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Utility Maximization

Utility Maximization Problem

We formalize each consumer’s decision problem as the following

optimization problem.

Utility Maximization

max
x∈X

u(x) s.t. p · x ≤ w (x ∈ B(p,w))
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Utility Maximization Walrasian Demand

Walrasian Demand

Let x(p,w) ⊂ X (Walrasian demand correspondence) be the set

of the solutions for the utility maximization problem given p � 0 and

w ≥ 0. Note that x(p,w) is not empty for any such (p,w) if u is

continuous.

We like to understand the property of Walrasian demand. First we

prove basic, but very important properties of x(p,w).
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Utility Maximization Walrasian Demand

Walrasian Demand

Theorem

Suppose that u is continuous, locally nonsatiated, and X = <L
+. Then the

Walrasian demand correspondence x : <L
++ ×<+ ⇒ <L

+ satisfies

(I) Homogeneity of degree 0: x(αp, αw) = x(p,w) for any α > 0 and

(p,w),

(II) Walras’ Law: p · x ′ = w for any x ′ ∈ x(p,w) and (p,w),

(III) Convexity: x(p,w) is convex for any (p,w) if u is quasi-concave, and

(IV) Continuity: x is upper hemicontinuous.
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Utility Maximization Walrasian Demand

Walrasian Demand

Proof

(I) follows from the definition of the problem.

For (II), use local nonsatiation.

(III) is obvious.

(IV) follows from the maximum theorem.

Remark.

x(p,w) is a single point if u is strictly quasi-concave.

x(p,w) is a continuous function if it is single-valued.

General remark: it is useful to clarify which assumption is important

for which result.
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Utility Maximization Walrasian Demand

Walrasian Demand

How can we obtain x(p,w)?

If u is differentiable, then we can apply the (Karush-)Kuhn-Tucker

condition to derive x(p,w) for each (p,w)� 0.

They are necessary if the constraint qualification is satisfied (which

is always the case here), and also sufficient if u is pseudo-concave

(See “Mathematical Appendix”.)
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Utility Maximization Walrasian Demand

Walrasian Demand

Suppose that u is locally nonsatiated and the optimal solution is an

interior solution. Then the K-T conditions become very simple.

∇u(x)− λp = 0

p · x = w

If x` may be 0 for some ` (boundary solution), then D`u(x)− λp` = 0

needs to be replaced by D`u(x)− λp` ≤ 0(= 0 if x` > 0).
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Utility Maximization Walrasian Demand

An interior solution looks like:

p

u(x)

u(x) – λp = 0
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Utility Maximization Walrasian Demand

For a boundary solution, consider the following example with x1 = 0.

Dux1(x1, x2)− λp1 ≤ 0

Dux2(x1, x2)− λp2 = 0

This can be written as ∇u(x)− λp + µ

 1

0

 = 0 for some µ ≥ 0.
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Utility Maximization Walrasian Demand

This boundary solution looks like:

u(x)

p

0
1u(x) – λp + υ         = 0

0
1

- p
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Utility Maximization Walrasian Demand

Example

Let’s try to solve some example.

Suppose that u(x) =
√
x1 + x2.

We can assume an interior solution for x1. So the K-T conditions

become

1

2
√
x1
− λp1 = 0

1− λp2 ≤ 0 (= 0 if x2 > 0)

p · x = w
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Utility Maximization Walrasian Demand

Example

Then the solution is

1 x1(p,w) =
p2

2

4p2
1
, x2(p,w) = w

p2
− p2

4p1
, λ(p,w) = 1 when 4p1w > p2

2 ,

2 x1(p,w) = w
p1
, x2(p,w) = 0, λ(p,w) = 1

2
√

p1w when when 4p1w ≤ p2
2 .

Note that there is no wealth effect on x1 (i.e. x1 is independent of w)

as long as 4p1w > p2
2
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Utility Maximization Indirect Utility Function

Indirect Utility Function

For any (p,w) ∈ <L
++ ×<+, v(p,w) is defined by v(p,w) := u(x ′) where

x ′ ∈ x(p,w). It is not difficult to prove that this indirect utility function

satisfies the following properties.

