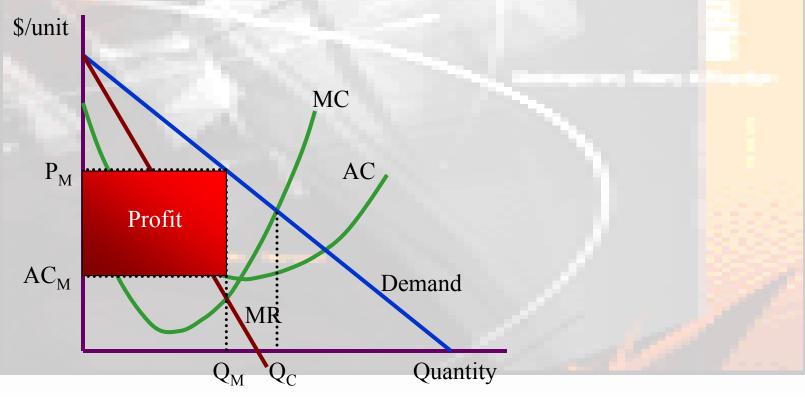

Monopoly: No discrimination

Marginal Revenue


- The only firm in the market
 - market demand is the firm's demand
 - output decisions affect market clearing price

Monopoly and Profit Maximization

• The monopolist maximizes profit by equating marginal revenue with marginal cost

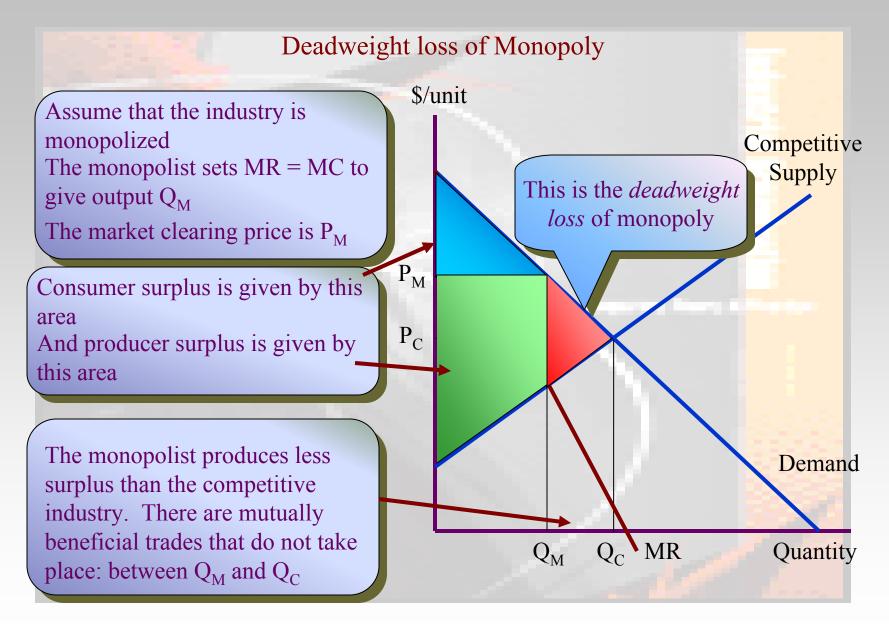
Marginal Revenue and Demand Elasticity

Inverse demand: P(q)

Total revenue R(q) = P(q)q

Marginalrevenue: $R'(q) = p + (\partial P / \partial q)q$

$$= p \left(1 + \left(\frac{\partial P}{\partial q} \right) \frac{q}{p} \right)$$


$$= p \left[1 - \frac{1}{\varepsilon_d} \right]$$

• Max profits: MR = MC $p\left(1 - \frac{1}{\varepsilon_d}\right) = MC$

• higher elasticity \rightarrow lower price

Lerner Index:

$$L = \frac{p - MC}{p} = \frac{1}{\varepsilon_d}$$

Deadweight loss of Monopoly (cont.)

