A Theory of Pareto Distributions
NBER EF&G Meeting

François Geerolf
UCLA

October 21, 2016
Pareto distributions

- 1890s, tax tabulations: Pareto plots N of people with incomes $\geq x$:
 \[\log N = \log A - \alpha \log x. \]
- Same α: England, Ireland, Prussia, Saxe, and Peru.
- With Pareto:
 - High Heterogeneity (unbounded).
 - No scale. US: $y_{50} = 51,939 < y_{av} = 72,641.$
 - Long tails. $5\sigma, 10\sigma$ draws are very frequent. Top 1% gets $\approx 20\%$ of pre-tax income.
- Pareto \neq bell-shaped curve. Few empirical regularities in economics.
Zipf’s law for firm sizes

Slope: 2.059 (density) ⇒ Tail coeff: **1.059**. "Zipf’s law".
Theories of Pareto distributions in Economics

Why Pareto? May reflect some fundamental economic principle:

1. **Pareto distributed primitives.** Explain one Pareto with another Pareto.
 - Lucas (1978), Chaney (2008), Gabaix, Landier (2008), etc.

2. **Paretos from random growth models.**

3. **New from this paper: Paretos from production functions.** Assignment models with positive sorting, with a special form of production function.
 - Property of the production function, not of specific microfoundations.
 - Another example: Geerolf (2015).
This paper

- Production function derives from a particular version of Garicano (2000). Under limited assumptions on the skill distribution:

 - L layers of hierarchy = Pareto tail for span of control with coefficient:

 \[
 \alpha_L = 1 + \frac{1}{L - 1}, \quad \alpha_2 = 2, \quad \alpha_{+\infty} = 1.
 \]

 ⇒ a new theory of Zipf’s law for firm sizes.

- Pareto tail for labor incomes, with \(\beta_L \in [1, +\infty] \), when top skills are scarce enough.

- Data supports these predictions: French matched employer-employee / known US data.

- Taking competitive assignment models to the extreme, where wages are a convex function of skills. (Sattinger (1975)) Here: wages are Pareto with a bounded support for skills.

- Agents: continuum, measure 1. 1 unit of time.
- 1 good. 1 unit of time → 1 good.
- Agents: different exogenous skills. Agent with skill x can solve "problems" in [0, x].
- Distribution of skills x: c.d.f. \(F(.) \), density \(f(.) \) on \([1 - \Delta, 1] \).
 \[\Delta: \text{Heterogeneity in Skills.} \]
 \[F(.): \text{Skill Distribution.} \]
- Workers encounter problems in production. Draw a unit continuum of different problems on \([0, 1] \) in c.d.f. \(G(.) \), uniform w.l.o.g. :
 - When they know the solution: produce 1 unit of the good.
 - When they don’t: can ask someone else for a solution.
 \[h < 1: \text{manager’s time cost to listen to one problem.} \]
 \[h: \text{Helping Time.} \]
Imposing 2 layers

- **Planner’s problem.** Planner maximizes total output.

- Occupational cutoff: z_2 splits managers (high x) and workers (low x).

- Workers x fail to solve $1 - x$ problems. Time supervising worker x: $h(1 - x)$. Span of control of a manager hiring workers with skill x:

 $$n = \frac{1}{h(1 - x)}$$

- Output $Q(x, y)$ jointly produced by manager with skill y hiring workers with skill x:

 $$Q(x, y) = \frac{y}{h(1 - x)} \Rightarrow \frac{\partial^2 Q(x, y)}{\partial x \partial y} = \frac{1}{h(1 - x)^2} > 0$$

- Complementarities \Rightarrow **Positive sorting.** $y = m(x)$, $m'(x) > 0$.
Uniform distribution

\[y = m(x) \]

- \(m(.) \) ensures market clearing for time:
 \[f(y) dy = h(1 - x) f(x) dx \Rightarrow f(m(x)) m'(x) = h(1 - x) f(x). \]

- \(z_2, m(.) \) unknowns. Boundary value problem:
 \[m(1 - \Delta) = z_2, \quad m(z_2) = 1. \]

- Assume for a moment that \(f(x) = 1/\Delta \) on \([1 - \Delta, 1]\). Then 1-x is a uniform distribution on \([1 - z_2, \Delta]\). What is the distribution of span of control:
 \[n(y) = \frac{1}{h(1 - x)}. \]
Mathematical Result: Inverse of a Uniform on $[\Delta^2, \Delta]$

Lemma

If $U \sim \text{Uniform } ([\Delta^2, \Delta])$, then

$1/U \sim \text{Truncated Pareto } (1, 1/\Delta, 1/\Delta^2)$.

