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Mathematical Appendix Miscellaneous Results

1. Miscellaneous Results

This first section lists some mathematical facts that were used or will be

used in my lecture, but not included in the appendix of MWG. So it may

be updated frequently.
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Countable Sets

A set is countable if different integers can be assigned to its different

elements. Intuitively, you can literally “count” elements in a

countable set.

The formal definition is that X is countable if and only if there exists

a bijection f : X → N (natural numbers).

If X and Y are countable, then X × Y is countable (to see this, Let

X = Y = N. Then N2 is countable because I can count them as follows:

(0, 0), (0, 1), (1, 0), (2, 1), (1, 1), (1, 2)...).
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sup and inf

For any subset Y of real numbers (Y ⊂ <), there is the smallest

upper bound and the largest lower bound (in <). See any textbook

on analysis (or even “supremum” in Wikipedia) to find the definitions.

Ex. sup {1, 2, 3} = 3, sup {1, 2, 3, ...} =∞, inf(0, 1) = 0. Note that

supY or inf Y may not be in Y .

The following properties follow from the definition almost

immediately.

I For any (nonempty) Y ⊂ <, there exists yn ∈ Y , n = 1, 2, .. such that

yn → supY (the same result applies to inf Y ).
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Sequence

A few useful facts about sequences in <L.

If xn, n = 1, 2, is bounded, then there exists a convergent

subsequence.

If xn converges to x∗, then every subsequence of xn converges to x∗.

xn converges to x∗ if and only if x`,n converges to x∗` for every

` = 1, 2, ..., L.

Consider a sequence of numbers (L = 1). We use

lim supn→∞ xn := limn→∞ sup {xm,m ≥ n} and

lim infn→∞ xn := limn→∞ inf {xm,m ≥ n}.
I Clearly lim supn→∞ xn ≥ lim infn→∞ xn.

I If lim inf xn ≥ lim sup xn, then lim inf xn = lim sup xn (= lim xn).
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Compactness in <n

X ⊂ <n is compact if and only if it is closed and bounded.

Another definition of compactness: X ⊂ <n is compact if and only if

every open cover (i.e. a collection of open sets such that their union

includes X ) of X has a finite cover (i.e. open cover with a finite

number of open sets).
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2. Correspondence

A map f which maps each point in X ⊂ <M to a subset of Y ⊂ <N

is called correspondence and denoted by f : X ⇒ Y .

We always assume that f (x) is not an empty set for any x ∈ X .

Closed-Graph Property

f : X ⇒ Y has a closed graph if

1 yn ∈ f (xn)

2 xn → x∗ ∈ X

3 yn → y∗

for a sequence (xn, yn) ∈ X × Y , then y∗ ∈ f (x∗).
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Continuity of Correspondence

upper hemicontinuity

Given X ⊂ <M Y ⊂ <N , f : X ⇒ Y is upper hemicontinuous (uhc) if

its image of every compact set in X is bounded and f has a closed graph.

lower hemicontinuity

Given X ⊂ <M and Y ⊂ <N , f : X ⇒ Y is lower hemicontinuous (lhc)

if for any x∗ ∈ X , any sequence xn ∈ X converging to x∗ and any

y∗ ∈ f (x∗), there exists yn ∈ f (xn) such that yn → y∗.

f : X ⇒ Y is continuous if it is uhc and lhc.
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Continuity of Correspondence

Comments.

If f is a function, then both uhc and lhc imply continuity in the usual

sense.

The first condition for uhc can be replaced by “f is locally bounded

at every x ∈ X”, i.e. there exists an open neighborhood of x on

which f is bounded (why?).

We say f is uhc at x ∈ X if f is locally bounded at x and satisfies

the closed-graph property at x . f is uhc if and only if f is uhc at

every x ∈ X .
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Continuity of Correspondence

Show that budget constraint correspondence

B(p,w) =
{
x ∈ <L

+ : p · x ≤ w
}

is continuous in <L
++ ×<+.

Constraint for cost minimization problem
{
x ∈ <L

+ : u(x) ≥ u
}

is not

continuous in u (why?). But for any given p � 0, we can modify this

constraint so that the constraint set is locally continuous in (p, u).

I Pick any x ′ such that u(x ′) > u.

I Find x ∈ <+ such that p` x ≥ p′ · x ′ for any ` for any p′ in a

neighborhood of p.

I Then the cost minimizing solution is the same locally even if the

constraint set is replaced by
{
x ∈ <L

+ : u(x) ≥ u, x` ≤ x ∀`
}

, which is

continuous.
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3. Maximum Theorem

Maximum Theorem

Let F : X × A(⊂ <M ×<N)→ < be a continuous function and

G : A ⇒ X be a continuous correspondence. Let γ(a) ⊂ X be the set of

the solutions for maxx∈G(a) F (x , a) given a ∈ A. Then

(i) γ : A ⇒ X is upper hemicontinuous, and

(ii) V (a) := maxx∈G(a) F (x , a) is continuous in a.
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Proof of uhc

Since G is uhc, (1) G (a) is compact, hence γ(a) is nonempty, and (2)

γ(a) is locally bounded for every a ∈ A. (2) means that we just need

to prove the closed graph property of γ(a) for each a ∈ A.

