Common Knowledge and Common Prior

Ichiro Obara

UCLA

February 27, 2012

Obara (UCLA)

Common Knowledge and Common Prior

February 27, 2012 1 / 27

Common Knowledge Assumption

- When we define games, we implicitly introduce lots of common knowledge assumptions.
- Something is common knowledge if everyone knows it, everyone knows that everyone knows it, and so on.
- For example, N,A_i,u_i are all common knowledge for strategic game
 G = (N, (A_i), (u_i)).
- But what does it mean? Is it really a significant assumption?
- To understand the notion of common knowledge better, let's take a look at so called **E-mail game**.

- 3

< ロト < 同ト < ヨト < ヨト

E-mail Game

- Two players, player 1 and player 2, play one of the following games:
 G_s ("status quo") or G_o("opportunity").
- The game is G_s with probability 1 p and G_o with probability $p \in (0, 1)$.
- Only player 1 observes a realization of the game.

・ロッ ・雪 ・ ・ ヨ ・

E-mail Game

Gs	S	A	Go	S	A
S	(0,0)	(0,-2)	S	(0,0)	(0,-2)
A	(-2,0)	(-2,-2)	A	(-2,0)	(1,1)

- If the game is G_s , then "stay" (S) is the strictly dominant action.
- If the game is G_o, then "attack" is optimal if and only if the other player attacks. There are two strict NE for G_o: (A, A) and (S, S). The former NE is more efficient.

Obara (UCLA)

E-mail Game

- There is some exchange of information before the game is played:
 - ▶ If the game is *G_s*, nothing happens.
 - If the game is G_o, an e-mail message is automatically sent from player
 1 to player 2. This message is lost with probability \(\epsilon > 0\).
 - If player 2 receives a message, then a confirmation e-mail is automatically sent from player 2 to player 1. This message is lost with probability \(\epsilon > 0\).
 - If player 1 receives a confirmation e-mail, then another confirmation e-mail is automatically sent from player 1 to player 2, which is lost with probability \(\epsilon > 0\).
 - This process stops when an e-mail is lost (which happens with probability 1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- This game can be regarded as a Bayesian game where Ω = {G_s, G_o} and player *i*'s type is the number of messages *i* sent:
 T_i = {0, 1, 2, 3, ···}. Since the true game is G_s if and only if t₁ = 0, we drop Ω.
- If player 1's type t₁ is 0, then player 1 knows that the true state is G_s (and player 2's type is 0). Hence player 1's optimal choice is S.

イロト 不得 トイヨト イヨト 二日

- For $t_1 > 0...$
 - For t₁ > 0, there are two possibilities: player 1's t₁th message is lost, which happens with probability ε, or player 1's t₁th message reached player 2 but player 2's t₁th message is lost, which happens with probability (1 − ε)ε (conditional on both players have received the t₁ − 1 message).
 - Hence 1 believes that 2's type is $t_1 1$ with probability $q = \frac{\epsilon}{\epsilon + (1 \epsilon)\epsilon} > 1/2$ and t_1 with probability 1 - q.
 - ► This implies that S is the unique best response for player 1 if player 2 plays S when t₂ = t₁ − 1.
 - Similarly S is the unique best response for player 2 given any t₂ if player 1 plays S when t₁ = t₂.
- Since S is the unique best response for player 1 when t₁ = 0, S must be played by every type by both players.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

So we have proved the following result.

Theorem (Rubinstein, 1989)

There exists a unique Bayesian Nash equilibrium for this game and A is never played in equilibrium.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- What do the players know given their types?
 - Player 1 of type 1 knows that the true state is G_o, but does not know if player 2 knows it.
 - Player 1 of type 2 knows that the true state is G_o, knows that player 2 knows it, but does not know if player 2 knows that player 1 knows that player 2 knows that the true state is G_o.
 - ► If the type profile is (m, m), then the players know that they know that … × m… that the true state is G_o. But they are not sure about the other player's mth order knowledge.
- If m is large, then it is "almost common knowledge" that the game is G_o. However (A, A), which is a NE when G_o is common knowledge, is not played in any equilibrium.
- This may suggest that common knowledge assumption has a strong implication.

< ロ > < 同 > < 回 > < 回 >

State Space Model

- How to model common knowledge formally?
- We formalize the notion of common knowledge in the language of asymmetric information.

3

E 6 4 E 6

- We first model one individual's information.
- An information structure for an individual is given by (Ω, \mathcal{P}) , where
 - \triangleright Ω is a countable set that represents all possible states. For example, one ω may be that "it will rain tomorrow".
 - $\triangleright \mathcal{P}$ is a partition of Ω . This individual cannot distinguish any two states in $\mathcal{P}(\omega)$ for any ω .