- Why can the monopolist not appropriate the deadweight loss?
 - Increasing output requires a reduction in price
 - this assumes that the same price is charged to everyone.
 - The monopolist creates surplus
 - some goes to consumers
 - some appears as profit
- The monopolist bases her decisions purely on the surplus she gets, *not* on consumer surplus
- The monopolist undersupplies relative to the competitive outcome
- The primary problem: *the monopolist is large relative to the market*

Price Discrimination and Monopoly: Linear Pricing

Introduction

- Prescription drugs are cheaper in Canada than the United States
- Textbooks are generally cheaper in Britain than the United States
- Examples of *price discrimination*
 - presumably profitable
 - should affect market efficiency: not necessarily adversely
 - is price discrimination necessarily bad even if not seen as "fair"?

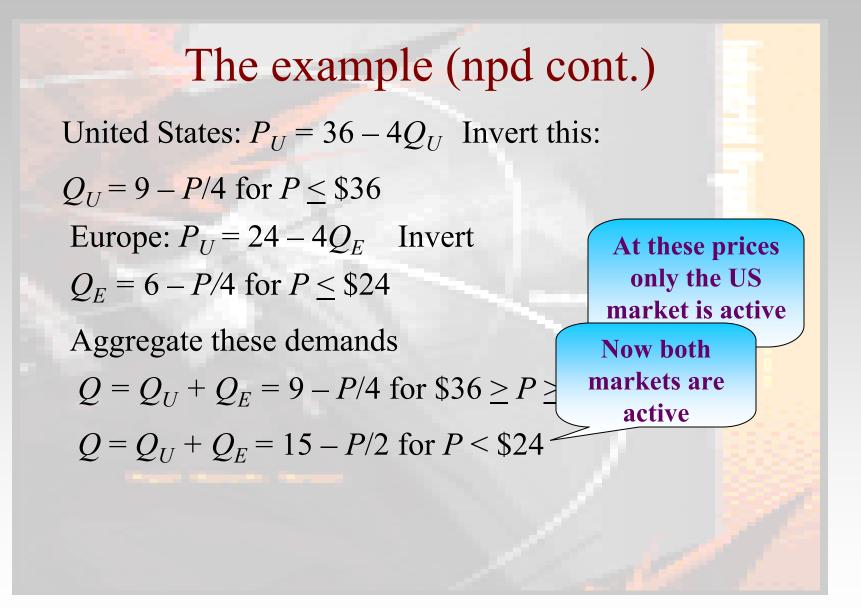
Feasibility of price discrimination

- Two problems confront a firm wishing to price discriminate
 - *identification*: the firm is able to identify demands of different types of consumer or in separate markets
 - easier in some markets than others: e.g tax consultants, doctors
 - *arbitrage*: prevent consumers who are charged a low price from reselling to consumers who are charged a high price
 - prevent re-importation of prescription drugs to the United States
- The firm then must choose the *type* of price discrimination
 - first-degree or personalized pricing
 - second-degree or menu pricing
 - third-degree or group pricing

Third-degree price discrimination

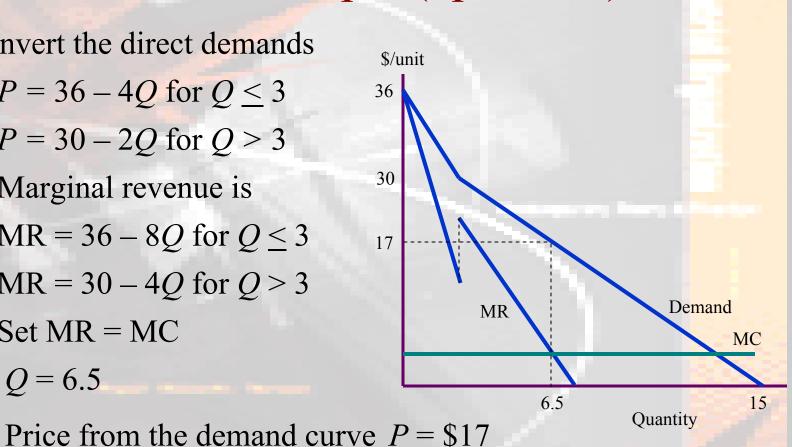
- Consumers differ by some observable characteristic(s)
- A uniform price is charged to all consumers in a particular group – linear price
- Different uniform prices are charged to different groups
 - "kids are free"
 - subscriptions to professional journals e.g. American Economic Review
 - airlines
 - early-bird specials; first-runs of movies

Third-degree price discrimination (cont.)


