First degree price discrimination

Introduction

- Annual subscriptions generally cost less in total than one-off purchases
- Buying in bulk usually offers a price discount
- these are price discrimination reflecting quantity discounts
- prices are nonlinear, with the unit price dependent upon the quantity bought
- allows pricing nearer to willingness to pay
- so should be more profitable than third-degree price discrimination
- How to design such pricing schemes?

Demand and quantity

- Individual inverse demand $p_{i}=D_{i}\left(q_{i}\right)$
- Interpretation: willingness to pay for the $q_{i}^{\text {th }}$ unit. Also called reservation value.
- Examples:
- Willingness to pay for each extra drink
- Willingness to pay for the right of making an extra phone call
- Willingness to pay for inviting an extra friend to a concert
- Decreasing with q_{i}

First-degree price discrimination 1

- Monopolist charges consumers their reservation value for each unit consumed.
- Extracts all consumer surplus
- Since profit is now total surplus, find that first-degree price discrimination is efficient.

First degree price discrimination - example

- One consumer type.
- Demand $p_{i}=12-q_{i}$.
- Willingness to pay for first unit approximately 11
- Willingness to pay for $4^{\text {th }}$ unit: 8
- Charge consumer willingness to pay for each unit consumed.
- Charge 11 for the first unit, 10 for the second one...
- Price of first four units: bundle containing 4 units $=11+10+9+8=38$

Continuous approximation
-Willingness to pay for the first 4 units $=$ area under demand curve

- $\mathrm{U}(4)=4 *(12+8) / 2=40$

More general case

- Willingnes to pay for first x units $=$
$x *(12+12-\mathrm{x}) / 2=12 x-1 / 2 x^{2}$
- More generally price for first x units:

$$
\int_{0}^{x} P(q) d q
$$

- Linear case $P(q)=A-B q$

$$
P(x)=A x-1 / 2 B x^{2}
$$

Implementation - two part tariffs

4

1. Charge different prices for each unit sold: $P(1)+P(2)+P(3)+P(4)$
2. Charge willingness to pay for the first 4 units (approximately 40).
3. Charge a price per 8 and a flat fee $=$ to triangle $=4 * 4 / 2=8$.

- At a price of 8 per unit, consumer will buy 4 units.
- Will pay $8 * 4=32$ plus the flat fee (8), for total of 40 .
- This scheme is called a two-part tariff.

4. Charge flat fee of 40 with free consumption of 4 units and 8 for each extra unit consumed.

Quantity discount

- Monopolist will charge willingness to pay.
- With linear demand, total price paid is $A x-1 / 2 B x^{2}$
- Called non-linear price
- Price per unit

A- $1 / 2 B x$

- Decreasing in $x-$ quantity discount

Take previous example $(A=12, B=1)$

x	Total price	Price /unit
4	40	10
6	54	9
8	64	8
10	70	7
12	72	6

Optimal quantity

- Take previous example with constant marginal $\operatorname{cost} c=2$

x	Total price	profits
4	40	32
6	54	42
8	64	48
10	70	50
12	72	48

- Optimal rule: equate mg cost to reservation value
- Efficiency: no conflict between value creation and appropriation

More customers: multiple nonlinear prices

- Jazz club serves two types of customer
- Old: demand for entry plus Q_{0} drinks is $P=V_{o}-$ Q
- Young: demand for entry plus Q_{y} drinks is $P=V_{y}$ - Q_{y}
- Equal numbers of each type
- Assume that $V_{o}>V_{y}$: Old are willing to pay more than Young
- Cost of operating the jazz club $C(Q)=F+c Q$
- Demand and costs are all in daily units

Linear prices - no discrimination

- Suppose that the jazz club owner applies "traditional" linear pricing: free entry and a set price for drinks
a aggregate demand is $Q=Q_{o}+Q_{y}=\left(V_{o}+V_{y}\right)-2 P$
- invert to give: $P=\left(V_{o}+V_{y}\right) / 2-Q / 2$
- MR is then $M R=\left(V_{o}+V_{y}\right) / 2-Q$
- equate MR and MC, where MC $=c$ and solve for Q to give
- $Q_{U}=\left(V_{o}+V_{y}\right) / 2-c$
- substitute into aggregate demand to give the equilibrium price
- $P_{u}=\left(V_{o}+V_{y}\right) / 4+c / 2$
- each Old consumer buys $Q_{o}=\left(3 V_{o}-V_{y}\right) / 4-c / 2$ drinks
- each Young consumer buys $Q_{y}=\left(3 V_{y}-V_{o}\right) / 4-c / 2$ drinks
- profit from each pair of Old and Young is $\pi_{u}=\left(V_{o}+V_{y}-2 c\right)^{2}$

This example can be illustrated as follows:
(a) Old Customers

(b) Young Customers

(c) Old/Young Pair of Customers

Linear pricing leaves each type of consumer with consumer surplus

Improvement 1: Add entry fee

- Jazz club owner can do better than this
- Consumer surplus at the uniform linear price is:
- Old: $C S_{o}=\left(V_{o}-P_{u}\right) \cdot Q_{d} / 2=\left(Q_{0}\right)^{2 / 2}$
- Young: $C S_{y}=\left(V_{y}-P_{u}\right) \cdot Q_{y} / 2=\left(Q_{y}\right)^{2 / 2}$
- So charge an entry fee (just less than):
- $E_{o}=C S_{o}$ to each Old customer and $E_{y}=C S_{y}$ to each Young customer
- check IDs to implement this policy
- each type will still be willing to frequent the club and buy the equilibrium number of drinks
- So this increases profit by E_{o} for each Old and E_{y} for each Young customer

Improvement 2: optimal prices

- The jazz club can do even better
- reduce the price per drink
- this increases consumer surplus
- but the additional consumer surplus can be extracted through a higher entry fee
- Consider the best that the jazz club owner can do with respect to each type of consumer

Two-Part Pricing

Set the unit price equal to marginal cost

This gives consumer surplus of $\left(V_{i}-c\right)^{2 / 2}$

Set the entry charge

$$
\text { to }\left(V_{i}-c\right)^{2} / 2
$$

Profit from each pair of Old and Young is now $\pi_{d}=\left[\left(V_{o}-c\right)^{2}+\left(V_{y}-c\right)^{2}\right] / 2$

Block pricing

- Offer a package of "Entry plus X drinks for \$Y"
To maximize profit apply two rules
- set the quantity offered to each consumer type equal to the amount that type would buy at price equal to marginal cost
- set the total charge for each consumer type to the total willingness to pay for the relevant quantity
- Return to the example:

Block pricing 2

$$
\begin{aligned}
& W T P_{o}=\left(V_{o}-c\right)^{2} / 2+\left(V_{o}-c\right) c=\left(V_{o}^{2}-c^{2}\right) / 2 \\
& W T P_{y}=\left(V_{y}-c\right)^{2} / 2+\left(V_{y}-c\right) c=\left(V_{y}^{2}-c^{2}\right) / 2
\end{aligned}
$$

Block pricing 3

- How to implement this policy?
- card at the door
- give customers the requisite number of tokens that are exchanged for drinks

Summary

- First degree price discrimination (charging different prices for additional units) allow monopolist to extract more surplus.
- Optimal quantity $=$ efficient, where reservation value $=\mathrm{mc}$
- Can be implemented with two-part tariff: p=mc and F=CS
- Can also be implemented with block pricing: Charge a flat fee in exchange for total "package". Size of package where reservation value=mc (same as before), fee=area under demand curve.
- Average price decreases with quantity (non-linear price)