Theorem

Suppose that u is continuous, locally nonsatiated, and X = <L
+. Then

v(p,w) is

(I) homogeneous of degree 0,

(II) nonincreasing in p` for any ` and strictly increasing in w ,

(III) quasi-convex, and

(IV) continuous.
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Utility Maximization Indirect Utility Function

Proof.

(I) and (II) are obvious.

(IV) is again an implication of the maximum theorem.

Proof of (III):

I Suppose that max {v(p′,w ′), v(p′′,w ′′)} ≤ v for any

(p′,w ′), (p′′,w ′′) ∈ <L
++ ×<+ and v ∈ <.

I For any α ∈ [0, 1] and any x ∈ B(αp′ + (1− α)p′′, αw ′ + (1− α)w ′′),

either x ∈ B(p′,w ′) or x ∈ B(p′′,w ′′) must hold.

I Hence

v(αp′ +(1−α)p′′, αw ′ +(1−α)w ′′) ≤ max {v(p′,w ′), v(p′′,w ′′)} ≤ v .
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Utility Maximization Indirect Utility Function

Example: Cobb-Douglas

Suppose that u(x) =
∑L

`=1 α` log x`, α` ≥ 0 and
∑L

`=1 α` = 1

(Cobb-Douglas utility function).

The Walrasian demand is

x`(p,w) =
α`w

p`

(Note: α` is the fraction of the expense for good `).

So v(p,w) = logw +
∑L

`=1 α` (logα` − log p`).

Obara (UCLA) Consumer Theory October 8, 2012 16 / 51



Utility Maximization Indirect Utility Function

Example: Quasi-linear utility

For the previous quasi-linear utility example,

v(p,w) =
√

x1(p,w) + x2(p,w) =
p2

4p1
+

w

p2

(assuming an interior solution).
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Utility Maximization Indirect Utility Function

Indirect Utility Function

Exercise.

1 The result of this example generalizes. Suppose that the utility

function is in a quasi-linear form: u(x) = x1 + h(x2, ..., xL). Show that

the indirect utility function takes the following form:

v(p,w) = a(p) + w (assuming interior solutions).

2 Show that the v(p,w) = b(p)w if the utility function is homogeneous

of degree 1.
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Utility Maximization Example: Labor Supply

Example: Labor Supply

Consider the following simple labor/leisure decision problem:

max
q,`≥0

(1− α) log q + α log ` s.t. pq + w` ≤ wT + π, ` ≤ T

where

I q is the amount of consumed good and p is its price

I T is the total time available

I ` is the time spent for “leisure” (which determines h = T − `: hours of

work).

I w is wage (and wh is labor income).

I π is nonlabor income.
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Utility Maximization Example: Labor Supply

Example: Labor Supply

Since the utility function is Cobb-Douglas, it is easy to derive the

Walrasian demand: q(p,w , π) = (1−α)(wT +π)
p , `(p,w , π) = α(wT +π)

w

when ` < T .

(Note: if this expression of ` is larger than T , ` ≤ T binds. In this case,

this consumer does not participate in the labor market (`(p,w , π) = T ) and

spends all nonlabor income to purchase goods (q(p,w , π) = π
p ).)

It is easy to derive the indirect utility function when ` < T :

v(p,w ,wT + π) = const. + log (wT + π)− α log p − (1− α) logw .
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Cost Minimization

Cost Minimization
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Cost Minimization

Cost Minization

Next consider the following problem for each p � 0 and u ∈ <,

Cost Minimization

min
x∈X

p · x s.t. u(x) ≥ u

This problem can be phrased as follows: what is the cheapest way to

achieve utility at least as high as u?
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Cost Minimization Hicksian Demand

Hicksian Demand

Let h(p, u) (Hicksian demand correspondence) be the set of solutions

for the cost minimization problem given p � 0 and u.

Remark. h(p, u) is useful for welfare analysis, which we do not have time to cover.

Read MWG Ch 3-I.
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Cost Minimization Hicksian Demand

Assume local nonsatiation. Then the constraint can be modified

locally as follows if u is continuous and {x ∈ X : u(x) ≥ u} is not

empty (denote the set of such u by U.

I Pick any x ′ such that u(x ′) > u.

I Pick any x ∈ <+ such that p′` x ≥ p′ · x ′ for all ` for all p′ in a

neighborhood of p � 0.

