In the main text, for brevity, assume all elasticities of substitu-
tion θi are equal to one. Then, Theorem 3 implies that

ΛLd log ΛL =
−∑k λkΨkLd log µk + (ΛW

L − ΛW∗
L )∑k λkd log µk

1 − (ΛW
L − ΛW∗

L )
.

The first term in the numerator is the direct effect of the tax on k, which reduces spending
on American labor to the extent that k directly or indirectly uses American labor (ΨkL).
If a Chinese firm k does not indirectly use American labor, then ΨkL = 0 and a tariff on
k will not mechanically reduce demand for American labor. That is, if the tariff is well-
designed, then this term should be small. The second term in the numerator captures how
the tax, by generating tariff revenues for American consumers, can change demand for
American labor through income redistribution. The second term is positive as long as there
is factoral home bias (ΛW

L > ΛW∗
L ). The denominator is a general equilibrium feedback —

redistribution towards American households raises American wages, which further tilts
demand in favor of American labor, which further raises American wages, and so on.

To summarize, if the tariff is well-designed, then Chinese wages fall relative to Ameri-
can wages (d log ΛL∗ < d log ΛL), and this factoral terms-of-trade manipulation results in
incomplete pass-through of the tariff into US prices. That is, even if the taxed goods are ex-
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clusively consumed by Americans (i.e. λY
i = λW

i ), the tariff can improve American welfare
by manipulating the factoral terms-of-trade.

Downward rigid wages: Now consider the same economy as above but suppose that
wages are downwardly rigid in both countries in terms of local currency. Furthermore,
suppose that the foreign country pegs their nominal exchange rate to the home country
while the home country implements an inflation target of zero. Downward wage rigidity
implies that d log w f = max{0, d log Λ f + d log GDP} and d log L f = min{0, d log Λ f +

d log GDP} for both the foreign and domestic factor.33 If a vector of tariffs successfully
lowers Chinese wages relative to US wages in the flexible equilibrium, then the same tariff
in an economy with sticky wages changes welfare by

d log W = ∑
i

(
λY

i − λW
i

)
d log µi. (19)

The positive term captures the income American consumers earn from the tax whereas
the negative term captures the fact that the taxes raise consumer prices by consumers’
exposure to these prices. Unlike (17), changes in relative factor rewards no longer appear.
Hence, the gains to the Americans are smaller than (17) under the reasonable case where
the tariff improves the factoral terms-of-trade. Sticky wages, and the consequent absence
of beneficial changes in the factoral terms-of-trade, also help explain why tariffs on foreign
consumption goods are passed through to domestic consumer prices one-for-one. The
expression in (19) is positive when the items being taxed are mostly being re-exported, in
which case λY

i > λW
i . In the other extreme, when the taxed quantities are exclusively used

for domestic consumption (λY
i = λW

i ), the change in welfare from the imposition of the
tariff are, to a first-order, equal to zero. In this case, the increase in revenues exactly offsets
the increase in prices faced by domestic consumers.

7 Quantitative Results

In this section, we provide some quantitative illustrations of our results. In Section 7.1,
we use the ex-post results in Section 3 to decompose the sources of welfare growth in
different countries and contrast our welfare decomposition to the more typical terms-of-
trade decomposition. In Section 7.2, we revisit some of the examples in Section 6 using
a quantitative model. In both Sections 7.1 and 7.2, we rely on the World Input-Output
Database (WIOD) (see Timmer et al., 2015), which has 40 countries as well as a “rest-of-

33This is an extreme case of endogenous factor supply described in (10), where d log L f = min{0, d log w f }
and d log w f = d log Λ f + d log GDP − d log L f .
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the-world” composite country. Each country has four factors of production: high-skilled,
medium-skilled, low-skilled labor, and capital; and 30 industries. Since tariffs are quite low
during our sample, for simplicity, we abstract from initial tariffs.34 Appendix A contains
additional details about how the model is mapped to the data.

7.1 Ex-Post Growth Accounting

In this section, we compare decompositions of real GNE according to Theorem 2 against
the more typical terms-of-trade decomposition in (6). In the absence of wedges and net
factor payments, these two decompositions are

d log Wc = ∑
f∈F

ΛWc
f d log L f + ∑

i∈N
λWc

i d log Ai︸                                          ︷︷                                          ︸
∆ technology

+ ∑
f∈F

(
Λc

f − ΛWc
f

)
d log Λ f︸                             ︷︷                             ︸

∆Factoral Terms of Trade

+
d Tc

GNEc︸   ︷︷   ︸
∆Transfers

,

and

d log Wc = κc

(
∑
f∈Fc

ΛYc
f d log L f + ∑

i∈Nc

λYc
i d log Ai

)
︸                                                ︷︷                                                ︸

∆Real GDP

+ κc d log PYc − d log PWc︸                          ︷︷                          ︸
∆Terms of Trade

+
d Tc

GNEc︸   ︷︷   ︸
∆Transfers

,

where κc = GDPc/GNEc and we have substituted in Corollary 1 for real GDP (see Ap-
pendix A for more on data construction).

Figure 3 shows both decompositions using data for the United States and Italy (as-
suming away net factor payments and capturing trade imbalances using transfers). These
countries are chosen because they illustrate how the two decompositions can be similar
or different.35 The left panel displays the standard terms-of-trade decomposition and the
right one the factoral terms-of-trade decomposition.

For some countries, like the United States, the factoral and goods terms-of-trade de-
compositions tell a similar story. In Figure 3a, the yellow lines in both panels are similar,
implying that changes in the terms-of-trade and factoral terms-of-trade are similar. Since
the sum of the red, yellow, and purple lines must add up to the change in real GNE in both
pictures, and since the net transfers are the same, the similarity of the yellow lines in the
two figures implies that growth in real GDP in the left panel must be similar to the pure
technology term in the right panel. In other words, technology for goods the United States
produces (real GDP) grew in line with technology for goods the US consumes (“Technol-

34Results are similar with initial tariffs, since these tariffs are small, and are available upon request.
35Appendix M in the working paper contains the breakdown for all countries.
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ogy” in the right panel), with only a relatively minor role for reallocation.
However, for other countries, like Italy, the two pictures are quite different. Accord-

ing to the left panel of Figure 3b, Italian real GDP grew far more slowly than Italian real
GNE. The left panel attributes this gap mostly to an improvement in the terms-of-trade,
meaning that the price of foreign goods Italians consume fell more than the price of goods
Italy exports. The right panel provides a different narrative: Italy’s consumption grew
more slowly than technology for those goods that Italians consume.36 This difference is
explained by a deterioration in the factoral terms-of-trade (reallocation excluding trans-
fers). Intuitively, the right panel tells us that foreign factor rewards outpaced Italy’s factor
rewards, and this implies that Italy is consuming a smaller share of a bigger global pie.
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Figure 3: The left and right panels show a cumulative decomposition of real GNE using
the terms-of-trade and factoral terms-of-trade decompositions.

36For these exercises, technology includes changes in factor endowments.
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7.2 Ex-Ante Counterfactuals

In this section, we use a calibrated production network model to show the importance of
the HAIO matrix and elasticities of substitution. We use the quantitative model to compu-
tationally revisit the issues studied using pen-and-paper examples in Section 6.

Unlike the growth-accounting exercise in Figure 3, for counterfactual questions, we
have to take a stance on elasticities of substitution. We assume production and consump-
tion have a nested-CES structure. Each industry produces output by combining its value-
added (consisting of the four domestic factors) with intermediate goods (from other indus-
tries). The elasticity of substitution across intermediates is θ1, between factors and inter-
mediate inputs is θ2, across different primary factors is θ3, and the elasticity of substitution
of household consumption across industries is θ0. When a producer or the household in
country c purchases inputs from industry j, it consumes a CES aggregate of goods from
this industry sourced from various countries with elasticity of substitution ε j + 1.

We use estimates from Caliendo and Parro (2015) to calibrate εi + 1, the elasticity of
substitution between traded and domestic varieties of each industry. We set the domestic
elasticities of substitution (θ0, θ1, θ2, θ3) = (0.9, 0.2, 0.5, 1), following Atalay (2017) who es-
timates them at annual frequency. The exact values of these elasticities are not so important
for our purposes. Our aim is to show how counterfactual predictions depend on the values
of these elasticities. To do this, we consider how results change if all these elasticities are
set equal to one. We calibrate initial expenditure shares to match the WIOD in 2008.

Using the calibrated model, we compute the change in welfare for each country in re-
sponse to a reversal of globalization. Specifically, we raise all iceberg costs by 60%. In the
benchmark model, this reduces the sales share of traded goods from an initial value of 30%
of GDP to the 1960s value of 8% of world GDP. The reductions in welfare by country are
shown in Figure 4 under different assumptions. We discuss each panel in turn.

Remark. To solve the model, we repeatedly iterate on Theorems 2 and 3 and numerically
integrate the result. We provide code, detailed in Appendix D, that loglinearizes arbitrary
general equilibrium models of the type studied in this paper, and computes global compar-
ative statics. This approach is faster and more numerically stable than traditional methods,
especially for very large and nonlinear models. Appendix G in the working paper details
the computational performance of differential exact-hat algebra and the accuracy of first-
order approximations.

Panel 4a plots, for each country, the reduction in welfare under the benchmark cali-
bration (x-axis) against a calibration that ignores input-output linkages (y-axis). The no
input-output calibration follows Arkolakis et al. (2012) and assumes the sales of every pro-
ducer to each destination are the same as in the data. This calibration preserves trade as
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Figure 4: Log reduction in welfare by country in response to a 60% increase in iceberg
trade costs. The x-axis is the reduction implied by the benchmark model and the y-axis
is the reduction under alternative assumptions. Countries with the largest deviation from
the 45-degree line are labelled. If a country is above the 45-degree line, then the response
of welfare is stronger relative to the benchmark model. Luxembourg has been removed for
readability since it is an outlier.
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a share of sales, rather than GDP. Every dot is below the 45-degree line meaning that IO
linkages raise the importance of trade shocks. This is a consequence of the intermediate
input multiplier mentioned in Example I in Section 6. The elasticity of world welfare to
iceberg shocks is just trade as a share of GDP, and this is lower in a calibration that ignores
input-output linkages by a factor of approximately two. (Trade over GDP is equal to the
product of sales over GDP and trade over sales, and sales over GDP is around two). Since
this is a first-order effect, it affects all countries regardless of how open they are.

Panel 4b compares the benchmark model with complementarities to a model where sec-
toral production and consumption functions are Cobb-Douglas (θ0 = θ1 = θ2 = θ3 = 1)
and trade elasticities are unchanged). Most countries are below the 45-degree line. This is
consistent with the second example in Section 6 and Figure 2 which show that domestic
complementarities raise the costs of trade shocks. The differences are more pronounced
for more open economies because the trade shock to these countries is larger, and domestic
complementarities only become relevant for large trade shocks (as in Figure 2). Neverthe-
less, the effects are relatively mild since the shock under consideration is far from autarky
(complementarities in the domestic economy would play a much more important role for
larger shocks that take the economy closer to autarky).

Panel 4c shows how limiting factor mobility across sectors affects losses. This can be
considered a shorter-run scenario where factors cannot move across sectors. Most points
are above the 45-degree line, meaning that this makes the trade disruption more costly.
For intuition, consult Figure 2, which shows that limited factor mobility raises the costs of
iceberg shocks if there are domestic complementarities. The effect is largest for more open
economies and for countries with unbalanced domestic economies (e.g. Malta, Eastern Eu-
ropean countries, and Taiwan) who rely on their large neighbors for much of their imports
in specific sectors. These countries are more affected by a breakdown in trade since they
cannot maintain domestic production in import-intensive goods by reallocating domestic
factors of production towards those goods. As with complementarities, these effects be-
come more pronounced when the shock to the domestic economy is large. This requires
that the domestic economy be sufficiently open, sufficiently imbalanced, and that the ice-
berg shock is sufficiently large.

Finally, Panel 4d shows how sticky wages affect outcomes. For illustration, we assume
exchange rates are floating and monetary policy in each country targets zero-percent in-
flation. All countries are above the 45-degree line showing that nominal rigidities am-
plify the costs of the shock. Intuitively, the trade shock raises the price of consumption,
and inflation-targeting requires that nominal expenditures shrink to limit the increase in
inflation. This reduction in nominal demand, caused by monetary policy, induces unem-
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ployment in each country which dramatically increases the welfare losses from the iceberg
shocks. Unlike complementarities and factor immobility, this is a first-order effect that ap-
pears even for relatively small shocks. Quantitatively, the effect of the shock is roughly
doubled, in line with the example in equation (16).

