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Introduction

Why Repeated Games?

Prisoner’s dilemma game:

C D

C 1, 1 −1, 2

D 2,−1 0, 0

D is the strictly dominant action, hence (D,D) is the unique Nash

equilibrium.

However, people don’t always play (D,D). Why? One reason would be that

people (expect to) play this game repeatedly. Then what matters is the total

payoff, not just current payoff.

Repeated game is a model about such long-term relationships.
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Introduction

A list of questions we are interested in:

I When can people cooperate in a long-term relationship?

I How do people cooperate?

I What is the most efficient outcome that arise as an equilibrium?

I What is the set of all outcomes that can be supported in equilibrium?

I If there are many equilibria, which equilibrium would be selected?
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Repeated Games with Perfect Monitoring Formal Model

Formal Model

Stage Game

In repeated game, players play the same strategic game G repeatedly,

which is called stage game.

G = (N, (Ai ), (ui )) satisfies usual assumptions.

I Player: N = {1, ..., n}
I Action: ai ∈ Ai (finite or compact&convex in <K ).

I Payoff: ui : A→ < (continuous).

The set of feasible payoffs is F := co {g(a) : a ∈ A}.
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Repeated Games with Perfect Monitoring Formal Model

Now we define a repeated game based on G .

History

A period t history ht = (a1, ..., at−1) ∈ Ht = At−1 is a sequence of

the past action profiles at the beginning of period t.

The initial history is H1 = {∅} by convention.

H = ∪∞t=1Ht is the set of all such histories.
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Repeated Games with Perfect Monitoring Formal Model

Strategy and Payoff

Player i ’s (pure) strategy si ∈ Si is a mapping from H to Ai .

I Ex. Tit-for-Tat: “First play C , then play what your opponent played in

the last period”.

A strategy profile s ∈ S generates a sequence of action profiles

(a1, a2, ...) ∈ A∞. Player i ’s discounted average payoff given s is

Vi (s) := (1− δ)
∞∑
t=1

δt−1gi (at)

where δ ∈ [0, 1) is a discount factor.
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Repeated Games with Perfect Monitoring Formal Model

Repeated Game

This extensive game with simultaneous moves is called repeated

game (sometimes called supergame).

The repeated game derived from G and with discount factor δ is

denoted by G∞(δ)

We use subgame perfect equilibrium.

The set of all pure strategy SPE payoff profiles for G∞(δ) is denoted

by E [δ].
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Repeated Games with Perfect Monitoring Formal Model

Public Randomization Device

We may allow players to use a publicly observable random variable

(say, throwing a die) in the beginning of each period.

Formally we can incorporate a sequence of outcomes of such public

randomization device as a part of history in an obvious way. To

keep notations simple, we don’t introduce additional notations for

public randomization.
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Repeated Games with Perfect Monitoring Preliminary Result

Minmax Payoff

Let v i be player i ’s pure-action minmax payoff defined as follows.

Pure-Action Minmax Payoff

v i = mina−i∈A−i
maxai∈Ai

gi (a).

Intuitively v i is the payoff that player i can secure when player i

knows the other players’ actions.

Ex. v i = 0 for i = 1, 2 in the previous PD.
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Repeated Games with Perfect Monitoring Preliminary Result

Minmax Payoff

Minmax payoff serves as a lower bound on equilibrium payoffs in repeated

games.

Lemma

Player i ’s payoff in any NE for G∞(δ) is at least as large as v i .

Proof
Since player i knows the other players’ strategies, player i can deviate and play a

“myopic best response” in every period. Then player i ’s stage game payoff would

be at least as large as vi in every period. Hence player i ’s discounted average

payoff in equilibrium must be at least as large as vi .
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Sustaining Cooperation Trigger Strategy

Trigger Strategy

Consider the following PD (g , ` > 0).

C D

C 1, 1 −`, 1 + g

D 1 + g ,−` 0, 0

When can (C ,C ) be played in every period in equilibrium?
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Sustaining Cooperation Trigger Strategy

Such an equilibrium exists if and only if the players are enough patient.

Theorem

There exists a subgame perfect equilibrium in which (C ,C ) is played in

every period if and only if δ ≥ g
1+g .
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Sustaining Cooperation Trigger Strategy

Proof.

Consider the following trigger strategy:

I Play C in the first period and after any cooperative history

(C ,C ), ..., (C ,C ).

I Otherwise play D.