I Then the cost minimizing solution is the same locally with respect to

(p, u) when the constraint set is replaced by a compact set{
x ∈ <L

+ : u(x) ≥ u, x` ≤ x ∀`
}

(because p′ · x ≥ p′ · x ′ for any x

outside of this set).

This implies that h(p, u) is not empty around (p, u) (note that local

nonsatiation is not needed for nonemptyness at each

(p, u) ∈ <L
++ × U).
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Cost Minimization Hicksian Demand

Hicksian Demand

Theorem

Suppose that u is continuous, locally nonsatiated, and X = <L
+. Then the

Hicksian demand correspondence h : <L
++ × U ⇒ <L

+ is

(I) homogeneous of degree 0 in p,

(II) achieving u exactly (u(x ′) = u for any x ′ ∈ h(p, u)) if u ≥ u(0),

(III) convex given any (p, u) if u is quasi-concave, and

(iv) upper hemicontinuous.

Remark. h(p, u) is a point if u is strictly quasi-concave.
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Cost Minimization Hicksian Demand

Note on the proof.

(I), (II), and (III) are straightforward.

(iv) is slightly more difficult than (iv) for Walrasian demand. We

cannot apply the maximum theorem directly because the feasible set

is not “locally bounded”.

... but we skip the detail.
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Cost Minimization Expenditure Function

Expenditure Function

Expenditure function e(p, u) is defined by e(p, u) := p · x ′ for any

x ′ ∈ h(p, u). The proof of the following theorem is left as an exercise.

Theorem

Suppose that u is continuous, locally nonsatiated, and X = <L
+. Then the

expenditure function e : <L
++ × U → < is

(I) homogeneous of degree 1 in p,

(II) nondecreasing in p` for any ` and strictly increasing in u for u > u(0),

(III) concave in p, and

(IV) continuous.
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Cost Minimization Utility Maximization and Cost Minimization

Utility Maximization ↔ Cost Minimization

Not surprisingly, cost minimization problems are closely related to utility

maximization problems. One problem is a flip side of the other in some

sense.
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Cost Minimization Utility Maximization and Cost Minimization

Utility Maximization ↔ Cost Minimization

Utility Maximization ↔ Cost Minimization

Suppose that u is continuous, locally nonsatiated, and X = <L
+.

(I) If x∗ ∈ x(p,w) given p � 0 and w ≥ 0, then x∗ ∈ h(p, v(p,w)) and

e(p, v(p,w)) = w .

(II) If x∗ ∈ h(p, u) given p � 0 and u ≥ u(0), then x∗ ∈ x(p, e(p, u)) and

v(p, e(p, u)) = u.
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Cost Minimization Utility Maximization and Cost Minimization

Proof: Utility Maximization → Cost Minimization

Suppose not, i.e. ∃x ′ ∈ <L
+ that satisfies u(x ′) ≥ u(x∗) and

p · x ′ < p · x∗ (= w by Walras’ law).

By local nonsatiation, ∃x ′′ ∈ <L
+ that satisfies u(x ′′) > u(x∗) and

p · x ′′ < w . This is a contradiction to utility maximization.

Hence x∗ ∈ h(p, v(p,w)) and e(p, v(p,w)) = p · x∗ = w .
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Cost Minimization Utility Maximization and Cost Minimization

Proof: Utility Maximization ← Cost Minimization

Suppose not, i.e. ∃x ′ ∈ <L
+ that satisfies u(x ′) > u(x∗) ≥ u and

p · x ′ ≤ p · x∗. Note that 0 < p · x ′ (because u ≥ u(0)).

Let xα := α0 + (1− α)x ′ ∈ X for α ∈ (0, 1). Then u(xα) > u(x∗)

and p · xα < p · x∗ (because p · x ′ > 0) for small α. This is a

contradiction to cost minimization.

Hence x∗ ∈ x(p, e(p, u)) and v(p, e(p, u)) = u(x∗) = u (by

u ≥ u(0)).
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Some Useful Formulas

Some Useful Formulas
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Some Useful Formulas

Walrasian demand, Hicksian demand, indirect utility function, and

expenditure function are all very closely related. We can exploit these

relationships in many ways.

I Different expressions are useful for different purposes.

I We can recover one function from another. In particular, we can

recover unobserved from observed.