8 Conclusion

This paper establishes a unified framework and provides a flexible toolbox for studying
output and welfare in open and potentially distorted economies. We provide ex-post suffi-
cient statistics for measurement and ex-ante sufficient statistics for counterfactuals that can
be used to answer many disparate questions in macroeconomics and trade. We use these
results to study how input-output linkages, domestic complementarities, limited factor
mobility, and nominal rigidities can act to amplify welfare losses from trade disruptions.
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A Data Appendix

To conduct the counterfactual exercises in Section 7, we use the World Input-Output Database
(Timmer et al., 2015). We use the 2013 release of the data for the final year which has no-
missing data — that is 2008. We use the 2013 release because it has more detailed informa-
tion on the factor usage by industry. We aggregate the 35 industries in the database to get
30 industries to eliminate missing values, and zero domestic production shares, from the
data. In Table 1, we list our aggregation scheme, as well as the elasticity of substitution,
based on Caliendo and Parro (2015) and taken from Costinot and Rodriguez-Clare (2014)
associated with each industry. We calibrate the model to match the input-output tables and
the socio-economic accounts tables in terms of expenditure shares in steady-state (before
the shock).

For the growth accounting exercise in Section 7.1, we use both the 2013 and the 2016
release of the WIOD data. When we combine this data, we are able to cover a larger number
of years. We compute our growth accounting decompositions for each release of the data
separately, and then paste the resulting decompositions together starting with the year of
overlap. To construct the consumer price index and the GDP deflator for each country, we
use the final consumption weights or GDP weights of each country in each year to sum up
the log price changes of each good. To arrive at the price of each good, we use the gross
output prices from the socio-economic accounts tables which are reported at the (country
of origin, industry) level into US dollars using the contemporaneous exchange rate, and
then take log differences. This means that we assume that the log-change in the price of
each good at the (origin, destination, industry of supply, industry of use) level is the same
as (origin, industry of supply) level. If there are differential (changing) transportation costs
over time, then this assumption is violated.

To arrive at the contemporaneous exchange rate, we use the measures of nominal GDP
in the socioeconomic accounts for each year (reported in local currency) to nominal GDP
in the world input-output database (reported in US dollars).

48



WIOD Sector Aggregated sector Trade Elasticity
1 Agriculture, Hunting, Forestry and Fishing 1 8.11
2 Mining and Quarrying 2 15.72
3 Food, Beverages and Tobacco 3 2.55
4 Textiles and Textile Products 4 5.56
5 Leather, Leather and Footwear 4 5.56
6 Wood and Products of Wood and Cork 5 10.83
7 Pulp, Paper, Paper , Printing and Publishing 6 9.07
8 Coke, Refined Petroleum and Nuclear Fuel 7 51.08
9 Chemicals and Chemical Products 8 4.75
10 Rubber and Plastics 8 4.75
11 Other Non-Metallic Mineral 9 2.76
12 Basic Metals and Fabricated Metal 10 7.99
13 Machinery, Enc 11 1.52
14 Electrical and Optical Equipment 12 10.6
15 Transport Equipment 13 0.37
16 Manufacturing, Enc; Recycling 14 5
17 Electricity, Gas and Water Supply 15 5
18 Construction 16 5
19 Sale, Maintenance and Repair of Motor Vehicles... 17 5
20 Wholesale Trade and Commission Trade, ... 17 5
21 Retail Trade, Except of Motor Vehicles and... 18 5
22 Hotels and Restaurants 19 5
23 Inland Transport 20 5
24 Water Transport 21 5
25 Air Transport 22 5
26 Other Supporting and Auxiliary Transport.... 23 5
27 Post and Telecommunications 24 5
28 Financial Intermediation 25 5
29 Real Estate Activities 26 5
30 Renting of M&Req and Other Business Activities 27 5
31 Public Admin/Defence; Compulsory Social Security 28 5
32 Education 29 5
33 Health and Social Work 30 5
34 Other Community, Social and Personal Services 30 5
35 Private Households with Employed Persons 30 5

Table 1: The sectors in the 2013 release of the WIOD data, and the aggregated sectors in our
data.
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B Proofs

Throughout the proofs, let χc be the share of total world income accruing to country c.

Proof of Theorem 1. Nominal GDP is equal to

PYcYc = ∑
i∈Nc

(1 − 1/µi)piyi + ∑
f∈Fc

w f L f

Hence

d log PYc + d log Yc = ∑
i∈Nc

(1 − 1/µi)λ
Yc
i d log

(
(1 − 1/µi)λ

Yc
i

)
+ ∑

f∈Fc

ΛYc
f

(
d log w f + d log L f

)
d log Yc = ∑

i∈Nc

(1 − 1/µi)λ
Yc
i d log

(
(1 − 1/µi)λ

Yc
i

)
+ ∑

f∈Fc

ΛYc
f

(
d log w f + d log L f

)
− d log PYc .

The price of domestic goods is given by

d log pi = d log µi − d log Ai + ∑
j∈Nc

Ω̃ijd log pj + ∑
j<Nc

Ω̃ijd log pj,

which implies that

d log p = (I − Ω̃c)−1
(

d log µi − d log Ai + Ω̃F (d log Λ − d log L) + Ω̃Md log pM
)

,

where Ω̃c is the cost-based domestic IO table, Ω̃F are cost-based factor shares, and Ω̃M are
cost-based intermediate import shares, and d log pM represents the change in the price of
imported intermediate goods. Use the fact that

d log PYc = ∑
i∈Nc

ΩYc,id log pi − ∑
i∈N−Nc

ΛYc
i d log pi

= ∑
i∈Nc

λ̃Yc
i (d log µi − d log Ai) + ∑

f∈Fc

Λ̃Yc
f

(
d log Λ f − d log L f

)
+ ∑

i∈N−Nc

Λ̃Yc
i d log pi − ∑

i∈N−Nc

ΛYc
i d log pi.
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For an imported intermediate

d log pi = d log ΛYc
i − d log qi + d log GDP

Substitute this back to get

d log Yc = ∑
i∈Nc

(1 − 1/µi)λ
Yc
i d log

(
(1 − 1/µi)λ

Yc
i

)
+ ∑

f∈Fc

ΛYc
f

(
d log w f + d log L f

)
− ∑

i∈Nc

λ̃Yc
i (d log µi − d log Ai)− ∑

f∈Fc

Λ̃Yc
f

(
d log Λ f − d log L f

)
− ∑

i∈N−Nc

Λ̃Yc
i d log pi + ∑

i∈N−Nc

ΛYc
i d log pi

= ∑
f∈F∗

c

ΛYc
f d log Λ f − ∑

i∈Nc

λ̃Yc
i (d log µi − d log Ai)− ∑

f∈Fc

Λ̃Yc
f

(
d log Λ f − d log L f

)
− ∑

i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

) (
d log ΛYc

i − d log qi + d log GDP
)

= ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

)
d log qi

+ ∑
f∈F∗

c

ΛYc
f

(
d log ΛYc

f + d log GDPc

)
− ∑

i∈Nc

λ̃Yc
i d log µi − ∑

f∈Fc

Λ̃Yc
f

(
d log ΛYc

f + d log GDPc

)
− ∑

i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

) (
d log ΛYc

i + d log GDP
)

= ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

)
d log qi

− ∑
i∈Nc

λ̃Yc
i d log µi − ∑

f∈Fc

Λ̃Yc
f d log ΛYc

f − ∑
i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

) (
d log ΛYc

i

)
+

[
1 −

(
∑
f∈Fc

Λ̃Yc
f

)
− ∑

i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

)]
d log GDPc

= ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

)
d log qi

− ∑
i∈Nc

λ̃Yc
i d log µi − ∑

f∈Fc

Λ̃Yc
f d log ΛYc

f − ∑
i∈N−Nc

(
Λ̃Yc

i − ΛYc
i

) (
d log ΛYc

i

)
.

The last line follows from the fact that

∑
f∈Fc

Λ̃Yc
f + ∑

i∈N−Nc

Λ̃Yc
i =

[
1 + ∑

i∈N−Nc

ΛYc
i

]
.

■
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Proof of Theorem 2. Note that welfare is given by

Wc =
∑ f∈F∗ Φc f w f L f + Tc

PWc
.

Hence, letting world GDP be the numeraire,

d log Wc = ∑
f

Λc
f
(
d log Λ f

)
+

dT
GNEc

−
(

Ω̃(Wc)

)′
d log p.

Use the fact that

d log pi = ∑
j∈N

Ψ̃ij d log Aj + ∑
f∈F

Ψ̃i f
(
d log Λ f − d log L f

)
to complete the proof. ■

Proof of Theorem 3. For each good,

λi = ∑
c

ΩWc,iχc + ∑
i

Ωjiλj,

where χc is the share of total income accruing to country c and ΩWc,i is the share of income
household c spends on good i. This means

λi d log λi = ∑
c

χcΩWc,i d log ΩWc,i +∑
j

Ωjiλj d log Ωji +∑
j

Ωji d λj +∑
c

ΩWc,iχc d log χc.

Now, note that
d log ΩWc,i = (1 − θc)

(
d log pi − d log Pyc

)
d log Ωji = (1 − θj)

(
d log pi − d log Pj + d log µj

)
− d log µj

d log χc = ∑
f∈F∗

c

Λ f

χc
d log Λ f + ∑

i∈c

λi

µi
d log µi.

d log pi = Ψ̃ (d log µ − d log A) + Ψ̃α̃ d log Λ.

d log Pyc = b′Ψ̃ (d log µ − d log A) + b′Ψ̃α̃ d log Λ.

For shock d log µk, we have

d log ΩWc,i = (1 − θc)

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f − ∑

j
ΩWc,j

(
Ψ̃jk + ∑

f
Ψj f d log Λ f

))
.
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d log Ωji = (1 − θj)

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f − Ψ̃jk − ∑

f
Ψj f d log Λ f

)
− θj d log µj.

Putting this altogether gives

d λl = ∑
i

∑
c
(1 − θc)χcΩWc,i

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f − ∑

j
ΩWc,j

(
Ψ̃jk + ∑

f
Ψj f d log Λ f

))
Ψil

+ ∑
i

∑
j
(1 − θj)λjµ

−1
j Ω̃ji

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f − Ψ̃jk − ∑

f
Ψj f d log Λ f

)
Ψil

− θkλk ∑
i

ΩkiΨil + ∑
c

χc ∑
i

ΩWc,iΨil d log χc.

Simplify this to

d λl = ∑
c
(1 − θc)χc

[
∑

i
ΩWc,i

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f

)
Ψil

−
(

∑
i

ΩWc,i

(
Ψ̃jk + ∑

f
Ψj f d log Λ f

))(
∑

i
ΩWc,iΨil

)]

+ ∑
j
(1 − θj)λjµ

−1
j ∑

i
Ω̃ji

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f

)
Ψil −

(
∑

i
Ω̃jiΨil

)(
Ψ̃jk + ∑

f
Ψj f d log Λ f

)
− θkλk (Ψkl − 1(l = k)) + ∑

c
χc ∑

i
ΩWc,iΨil d log χc.

Simplify this further to get

d λl = ∑
c
(1 − θc)χcCovb(c)

(
Ψ̃(k) + ∑

f
Ψ̃( f ) d log Λ f , Ψ(l)

)

+ ∑
j
(1 − θj)λjµ

−1
j ∑

i
Ω̃ji

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f

)
Ψil

−
(

∑
i

Ω̃jiΨil

)(
∑

i
Ω̃jiΨ̃ik + ∑

i
Ω̃ji ∑

f
Ψi f d log Λ f

)
− θkλk (Ψkl − 1(l = k)) + ∑

c
χc ∑

i
ΩWc,iΨil d log χc,

Using the input-output covariance notation, write

d λl = ∑
c
(1 − θc)χcCovΩ(Wc)

(
Ψ̃(k) + ∑

f
Ψ̃( f ) d log Λ f , Ψ(l)

)
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+ ∑
j
(1 − θj)λjµ

−1
j CovΩ̃(j)

(
Ψ̃(k) + ∑

f
Ψ̃( f ) d log Λ f , Ψ(l)

)

− (1 − θk)λk(Ψkl − 1(l = k))− θkλk (Ψkl − 1(l = k)) + ∑
c

χc ∑
i

ΩWc,iΨil d log χc,

This then simplifies to give from the fact that ∑i ΩWc,iΨil = λWc
l :

λl d log λl = ∑
j∈N,C

(1 − θj)λjµ
−1
j Cov(Ψ̃(k) +

F

∑
f

d log Λ f , Ψ(l))

− λk (Ψkl − 1(k = l)) + ∑
c

χcλWc
l d log χc.

To complete the proof, note that

PycYc = ∑
f

w f L f + ∑
i∈Nc

(
1 − 1

µi

)
piyi.

Hence,

d(PycYc) = ∑
f∈c

w f L f d log w f + ∑
i∈c

(
1 − 1

µi

)
piyi d log(piyi) + ∑

i∈c

d
(

1 − 1
µi

)
d log µi

piyi d log µi.

In other words, since PyY = 1, we have

d χc = ∑
f∈c

Λ f d log w f + ∑
i∈c

(
1 − 1

µi

)
λi d log λi + ∑

i∈c

d
(

1 − 1
µi

)
d log µi

λi d log µi.