This is a SPE if the following one-shot deviation constraint is satisfied

1 ≥ (1− δ)(1 + g)

, which is equivalent to δ ≥ g
1+g .

By our previous observation, each player’s continuation payoff cannot

be lower than 0 after a deviation to D. Hence δ ≥ g
1+g is also

necessary for supporting (C ,C ) in every period.
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Sustaining Cooperation stick and Carrot

Stick and Carrot

Consider the following modified PD.

C D E

C 1, 1 −1, 2 −4,−4

D 2,−1 0, 0 −4,−4

E −4,−4 −4,−4 −5,−5

The standard trigger strategy supports (C ,C ) in every period if and

only if δ ≥ 1/2.
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Sustaining Cooperation stick and Carrot

The following strategy (“Stick and Carrot” strategy) support

cooperation for even lower δ.

I Cooperative Phase: Play C. Stay in Cooperative Phase if there is no

deviation. Otherwise move to Punishment Phase.

I Punishment Phase: Play E. Move back to Cooperative Phase if there is

no deviation. Otherwise stay at Punishment Phase.

There are two one-shot deviation constraints.

I 1 ≥ (1− δ)2 + δ [(1− δ)(−5) + δ]

I (1− δ)(−5) + δ ≥ (1− δ)(−4) + δ [(1− δ)(−5) + δ].

They are satisfied if and only if δ ≥ 1
6 .
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Sustaining Cooperation Optimal Collusion

Optimal Collusion

We study this type of equilibrium in the context of dynamic Cournot

duopoly model.

Consider a repeated game where the stage game is given by the

following Cournot duopoly game.

I Ai = <+

I Inverse demand: p(q) = max {A− (q1 + q2) , 0}
I πi (q) = p(q)qi − cqi

Discount factor δ ∈ (0, 1).
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Sustaining Cooperation Optimal Collusion

Cournot-Nash equilibrium and Monopoly

In Cournot-Nash equilibrium, each firm produces qC = A−c
3 and gains

πC = (A−c)2
9 .

The total output that would maximize the joint profit is A−c
2 . Let

qM = A−c
4 be the monopoly production level per firm.

Let π(q) = πi (q, q) be each firm’s profit when both firms produce q.

Let πd(q) = maxqi∈<+ πi (qi , q) be the maximum profit each firm can

gain by deviating from q when the other firm produces q.
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Sustaining Cooperation Optimal Collusion

π(q)
π(q)
d

qq CM
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Sustaining Cooperation Optimal Collusion

We look for a SPE to maximize the joint profit.

The firms like to collude to produce less than the Cournot-Nash

equilibrium to keep the price high.

We focus on strongly symmetric SPE. When the stage game is

symmetric, an SPE is strongly symmetric if every player plays the

same action after any history.
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Sustaining Cooperation Optimal Collusion

Structure of Optimal Equilibrium

We show that the best SSSPE and the worst SSSPE has a very

simple structure.

Consider the following strategy:

I Phase 1: Play q∗. Stay in Phase 1 if there is no deviation. Otherwise

move to Phase 2.

I Phase 2: Play q∗. Move to Phase 1 if there is no deviation. Otherwise

stay in Phase 2.

The best SSSPE is achieved by a strategy that starts in Phase 1

(denoted by s(q∗∞)) and the worst SSSPE is achieved by a strategy

that starts in Phase 2 (denoted by s(q∗, q
∗∞)) for some q∗, q∗.
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Sustaining Cooperation Optimal Collusion

Let V and V be the best SSSPE payoff and the worst SSSPE payoff

respectively (Note: this needs to be proved).

First note that the equilibrium action must be constant for V .

I Let q∗ be the infimum of the set of all actions above qM that can be

supported by some SSSPE. Let qk , k = 1, 2, .. be a sequence within

this set that converges to q∗.

I One-shot deviation constraint implies

(1− δ)π(qk) + δV ≥ (1− δ)πd(qk) + δV

Taking the limit and using π(q∗) ≥ V , we have

π(q∗) ≥ (1− δ)πd(q∗) + δV ,

which means that it is possible to support q∗ in every period.
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Sustaining Cooperation Optimal Collusion

Secondly, we can show that the worst SSSPE can be achieved by

s(q∗, q
∗∞) (“stick and carrot”) for some q∗ ≥ qC .

I Take any path Q ′ = (q′1, q
′
2, ...., ) to archive the worst SSSPE.