- Assume $f_U(u) = 1/(\Delta - \Delta^2)$ on $[\Delta^2, \Delta]$. The "tail function" (complementary c.d.f) of $1/U$ is:

$$
\bar{F}_{1/U}(x) \equiv 1 - F_{1/U}(x) = \mathbb{P}
\left[
\frac{1}{U} \geq x
\right]
= \mathbb{P}
\left[
U \leq \frac{1}{x}
\right]
= \int_{\Delta^2}^{1/x} f_U(u)du
$$

$$
\bar{F}_{1/U}(x) \equiv 1 - F_{1/U}(x) = \frac{1}{x} - \Delta^2
\frac{1}{\Delta - \Delta^2}.
$$

- Inverse of a Uniform on $[0, \Delta] = \text{full Pareto}$ with tail coefficient 1.
Mathematical Result 2: Inverse of a Uniform on $[\Delta^2, \Delta]$

- Span of control of manager y hiring workers with skill x:
 \[n(y) = \frac{1}{h(1 - x)} \]

- If $f(.)$ is uniform, $1 - x$ is a uniform distribution over $[1 - z_2, \Delta]$.

- I show that:
 \[1 - z_2 = \frac{\sqrt{1 + h^2\Delta^2} - 1}{h} \sim_{\Delta \to 0} \frac{h}{2} \Delta^2. \]

- Thus the size-biased distribution is a Truncated Pareto (1).

- Size-biased distribution: a firm with 100 employees is counted 100 times. ⇒ Overstating fattailedness.

- Size-biased distribution is Truncated Pareto (1) ⇒ distribution is Truncated Pareto (2).
Non-uniform distribution

▶ "blowing up" of the denominator ⇒ under some regularity conditions on $f(.)$, works also if not uniform.

▶ If $f_X(0) \neq 0$, then **Pareto tail**:

$$1 - F_{1/X}(x) = \int_0^{1/x} f_X(u) du \sim +\infty \frac{f_X(0)}{x}.$$

▶ Example with a linear increasing density.
Firm with $L = 3$ layers

- Positive Sorting.

![Diagram showing workers and managers in different firms with layers]

- Generalizing $\alpha_2 = 2$ by iteration, the tail exponent:

$$\alpha_L = 1 + \frac{1}{L-1}.$$

- When $L \rightarrow \infty$, Zipf’s law for firm sizes:

$$\alpha_{+\infty} = 1.$$

- Again, true for any density.
French DADS - establishments per firms

- Example: number of establishments per firms. (France)
Assignment equation

- Skill prices $w(.)$ decentralizing optimal allocations:

$$w(y) = \max_x \frac{y - w(x)}{h(1 - x)}.$$

- Envelope condition:

$$w'(y) = \frac{1}{h(1 - x)} = n(y) \quad \Rightarrow \quad \frac{dw(y(n))}{dn} = n(y(n)) \frac{y'(n)}{\Delta Wages}.$$

- Comparison:

- Gabaix, Landier (2008). **Small** differences in talent across managers, **large and Pareto** firm sizes ⇒ Large differences in pay.

- This paper: **Small** differences in talents across **workers and managers** ⇒ Large differences in pay. (through endogenous large and Pareto firm sizes)
Labor income distribution: effect of a decrease in h (IT?)

- Gabaix, Landier (2008): if skill distribution does not change, Pareto coefficient does not change.

- Not true in this paper when h diminishes (IT?).

- Empirically: $\alpha = -3$ in 1970s to $\alpha = -1.8$ in 2010s.
Conclusion: coming back to Axtell (2001)
Conclusion

► Main takeaways:

► Maths:
 ▶ U is Uniform $(0,\Delta) \Rightarrow 1/U$ is Pareto $(1, 1/\Delta)$.
 ▶ X goes through the origin $\Rightarrow 1/X$ has a Pareto tail.

► Stylized model accounts for **Pareto firm size and labor income distribution**, regardless of the ability distribution.

► New intuition for why firm sizes and labor incomes are so heterogenous **despite small observable differences**: ”power law change of variable near the origin”.

► Endogenous ”economics of superstars”.

► Future work:

► **Other microfoundations** for power-law production functions.

► **In applied work**, potential alternative to:
 ▶ **Optimal taxation**: Pareto distributed skills.
 ▶ **Trade**: Pareto distributed firm productivities.
 ▶ **Misallocation**: Pareto distributed manager/firm productivities.