Hence,

d log χc = ∑
f∈F∗

c

Λ f

χc
d log Λ f + ∑

i∈c

λi

χc
d log µi.

■

Proof of Theorem 5. Proof of Part(1):
The expression for d2 log Y follows from applying part (2) to the whole world. The

equality of real GNE and real GDP at the world level completes the proof.
Proof of Part (2):
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Denote the set of imports into country c by Mc. Then, we can write:

d log Yc

d log µi
= ∑

f∈Fc

ΛYc
f

d log Λ f

d log µi
+ ∑

j

d λj

d log µi

(
1 − 1

µj

)
PYcYc

+
λYc

i
µi

− d log PYc

d log µi
,

where

d log PYc

d log µi
= ∑

f∈Fc

Λ̃Yc
f

d log Λ f

d log µi
+ ∑

m∈Mc

λ̃Yc
m

d log pm

d log µi
− λ̃Yc

i − ∑
m∈Mc

ΛYc
m

d log pm

d log µi
,

and
λ̃Yc

i = ∑
j

ΩYc,jΨ̃ji.

Combining these expressions, we get

d log Yc

d log µi
= ∑

f∈Fc

(
ΛYc

f − Λ̃Yc
f

) d log Λ f

d log µi
+ ∑

m∈Mc

(
λYc

m − λ̃Yc
m

) d log pm

d log µi

+ ∑
j∈Nc

λYc
j

d log λj

d log µi

(
1 − 1

µj

)
+

λYc
i

µi
− λ̃Yc

i .

At the efficient point,

d2 log Yc

d log µi d log µk
= ∑

f∈Fc

 d ΛYc
f

d log µi
−

d Λ̃Yc
f

d log µi

 d log Λ f

d log µk

+ ∑
m∈Mc

(
d λYc

m

d log µi
− d λ̃Yc

m

d log µi

)
d log pm

d log µk
−

d λ̃Yc
k

d log µi

+ λYc
k

(
d log λYc

k
d log µi

− δki

)
+

1
PYcYc

d λYc
i

d log µk
,

where δki is the a Kronecker delta.
Using Lemma 8,

d2 log Yc

d log µi d log µk
= − ∑

f∈Fc

λYc
i Ψi f

d log Λ f

d log µk
− ∑

m∈Mc

λYc
i Ψim

d log pm

d log µk
− λYc

i (Ψik − δik)

− λYc
k δik +

d λi

d log µk

1
PYcYc

,

= − ∑
f∈Fc

λYc
i Ψi f

d log Λ f

d log µk
− ∑

m∈Mc

λYc
i Ψim

d log pm

d log µk
− λYc

i Ψik
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+ λYc
i

(
d log pi

d log µk
+

d log yi

d log µk

)
,

= λYc
i

d log yi

d log µk
.

■

Lemma 7. Let χh be the income share of country h at the initial equilibrium. Then

d λj

d log µk
− ∑

h
χh

d log λ̃
Wh
j

d log µk
= ∑

h

d χh
d log µi

λ
Wh
j − λi

(
Ψij − δij

)
.

Proof. Let µ be the diagonal matrix of µi and Iµk be a matrix of all zeros except µk for its kth
diagonal element. Then

χ′ d λ̃

d log µk
= χ′ dΩ̃(W)

d log µk
+ χ′ d λ̃

d log µk
µΩ + χ′λ̃Iµk Ω + χ′λ̃µ

d Ω
d log µk

,

where Ω̃(W) is a matrix whose cith element is household c’s expenditure share Ω̃Wc,i on
good i.

On the other hand,
λ = χ′Ω̃(W) + λΩ.

Form this, we have

d λ

d log µk
=

d χ′

d log µk
Ω̃(W) + χ′ dΩ̃(W)

d log µk
+ λ

d Ω
d log µk

+
d λ

d log µk
Ω.

Combining these two expressions(
d λ

d log µk
− χ′ d log λ̃

d log µk

)
=

(
d λ

d log µk
− χ′ d log λ̃

d log µk

)
Ω +

d χ

d log µk
Ω̃(W) − χ′λ̃(h) Iµk Ω.

Rearrange this to get(
d λ

d log µk
− χ′ d log λ̃

d log µk

)
=

d χ

d log µk
Ω̃(W)Ψ − χ′λ̃(h) Iµk(Ψ − I),

or (
d λ

d log µk
− χ′ d log λ̃

d log µk

)
=

d χ

d log µk
Ω̃(W)Ψ − λIµk(Ψ − I).

■
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Lemma 8. At the efficient steady-state

d λYc
j

d log µk
−

d λ̃Yc
j

d log µk
= −λYc

k

(
Ψkj − δkj

)
.

Proof. Start from the relations

λYc
j = χYc

j + ∑
i

λYc
i Ωij,

and
λ̃Yc

j = χYc
j + ∑

i
λ̃Yc

i µiΩij.

Differentiate both to get

d λYc
j

d log µk
−

d λ̃Yc
j

d log µk
= ∑

i

 d λYc
j

d log µk
−

d λ̃Yc
j

d log µk

Ωij − λYc
k Ωki.

Rearrange this to get the desired result. ■

Proof of Corollary 4. Let χW
h be the elasticity of social welfare with respect to the consump-

tion of country h (i.e. log Pareto weight). Then

d log WBS

d log µk
= ∑

h∈H
χW

h
d log Wh
d log µk

= ∑
h

χW
h

(
d log χW

h
d log µk

−
d log Pcpi,h

d log µk

)
.

d log χW
h

d log µk
= ∑

f∈Fc

Λ f

χh

d log Λ f

d log µk
+ ∑

i∈Nh

d λi

d log µk

(1 − 1
µi
)

χh
.

d log Pcpi,h

d log µk
= ∑

f∈F
Λ̃Wh

f
d log Λ f

d log µk
+ λ̃

Wh
k .

Hence, assuming the normalization PYY = 1 gives

d2 log WBS

d log µk d log µi
= ∑

h
χW

h

(
∑

f

d Λ f

d log µi

d log Λ f

d log µk

1
χW

h
+ ∑

f

Λ f

χW
h

d2 log Λ f

d log µi d log µk

−∑
f

Λ f

χW
h

d log Λ f

d log µk

d log χW
h

d log µi
+

d λk
d log µi

1
χW

h µk
− λk

χW
h µk

d log χW
h

d log µi
− λk

χW
h µk

δki

∑
i

d2 λj

d log µi d log µk

1 − 1
µj

χh
+

d λi

d log µk

1
µiχ

W
h

+ ∑
j

d λj

d log µk

1 − 1
µj

χW
h

d log χW
h

d log µi
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−∑
f

d Λ̃Wh
f

d log µi

d log Λ f

d log µk
− ∑

f
Λ̃Wh

f
d2 log Λ f

d log µi d log µk
−

d λ̃
Wh
k

d log µi

 .

At the efficient point, this simplifies to

d2 log WBS

d log µk d log µi
= ∑

f

d log Λ f

d log µk

 d Λ f

d log µi
− ∑

h
χW

h

d Λ̃Wh
f

d log µi


+

d λk
d log µi

− ∑
h

χW
h

d λ̃
Wh
k

d log µi
− ∑

f ,h
Λ f

d log Λ f

d log µk

d log χW
h

d log µi

− λk
d log χW

h
d log µi

− λkδki +
d λi

d log µk
.

By Lemma 7, at the efficient point,

d λj

d log µi
− ∑

h
χW

h

d λ̃
Wh
j

d log µi
= ∑

h

d χW
h

d log µi
λ̃

Wh
j − λi

(
Ψij − δij

)
.

Whence, we can further simplify the previous expression to

d2 log WBS

d log µk d log µi
= ∑

f

d log Λ f

d log µk

(
∑
h

d χW
h

d log µi
Λ̃Wh

f − λiΨi f

)

+ ∑
h

d χh
d log µi

λ̃
Wh
k − λi(Ψik − δik)− ∑

f ,h
Λ f

d log Λ f

d log µk

d log χh
d log µi

− λk
d log χh

d log µi − λkδki +
d λi

d log µk
,

= ∑
f

d log Λ f

d log µk

(
∑
h

d χh
d log µi

Λ̃Wh
f − λiΨi f

)

+ ∑
h

d χh
d log µi

λ̃
Wh
k − λiΨik − ∑

f ,h
Λ f

d log Λ f

d log µk

d log χh
d log µi

− λk
d log χh

d log µi +
d λi

d log µk
,

and using d log λi = d log pi + d log yi,

= ∑
f

d log Λ f

d log µk

(
∑
h

d χh
d log µi

Λ̃Wh
f − λiΨi f

)
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+ ∑
h

d χh
d log µi

λ̃
Wh
k − λiΨik − ∑

f ,h
Λ f

d log Λ f

d log µk

d log χh
d log µi

− λk
d log χh

d log µi + λi
d log pi

d log µk
+ λi

d log yi

d log µk
,

= ∑
f ,h

χh
d log χh
d log µi

Λ̃Wh
f

d log Λ f

d log µk
− λi ∑

f
Ψi f

d log Λ f

d log µk

+ ∑
h

χh
d log χh
d log µi

λ̃
Wh
k − λiΨik − ∑

f ,h
Λ f

d log χh
d log µi

d log Λ f

d log µk

− λk
d log χh
d log µi

+ λi
d log yi

d log µk

+ λi

(
∑

f
Ψi f

d log Λ f

d log µk
+ Ψik

)
,

= ∑
f ,h

d log χh
d log µi

d log Λ f

d log µk

(
χhΛ̃Wh

f − Λ f

)
+ λi

d log yi

d log µk
+ ∑

h
χh

d log χh
d log µi

λ̃
Wh
k − λk

d log χh
d log µi

,

= λi
d log yi

d log µk
+ ∑

h
χh

d log χh
d log µi

(
Λ̃Wh

f
d log Λ f

d log µk
+ λ̃

Wh
k

)
− ∑

f ,h

d log χh
d log µi

d log Λ f

d log µk
Λ f − λk ∑

h

d log χh
d log µi

,

= λi
d log yi

d log µk
+ ∑

h
χh

d log χh
d log µi

d log Pcpi,h

d log µk

−
(

∑
f

d log Λ f

d log µk
Λ f

)(
∑
h

d log χh
d log µi

)
− λk ∑

h

d log χh
d log µi

,

= λi
d log yi

d log µk
+ Covχ

(
d log χh
d log µi

,
d log Pcpi,h

d log µk

)
,

since

−∑
f

d log Λ f

d log µk
Λ f = −∑

f

d Λ f

d log µk
=

d
(

1 − ∑j λj(1 − 1
µj
)
)

d log µk
= −λk

at the efficient point, and

∑
h

χh
d log χh
d log µi

= 0.

■
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Proof of Theorem 6. From Theorem 5, we have

L = −1
2 ∑

l
(d log µl)λld log yl.

With the maintained normalization PY = 1, we also have

d log yl = d log λl − d log pl,

d log pl = ∑
f

Ψl f d log Λ f + ∑
k

Ψlkd log µk,

where, from Theorem 3,

d log λl =∑
k
(δlk −

λk
λl

Ψkl)d log µk − ∑
j

λj

λl
(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk − ∑

g
Ψ(g)d log Λg, Ψ(l))

+
1
λl

∑
g∈F∗

∑
c

(
λWc

l − λl

)
ΦcgΛgd log Λg,

and

d log Λ f =− ∑
k

λk
Ψk f

Λ f
d log µk − ∑

j
λj(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk − ∑

g
Ψ(g)d log Λg,

Ψ( f )

Λ f
)

+
1

Λ f
∑

g∈F∗
∑

c

(
ΛWc

i − Λ f

)
ΦcgΛgd log Λg.