イロト 人間ト イヨト イヨト

Knowledge Operator

From this partition, we can derive a knowledge operator
 K : 2^Ω → 2^Ω as follows.

$$K(E) := \{\omega \in \Omega | \mathcal{P}(\omega) \subset E\}$$

 In words, K(E) is the set of states where this individual knows that an event E is true.

- Let's cast the E-mail game into this framework.
 - Ω is a set of all possible (t₁, t₂), where t_i is the number of messages sent by player i.
 - From player 1's perspective, information partion is (0,0), {(1,0), (1,1)} ... Player 2's information partition is {(0,0), (1,0)}, {(1,1), (2,1)} ...

It is easy to derive the following properties of the knowledge operator.

- K1: $K(\Omega) = \Omega$ ("I know anything that is always true").
- **2** K2: $E \subset F \to K(E) \subset K(F)$ (" if F is true whenever E is, then I

know that F is true whenever I know that E is true").

- **S** K3: $K(E_1 \cap E_2) = K(E_1) \cap K(E_2)$ ("if I know E_1 and E_2 , then I know E_1 and I know E_2 ").
- **4 K4(Axiom of Knowledge):** $K(E) \subset E$ ("if I know E, then E is true").
- **Solution** 5 **K5(Axiom of Transparency):** $K(E) \subset K(K(E))$ ("if I know E, then I know that I know E'')
- **6** K6(Axiom of Wisdom): $\neg K(E) \subset K(\neg K(E))$ ("if I don't know E,

then I know that I don't know E'').

Obara (UCLA)

14 / 27

Common Knowledge

Consider an information structure with N individuals: $\{N, \Omega, (\mathcal{P}_i)\}$. Let K_i be *i*'s knowledge operator. Now we can consider **interactive knowledge**.

•
$$K^1(E) := \bigcap_{i \in N} K_i(E)$$
: everyone knows E .

• $\mathcal{K}^2(E) = \bigcap_{i \in \mathbb{N}} \mathcal{K}_i(\mathcal{K}^1(E))$: everyone knows that everyone knows E.

- ...
- K[∞](E) := ∩[∞]_{m=1} K^m(E): the set of states in which E is common knowledge.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Common Knowledge

Event $E \subset \Omega$ is common knowledge at $\omega \in \Omega$ if $\omega \in K^{\infty}(E)$.

We say that event E is common knowledge when E is common knowledge at every $\omega \in E$.

イロト イポト イヨト イヨト 二日

Again it is useful to consider E-mail game as an example.

- When is an event "the realized game is G_O" (= Ω/ {(0,0)}) is common knowledge?
- When is an event "both players received at least *t* messages" common knowledge?

- 3

Self Evident Events

- We say that E is **self evident** if $\mathcal{P}_i(\omega) \subset E$ for every $\omega \in E$ and every
 - $i \in N$. For example, Ω is always self-evident.
- It is easy to show that
 - *E* is self evident if and only if $K_i(E) = E$ for every $i \in N$.
 - An event is self evident if and only if it is a union of elements of the meet of the partitions.¹
- The only self evident event in E-mail game is Ω.

¹The meet $\mathcal{P}^* = \prod_i \mathcal{P}_i$ is the finest partition such that $\mathcal{P}_i(\omega) \subset \mathcal{P}^*(\omega)$ for

every $i \in N$ and every $\omega \in \Omega$.

Theorem

Event E is common knowledge at $\omega \in \Omega$ ($\omega \in K^{\infty}(E)$) if and only if there exists a self evident event F such that $\omega \in F \subset E$.

Proof.

- For "if", note that F = Kⁿ(F) ⊂ Kⁿ(E) by Property 2 and F being self-evident. Hence F ⊂ K[∞](E), so ω ∈ K[∞](E).
- For "only if", we just need to show that $K^{\infty}(E)$ is self evident.
 - $K_i(K^{\infty}(E)) \subset K^{\infty}(E)$ for any *i* by Property 4.
 - ► $K^{n+1}(E) \subset K_i(K^n(E))$, hence $K^{\infty}(E) \subset K_i(K^n(E))$ for any *n*.
 - Since $\lim K_i(A^n) = K_i(\lim A^n)$ for any sequence of decreasing sets,

$$K^{\infty}(E) \subset K_i(\lim K^n(E)) = K_i(K^{\infty}(E)).$$

Common Prior

- Suppose that player *i* has a belief *p_i* ∈ Δ(Ω). Hence the information structure is given by {*N*, Ω, (*P_i*), (*p_i*)}.
- This information structure has a common prior if p_i = p for all i ∈ N for some p ∈ Δ(Ω).
- This assumption also has a very strong implication. We'll see two results.