We already know

I Utility maximization → Cost minimization

F h(p, v(p,w)) = x(p,w),

F e(p, v(p,w)) = w .

I Cost minimization → Utility maximization

F x(p, e(p, u)) = h(p, u),

F v(p, e(p, u)) = u.
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Some Useful Formulas Shepard’s Lemma

Shepard’s Lemma

In the following, we derive a few more important formulas, assuming

that x(p,w) and h(p, u) are C1(continuously differentiable) functions.

Let’s start with Shepard’s Lemma.

Theorem

For any (p, u) ∈ <L
++ × U,

∇pe(p, u) = h(p, u)
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Some Useful Formulas Shepard’s Lemma

Proof

∇pe(p, u) = ∇(p · h(p, u))

= h(p, u) + Dph(p, u)>p

= h(p, u) +
1

λ
Dph(p, u)>∇u(h(p, u)) (by FOC)

= h(p, u) (by differentiating u(h(p, u)) = u)

Note. I am assuming an interior solution, but this is not necessary (apply

Envelope theorem).
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Some Useful Formulas Shepard’s Lemma

Shepard’s Lemma

Remark.

Since h(p, u) = x(p, e(p, u)), this lemma implies

∇pe(p, u) = x(p, e(p, u)).

From this differential equation, we can recover e(·, u) for each u if

D2e is symmetric.

If D2e is negative semidefinite, then e(·, u) in fact satisfies all the

properties of expenditure functions. Then we can recover the

preference that rationalizes x(p,w). See Ch.3-H, MWG.
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Some Useful Formulas Slutsky Equation

Slutsky Equation

Slutsky Equation

For all (p,w)� 0 and u = v(p,w),

∂h`(p, u)

∂pk
=
∂x`(p,w)

∂pk
+
∂x`(p,w)

∂w
xk (p,w)

or more compactly

Dph(p, u) = Dpx(p,w)︸ ︷︷ ︸
L×L

+Dwx(p, e)︸ ︷︷ ︸
L×1

x(p, e)>︸ ︷︷ ︸
1×L
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Some Useful Formulas Slutsky Equation

Slutsky Equation

Proof

Take any such (p,w , u). Remember that h(p, u) = x(p,w) and

e(p, u) = w .

Differentiate h`(p, u) = x`(p, e(p, u)) with respect to pk .

Then

∂h`(p, u)

∂pk
=

∂x`(p, e(p, u))

∂pk
+
∂x`(p, e(p, u))

∂w

∂e(p, u)

∂pk

=
∂x`(p, e(p, u))

∂pk
+
∂x`(p, e(p, u))

∂w
hk (p, u)

=
∂x`(p,w)

∂pk
+
∂x`(p,w)

∂w
xk (p,w)
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Some Useful Formulas Slutsky Equation

Remark.

This formula allows us to recover Hicksian demand functions from

Walrasian demand functions.

It is often written as

∂x`(p,w)

∂pk
=

∂h`(p, u)

∂pk︸ ︷︷ ︸
SubstitutionEffect

− ∂x`(p,w)

∂w
xk (p,w)︸ ︷︷ ︸

IncomeEffect

The (Walrasian) demand curve of good k is downward sloping (i.e.

∂xk (p,w)
∂pk

< 0) if it is a normal good
(
∂xk (p,w)
∂w ≥ 0

)
. If good k is an

inferior good
(
∂xk (p,w)
∂w < 0

)
, then xk can be a Giffen good

(∂xk (p,w)
∂pk

> 0).
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Some Useful Formulas Slutsky Equation

Slutsky Equation

x(p,w)

h(p’,u)

x(p’,w)

u(x) = u

Substitution Effect

Income Effect

Px=w P’x=w
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Some Useful Formulas Slutsky Equation

Slutsky Matrix

Consider an L× L matrix S(p,w) whose (`, k)-entry is given by

∂x`(p,w)

∂pk
+
∂x`(p,w)

∂w
xk (p,w)

This matrix is called Slutsky (substitution) matrix.
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Some Useful Formulas Slutsky Equation

Slutsky Matrix

Properties of Slutsky Matrix

For all (p,w)� 0 and u = v(p,w),

(I) S(p,w) = D2
pe(p, u),

(II) S(p,w) is negative semi-definite,

(III) S(p,w) is a symmetric matrix, and

(IV) S(p,w)p = 0.
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Some Useful Formulas Slutsky Equation

Proof

(I) follows from the previous theorem.