We will now use these expressions to replace in formula for the second-order loss func-
tion. We get

L = −1
2 ∑

l
∑
k
(

δlk
λk

− Ψkl
λl

− Ψlk
λk

)λkλld log µkd log µl +
1
2 ∑

l
λld log µl ∑

f
Ψl f d log Λ f

+
1
2 ∑

l
∑

j
(d log µl)λj(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk − ∑

g
Ψ(g)d log Λg, Ψ(l))

− 1
2 ∑

l
d log µl

(
∑
g

∑
c

(
λWc

l − λl

)
ΦcgΛgd log Λg

)

L = −1
2 ∑

l
∑
k
(

δlk
λk

− Ψkl
λl

− Ψlk
λk

)λkλld log µkd log µl +
1
2 ∑

l
λld log µl ∑

f
Ψl f d log Λ f
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+
1
2 ∑

l
∑

j
(d log µl)λj(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk − ∑

g
Ψ(g)d log Λg, Ψ(l))

− 1
2 ∑

l

(
∑

c

(
λWc

l − λl

)
χcd log χc

)
d log µl

We can rewrite this expression as

L = LI + LX + LH

where

LI =
1
2 ∑

k
∑

l
[
Ψkl − δkl

λl
+

Ψlk − δlk
λk

+
δkl
λl

− 1]λkλld log µkd log µl

+
1
2 ∑

k
∑

l
∑

j
d log µkd log µlλj(θj − 1)CovΩ(j)(Ψ(k), Ψ(l)),

LX =
1
2 ∑

l
∑

f
(

Ψl f

Λ f
− 1)λlΛ f d log µld log Λ f

− 1
2 ∑

l
∑
g

d log µld log Λg ∑
j

λj(θj − 1)CovΩ(j)(Ψ(g), Ψ(l)),

LH = −1
2 ∑

l

(
∑

c

(
λWc

l − λl

)
χcd log χc

)
d log µl,

where d log Λ is given by the usual expression.1 Finally, using Lemma 10, we can write

LI =
1
2 ∑

l
∑
k
(d log µl)(d log µk)∑

j
λjθjCovΩ(j)(Ψ(k), Ψ(l)).

and
LX = −1

2 ∑
l

∑
g

d log µld log Λg ∑
j

λjθjCovΩ(j)(Ψ(g), Ψ(l)).

1We have used the intermediate step

LX =
1
2 ∑

l
∑
k

λkλld log µkd log µl +
1
2 ∑

l
∑

f
d log µld log Λ f λlΨl f

− 1
2 ∑

l
∑
g

d log µld log Λg ∑
j

λj(θj − 1)CovΩ(j)(Ψ(g), Ψ(l)).
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■

Lemma 9. The following identity holds

∑
j

λj

(
Ψ̃jkΨjl − ∑

m
ΩjmΨ̃mkΨml

)
= λ̃kλl.

Proof. Write Ω so that it contains all the producers, all the households, and all the factors
as well as a new row (indexed by 0) where Ω0i = χi if i ∈ C and 0 otherwise. then, letting
e0 be the standard basis vector corresponding to the 0th row, we can write

λ′ = e′0 + λ′Ω,

or equivalently
λ′(I − Ω) = e′0.

Let Xkl be the vector where Xkl
m = Ψ̃mkΨml. Then

∑
j

λj

(
Ψ̃jkΨjl − ∑

m
ΩjmΨ̃mkΨml

)
= λ′(I − Ω)Xkl,

= e′0(I − Ω)−1(I − Ω)Xkl, = e′0Xkl = Ψ̃0kΨ0l = λ̃kλl.

■

Lemma 10. The following identity holds

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) = λlλk[

Ψ̃lk − δlk
λk

+
Ψkl − δkl

λl
+

δlk
λk

− λ̃k
λk

].

Proof. We have

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) =

∑
j

λjµ
−1
j

[
∑
m

Ω̃jmΨ̃mkΨml −
(

∑
m

Ω̃jmΨ̃mk

)(
∑
m

Ω̃jmΨml

)]
,

or

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) =
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∑
j

λj ∑
m

ΩjmΨ̃mkΨml − ∑
j

λjµ
−1
j

(
∑
m

Ω̃jmΨ̃mk

)(
∑
m

Ω̃jmΨml

)
,

or

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) =

∑
j

λj ∑
m

ΩjmΨ̃mkΨml − ∑
j

λjΨ̃jkΨjl

+ ∑
j

λjΨ̃jkΨjl − ∑
j

λjµ
−1
j

(
∑
m

Ω̃jmΨ̃mk

)(
∑
m

Ω̃jmΨml

)
,

or using, Lemma 9

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) = −λ̃kλl + ∑

j
λjΨ̃jkΨjl − ∑

j
λj
(
Ψ̃jk − δjk

)
(Ψjl − δjl),

and finally

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) = λlλk[

Ψ̃lk − δlk
λk

+
Ψkl − δkl

λl
+

δlk
λk

− λ̃k
λk

].

■

Proposition 1 (Structural Output Loss). Starting at an efficient equilibrium in response to the
introduction of small tariffs or other distortions,

∆ log Y ≈ −1
2 ∑

l∈N
∑

k∈N
∆ log µk∆ log µl ∑

j∈N
λjθjCovΩ(j)(Ψ(k), Ψ(l))

− 1
2 ∑

l∈N
∑
g∈F

∆ log Λg∆ log µl ∑
j∈N

λjθjCovΩ(j)(Ψ(g), Ψ(l))

+
1
2 ∑

l∈N
∑
c∈C

χW
c ∆ log χW

c ∆ log µl(λ
Wc
l − λl).

Proof. The proof follows along the same lines as Theorem 6. ■
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C Additional Examples

C.1 Writing an economy in standard form

We use a two-country example to show how to map a specific nested-CES model into
standard-form required by Theorem 3. Suppose there are n industries at home and foreign.
The utility function of home and foreign consumers is

W =
n

∏
i=1

(x0i)
Ω0i , W∗ =

n

∏
i=1

(x∗0i)
Ω0i ,

where x0i and x∗0i are home and foreign consumption of goods from industry i. The pro-
duction function of industry i (at home or foreign) is a Cobb-Douglas aggregate of inter-
mediates and the local factor

yi = LΩiL
ij

n

∏
i=1

x
Ωij
ij .

Suppose that the intermediate good xij is a CES combination of domestic and foreign va-
rieties of j, with initial home share Ωj and foreign share Ω∗

j = 1 − Ωj, and elasticity of
substitution ε j + 1. Since the market share of home and foreign in industry j does not vary
by consumer i, this means there is no home-bias.

In standard-form, this economy has N = 3n producers: the first n are industries at
home, the second n are industries in foreign, and the last n are CES aggregates of domestic
and foreign varieties that every other industry buys. The HAIO matrix for this economy,
in standard-form, is (2 + 3n + 2)× (2 + 3n + 2):

Ω =



0 0 0
[

Ω0i

]n

i=1
0 0

0 0 0
[

Ω0i

]n

i=1
0 0

0 0 0
[

Ωij

]n

i,j=1

[
ΩiL

]n

i=1
0

0 0 0
[

Ωij

]n

i,j=1
0

[
ΩiL

]n

i=1

0

Ω1 · · · 0
. . .

0 Ωn

Ω∗
1 · · · 0

. . .

0 Ω∗
n

0 0 0

0 0 0 0 0 0



.

The first two rows and columns correspond to the households, the next 2n rows and
columns correspond to home industries and foreign industries respectively. The next n
rows and columns correspond to bundles of home and foreign varieties. The last two rows
and columns correspond to the home and foreign factor. The vector elasticities of substitu-
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tion θ for this economy is a vector with 2 + 3n elements θ = (1, · · · , 1, ε1 + 1, · · · , εn + 1),
where εi is the trade elasticity in industry i.

Now that we have written this economy in standard-form, we can use Theorem 3 to
study the change in home’s share of income following a productivity shock d log Aj to
some domestic producer j:

d log ΛL

d log Aj
=

λj

ΛL

ε jΩ∗
j ΩjL

1 + ∑i εi
λiΩiL

ΛL

ΩiL
1−ΛL

Ω∗
i

≥ 0,

which is positive as long as domestic and foreign varieties are substitutes ε j > 0 for every j.
The numerator captures the fact that a shock to j will increase demand for the home factor
if j uses the home factor ΩjL > 0. The denominator captures the fact that an increase in the
price of the home factor attenuates the increase in demand for the home factor by bidding
up the price of home goods.

The positive productivity shock to j will therefore shrink the market share of every other
domestic producer, a phenomenon known as Dutch disease. To see this, apply Theorem 3
to some domestic producer i , j to get

d log λi

d log Aj
= −εiΩ∗

i
ΩiL

1 − ΛL

d log ΛL

d log Aj
< 0.

In words, the shock to j boosts the price of the home factor, which makes i less competitive
in the world market if i relies on the home factor ΩiL > 0. Hence, if ε j > 0 for every j, a
domestic productivity shock to one sector will cause Dutch disease and shrink the market
share of other domestic producers by bidding up home wages.

C.2 More details on Example IV from Section 6

First, the forward propagation equations (7) from Theorem 3 imply that the change in the
price of each good is

d log p = ∑
k∈N

Ψ(k)d log µk +
Ψ(L)

ΛL
dΛL −

(1 − Ψ(L))

1 − ΛL

[
dΛL + ∑

i
λid log µi

]
.

The first-term captures the direct effect of the tariff on the price of each good, the second
term captures the effect of the change in the wage of domestic workers, and the last term
captures the effect of changes in the foreign wage. Here, we use the fact that the change
in the foreign wage relative to world GDP is the negative of the change in the home wage
and the tax revenues collected (the expression in square brackets).
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Substituting the expression for prices into the backward propagation equations from
Theorem 3 yields the following expression for the home factor’s change in aggregate in-
come:

dΛL =
−d log µL + ∑k∈N λk(1 − θk)CovΩ(k)(Ψ(L), Ψ(M)d log µ + Ψ(L)

dΛR
1−ΛL

) + (ΛWL
L − ΛWL∗

L )dΛR

1 − 1
ΛL(1−ΛL)

∑k∈N λk(1 − θk)VarΩ(k)(Ψ(L))− (ΛW
L − ΛW∗

L )
,

(20)
where d log µL = ∑k λkΨkLd log µk and Ψ(M)d log µ = ∑k∈N Ψ(k)d log µk. The tariff rev-
enues are dΛR = ∑k λkd log µk. Each term in (20) is intuitive: the numerator is the effect
of the tax in partial equilibrium, holding fixed factor prices in terms of world GDP. The
denominator is the general equilibrium effect capturing the endogenous substitution and
income redistribution effects triggered by changes in factor prices. This comes from solving
the fixed point for factor shares d log Λ in Theorem 3.

To understand the intuition, consider the numerator, which consists of three effects.
The first summand in the numerator is the direct incidence of the tax on the home labor,
taking into account supply chains. The second term, involving the covariance, is how the
tax causes substitution by changing relative prices of goods, and the covariance captures
whether or not goods whose relative prices rise tend to be reliant on home labor. The final
term in the numerator captures the fact that the tariff revenues, by redistributing income
between home and foreign, change demand for the domestic factor. The denominator then
accounts for the fact that the partial equilibrium change in factor prices result in additional
rounds of expenditure-switching due to substitution and income redistribution.

From home’s perspective, the ideal tariff, which raises home wages relative to foreign
wages, is one which is imposed on goods that do not directly or indirectly use the domestic
factor. For such goods, d log µL = 0. Furthermore, if substitution elasticities are greater
than one, θk ≥ 1, then the ideal tariff should be levied on goods which negatively correlate
with domestic factor usage, in which case CovΩ(k)(Ψ(L), Ψ(M)d log µ) < 0. In other words,
if a good is heavily exposed to the tax, then it should also be heavily exposed to foreign
(rather than domestic) labor.

D Computational Appendix

This appendix describes our computational procedure, as well as the Matlab code in our
replication files. Before running the code, customize your folder directory in the code ac-
cordingly. Notice that the description below is based on the generic version of the code
under flexible wages stored in ”Generic” folder.
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Writing nested-CES economies in standard-form is useful for intuition, but it is compu-
tationally inefficient since it greatly expands the size of the input-output matrix. Therefore,
for computational efficiency, we instead use the generalization in Appendix E to directly
linearize the nested-CES production functions without first putting them into standard
form.

Overview

First, we provide an overview of the different files before providing an in depth description
of each.

1. main load data rev.m: Function that calculates expenditure shares from data.

2. main dlogW org.m: Main code that loads inputs and calls functions to iterate.

3. AES func.m: Function that calculates Allen-Uzawa elasticities of substitution.

4. Nested CES linear final rev.m: Function that solves the system of linear equations
described in Theorem 3.

5. Nested CES linear result final.m: Function that calculates derivatives that are used
to derive welfare changes or iterate for large shocks.

While 1. and 3. are specific to our quantitative application, 2., 4. and 5. are general
purpose functions that can be used to derive comparative statics and solve any model in
the class we study. We now describe each part of the code in some detail.