- The pricing rule is very simple:
 - consumers with low elasticity of demand should be charged a high price
 - consumers with high elasticity of demand should be charged a low price

Third degree price discrimination: example

- Harry Potter volume sold in the United States and Europe
- Demand:
 - United States: $P_U = 36 4Q_U$
 - Europe: $P_E = 24 4Q_E$
- Marginal cost constant in each market -MC =\$4


The example: no price discrimination

- Suppose that the same price is charged in both markets
- Use the following procedure:
 - calculate aggregate demand in the two markets
 - identify marginal revenue for that aggregate demand
 - equate marginal revenue with marginal cost to identify the profit maximizing quantity
 - identify the market clearing price from the aggregate demand
 - calculate demands in the individual markets from the individual market demand curves and the equilibrium price

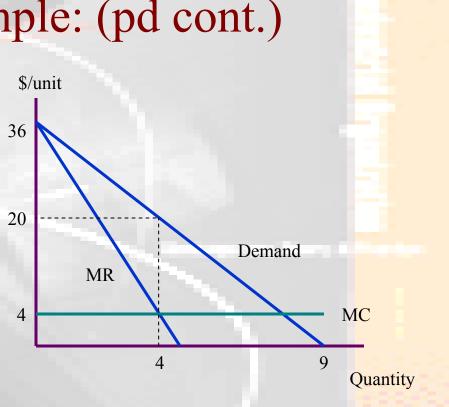
The example (npd cont.)

Invert the direct demands P = 36 - 4Q for $Q \le 3$ P = 30 - 2Q for Q > 3Marginal revenue is $MR = 36 - 8Q \text{ for } Q \le 3$ 17 MR = 30 - 4Q for Q > 3Set MR = MCQ = 6.5

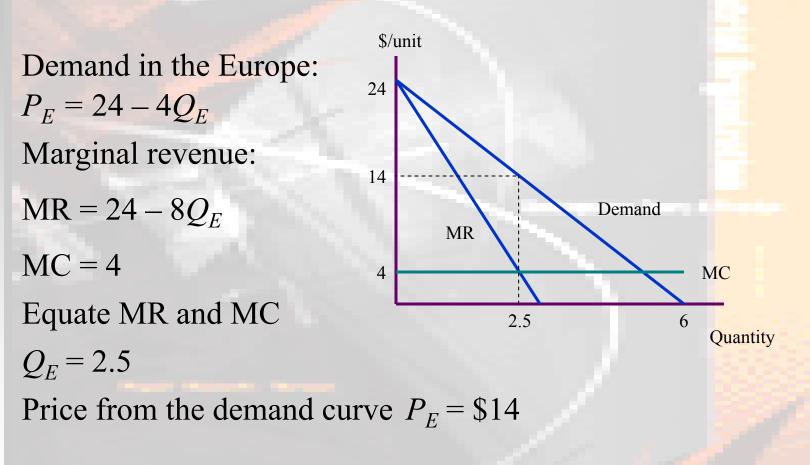
The example (npd cont.)

Substitute price into the individual market demand curves:

 $Q_U = 9 - P/4 = 9 - 17/4 = 4.75$ million $Q_E = 6 - P/4 = 6 - 17/4 = 1.75$ million Aggregate profit = (17 - 4)x6.5 = \$84.5 million


The example: price discrimination

- The firm can improve on this outcome
- Check that MR is not equal to MC in both markets
 - MR > MC in Europe
 - MR < MC in the US
 - the firms should transfer some books from the US to Europe
- This requires that different prices be charged in the two markets
- Procedure:
 - take each market separately
 - identify equilibrium quantity in each market by equating MR and MC
 - identify the price in each market from market demand


The example: (pd cont.)

