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Trembling Hand Perfect Equilibrium

Trembling Hand Perfect Equilibrium

We may want to claim that (B,B) is not a reasonable NE in the

following game.

1, 1

0, 0

0, 0

0, 0

A B

A

B

One reason would be that people make “mistakes”.
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Trembling Hand Perfect Equilibrium

Trembling Hand Perfect Equilibrium

The following equilibrium notion captures such an idea.

Trembling Hand Perfect Equilibrium

α∗ ∈
∏

i ∆(Ai ) of a finite strategic game is a trembling hand perfect

equilibrium if there exists a sequence of completely mixed strategies αk

that converges to α∗ such that α∗i is a best response to αk
−i for every k for

every i ∈ N.

I Every trembling hand perfect equilibrium is a MSNE with no weakly

dominated strategy. The converse is true for two player games.

I So THPE is a refinement of NE.
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Trembling Hand Perfect Equilibrium

Theorem

For any finite strategic game, there exists a trembling hand perfect

equilibrium.

Proof.

Let αε be a mixed strategy profile such that αεi is a best response to

αε−i subjective to the constraint that every action is played with at

least probability ε. Such a mixed strategy profile exists by Nash

equilibrium existence theorem.

Consider a sequence of αεk such that εk → 0. Take a subsequence so

that αεk → α∗ for some α∗.

There exists k ′ such that α∗i is a best response for every k ≥ k ′ for

every i ∈ N (verify this).
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Correlated Equilibrium

Correlated Equilibrium

Suppose that players observe a private signal before they play a

strategic game (remember some interpretations of mixed strategies).

Each player plays an optimal action given her private signal.

What role would such private signals play?
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Correlated Equilibrium

A B 

A (3,3)  (1,4) 

B (4, 1)  
 

(0,-0) 

There are two pure strategy NE: (A,B), (B,A) and one mixed strategy

symmetric NE: (0.5, 0.5).
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Correlated Equilibrium

Suppose that a public signal x and y is observed with equal probability.

I It is possible for players to coordinate and play (A,B) given x and

(B,A) given y . Then (A,B), (B,A) is played with probability 1/2.

Suppose that there are three states {x , y , z}, each of which realizes with

probability 1/3. Player 1 can only observe whether x is realized or not.

Player 2 can only observe whether z is realized or not.

I The following strategies are mutually best response: player 1 plays B if

and only if x is observed and player 2 plays B if and only if z is

observed. Then (A,A), (A,B), (B,A) is played with probability 1/3.

These outcome distributions cannot be achieved by any NE.
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Correlated Equilibrium

Now we introduce the formal definition of correlated equilibrium.

Information structure consists of

I Ω: a finite set of states (ex. Ω = {x , y , z})
I Pi : player i ’s information partition (ex. P1 = {{x} , {y , z}})

Player i ’s strategy is a mapping si : Ω→ Ai that is adapted to Pi
(i.e. si (ω) = si (ω

′) for any ω and ω′ in the same element of Pi .). Let

Si be the set of all such strategies adapted to Pi .
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Correlated Equilibrium

Then a correlated equilibrium is simply a Nash equilibrium with respect to

these adapted strategies.

Correlated Equilibrium

(Ω, π, (Pi ), (Si )) is a correlated equilibrium for strategic game

(N, (Ai ), (ui )) if

∑
ω∈Ω

π(ω)ui (si (ω), s−i (ω)) ≥
∑
ω∈Ω

π(ω)ui (τi (ω), s−i (ω))

for every τi ∈ Si for every i ∈ N.
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Correlated Equilibrium

Upon some reflection, it is easy to see that the set of states can be A

without loss of generality. An interpretation is that player i ’s

information is a recommendation of a particular action.

Then we can show the following (this could be an alternative

definition of correlated equilibrium).