Take any sequence (xn, an) ∈ X × A such that xn ∈ γ(an),

an → a∗ ∈ A, and xn → x∗. Note that x∗ ∈ G (a∗) because G is uhc.

Take any x ′ ∈ γ(a∗) and ε > 0. Since G is lhc, there exists

x ′n ∈ G (an) such that x ′n → x ′. Since F is continuous, there exists N

such that F (x ′n, an) ≥ V (a∗)− ε for any n ≥ N. Since xn ∈ γ(an), we

have F (xn, an) ≥ F (x ′n, an). Hence F (x∗, a∗) ≥ V (a∗)− ε by

continuity. Then F (x∗, a∗) ≥ V (a∗) by letting ε→ 0. Therefore

x∗ ∈ γ(a∗).
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Proof of continuity

Take any sequence an ∈ A such that an → a∗ ∈ A. The previous

proof shows that G is lhc ⇒ lim infn→∞ V (an) ≥ V (a∗).

So we just need to show lim supn→∞ V (an) ≤ V (a∗). Suppose not.

Then there exists ε > 0 and a subsequence (wlog the original

sequence) such that V (an) ≥ V (a∗) + ε.

Take any sequence x ′n ∈ γ(an). Since G is uhc and

{an, n = 1, 2, ..} ⊂ A is compact, {x ′n, n = 1, 2, ..} ⊂ X is bounded.

Hence we can find a subsequence (wlog...) such that lim x ′n → x∗ for

some x∗ (∈ G (a∗) as G is uhc). Then F (x∗, a∗) ≥ V (a∗) + ε holds in

the limit by continuity, which is a contradiction. Hence

lim supn→∞ V (an) ≤ V (a∗).
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Comment.

The continuity of Walrasian demand correspondences and Hicksian

demand correspondences follow from (i).

The continuity of indirect utility functions and expenditure functions

can be proved by using (ii)
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4. Kuhn-Tucker Theorem

Let X be an open convex set in <L. Let f : X → < and

gm : X → <,m = 1, ...,M are differentiable functions.

Consider the following problem.

(P): max
x∈X

f (x) s.t. gm(x) ≥ 0 for m = 1, ...,M.
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Kuhn-Tucker Theorem

Constraint Qualification: Let M(x∗) be the set of binding constraints at

x∗ (i.e. gm(x∗) = 0 for m ∈ M(x∗)). We say that the constraint

qualification (CQ) is satisfied at x∗ ∈ X if either one of the following

conditions is satisfied.

Constraint Qualification

Linear Independence: {∇gm(x∗)|m ∈ M(x∗)} ⊂ <L are linearly

independent.

Slater Condition: There exists x ′ ∈ X that satisfies gm(x ′) > 0 for

all m ∈ M(x∗) and gm are pseudo-concave for all m ∈ M(x∗).
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Kuhn-Tucker Theorem

Necessity

If x∗ ∈ X solves (P) and the constraint qualification is satisfied at x∗, then

there exists λ ∈ <M
+ such that:

(1) ∇f (x∗) +
∑M

m=1 λm∇gm(x∗) = 0 (First order conditions),

(2) gm(x∗) ≥ 0 (= 0 if λm > 0) (Complementary slackness conditions).

Sufficiency

Suppose that f is pseudo-concave, gm,m = 1, ...M are all quasi-concave.

If x∗ ∈ X and λ ∈ <M
+ satisfies (1) and (2), then x∗ solves (P).
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Proof

Let’s prove necessity first. Let x∗ ∈ X be an optimal solution of (P).

Consider the following linearized programming problem.

(P∗) : max
x∈X

Df (x∗)(x − x∗) s.t. Dgm(x∗)(x − x∗) ≥ 0 for m ∈ M(x∗).

We need the following lemma.

Lemma

Suppose that the constraint qualification is satisfied at x∗. If x∗ ∈ X is a

solution for (P), then it is also a solution for (P∗).
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Proof of Lemma:

I Suppose not. Then ∃x ′ ∈ X such that Df (x∗)(x ′ − x∗) > 0 and

Dgm(x∗)(x ′ − x∗) ≥ 0 for all m ∈ M(x∗).

I If CQ is satisfied, then there exists x ′′ ∈ X such that Dgm(x∗)x ′′ > 0

for all m ∈ M(x∗) (prove this for each type of CQ).

I Then x̂ = x ′ + εx ′′ for small ε > 0 satisfies Df (x∗)(x̂ − x∗) > 0 and

Dgm(x∗)(x̂ − x∗) > 0 for all m ∈ M(x∗). This means that for

xα = x∗ + α (x̂ − x∗), f (xα) > f (x∗) and gm(xα) > 0 for all

m = 1, ...,M if α > 0 is small enough. This is a contradiction. So x∗

must be a solution for (P∗).
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Proof (continued)

By using Farkas’ Lemma, it can be shown that x∗ is a solution for

(P∗)⇔ x∗ satisfies the K-T condition with some λ ∈ <M
+ (this step

does not depend on CQ). The proof (only one direction) is in MWG.