Demand in the US: $P_U = 36 - 4Q_U$ Marginal revenue: $MR = 36 - 8Q_U$ MC = 4Equate MR and MC $Q_U = 4$

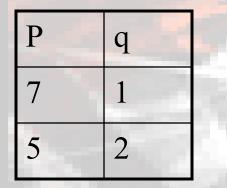
Price from the demand curve $P_U = 20

The example: (pd cont.)

The example (pd cont.)

- Aggregate sales are 6.5 million books
 the same as without price discrimination
- Aggregate profit is (20 4)x4 + (14 4)x2.5 = \$89 million
 - \$4.5 million greater than without price discrimination

No price discrimination: non-constant cost

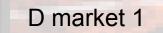

- The example assumes constant marginal cost
- How is this affected if MC is non-constant?

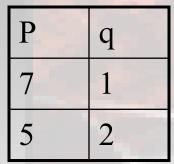
Suppose MC is increasing

An example with increasing MC

 $MC(q) = 2^{*}(q-1)$

D market 1


D market 2


Р	q
4	1
3	2

No discrimination

7 1 5 2 4 3 3 4	р	q	TR	MR	MC	TC
4 3	7	1				
	5	2				
3 4	4	3				
	3	4				

An example with increasing MC

Previous solution: p=5, q=2, TC=2, $\pi=8$

Anything better?

D market 2

Consider selling one unit in each market:
$p_1 = 7, p_2 = 4$ TR=11 and $\pi = 9$

Р	q
4	1
3	2

Where is the difference coming from?

 $MC(q) = 2^{*}(q-1)$

Example (continued)

market 1

р	q	TR	MR	
7	1	7	7	
5	2	10	3	

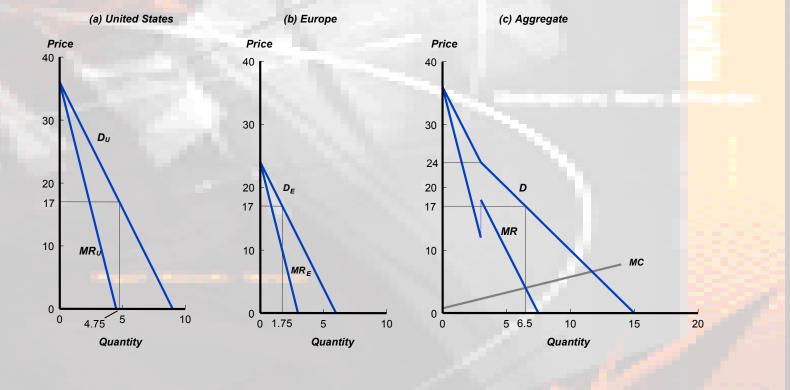
market 2	

р	q	TR	MR	
4	1	4	4	
3	2	6	2	

Key idea: order consumers by MR

q	MR	MC
1	7	0
2	4	2
3	3	4
4	2	8

The optimum is to include only the first two consumers:

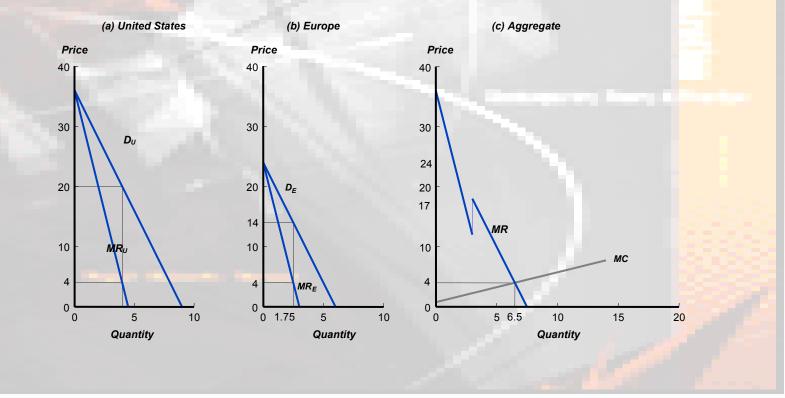

$$p_1 = 7, p_2 = 4.$$

No price discrimination: non-constant cost

- More general linear demand case
- No price discrimination procedure
 - Calculate aggregate demand
 - Calculate the associated MR
 - Equate MR with MC to give aggregate output
 - Identify price from aggregate demand
 - Identify market demands from individual demand curves