Correlated Equilibrium

A distribution of action profile σ ∈ ∆(A) can be generated by a correlated

equilibrium if

∑
a−i∈A−i

σ(ai , a−i )ui (ai , a−i ) ≥
∑

a−i∈A−i

σ(ai , a−i )ui (a′i , a−i )

is satisfied for every a′i , ai ∈ Ai and for any i ∈ N.
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Correlated Equilibrium

Comments:

In this formulation, it is easy to see that

I Every mixed strategy Nash equilibrium is a correlated equilibrium.

I A convex combination of correlated equilibrium is a correlated

equilibrium.

I In fact, the set of correlated equilibrium distributions is a set of

solutions for some system of linear inequalities, which is much easier to

solve than finding a fixed point (i.e. NE).
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Evolutionary Stable Strategy

Game Theory in Biology

Game theory is used in many disciplines. Here we take a look at the

most prominent application in biology.

The influence is not one-way. A biological view on games enriched the

game theory. Here we emphasize

I ESS as a “refinement” of Nash equilibrium for symmetric games.

I the population interpretation of MSNE: mixed strategy as

co-existence.
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Evolutionary Stable Strategy

Hawk-Dove Game

Consider the following situation.

There are many birds of the same type.

Each bird is randomly paired with another bird and play the following

two-by-two game.

I Each bird can take one of the two strategies: “Hawk” and “Dove”.

I Given (H,D) or (D,H), the bird that chose H takes all the resource

(= V ) and the bird that chose D gets nothing (= 0).

I Given (D,D), each gets a half of the pie (= V /2).

I Given (H,H), each bird wins or loses the battle with equal probability.

The winning bird gets the whole pie and the losing bird suffers cost

C > V .
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Evolutionary Stable Strategy

Hawk-Dove Game

Each bird’s expected payoff is as follows.

(V-C)/2, (V-C)/2 V, 0 

0, V 

Hawk 

Hawk 

Dove 

Dove 

V/2, V/2 

If this game is played many, many times with different partners, then these

payoffs are (almost) the actual average payoff by the law of large numbers.
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Evolutionary Stable Strategy

Hawk-Dove Game

There are three Nash equilibria in this game: two asymmetric pure NE

(H,D), (D,H), and a symmetric mixed strategy NE (V /C , 1−V /C ).

Birds do not know which role they are playing, so the equilibrium

must be a symmetric one.

One interpretation of this mixed NE: V /C and 1− V /C are the

proportion of birds that play H and D respectively.

This symmetric NE satisfies some nice stability property. It is

resistant to any mutation in the population.

I If more birds take H, then D becomes the optimal choice.

I If more birds take D, then H becomes the optimal choice.
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Evolutionary Stable Strategy

Symmetric Population Game (A, u) consists of

I a finite action set A

I a payoff function u : A× A→ <

Let u(a, α) =
∑

a′∈A α(a′)u(a, a′) where a is own action and α ∈ ∆(A) is

the distribution of actions.

Interpretation

I Each player matches randomly with a different player in the population

and play a symmetric 2× 2 game ({1, 2} , (A,A), (ui )), where

u1(x , y) = u(x , y) and u2(x , y) = u(y , x).
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Evolutionary Stable Strategy

ESS

Evolutionary Stable Strategy (ESS) is a strategy that is stable.

The basic idea of ESS is the following.

I It must be a symmetric NE.

I When some “mutants” appear in the population, ESS must perform

better than mutants.
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Evolutionary Stable Strategy

Definition of ESS

Formal definition of ESS

Evolutionary Stable Strategy (Maynard Smith and Price (1973))

α∗ ∈ ∆(A) is Evolutionary Stable Strategy (ESS) if for any τ ∈ ∆(A),

one of the following conditions hold

1 u(α∗, α∗) > u(τ, α∗)

2 u(α∗, α∗) = u(τ, α∗) and u(α∗, τ) > u(τ, τ).
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Evolutionary Stable Strategy

Comment.