1. Function code that loads data

The data used here is based on 2013 release of World Input-Output Database in year 2008.
According to Appendix A, there are C = 41 countries including ROW (rest-of-world), and
N = 30 sectors in each country. The code is flexible in terms of which countries to be
included in the analysis by keep_c input variable. Any countries not included in keep_c
are put into an aggregate rest-of-the-world composite country. The order of countries are
in countries variable in the main code. Notice that we always exclude 35th country for
ROW for keep_c input and put ROW in the last for welfare output. For example, this is
why USA is 41st country for input, and 40th country for output.
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Code: main load data rev.m

Data input:

1. Trade elasticity when a country imports or buys inputs in each sector from different
destinations (trade_elast: N by 1 vector)

2. Input-output matrix across country and sectors (Omega_tilde: CN by CN matrix,
(i, j) element: expenditure share of sector i on sector j)

3. Household expenditure share on heterogenous goods (beta: CN by C matrix, (i, c)
element: expenditure share of household c on sector i)

4. Value-added share (alpha: CN by 1 vector, (i, 1) element: value-added share of sector
i), Primary Factor share (alpha_VA: CN by F matrix, (i, f ) element: expenditure share
of sector i on factor f out of factor usage)

5. GNE of each country relative to world GNE (GNE_weights: C by 1 vector)

6. (Optional) If there are initial tariffs:

(a) Tariff matrix when household (column) buys goods (row) – Tariff_cons_matrix_new:
CN by C matrix ((i, c) element: tariff rate of household c, destination, on sector
i, origin)

(b) Tariff matrix when a sector (row) buys goods (column) –Tariff_matrix_new:
CN by CN matrix ((i, j) element: tariff rate of sector i, destination, on sector j,
origin)

User input:

1. keep_c controls which countries to be included. For example,
Command keep_c = (1:41); keep_c(35) = []; include all 41 countries in the data.

2. If the economy does not have initial tariff, initial_tariff_index= 1. Otherwise, if
the economy has initial tariff, =2.

3. If factors are country-specific (4 factors per country), factor_index= 1. Otherwise, if
factors are country-sector-specific (N factors per country), =2.
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Outputs:

1. data, shock struct

From the inputs, the code automatically calculates input shares (beta_s, beta_disagg,
Omega_s, Omega_disagg, Omega_total_C, Omega_total_N) and the input-output matrix
(Omega_total_tilde, Omega_total). These variables are used to calculate Allen-Uzawa
elasticities of substitution and solve system of linear equations.

2. Main code that loads inputs and calls functions

Code: main dlogW org.m

Data input:

1. data, shock struct from main load data rev.m

User input:

1. Elasticity of substitution parameters for nested CES structure: Elasticity of substitu-
tion (1) across sectors in consumption (sigma), (2) across composite of value-added
and intermediates (theta), (3) across primary factors (gamma), and (4) across inter-
mediate inputs (epsilon). In the text of the paper, these elasticities are relabeled as
(σ, ϵ, θ, γ) = (θ0, θ1, θ2, θ3).

2. If the economy gets universal iceberg trade cost shock, shock_index = 1. Otherwise,
if the economy gets universal tariff shock, = 2.

3. When intensity of shock is x%, intensity = x.

4. When shock is discretized by x/y% and model cumulates the effect of shocks y times,
ngrid = y.

5. Ownership structure

(a) Ownership structure of factor (Phi_F: C by CF matrix, (c, f ) element: Factor
income share of factor f owned by household c)

(b) Ownership structure of tariff revenue (Phi_T: C+CN by CN+CF by C 3-D ma-
trix, (i, j, c) element: Tariff revenue share owned by household c when house-
hold/sector i buys from sector/factor j)

6. (Optional) Technical details about how to customize iceberg trade cost shock matrix
dlogτ and tariff shock matrix dlogt are described in Nested CES linear final rev.m
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Output:

1. dlogW (C by ngrid matrix) collects change in real income of each country for each
iteration of discretized shocks

2. dlogW_sum (C by 1 vector) shows change in real income of each country from lin-
earized system by summing up dlogW

3. dlogW_world (1 by ngrid vector) is change in real income of world for each iteration
of discretized shocks

4. dlogR (C by ngrid matrix) collects reallocation terms of each country for each itera-
tion of discretized shocks

5. dlogR_sum (C by 1 vector) shows reallocation terms of each country from linearized
system by summing up dlogR

3. Allen-Uzawa Elasticity of Substitution (AES)

This code computes Allen-Uzawa elasticities of substitution for each sector. These are then
used following Appendix E.

Code: AES func.m

Inputs:

1. Number of countries (C), Number of sectors in each country (N), Number of factors
in each country (F)

2. Elasticity of substitution parameters for nested CES structure: That is, (σ, ϵ, θ, γ) =

(θ0, θ1, θ2, θ3).

3. Trade elasticity when a country imports or buys domestic product (trade_elast: N
by 1 vector).

4. Value-added share (alpha: CN by 1 vector, (i, 1) element: value-added share of sector
i).

5. Expenditure shares:

(a) bic(beta_s : C by N matrix, (c, i) element: How much household c consumes
sector i good).
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(b) ωic
j (Omega_s: CN by N matrix, (ic, j) element: How much sector i in country c

uses sector j good).

(c) Ω̃0c
jm(Omega_total_C : C by CN matrix, (c, jm) element: How much household c

buys from sector j in country m).

(d) Ω̃ic
jm(Omega_total_N : CN by CN+CF matrix, (ic, jm) element: How much sector

i in country c buys from good/factor j in country m).

Outputs:

1. θ0c(ic′, jm) (AES_C_Mat: CN by CN by C 3-D matrix, (ic′, jm, c) element: AES of house-
hold in country c that substitutes good i in country c′ and good j in country m)

2. θkc(ic′, jm) (AES_N_Mat: CN by CN+CF by CN 3-D matrix, (ic′, jm, kc) element: AES of
producer of sector k in country c that substitutes good i in country c′ and good/factor
j in country m)

3. θkc( f c, jm) (AES_F_Mat: CF by CN+CF by CN 3-D matrix, ( f c, jm, kc) element: AES of
producer of sector k in country c that substitutes factor f in country c and good j in
country m)

To describe how this code functions, we introduce the following notation.

Notation:

Let pkc
ic′ be the bilateral price when industry or household k in country c buys from industry

i in country c′. That is
pkc

ic′ = τkc
ic′ t

kc
ic′ pic′ ,

where τkc
ic′ is an iceberg cost on kc purchasing goods from ic′ and tkc

ic′ is a tariff on kc pur-
chasing goods from ic′, and where pic′ is the marginal cost of producer i in country c′.
Define

Ωic
jm =

pjmxic
jm

picyic
, Ω̃ic

jm =
tic

jm pjmxic
jm

picyic
,

where pjmxic
jm is expenditures of ic on jm not including the import tariff. Notice that every

row of Ω̃ic
jm should always sum up to 1. Also, assume that C is a set of countries, and Fc is

the factors owned by Household in country c. Then,
Households: The price of final consumption in country c
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P0c =

(
∑

i
bic

(
P0c

i

)1−σ
) 1

1−σ

,

where bic = ∑m∈C Ω̃0c
im. The price of consumption good from industry i in country c

P0c
i =

(
∑

m∈C
δ0c

m

(
t0c
imτ0c

im pim

)1−εi

) 1
1−εi

,

where εi + 1 is the trade elasticity for industry i and δ0c
m = Ω̃0c

im/
(
∑v∈C Ω̃0c

iv
)
.

Producers: The marginal cost of good i produced by country c

pic =
(

αicP1−θ
wic

+ (1 − αic)P1−θ
Mic

) 1
1−θ

where αic = ∑ f∈Fc Ω̃ic
f c. The price of value-added bundled used by producer i in country c

pwic =

(
∑
f∈Fc

αic
f w1−γ

f c

) 1
1−γ

,

where αic
f = Ω̃ic

f c/
(
∑d∈Fc Ω̃ic

dc
)

. The price of intermediate bundle used by producer i in
country c

pMic =

(
∑

j
ωic

j

(
qic

j

)1−ϵ
) 1

1−ϵ

,

where ωic
j =

(
∑m∈C Ω̃ic

jm

)
/(1 − αic). The price of intermediate bundle good j used by

producer i in country c

qic
j =

(
∑

m∈C
δic

jm

(
τic

jmtic
jm pjm

)1−εi

) 1
1−εi

,

where εi + 1 is the trade elasticity for good i and δic
jm = Ω̃ic

jm/
(
∑v∈C Ω̃ic

iv
)
.

Deriving Allen-Uzawa elasticities for nested-CES models is straightforward. To do so,
we proceed as follows:
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Derivation:

(1) θ0c(ic′, jm) Household demand in country c for good i from c′ is

x0c
ic′ = Ω̃0c

ic′

(
p0c

ic′

P0c
i

)−εi
(

P0c
i

P0c

)−σ

Cc

Hence

θ0c(ic′, jm) =
1

Ω̃0c
jm

∂ log x0c
ic′

∂ log p0c
jm

= −εi

(
1(jm = ic′)− 1(j = i)δ0c

jm

)
Ω̃0c

jm
−

σ
(

1(j = i)δ0c
jm − Ω̃0c

jm

)
Ω̃0c

jm
.

This can be simplified as

θ0c(ic′, jm) =
εi

∑v∈C Ω̃0c
iv

+ σ

(
1 − 1

∑v∈C Ω̃0c
iv

)
=

εi

bic
+ σ

(
1 − 1

bic

)
when i = j & ic′ , jm,

θ0c(ic′, jm) = − εi

Ω̃0c
jm

+
θi

bic
+ σ

(
1 − 1

bic

)
when ic′ = jm.

Otherwise, θ0c(ic′, jm) = σ.

(2) θkc(ic′, jm) When k is not a household, demand by k in country c for good i from c′ is

xkc
ic′ = Ω̃kc

ic′

(
pkc

ic′

Pkc
i

)−εi
(

Pkc
i

Pkc
M

)−ϵ(
Pkc

M
pkc

)−θ

Ykc.

Hence

θkc(ic′, jm) =
1

Ω̃kc
jm

∂ log xkc
ic′

∂ log pkc
jm

= −εi

(
1(jm = ic′)− 1(j = i)δkc

jm

)
Ω̃kc

jm
−

ϵ
(

1(j = i)δkc
jm − 1(j < F)δkc

jmωkc
j

)
Ω̃kc

jm

−
θ
(

1(j < F)δkc
jmωkc

j − Ω̃kc
jm

)
Ω̃kc

jm
.

This can be simplified as

θkc(ic′, jm) =
εi

(1 − αkc)ω
kc
j
+ ϵ

(
1

1 − αkc
− 1

(1 − αkc)ω
kc
j

)

+ θ

(
1 − 1

1 − αkc

)
when i = j ∈ N & ic′ , jm,
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θkc(ic′, jm) = − εi

Ω̃kc
jm

+
εi

(1 − αkc)ω
kc
j
+ ϵ

(
1

1 − αkc
− 1

(1 − αkc)ω
kc
j

)
+ θ

(
1 − 1

1 − αkc

)
when ic′ = jm,

θkc(ic′, jm) =
ϵ

1 − αkc
+ θ

(
1 − 1

1 − αic

)
when i , j ∈ N,

and when j ∈ F, θkc(ic′, jm) = θ.

(3) θkc( f c, jm) Lastly, when k is not a household, demand by k in country c for factor f is

xkc
f c = Ω̃kc

f c

( p f c

pwkc

)−γ ( pwkc

pkc

)−θ

Ykc.

Hence,

θkc( f c, jm) =
1

Ω̃kc
jm

∂ log xkc
f c

∂ log pkc
jm

= −γ

(
1(jm = f c)− 1(jm ∈ Fc)αic

j

)
Ω̃kc

jm
− θ

(
1(jm ∈ Fc)αic

j − Ω̃kc
jm

)
Ω̃kc

jm
.

Notice that θkc( f c, jm) = θ if j ∈ N. Also,

θkc( f c, jc) =
γ

∑g∈Fc Ω̃kc
gc

+ θ

(
1 − 1

∑g∈Fc Ω̃kc
gc

)
=

γ

αkc
+ θ

(
1 − 1

αkc

)
when j ∈ F & m = c,

θkc( f c, jc) = − γ

Ω̃kc
f c
+

γ

αkc
+ θ

(
1 − 1

αkc

)
when f c = jm.

4. Solving system of linear equations

This code takes the following inputs, forms the linear system of market clearing conditions
in factor markets in Theorem 3 and computes the change in factor shares in equilibrium.

Code: Nested CES linear final rev.m

Input:

1. Number of countries (C), Number of sectors in each country (N), Number of factors
in each country (F)

2. Allen-Uzawa elasticities of substitution:

(a) θ0c(ic′, jm) (AES_C_Mat: CN by CN by C 3-D matrix)

(b) θkc(ic′, jm) (AES_N_Mat: CN by CN+CF by CN 3-D matrix)
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(c) θkc( f c, jm) (AES_F_Mat CF by CN+CF by CN 3-D matrix)

3. Input-output matrix and Leontief inverse

(a) Ω̃ic
jm (Omega_total_tilde: C+CN+CF by C+CN+CF matrix) : Standard form of

Cost-based IO matrix

(b) Ωic
jm (Omega_total: C+CN+CF by C+CN+CF matrix) : Standard form of Revenue-

based IO matrix

(c) Ψ̃ic
jm (Psi_total_tilde) : Leontief inverse of Ω̃ic

jm

(d) Ψic
jm (Psi_total) : Leontief inverse of Ωic

jm

4. Initial sales share λCN (lambda_CN: C+CN by 1 vector) and factor income ΛF (lambda_F:
CF by 1 vector)

5. Ownership structure of factor (Phi_F: C by CF matrix) and tariff revenue (Phi_T:
C+CN by CN by C 3-D matrix) defined in main dlogW org.m

6. If factors are country-specific (4 factors per country), factor_index= 1. Otherwise, if
factors are country-sector-specific (N factors per country), =2.