(II) and (III): e(p, u) is concave and twice continuously differentiable.

(IV) follows because h(p, u) is homogeneous of degree 0 in p (or

x(p,w) is homogeneous of degree 0 in (p,w) + Walras’ law.)

Remark. This theorem imposes testable restrictions on Walrasian demand

functions.
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Some Useful Formulas Slutsky Equation

Application: Labor Supply Revisited

Let’s do a Slutsky equation-type exercise for the labor/leisure decision

problem. To distinguish wage and income, denote income by I .

d`(p,w ,I )
dw ? Note that w affects ` through I = wT + π. Hence

d`(p,w , I )

dw
=
∂`(p,w , I )

∂w
+
∂`(p,w , I )

∂I
T

By differentiating `(p,w , u) = `(p,w , e(p,w , u)) by w (`(p,w , u) is

Hicksian demand of leisure), we obtain

∂`(p,w , u)

∂w
=
∂`(p,w , I )

∂w
+
∂`(p,w , I )

∂I
`(p,w , I )
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Some Useful Formulas Slutsky Equation

Application: Labor Supply Revisited

Hence

d`(p,w , I )

dw
=

∂`(p,w , u)

∂w︸ ︷︷ ︸
Substitution Effect

− ∂`(p,w , I )

∂I
`(p,w , I )︸ ︷︷ ︸

Income Effect I

+
∂`(p,w , I )

∂I
T︸ ︷︷ ︸

Income Effect II

=
∂`(p,w , u)

∂w
+
∂`(p,w , I )

∂I
(T − `(p,w , I ))

In terms of labor supply h = T − `, this becomes

dh(p,w , I )

dw
=
∂h(p,w , u)

∂w
− ∂h(p,w , I )

∂I
h(p,w , I )
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Some Useful Formulas Roy’s Identity

Roy’s Identity

The last formula is so called Roy’s identity.

Roy’s Identity

For all (p,w)� 0,

x(p,w) = − 1

Dwv(p,w)
∇pv(p,w)
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Some Useful Formulas Roy’s Identity

Proof

For any (p,w)� 0 and u = v(p,w), we have v(p, e(p, u)) = u.

Differentiating this, we have

∇pv(p, e(p, u)) + Dwv(p, e(p, u))∇pe(p, u) = 0

∇pv(p, e(p, u)) + Dwv(p, e(p, u))h(p, u) = 0

∇pv(p,w) + Dwv(p,w)x(p,w) = 0.

Rearrange this to get the result.
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Some Useful Formulas Note on Differentiability

Note on Differentiability

When are Walrasian and Hicksian demand functions (continuously)

differentiable?

Assume that

I u is differentiable, locally nonsatiated, and X = <L
+ (then all the

previous theorems can be applied).

I u > u(0),w > 0.

I u is pseudo-concave.

I prices and demands are strictly positive.

Then Walrasian demand and Hicksian demand are characterized by

the following K-T conditions respectively

Obara (UCLA) Consumer Theory October 8, 2012 48 / 51



Some Useful Formulas Note on Differentiability

Note on Differentiability

For Walrasian demand,

∇u(x)− λp = 0

w − p · x = 0

For Hicksian demand,

p − λ∇u(x) = 0

u(x)− u = 0
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Some Useful Formulas Note on Differentiability

Note on Differentiability

We focus on the utility maximization problem (The same conclusion

applies to the cost minimization problem).

The implicit function theorem implies that x(p,w) is a C 1

(continuously differentiable) function if the derivative of the left hand

side with respect to (x , λ) D2u(x) −p

−p> 0


is a full rank matrix.
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Some Useful Formulas Note on Differentiability

By FOC, what we need to show is that D2u(x) − 1
λDu(x)>

− 1
λDu(x) 0


is full rank.

This is satisfied when u is differentiably strictly quasi-concave

(check it).

Definition

u : X (⊂ <L)→ < is differentiably strictly quasi-concave if

∆x>D2u(x)∆x < 0 for any ∆x( 6= 0) ∈ <L such that Du(x)∆x = 0.
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