I Since π(q′t) ≤ π(q∗) for all t and π(q) is not bounded below, we can

find q∗ ≥ q′1 such that Q∗ = (q∗, q
∗, ....) generates the same

discounted average payoff as Q ′.

I Then c(q∗, q
∗∞) is a SPE that archives the worst SSSPE payoff

because

V (Q ′) ≥ (1− δ)πd(q′1) + δV (Q ′)

⇓

V (Q∗) ≥ (1− δ)πd(q∗) + δV (Q∗).
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Sustaining Cooperation Optimal Collusion

To summarize, we have the following theorem.

Theorem (Abreu 1986)

There exists q∗ ∈
[
qM , qC

]
and q∗ ≥ qC such that s(q∗∞) achieves the

best SSSPE and s(q∗, q
∗∞) achieves the worst SSSPE.

Note: This can be generalized to the case with nonlinear demand

function and many firms.
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Folk Theorem

Q: How many SPE? Which payoff can be supported by SPE?

A: Almost all “reasonable” payoffs if δ is large.
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Folk Theorem

What does “almost all” mean?

We know that player i ’s (pure strategy) SPE payoff is never strictly

below v i . We show that every feasible v strictly above v can be

supported by SPE. This is so called Folk Theorem in the theory of

repeated games.
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Folk Theorem

Definitions

v ∈ F is strictly individually rational if vi is strictly larger than v i

for all i ∈ I . Let F∗ ⊂ F be the set of feasible and strictly

individually rational payoff profiles.

Normalize v i to 0 for every i without loss of generality.

Let g := maxi maxa,a′∈A |gi (a)− gi (a′)|.
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Folk Theorem

For the repeated PD, the yellow area is the set of strictly individually

rational and feasible payoffs.

(1,1) 

(2,-1) 

(-1,2) 

(0,0) 
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Folk Theorem

Folk Theorem

There are many folk theorems. This is one of the most famous ones.

Theorem (Fudenberg and Maskin 1986)

Suppose that F∗ is full-dimensional (has an interior point in <N). For any

v∗ ∈ F∗, there exists a strategy profile s∗ ∈ S and δ ∈ (0, 1) such that s∗

is a SPE and achieves v for any δ ∈ (δ, 1).
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Folk Theorem

Folk Theorem

Idea of Proof

Players play a∗ ∈ A such that v∗ = g(a∗) every period in equilibrium.

Any player who deviates unilaterally is punished by being minmaxed

for a finite number of periods.

The only complication is that minmaxing someone may be very costly,

even worse than being minmaxed.

In order to keep incentive of the players to punish the deviator, every

player other than the deviator is “rewarded” after minmaxing the

deviator.
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Folk Theorem

Proof

Step 1. Pick v j ∈ F∗ for each j ∈ N so that v∗j > v j
j for all j and v i

j > v j
j

for all i 6= j . We assume that there exists a∗, aj ∈ A,j = 1, ....,N such that

v∗ = g (a∗) and v j = g
(
aj
)

for simplicity (use a public randomization

device otherwise).

Step 2. Pick an integer T to satisfy g < T mini,j v
j
i .
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Folk Theorem

Proof

Step 3. Define the following strategy.

I Phase I. Play a∗ ∈ A. Stay in Phase I if there is no unilateral deviation

from a∗. Go to Phase II(i) if player i unilaterally deviates from a∗.

I Phase II(i). Play a(i) ∈ A (the action minmaxing player i) for T

periods and go to Phase III(i) if there is no unilateral deviation. Go to

Phase II(j) if player j unilaterally deviates from a(i).

I Phase III(i). Play ai ∈ A. Stay in Phase III(i) if there is no unilateral

deviation from ai . Go to Phase II(j) if player j unilaterally deviates

from ai .
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Folk Theorem

Proof

Step 4. Check all one shot deviation constraints.

I Phase I

(1− δ) g ≤ (1− δ) (δ+, ...,+δT )v∗j + δT+1
(
v∗j − v j

j

)
for all j ∈ N

I Phase II(i)(the first period): IC is clearly satisfied for i . For j 6= i ,

(
1− δT+1

)
g ≤ δT+1

(
v i
j − v j

j

)
I Phase III(i)

(1− δ) g ≤ (1− δ) (δ+, ...,+δT )v i
j + δT+1

(
v i
j − v j

j

)
for all j ∈ N

These constrains are satisfied for some large enough δ and any δ ∈ (δ, 1).
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Folk Theorem
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