7. (Optional) If economy has initial tariff, initial tariff matrix (init_t: C+CN by CN
matrix) defined in main load data rev.m

Current version of code simulates universal iceberg trade cost or tariff shock. If the user
wants to specify the shocks, customize

1. universal iceberg trade cost shock matrix (dlogtau: C+CN by CN+CF matrix, (i, j)
element: log change in iceberg trade cost when household/sector i buys from sec-
tor/factor j) or

2. tariff shock matrix (dlogt: C+CN by CN+CF matrix, (i, j) element: log change in
tariff when household/sector i buys from sector/factor j).

Output:

Let dΛF be the vector of changes in the sales of primary factors and

dΛF,c′,∗ = ∑
ic

∑
jm

Φc′,ic,jmΩic
jm(t

ic
jm − 1)dλic
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be the change in wedge-revenues of household c′ due to changes in sales shares, where
Φc′,ic,jm is the share of tax revenues on ic’s purchases of jm that go to household c′. The
linear system in Theorem 3 can be written as:[

dΛF

dΛF∗

]
= A

[
dΛF

dΛF∗

]
+ B

This code outputs:

1. A (C+CF by C+CF matrix) and B (C+CF by 1 vector).

Using these outputs, the code inverts the system and solves for dΛF(dlambda_F) and dΛF∗

(dlambda_F_star), which are used to obtain derivatives calculated by
Nested CES linear result final.m. It updates Ω̃ and other variables which are used in the
next iteration.

5. Calculate derivatives

This code takes the equilibrium factor market response calculated in the previous step and
uses these to update all endogenous variables so that the whole process can be repeated.

Code: Nested CES linear result final.m

Input:

All inputs used in Nested CES linear final rev.m are also used in this code. Additionally,
it requires

1. GNE_weights (C by 1 vector): A ratio of GNE of each country to world GNE

2. dΛF(dlambda_F) and dΛF∗(dlambda_F_star) : Solutions from Nested CES linear final rev.m

Output:

1. dλ (dlambda_result: C+CN+CF by 1 vector): Change in sales shares;

2. dχ (dchi_std: C+CN+CF by 1 vector): Change in household income shares;

3. dlogP (dlogP_Vec: C+CN+CF by 1 vector): Change in either the price index (house-
hold), marginal cost (sector), or factor price;

4. dΩ̃ic
jm (dOmega_total_tilde: C+CN+CF by C+CN+CF matrix) : Change in Cost-

based IO matrix;
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5. dΩic
jm (dOmega_total: C+CN+CF by C+CN+CF matrix) : Change in Revenue-based

IO matrix.

For each iteration, change in real income of country c is

d log Wc = d log χc − d log Pc

where d log Pc is change in price index of household c. Meanwhile, outputs are used to
update λ, χ, Ω, Ω̃, which are used as a simulated data with discretized shock in next itera-
tion.

77



Supplementary Materials to Networks, Barriers, and
Trade

David Rezza Baqaee Emmanuel Farhi

E Beyond CES 79

F Differential Exact-Hat Algebra 80

G Numerical Accuracy and Efficiency 81

H Factor Demand System 83

I Aggregation and Stability of the Trade Elasticity 86

J Partial Equilibrium Counterpart to Theorem 5 92

K Extension to Roy Models 93

L Heterogenous Households Within Countries 94

M Growth Accounting Results 97

*Emmanuel Farhi tragically passed away in July, 2020. Emmanuel was a one-in-a-lifetime collaborator
and friend. We thank Pol Antras, Andy Atkeson, Natalie Bau, Arnaud Costinot, Pablo Fajgelbaum, Elhanan
Helpman, Sam Kortum, Yuhei Miyauchi, Marc Melitz, Stephen Redding, Andrés Rodrı́guez-Clare, and Jon
Vogel for comments. We are grateful to Maria Voronina, Chang He, Yasutaka Koike-Mori, and Sihwan Yang
for outstanding research assistance. We thank the editor, referees, and Ariel Burstein for detailed suggestions
that substantially improved the paper. We also acknowledge support from NSF grant #1947611. Email:
baqaee@econ.ucla.edu.

78



E Beyond CES

In this appendix, we show how to generalize the results in the paper beyond nested-CES
functional forms.

E.1 Generalizing Sections 4 and 5 and Appendix F

In a similar vein to Baqaee and Farhi (2017a), we can extend the results in Sections 4 and
5 to arbitrary neoclassical production functions simply by replacing the input-output co-
variance operator with the input-output substitution operator instead.

For a producer k with cost function Ck, the Allen-Uzawa elasticity of substitution be-
tween inputs x and y is

θk(x, y) =
Ckd2Ck/(dpxdpy)

(dCk/dpx)(dCk/dpy)
=

ϵk(x, y)
Ωky

,

where ϵk(x, y) is the elasticity of the demand by producer k for input x with respect to the
price py of input y, and Ω̃ky is the expenditure share in cost of input y. We also use this
definition for final demand aggregators.

The input-output substitution operator for producer k is defined as

Φk(Ψ(i), Ψ(j)) = − ∑
x,y∈N+F

Ω̃kx[δxy + Ω̃ky(θk(x, y)− 1)]ΨxiΨyj,

=
1
2

EΩ(k)

(
(θk(x, y)− 1)(Ψi(x)− Ψi(y))(Ψj(x)− Ψj(y))

)
,

where δxy is the Kronecker delta, Ψi(x) = Ψxi and Ψj(x) = Ψxj, and the expectation on the
second line is over x and y.

In the CES case with elasticity θk, all the cross Allen-Uzawa elasticities are identical
with θk(x, y) = θk if x , y, and the own Allen-Uzawa elasticities are given by θk(x, x) =

−θk(1 − Ω̃kx)/Ω̃kx. It is easy to verify that when Ck has a CES form we recover the input-
output covariance operator:

Φk(Ψ(i), Ψ(j)) = (θk − 1)CovΩ̃(k)(Ψ(i), Ψ(j)).

Even outside the CES case, the input-output substitution operator shares many proper-
ties with the input-output covariance operator. For example, it is immediate to verify, that:
Φk(Ψ(i), Ψ(j)) is bilinear in Ψ(i) and Ψ(j); Φk(Ψ(i), Ψ(j)) is symmetric in Ψ(i) and Ψ(j); and
Φk(Ψ(i), Ψ(j)) = 0 whenever Ψ(i) or Ψ(j) is a constant.

79



All the structural results in the paper can be extended to general non-CES economies
by simply replacing terms of the form (θk − 1)CovΩ̃(k)(Ψ(i), Ψ(j)) by Φk(Ψ(i), Ψ(j)).

For example, when generalized beyond nested CES functional forms, Theorem 3 be-
comes the following.

Theorem 11. For a vector of perturbations to productivity d log A and wedges d log µ, the
change in the price of a good or factor i ∈ N + F is the same as (7). The change in the sales
share of a good or factor i ∈ N + F is

d log λi = ∑
k∈N+F

(
1{i=k} −

λk
λi

Ψki

)
d log µk + ∑

k∈N

λk
λi

µ−1
k Φk(Ψ(i), d log p)

+ ∑
g∈F∗

∑
c∈C

λWc
i − λi

λi
ΦcgΛg d log Λg,

where d log p is the (N + F)× 1 vector of price changes in (7). The change in wedge income
accruing to household c (represented by a fictitious factor) is the same as (9).

F Differential Exact-Hat Algebra

We can conduct global comparative statics by viewing Theorem 3 as a system of differential
equations that can be solved by iterative means (e.g. Euler’s method or Runge-Kutta). The
endogenous terms in Equations (7) and (8) depend only on HAIO and Leontief matrices
(Ω̃, Ω, Ψ̃, Ψ). However, a similar logic to (8) can be used to derive changes in these matrices.
In particular, the change in the HAIO matrix Ω̃ is

dΩ̃ij = (1 − θi)CovΩ̃(i)

(
d log p, I(j)

)
,

where I(j) is the jth column of the identity matrix. The change in the Leontief inverse is

dΨ̃ij = ∑
k∈N

Ψ̃ik(1 − θi)CovΩ̃(k)

(
d log p, Ψ̃(j)

)
.

Similarly, changes in Ω are
dΩij = µ−1

i dΩ̃ij − d log µi

and changes in Ψ are

dΨij = ∑
k∈N

Ψikµ−1
k (1 − θk)CovΩ̃(k)(d log p, Ψ(j))− ∑

k
Ψik(Ψkj − 1{k=j})d log µk.
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As explained in Appendix D, this means that we can conduct global comparative statics by
repeatedly solving a (C + F)× (C + F) linear system and cumulating the results, instead
of solving a system of (C + N + F)× (C + N + F) nonlinear equations. A similar approach
is sometimes used in the CGE literature, for example Dixon et al. (1982), to solve high-
dimensional models because exact-hat algebra is computationally impracticable for large
models.1 For the quantitative model in Section 7, the differential approach is faster than
using state-of-the-art nonlinear solvers to perform exact hat-algebra (see Appendix G)

G Numerical Accuracy and Efficiency

We provide flexible Matlab code, detailed in Appendix D, that loglinearizes arbitrary gen-
eral equilibrium models of the type studied in this paper and computes local comparative
statics. In this section, we investigate the accuracy and computational efficiency of this
approach.

Accuracy of Loglinearization. Figure 5 displays the numerical accuracy of the first-order
approximation for universal iceberg and tariff shocks of different sizes. Note that this Fig-
ure 5 is not relevant for differential exact-hat algebra (as performed in Section 7) because
once we iterate on the first-order approximation, it becomes exact. The left and right pan-
els show the root-mean-squared-error in log welfare, using the benchmark model, using
dollar-weighting and country-weighting. As expected, the error is larger for bigger shocks,
and the dollar-weighted error is smaller since nonlinearities are smaller for larger countries
and less open countries.

Computational Efficiency. By repeated iteration on the loglinear solution, the code can
also compute exact nonlinear responses to shocks. We refer to this way of solving the non-
linear model as “differential exact hat-algebra.” We compare the computational efficiency
of differential exact hat-algebra with exact hat-algebra using Matlab’s built-in fmincon non-
linear solver as well as a state-of-the-art industrial numerical solver Artelys Knitro. We pro-
vide the nonlinear solvers with analytical expressions of the Jacobian, which significantly
boosts their performance. Figure 6 shows how long each solver takes to solve the model for
a 60% universal increase in iceberg shocks using the benchmark elasticities. On the x-axis
we vary the number of variables by varying the number of countries in descending order
of country GDP. For example, when there are two countries, we only have the US and an

1In the CGE literature, supply and demand relationships are log-linearized and then integrated numeri-
cally by Euler’s method.
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Figure 5: Error of the first-order approximation for a universal shock to trade barriers.

aggregate composite “rest-of-the-world” country.2 We increase the number of variables by
disaggregating the rest-of-the-world. Figure 6 shows that differential exact hat-algebra is
much faster than fmincon and even Knitro, especially as the number of countries increases.3
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Figure 6: Time taken to solve the nonlinear model for a 60% universal iceberg shock as a
function of the number of countries.

An additional virtue of the differential exact-hat algebra over standard exact-hat al-
gebra is that when the model becomes highly nonlinear, for example when intersectoral
elasticities of susbtitution are close to zero, nonlinear solvers take longer and when the do-
mestic elasticities of substitution (θ0, θ1, θ2, θ3, θ4) are lowered to below 0.2, fmincon and
Knitro fail to find a solution at all. On the other hand, differential exact hat-algebra always

2Each additional country increases the number of variables by 34 — four factor and thirty goods prices.
3For example, the computer we used cannot solve the factor-specific version of the model using exact-hat

algebra due to insufficient memory.
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works regardless of the elasticities of substitution. This is particularly useful for large-scale
applications where strong complementarities are important. For example, this algorithm
is used by Bachmann et al. (2022) to study how an embargo of Russian goods would af-
fect Germany in the short-run. This application would not have been numerically feasible
using the nonlinear solvers mentioned here.

H Factor Demand System

Adao et al. (2017) show that trading economies can be represented as if only factors are
traded within and across borders, and households have preferences over factors directly.
Theorem 3 can be used to flesh out this representation by locally characterizing its associ-
ated reduced-form Marshallian demand for factors in terms of sufficient-statistic microeco-
nomic primitives. For example, in the absence of wedges, the expenditure share of house-
hold c on factor f under the “trade-in-factors” representation is given by Ψc f ; the elastici-
ties ∂ log Ψc f /∂ log Ai holding factor prices constant then characterize its Marshallian price
elasticities as well as its Marshallian elasticities with respect to iceberg trade shocks:

∂ log Ψc f

∂ log Ai
= ∑

k∈N

Ψck
Ψc f

(θk − 1)CovΩ(k)(Ψ( f ), Ψ(i)).