Hence x∗ is a solution for (P)⇒ x∗ is a solution for (P∗)⇔ x∗

satisfies the K-T condition with some λ ∈ <M
+ .
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Proof (continued)

For sufficiency, we just need to show that x∗ is a solution for

(P∗) ⇒ x∗ is a solution for (P) when u is pseudo-concave and gm

are quasi-concave for all m ∈ M(x∗). We prove the contrapositive

below.

Suppose that x∗ is not a solution for (P). Then ∃x ′ ∈ X such that

u(x ′) > u(x∗) and gm(x ′) ≥ 0 for all m ∈ M. Since u is

pseudo-concave, gm is quasi-concave and gm(x∗) = 0 for all

m ∈ M(x∗), Du(x∗)(x ′ − x∗) > 0 and Dgm(x∗)(x ′ − x∗) ≥ 0 for all

m ∈ M(x∗). Hence x∗ is not a solution for (P∗).
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Farkas’ Lemma

What is Farkas’ Lemma?

Farkas’ Lemma

For any a1, ....aM ∈ <N and b ∈ <N
+, only one of the following conditions

hold.

1 ∃λm ≥ 0,m = 1, ...,M such that b =
∑M

m=1 λmam.

2 ∃y ∈ <N such that y · b > 0 and y · am ≤ 0 for m = 1, ...,M.
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Farkas’ Lemma

This just means that b is either in A or not in A in the picture below.

a1a2

b(case2)

b(case1)

Ex. M=N=2

A
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Note on pseudo-concavity

Pseudo-concavity

f : X → < is pseudo-concave if f (x ′) > f (x)⇒ Df (x)(x ′ − x) > 0.

Easy way to check pseudo-concavity? f is pseudo-concave if

I it is concave (for example, linear), or

I it is quasi-concave and ∇f (x) 6= 0 for all x ∈ X .

K-T may not be sufficient without pseudo-concavity.

Example. Consider maxx∈[−1,1] x
3. Then x = 0 satisfies the K-T

condition with (λ1, λ2) = (0, 0), but is clearly not optimal. Note that

the objective function is strictly quasi-concave.
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5. Envelope Theorem

Suppose that

I f and gm depend on some parameter a ∈ A, where A is an open set in

<K .

I an optimal solution for (P) given a is given by a differentiable function

x(a).

I constraint qualification is satisfied at x(a) for every a ∈ A.

Define the optimal value function v : A→ < by v(a) := f (x(a)).
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Envelope Theorem

We like to compute ∇v(a).

Let’s first consider the simplest case: assume that there is no

constraint (or no constraint is binding). If x(a) is an optimal solution

given a, then FOC is Dx f (x , a) = 0.

Then we have

∇v(a) = ∇f (x(a), a) = Dx f (x , a)Dx(a)+∇af (x(a), a) = ∇af (x(a), a)

This can be generalized to the case with (binding) constraints.
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Envelope Theorem

Envelope Theorem

Suppose that the binding constraints for (P) do not change in a

neighborhood of a. Then

∇v(a) = ∇af (x(a), a) +
∑
m

λm∇agm(x(a), a)

, where λm,m = 1, ...,M are the multipliers in the K-T condition.
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6. Implicit Function Theorem

Consider a circle defined by f (x , a) = x2 + a2 = 1 and the point(
1/
√

2, 1/
√

2
)

on the circle.

x is a function of a in the neighborhood of
(
1/
√

2, 1/
√

2
)
. Denote

this function by x(a). What is Dx(a) at a = 1/
√

2?

One way to obtain this value is to derive x(a) explicitly and compute

the derivative. But this is not always an easy thing to do.
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Implicit Function Theorem

Implicit function theorem allows us to compute this value without

deriving x(a) explicitly.

For this example, just differentiate f (x(a), a) = 0 with respect to a.

Then you get Dx(a) = −Daf (x ,a)
Dx f (x ,a)

. Hence

Dx(a)|a=1/
√
2 = −

√
2√
2

= −1.

This does not work when Dx f (x , a) = 0 (at a = 1 for example).
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Implicit Function Theorem

This result generalizes. Let X ∈ <J and A ∈ <K be open sets and

F : X × A→ <J be a C 1 (continuously differentiable) function.

Implicit Function Theorem

If rank DxF (x ′, a′) = J at (x ′, a′) ∈ X × A, then there exist open

neighborhoods V ⊂ X of x ′, U ⊂ A of a′, and a C 1 function f : U → V

such that

1 x = f (a) if and only if F (x , a) = 0 for (x , a) ∈ V × U, and

2 Df (a′) = −DxF (x ′, a′)−1DaF (x ′, a′).
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Implicit Function Theorem

1

1
Slope = -1

1/sqrt2

1/sqrt2

U

V

a

x
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