The example again

Applying this procedure assuming that MC = 0.75 + Q/2 gives: $0.75+Q/2 = 30 - 4Q \rightarrow Q = 6.5$



Price discrimination: non-constant cost

- With price discrimination the procedure is
 - Identify marginal revenue in each market
 - Aggregate these marginal revenues to give aggregate marginal revenue
 - Equate this MR with MC to give aggregate output
 - Identify equilibrium MR from the aggregate MR curve
 - Equate this MR with MC in each market to give individual market quantities
 - Identify equilibrium prices from individual market demands

The example again

Applying this procedure assuming that MC = 0.75 + Q/2 gives:

Necessary conditions for optimal prices

Above procedure:

- 1. Invert MR functions
- 2. Add them up
- 3. Replace MR by MC

 $Q_U = 36/8 - MR/8$ $Q_E = 24/8 - MR/8$ Q = 60/8 - 2MR/8= 60/8 - 2/8(0.75 + Q/2)

 $Q=6.5, MC=4, Q_U=4, Q_E=2.5$

General necessary conditions (for continuous demands) Equate marginal revenues in both markets Equate those marginal revenues to marginal cost

 $MR_{U} = 36 - 8Q_{U} = 24 - 8Q_{E} = MR_{E}$

 $MC = 0.75 + (Q_U + Q_E)/2 = 24 - 8Q_E \text{ (could have used MR_U instead)}$

Some additional comments

- With linear demands:
 - price discrimination results in the same aggregate output as no price discrimination
 - price discrimination always increases profit
- For any demand specifications two rules apply
 - marginal revenue must be equalized in each market
 - marginal revenue must equal aggregate marginal cost

Price discrimination and elasticity

demand elasticity

- Suppose that there are two markets with the same MC
- MR in market *i* is given by $MR_i = P_i(1 1/\eta_i)$
 - where η_i is (absolute value of) elasticity of demand

 $(I - I/\eta_1) \quad \eta_1\eta_2 - \eta_2$

From rule 1 (above)

 P_2

$$MR_{1} = MR_{2}$$
so $P_{1}(1 - 1/\eta_{1}) = P_{2}(1 - 1/\eta_{2})$ which a price is lower in the market with the higher demand elasticity $\frac{P_{1}}{P_{1}} = \frac{(1 - 1/\eta_{2})}{(1 - 1/\eta_{2})} = \frac{\eta_{1}\eta_{2} - \eta_{1}}{(1 - 1/\eta_{2})}$

Third-degree price discrimination (cont.)

- Often arises when firms sell differentiated products
 - hard-back versus paper back books
 - first-class versus economy airfare
- Price discrimination exists in these cases when:
 - "two varieties of a commodity are sold by the same seller to two buyers at different *net* prices, the net price being the price paid by the buyer corrected for the cost associated with the product differentiation." (Phlips)
- The seller needs an easily observable characteristic that signals willingness to pay
- The seller must be able to *prevent arbitrage*
 - e.g. require a Saturday night stay for a cheap flight

Product differentiation and price discrimination

Suppose there are two types of travellers:

Business (B) Tourists (T) Additional cost for first class = 100

(1) Both first class: P=250, profit=150*N (2) Both Coach: P=200, profit = 200*N (3) Separate: PC = 200PB=?

For example: NB = 50, NT = 200(1) 150*250=37,500(2) 200*250=50,000(2) 200*200+400*50=60,000

Utilities:				
	В	Т		
Coach	500	200		
First	800	250		
Class				

If $P_B-P_C>300$, B will choose coach. Possibility of arbitrage puts limits on P_B .

 U_{BC} : utility B flying coach

 U_{BF} : utility B flying first

 $p_F - p_C < U_{BF} - U_{BC}$

Known as *self-selection or noarbitrage constraint*

Other mechanisms for price discrimination

- Impose restrictions on use to control arbitrage
 - Saturday night stay
 - no changes/alterations
 - personal use only (academic journals)
 - time of purchase (movies, restaurants)
- "Crimp" the product to make lower quality products
 - Mathematica®
- Discrimination by location