Similarly, by Theorem 3, we know that the elasticity of the factor income share of some
factor j with respect to the price of another factor i, holding fixed all other factor prices, is
given by

∂ log Λj

∂ log wi
= ∑

k∈N
(1 − θk)

λk
Λj

CovΩ(k)(Ψ(i), Ψ(j)) + ∑
c∈C

(ΛWc
j /Λj − 1)ΦciΛi, (21)

recalling that for factors f ∈ F, we interchangeably write Λ f or λ f to refer to their Domar
weight. Figure 7 illustrates these elasticities of the factor demand system for a selection of
the countries using the benchmark calibration. The ijth element gives the elasticity of j’s
world income share with respect to the price of i (holding fixed all other factor prices). Each
country has four factors: capital, low, medium, and high skilled labor. Some interesting
patterns emerge:

1. There are dark blue columns corresponding to factors in major countries like China,
Germany, Britain, Japan, and the USA. For these factors, an increase in their price
strongly raises the share of world income going to the rest (low-skilled labor in these
countries does not obey this pattern).
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2. There is a block-diagonal structure where an increase in domestic capital prices low-
ers both domestic labor and capital income shares. On the other hand, an increase in
labor prices often raises domestic labor income and lowers domestic capital’s share
of world income. This is despite the fact that at the micro-level, the elasticity of sub-
stitution among domestic factors is symmetric.

84



Figure 7: The international factor demand system for a selection of countries
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The ijth element is the elasticity of factor j with respect to the price of factor i, holding fixed other factor
prices, given by equation (21).
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I Aggregation and Stability of the Trade Elasticity

In this section, we characterize trade elasticities at different levels of aggregation in terms of
microeconomic primitives. We also prove necessary and sufficient conditions for ensuring
that the trade elasticity is constant and stable. We also relate the instability of the trade
elasticity to the Cambridge Capital controversy — a mathematically similar issue that arose
in capital theory in the middle of the 20th century.

I.1 Aggregating and Disaggregating Trade Elasticities

We start by defining a class of aggregate elasticities. Consider two sets of producers I and
J. Let λI = ∑i∈I λi and λJ = ∑j∈J be the aggregate sales shares of producers in I and J, and
let χI

i = λi/λI and χJ
j = λj/λJ . Let k be another producer. We then define the following

aggregate elasticities capturing the bias towards I vs. J of a productivity shock to m as:

ε I J,m =
∂(λI/λJ)

∂ log Am
,

where the partial derivative indicates that we allow for this elasticity to be computed hold-
ing some things constant.

To shed light on trade elasticities, we proceed as follows. Consider a set of producers
S ⊆ Nc in a country c. Let J be denote a set of domestic producers that sell to producers
in S, and I denote a set of foreign producers that sell to producers in S. Without loss of
generality, using the flexibility of network relabeling, we assume that producers in I and J
are specialized in selling to producers in S so that they do not sell to producers outside of
S.

Consider an iceberg trade cost modeled as a negative productivity shock d log(1/Am)

to some producer m. We then define the trade elasticity as ε I J,k = ∂(λJ/λI)/∂ log(1/Am) =

∂(λI/λJ)/∂ log Am. As already mentioned, the partial derivative indicates that we allow
for this elasticity to be computed holding some things constant. There are therefore dif-
ferent trade elasticities, depending on exactly what is held constant. Different versions of
trade elasticities would be picked up by different versions of gravity equations regressions
with different sorts of fixed effects and at different levels of aggregation.

There are several possibilities for what to hold constant, ranging from the most partial
equilibrium to the most general equilibrium. At one extreme, we can hold constant the
prices of all inputs for all the producers in I and J and the relative sales shares of all the
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producers in S:

ε I J,m = ∑
s∈S

∑
i∈I

χI
i (θs − 1)

λs

λi
CovΩ(s)(I(i), Ω(m))− ∑

s∈S
∑
j∈J

χJ
j (θs − 1)

λs

λj
CovΩ(s)(I(j), Ω(m)), (22)

where I(i) and I(j) are the ith and jth columns of the identity matrix. An intermediate
possibility is to hold constant the wages of all the factors in all countries:

ε I J,k = ∑
i∈I

χI
i Γik − ∑

j∈J
χJ

j Γjk,

where
Γik = ∑

s∈C+N
(θk − 1)

λs

Λ f
CovΩ(s)

(
Ψ(i), Ψ(k)

)
,

And at the other extreme, we can compute the full general equilibrium:

ε I J,m = ∑
i∈I

χI
i

(
Γim − ∑

g∈F
Γig

d log Λg

d log Am
+ ∑

g∈F
Ξig

d log Λg

d log Am

)

− ∑
j∈J

χJ
j

(
Γjm − ∑

g∈F
Γjg

d log Λg

d log Am
+ ∑

g∈F
Ξjg

d log Λg

d log Am

)
,

d log Λ f / d log Am is given in Theorem 3 and

Ξjg = ∑
c∈C

(λWc
j − λj)

λj
ΦcgΛg.

The trade elasticity is a linear combination of microeconomic elasticities of substitution,
where the weights depend on the input-output structure. Except at the most microeco-
nomic level where there is a single producer s in S and in the most partial-equilibrium
setting where we recover ϵs − 1, this means that the aggregate trade elasticity is typically
an endogenous object, since the input-output structure is itself endogenous.4 Furthermore,
in the presence of input-output linkages, it is typically nonzero even for trade shocks that
are not directly affecting the sales of I to J, except in the most partial-equilibrium setting.

4In Appendix I.3, we provide necessary and sufficient conditions for the trade elasticity to be constant in
the way.
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Example: Trade Elasticity in a Round-About World Economy

In many trade models, the trade elasticity, defined holding factor wages constant, is an
invariant structural parameter. As pointed out by Yi (2003), in models with intermediate
inputs, the trade elasticity can easily become an endogenous object. Consider the two-
country, two-good economy depicted in Figure 1. The representative household in each
country only consumes the domestic good, which is produced using domestic labor and
imports with a CES production function with elasticity of substitution θ. We consider the
imposition of a trade cost hitting imports by country 1 from country 2. For the sake of
illustration, we assume that the trade cost does not apply to the exports of country 1 to
country 2.

The trade elasticity holding factor wages and foreign input prices constant is a constant
structural parameter, and given simply by

θ − 1.

However, echoing our discussion above, the trade elasticity holding factor wages constant
is different, and is given by

θ − 1
1 − Ω21Ω12

,

where Ωij is the expenditure share of i on j, e.g. its intermediate input import share. As
the intermediate input shares increase, the trade elasticity becomes larger. Simple trade
models without intermediate goods are incapable of generating these kinds of patterns.

Of course, since the intermediate input shares Ωij are themselves endogenous (depend-
ing on the iceberg shock), this means that the trade elasticity varies with the iceberg shocks.
In particular, if θ > 1, then the trade elasticity increases (nonlinearly) as iceberg costs on
imports fall in all countries since intermediate input shares rise. 5

I.2 Necessary and Sufficient Conditions for Constant Trade Elasticity

In this section, we study conditions under which the trade elasticity (holding fixed factor
prices) is constant. This trade elasticity between i and j with respect to shocks to k is defined
as

εij,k =
∂(λi/λj)

∂ log Ak
,

5In Appendix I.3, we show that there it is possible to generate “trade re-switching” examples where the
trade elasticity is non-monotonic with the trade cost (or even has the “wrong” sign) in otherwise perfectly
respectable economies. These examples are analogous to the “capital re-switching” examples at the center
the Cambridge Cambridge Capital controversy.
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H1 H2

L1 L2

y2y1

Figure 8: The solid lines show the flow of goods. Green nodes are factors, purple nodes are
households, and white nodes are goods. The boundaries of each country are denoted by
dashed box.

holding fixed factor prices. We say that a good m is relevant for εij,k if

λmCovΩ(m)(Ψ(k), Ψ(i)/λi − Ψ(j)/λj) , 0.

If m is not relevant, we say that it is irrelevant. For instance, if some producer m is exposed
symmetrically to i and j through its inputs

Ωml(Ψli − Ψl j) = 0 (l ∈ N),

then εij,k is not a function of θm and m is irrelevant. Another example is if some producer
m , j is not exposed to k through its inputs

Ψmk = 0,

then εij,k is not a function of θm and m is irrelevant.

Corollary 6 (Constant Trade Elasticity). Consider two distinct goods i and j that are imported to
some country c. Then consider the following conditions:

(i) Both i and j are unconnected to one another in the production network: Ψij = Ψji = 0, and i
is not exposed to itself Ψii = 1.

(ii) The representative “world” household is irrelevant

Covχ

(
Ψ(i),

Ψ(i)

λi
−

Ψ(j)

λj

)
= 0,

which holds if both i and j are only used domestically, so that only household c is exposed to i
and j. That is, λ

Wh
i = λ

Wh
j = 0 for all h , c. This assumption holds automatically if i and j

are imports and domestic goods and there are no input-output linkages.

(iii) For every relevant producer l, the elasticity of substitution θl = θ.
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The trade elasticity of i relative to j with respect to iceberg shocks to i is constant, and equal to

εij,i = (θ − 1).

if, and only if, (i)-(iii) hold.

The conditions set out in the example above, while seemingly stringent, actually rep-
resent a generalization of the conditions that hold in gravity models with constant trade
elasticities. Those models oftentimes either assume away the production network, or as-
sume that traded goods always enter via the same CES aggregator.

A noteworthy special case is when i and j are made directly from factors, without any
intermediate inputs. Then, we have the following

Corollary 7. (Network Irrelevance) If some good i and j are only made from domestic factors, then

∑
m∈C,N

λmCovΩ(m)(Ψ(i), Ψ(j)/λi − Ψ(i)/λi) = 1.

Hence, if all microeconomic elasticities of substitution θm are equal to the same value θm = θ then
εij,j = θ.

Suppose that i is domestic goods and j are foreign imports, both of which are made
only from factors (no intermediate inputs are permitted). Then a shock to j is equivalent
to an iceberg shock to transportation costs. In this case, the trade elasticity of imports j
into the country producing i with respect to iceberg trade costs is a convex combination of
the underlying microelasticities. Of course, whenever all micro-elasticities of substitution
are the same, the weights (which have to add up to one) become irrelevant, and this is the
situation in most benchmark trade models with constant trade elasticities. Specifically, this
highlights the fact that having common elasticities is not enough to deliver a constant trade
elasticity (holding fixed factor prices) in the presence of input-output linkages as shown in
the round-about example in the previous section.

I.3 Trade Reswitching

Yi (2003) shows that the trade elasticity can be nonlinear due to vertical specialization,
where the trade elasticity can increase as trade barriers are lowered. Building on this in-
sight, we can also show that, at least in principle, the trade elasticity can even have the
“wrong sign” due to these nonlinearities. This relates to a parallel set of paradoxes in cap-
ital theory.
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To see how this can happen, imagine there are two ways of producing a given good: the
first technique uses a domestic supply chain and the other technique uses a global value
chain. Whenever the good is domestically produced, the iceberg costs of transporting the
good are, at most, incurred once — when the finished good is shipped to the destination.
However, when the good is made via a global value chain, the iceberg costs are incurred
as many times as the good is shipped across borders. As a function of the iceberg cost
parameter τ, the difference in the price of these two goods (holding factor prices fixed) is a
polynomial of the form

Bnτn − B1τ, (23)

where Bn and B1 are some coefficients and n is the number of times the border is crossed.
The nonlinearity in τ, whereby the iceberg cost’s effects are compounded by crossing the
border, drives the sensitivity of trade volume to trade barriers in Yi (2003). The benefits
from using a global value chain are compounded if the good has to cross the border many
times.

However, this discussion indicates the behavior of the trade elasticity can, in principle,
be much more complicated. In fact, an interesting connection can be made between the
behavior of the trade elasticity and the (closed-economy) reswitching debates of the 1950s
and 60s. Specifically, equation (23) is just one special case. In general, the cost difference
between producing goods using supply chains of different lengths is a polynomial in τ –
and this polynomial can, in principle, have more than one root. This means that the trade
elasticity can be non-monotonic as a function of the trade costs, in fact, it can even have the
“wrong” sign, where the volume of trade decreases as the iceberg costs fall. This mirrors
the apparent paradoxes in capital theory where the relationship between the capital stock
and the return on capital can be non-monotonic, and an increase in the interest rate can
cause the capital stock to increase.