The following formulation is equivalent to this definition:

α∗ ∈ ∆(A) is ESS if for any τ ∈ ∆(A), there exists ε such that

u(α∗, (1− ε)α∗ + ετ) > u(τ, (1− ε)α∗ + ετ)

for any ε ∈ (0, ε).

In words: if α∗ is played by the population, then any small number of

“mutants” who play τ ∈ ∆(A) does worse than α∗.
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Evolutionary Stable Strategy

Interpretation of ESS

Here is one biological interpretation for ESS.

I Each strategy such as α∗ is genetically programmed and inherited from

a generation to the next generation (Different individuals with the

same mixed strategy α∗ may behave differently ex post by choosing

different pure strategies).

I A higher payoff = higher fitness ⇒ more offsprings.

I If α∗ is an ESS, any small mutation would die out after a few

generations.
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Evolutionary Stable Strategy

ESS as a refinement of NE

It is clear from the definition that u(α∗, α∗) ≥ u(τ, α∗) for any τ . So ESS is

a symmetric NE.

Consider the following game:

2, 2 

1, 1 

0, 0 

0, 0 

A B 

A 

B 

I There are three symmetric NE.

I (A,A) and (B,B) are strict NE, hence ESS. But the MSNE (1/3, 2/3)

is not.
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Evolutionary Stable Strategy

It can be shown that there always exists an ESS for any two-by-two

symmetric game.

ESS may not exist with more than two actions.

A B C 

A g,g 1,-1 -1,1 

B -1,1 g,g 

 
1,-1 

C 1,-1 -1,1 g,g 

 

0<g <1 

(1/3, 1/3, 1/3) is the unique symmetric MSNE, but it can be invaded by any

of A,B,C.
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Quantal Response Equilibrium

Asymmetric Matching Penny Experiments

Consider the following asymmetric MP game.

1, -1 

1, -1 

-3, 1 

-1, 1 

H T 

H 

T 

We know that player 1’s equilibrium strategy must be (0.5, 0.5), but

player 1 plays H more than T in experiments. Maybe people choose

“nonoptimal” strategy with positive probability for whatever reason?
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Quantal Response Equilibrium

Quantal Response Equilibrium

Consider a finite strategic game. Let ui (ai , α−i ) be player i ’s expected

payoff when player i chooses ai and player j plays a mixed strategy αj .

Let’s assume that player i plays the following mixed strategy αi

instead of the best response strategy against α−i .

αi (ai ) =
exp(λui (ai , α−i ))∑

a′i∈Ai
exp(λui (a′i , α−i ))
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Quantal Response Equilibrium

Quantal Response Equilibrium

This defines a parametric family of noisy best response strategy

BRλ
i (α−i ) ∈ ∆(Ai ) such that

I Every strategy is played with positive probability.

I A strategy with a larger expected payoff is played more often.

I This strategy is totally random when λ = 0. It converges to a best

response strategy as λ→∞.

This can be interpreted as (1) short-run nonoptimal behavior

(incomplete learning) or (2) an optimal strategy with private payoff

shocks.
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Quantal Response Equilibrium

Quantal Response Equilibrium

Quantal Response Equilibrium is defined as a fixed point of these noisy

best response mappings.

Quantal Response Equilibrium

α∗i ∈ ∆(Ai ), i ∈ N is a Quantal Response Equilibrium with parameter

λ ∈ <+ if it satisfies α∗i = BRλ
i (α∗−i ) for all i ∈ N.

There exists a QRE by Brouwer’s fixed point theorem.
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Quantal Response Equilibrium

Quantal Response Equilibrium

These are the original best responses for Asymmetric Matching Penny.

0.5 1 

1 

a1(H) 

a2(H) 

2/3 

0.5 
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Quantal Response Equilibrium

Quantal Response Equilibrium

These are the noisy best responses given some λ > 0.

0.5 1 

1 

a1(H) 

a2(H) 

2/3 

0.5 

NE 

QRE 
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