Agree to Disagree

- Common prior assumption has a strong implication on possibles beliefs people can have.
- With common prior, it cannot be common knowledge that different individuals have different beliefs about any event.
- For example, it cannot be common knowledge that one trader believes that there is 60% chance for the price of some stock going up, while another trader believes that there is 60% chance for the price of the same stock going down.

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Aumann 1976)

Suppose that Ω is countable and there is a common prior p on Ω . If it is common knowledge at some $\omega \in \Omega$ that the probability of event $E \subset \Omega$ is $q_i, i \in N$, then $q_1 =, ..., = q_n$.

- 3

イロト 人間ト イヨト イヨト

Proof.

- Let E^{q_i} be the event that player *i* believes that *E* is true with probability q_i . Let $E' = \bigcap_{i \in N} E^{q_i}$. By assumption, $\omega \in E'$.
- There exists a self evident event F such that ω ∈ F ⊂ E' by the previous theorem.
- F can be partitioned into P^k_i, k = 1, 2, ... ∈ P_i for every i ∈ N (remember that F is an element of the meet).
- By assumption, $\frac{p(E \cap P_i^k)}{p(P_i^k)} = q_i$ for any k. Hence $p(E \cap P_i^k) = q_i p(P_i^k)$.
- Summing them up with respect to k, we obtain $p(E \cap F) = q_i p(F)$ for every i. So $q_i = \frac{E \cap F}{F}$ for all $i \in N$.

No Trade Theorem

- When "rational" traders trade, presumably it is common knowledge that both traders are better off by trading.
- Hence the previous result suggests that any kind of purely speculative trade based on differences in beliefs is impossible.
- We show one such result within this framework.

- Suppose that there are *n* traders.
- States: $\omega = (\theta, t_1, ..., t_n)$.
 - θ determines trader i's preference and endowment e_i(θ) ∈ ℝ^k. It can be ex ante observable or not observable.
 - t_i is trader i's private signal.
 - Assume that there is a common prior p on $\Omega = \Theta \times \prod_{i \in N} T_i$.
- Trader i's utility from net trade x_i ∈ ℜ^k given θ is u_i(e_i(θ) + x_i, θ).
 Assume that every trader is strictly risk averse.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

- Endowment e: Θ → ℜ^{kn} is ex ante Pareto-efficient if there is no net trade x_i : Ω → ℜ^k, i = 1...n, s.t. ∑_{i∈N} x_i = 0 that is Pareto-improving given the common prior p.
- Then it cannot be common knowledge that everyone is better off by trading.

No Trade Theorem

Suppose that $e: \Theta \to \Re^{kn}$ is ex ante Pareto-efficient. If it is common knowledge at some state ω that $e_i + x_i$ is weakly preferred to e_i for every $i \in N$ for some feasible net trade x, then it must be common knowledge that the probability of nonzero net trade is 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof.

- Let E be the event where e_i + x_i is weakly preferred to e_i for every i ∈ N. Then there exists a self evident event F such that ω ∈ F ⊂ E.
- Define a new net transfer x' by x'(ω) := x(ω) for every ω ∈ F and x'(ω) := 0 for every ω ∈ Ω/F.
- Then, for any *i*,

$$\begin{split} E[u_i(e_i(\widetilde{\theta}) + \mathbf{x}'_i(\widetilde{\omega}), \widetilde{\theta})] &= E[u_i(e_i(\widetilde{\theta}) + \mathbf{x}_i(\widetilde{\omega}), \widetilde{\theta})|F] + E[u_i(e_i(\widetilde{\theta}), \widetilde{\theta})|\Omega/F] \\ &\geq E[u_i(e_i(\widetilde{\theta}), \widetilde{\theta})|F] + E[u_i(e_i(\widetilde{\theta}), \widetilde{\theta})|\Omega/F] \\ &= E[u_i(e_i(\widetilde{\theta}), \widetilde{\theta})] \end{split}$$

Since e is ex ante Pareto efficient, it must be that
 E[u_i(e_i(θ̃) + x_i(ω̃), θ̃)|F] = E[u_i(e_i(θ̃), θ̃)|F] for all i ∈ N. Strict risk averseness implies that net trade must be 0 in F, hence no trade is common knowledge.