To see this in the trade context, imagine two perfectly substitutable goods, one of which
is produced by using 10 units of foreign labor, the other is produced by shipping 1 unit of
foreign labor to the home country, back to the foreign country, and then back to the home
country and combining it with 10 units of domestic labor. If we normalize both foreign and
domestic wages to be unity, then the costs of producing the first good is 10(1+ τ), whereas
the cost of producing the second good is (1 + τ)3 + 10, where τ is the iceberg trade cost.
When τ = 0, the first good dominates and goods are only shipped once across borders.
When τ is sufficiently high, the cost of crossing the border is high enough that the first
good again dominates. However, when τ has an intermediate value, then it can become
worthwhile to produce the second good, which causes goods to be shipped across borders
many times, thereby inflating the volume of trade.
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Such examples are extreme, but they illustrate the point that in the presence of input-
output networks, the trade elasticity even in partial equilibrium (holding factor prices
constant) can behave quite unlike any microeconomic demand elasticity, sloping upwards
when, at the microeconomic level, every demand curve slopes downwards.

Non-Symmetry and Non-Triviality of Trade Elasticities

Another interesting subtlety of Equation (22) is that the aggregate trade elasticities are non-
symmetric. That is, in general εij,l , ε ji,l. Furthermore, unlike the standard gravity equa-
tion, Equation (22) shows that the cross-trade elasticities are, in general, nonzero. Hence,
changes in trade costs between k and l can affect the volume of trade between i and j holding
fixed relative factor prices and incomes. This is due to the presence of global value chains,
which transmit shocks in one part of the economy to another independently of the usual
general equilibrium effects (which work through the price of factors).

J Partial Equilibrium Counterpart to Theorem 5

Proposition 2. For a small open economy operating in a perfectly competitive world market, the
introduction of import tariffs reduces the welfare of that country’s representative household by

∆W ≈ 1
2 ∑

i
λi∆ log yi∆ log µi,

where µi is the ith gross tariff (no tariff is µi = 1), yi is the quantity of the ith import, and λi is the
corresponding Domar weight.

Proof. To prove this, let e(p)W be the expenditure function of the household. We have
e(p)W = p · q + ∑i(µi − 1)piyi. Differentiate this once to get c · d p + e(p)d W = q ·
d p + d q · p + ∑i d µi piyi + ∑i(µi − 1)d(piyi). Theorem 2 implies that this can be sim-
plified to e(p)d W = (q − c) · d p + ∑i d µi piyi + ∑i(µi − 1)d(piyi) = ∑i(µi − 1)d(piyi),
where the left-hand side is the equivalent variation. Now differentiate this again, and eval-
uate at µi = 1 to get ∑i pi d yi. Hence the second-order Taylor approximation, at µ = 1, is
1
2 ∑i d µi pi d yi =

1
2 ∑i d log µi piyi d log yi, and our normalization implies piyi is equal to its

Domar weight. ■
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K Extension to Roy Models

Galle et al. (2017) combine a Roy-model of labor supply with an Eaton-Kortum model of
trade to study the effects of trade on different groups of workers in an economy. In this
section, we show how our framework can be adapted for analyzing such models.

Suppose that Hc denotes the set of households in country c. As in Galle et al. (2017),
households consume the same basket of goods, but supply labor in different ways. We
assume that each household type has a fixed endowment of labor Lh, which are assigned
to work in different industries according to the productivity of workers in that group and
the relative wage differences offered in different industries.

As usual, let world GDP be the numeraire. Define Λh
f to be type h’s share of income

derived from earning wages f

Λh
f =

Φh f Λ f

χh
,

where χh = ∑k∈F ΦhkΛk. The Roy model of Galle et al. (2017) implies that

χh
χh

=

(
∑

f
Λ

h
f

(
w f

w f

)γh
) 1

γh Lh

Lh ,

where γh is the supply elasticity, variables with overlines are initial values, Lh is the stock
of labor h has been endowed with (since we analyze log changes, only shocks to the en-
dowment value are relevant). Galle et al. (2017) show that the above equations can be mi-
crofounded via a model where homogenous workers in each group type draw their ability
for each job from Frechet distributions, and choose to work in the job that offers them the
highest return. The Roy model generalizes the factor market, with γh = 1 representing the
case where labor cannot be moved across markets by h. If γh > 1 then h can take advantage
of wage differentials to redirect its labor supply and boost its income. When γ → ∞, labor
mobility implies that all wages in the economy are equalized (and the model collapses to a
one-factor model).

Of course, due to the fact that factor shares Λh
f endogenously respond to factor prices,

Theorem 3 can no longer be used to determine how these shares will change in equilibrium.
Therefore, we extend those propositions here.

Proposition 3. The response of the factor prices to a shock d log Ak is the solution to the following
system:
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1. Product Market Equilibrium:

Λl
d log Λl
d log Ak

= ∑
j∈{H,N}

λj(1 − θj)CovΩ(j)

(
Ψ(k) + ∑

f
Ψ( f )

d log w f

d log Ak
, Ψ(l)

)

+ ∑
h∈H

(λWh
l − λl)

(
∑
f∈Fc

Φh f Λ f
d log w f

d log Ak

)
.

2. Factor Market Equilibrium:

d log Λ f = ∑
h∈H

EΦ(h)

[
γh
(
EΛ(h)

(
d log w f − d log w

))
+
(
EΛ(h)(d log w)

)
+ (d log L)

]
.

Given this, the welfare of the hth group is

d log Wh
d log Ak

= ∑
s∈F

(
Λh

s − ΛWh
s

)
d log ws + λ

Wh
k + d log Lh.

The product market equilibrium conditions are exactly the same as those in Theorem 3,
but now we have some additional equations from the supply-side of the factors (which are
no longer endowments). Letting γh = 1 for every h ∈ H recovers Theorem 3.

L Heterogenous Households Within Countries

To extend the model to allow for a set of heterogenous agents h ∈ Hc within country c ∈ C,
we proceed as follows. We denote by H the set of all households. Each household h in
country c maximizes a homogenous-of-degree-one demand aggregator

Ch = Wh({chi}i∈N),

subject to the budget constraint

∑
i∈N

pichi = ∑
f∈F

Φh f w f L f + Th,

where chi is the quantity of the good produced by producer i and consumed by the house-
hold, pi is the price of good i, Φh f is the fraction of factor f owned by household, w f is the
wage of factor f , and Th is an exogenous lump-sum transfer.

We define the following country aggregates: cci = ∑h∈Hc chi, Φc f = ∑h∈Hc Φh f , and
Tc = ∑h∈Hc Th. We also define the HAIO matrix at the household level as a (H + N + F)×
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(H + N + F) matrix Ω and the Leontief inverse matrix as Ψ = (I − Ω)−1.
All the definitions in Section 2 remain the same. In addition, we introduce the corre-

sponding household-level definitions for a household h. First, the nominal output and the
nominal expenditure of the household are:

GDPh = ∑
f∈F

Φh f w f L f , GNEh = ∑
i∈N

pichi = ∑
f∈F

Φh f w f L f + Th,

where we think of the household as a set producers intermediating the uses by the different
producers of the different factor endowments of the household. Second, the changes in real
output and real expenditure or welfare of the household are:

d log Yh = ∑
f∈F

χ
Yh
f d log L f , d log PYh = ∑

f∈F
χ

Yh
f d log w f ,

d log Wh = ∑
i∈N

χ
Wh
i d log chi, d log PWh = ∑

i∈N
χ

Wh
i d log pi,

with χ
Yh
f = Φh f w f L f /GDPh and χ

Wh
i = pichi/GNEh. Third, the exposure to a good or

factor k of the real expenditure and real output of household h is given by

λ
Wh
k = ∑

i∈N
χ

Wh
i Ψik, λ

Yh
k = ∑

f∈F
χ

Yh
f Ψ f k,

where recall that χ
Wh
i = pichi/GNEh and χ

Yh
f = Φh f w f L f /GDPh. The exposure in real

output to good or factor k has a direct connection to the sales of the producer:

λ
Yh
k = 1{k∈F}

Φhk pkyk
GDPh

,

where λ
Yh
k = 1{k∈F}Φhk(GDP/GDPh)λk the local Domar weight of k in household h and

where Φhk = 0 for k ∈ N to capture the fact that the household endowment of the goods
are zero. Fourth, the share of factor f in the income or expenditure of the household is
given by

Λh
f =

Φh f w f L f

GNEh
.

The results in Section 3 go through without modification. Theorems 1 and 2 can be
extended to the level of a household h by simply replacing the country index c by the
household index h.

The results in Section 4 go through except the term on the second line of (8) must be
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replaced by

∑
h∈H

λ
Wh
i − λi

λi
Φh f Λ f ,

where we write λi and Λi interchangeably when i ∈ F is a factor.
The results in Section 5 go through with the following changes. Theorem 5 goes through

without modification, and extends to the household level where ∆ log Yh ≈ 0. Theorem
4 goes through with some minor modifications. The world Bergson-Samuelson welfare
function is now WBS = ∑h χW

h log Wh, changes in world welfare are measured as ∆ log δ,
where δ solves the equation WBS(W1, . . . , WH) = WBS(W1/δ, . . . , WH/δ), where Wh are
the values at the initial efficient equilibrium. We use a similar definition for country level
welfare δc, and the same notation for household welfare δh. Changes in world welfare are
given up to the second order by

∆ log δ ≈ ∆ log W + CovχW
h

(
∆ log χW

h , ∆ log PWh

)
,

changes in country welfare are given up to the first order by

∆ log δc ≈ ∆ log Wc ≈ ∆ log χW
c − ∆ log PWc ,

and the change in country welfare up to the first order by

∆ log δh ≈ ∆ log Wh ≈ ∆ log χW
h − ∆ log PWh .

Theorems 6 goes through with some minor modifications. The final term on the last
line must be replaced by

1
2 ∑

l∈N
∑

c∈H
χW

c ∆ log χW
c ∆ log µl(λ

Wc
l − λl).
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M Growth Accounting Results

Table 2: Decomposition of real GNE growth

GNE GDP ToT Technology Factoral ToT Transfers
AUS 0.665 0.526 0.134 0.619 0.041 0.006
AUT 0.213 0.315 0.000 0.402 -0.087 -0.102
BEL 0.285 0.252 0.038 0.431 -0.142 -0.004
BGR 0.322 -0.217 0.354 -0.145 0.282 0.185
BRA 0.549 0.532 0.049 0.538 0.043 -0.032
CAN 0.630 0.525 0.110 0.581 0.055 -0.005
CHN 1.780 1.810 0.159 1.583 0.386 -0.188
CYP 0.322 0.275 -0.046 0.261 -0.033 0.093
CZE 0.413 0.283 0.295 0.412 0.166 -0.166
DEU 0.160 0.306 -0.013 0.428 -0.135 -0.132
DNK 0.239 0.199 0.095 0.318 -0.024 -0.056
ESP 0.330 0.280 0.003 0.346 -0.063 0.047
EST 0.793 0.125 0.661 0.351 0.435 0.008
FIN 0.347 0.432 -0.121 0.386 -0.075 0.037
FRA 0.317 0.358 -0.079 0.374 -0.095 0.038
GBR 0.437 0.358 0.058 0.465 -0.049 0.021
GRC 0.165 0.130 -0.027 0.110 -0.006 0.062
HUN 0.326 0.278 0.141 0.308 0.111 -0.092
IDN 0.633 0.660 -0.006 0.684 -0.030 -0.020
IND 1.236 1.264 -0.043 1.169 0.053 0.015
IRL 0.503 0.575 0.290 0.482 0.383 -0.361
ITA 0.072 -0.008 0.082 0.182 -0.108 -0.002
JPN 0.034 0.104 -0.102 0.187 -0.185 0.032
KOR 0.590 0.834 -0.149 0.739 -0.054 -0.094
LTU 0.739 0.515 0.187 0.423 0.278 0.038
LUX 0.605 0.162 0.979 0.581 0.561 -0.537
LVA 0.728 0.095 0.404 0.263 0.235 0.230
MEX 0.640 0.526 0.090 0.537 0.079 0.023
MLT 0.432 0.464 0.124 0.345 0.243 -0.156
NLD 0.249 0.374 0.009 0.495 -0.112 -0.134
POL 0.746 0.779 -0.039 0.638 0.101 0.006
PRT 0.096 0.041 0.040 0.131 -0.051 0.016
ROU 0.698 0.397 0.189 0.277 0.308 0.112
RUS 0.721 0.583 0.315 0.632 0.267 -0.178
SVK 0.690 0.557 0.196 0.403 0.349 -0.063
SVN 0.339 0.391 0.015 0.398 0.009 -0.067
SWE 0.360 0.413 -0.014 0.443 -0.045 -0.039
TUR 0.849 0.986 -0.232 0.794 -0.040 0.096
TWN 0.502 1.066 -0.410 0.727 -0.070 -0.155
USA 0.431 0.391 -0.007 0.431 -0.046 0.047
ROW 0.753 0.655 0.084 0.639 0.101 0.014

The sample is 1996-2014. Each row decomposes the cumulative log change in real GNE
for each country. The first decomposition follows (6). Columns 2, 3 and 6 sum to col-
umn 1. The second decomposition follows (5). Columns 4, 5, and 6 sum to column 1.
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