Repeated Game

Ichiro Obara

UCLA

March 1, 2012

Obara (UCLA)

Repeated Game

March 1, 2012 1 / 33

- Why Repeated Games?
 - Prisoner's dilemma game:

	С	D
С	1,1	-1, 2
D	2, -1	0,0

- *D* is the strictly dominant action, hence (*D*, *D*) is the unique Nash equilibrium.
- However, people don't always play (*D*, *D*). Why? One reason would be that people (expect to) play this game repeatedly. Then what matters is the total payoff, not just current payoff.
- **Repeated game** is a model about such long-term relationships.

イロト 不得下 イヨト イヨト 二日

- A list of questions we are interested in:
 - When can people cooperate in a long-term relationship?
 - How do people cooperate?
 - What is the most efficient outcome that arise as an equilibrium?
 - What is the set of all outcomes that can be supported in equilibrium?
 - If there are many equilibria, which equilibrium would be selected?

Formal Model

Stage Game

- In repeated game, players play the same strategic game G repeatedly, which is called stage game.
- $G = (N, (A_i), (u_i))$ satisfies usual assumptions.
 - Player: $N = \{1, ..., n\}$
 - Action: $a_i \in A_i$ (finite or compact&convex in $\Re^{\mathcal{K}}$).
 - **Payoff:** $u_i : A \to \Re$ (continuous).
- The set of **feasible payoffs** is $\mathcal{F} := co \{g(a) : a \in A\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Now we define a repeated game based on G.

History

- A period t history h_t = (a₁,..., a_{t-1}) ∈ H_t = A^{t-1} is a sequence of the past action profiles at the beginning of period t.
- The initial history is $H_1 = \{\emptyset\}$ by convention.
- $H = \bigcup_{t=1}^{\infty} H_t$ is the set of all such histories.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Strategy and Payoff

- Player *i*'s (pure) **strategy** $s_i \in S_i$ is a mapping from *H* to A_i .
 - Ex. Tit-for-Tat: "First play C, then play what your opponent played in the last period".
- A strategy profile s ∈ S generates a sequence of action profiles
 (a₁, a₂, ...) ∈ A[∞]. Player i's discounted average payoff given s is

$$V_{i}(s) := (1-\delta) \sum_{t=1}^{\infty} \delta^{t-1} g_{i}(a_{t})$$

where $\delta \in [0, 1)$ is a discount factor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Repeated Game

- This extensive game with simultaneous moves is called repeated game (sometimes called supergame).
- The repeated game derived from G and with discount factor δ is denoted by G[∞](δ)
- We use subgame perfect equilibrium.
- The set of all pure strategy SPE payoff profiles for G[∞](δ) is denoted by E[δ].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Public Randomization Device

- We may allow players to use a publicly observable random variable (say, throwing a die) in the beginning of each period.
- Formally we can incorporate a sequence of outcomes of such public randomization device as a part of history in an obvious way. To keep notations simple, we don't introduce additional notations for public randomization.

< ロ > < 同 > < 三 > < 三 >

Minmax Payoff

• Let \underline{v}_i be player *i*'s **pure-action minmax payoff** defined as follows.

Pure-Action Minmax Payoff

 $\underline{v}_{i} = \min_{a_{-i} \in A_{-i}} \max_{a_{i} \in A_{i}} g_{i}(a).$

- Intuitively <u>v</u>_i is the payoff that player i can secure when player i knows the other players' actions.
- Ex. $\underline{v}_i = 0$ for i = 1, 2 in the previous PD.

イロト 不得 トイヨト イヨト 二日

Minmax Payoff

Minmax payoff serves as a lower bound on equilibrium payoffs in repeated games.

Lemma

Player *i*'s payoff in any NE for $G^{\infty}(\delta)$ is at least as large as \underline{v}_i .

Proof

Since player *i* knows the other players' strategies, player *i* can deviate and play a "myopic best response" in every period. Then player *i*'s stage game payoff would be at least as large as v_i in every period. Hence player *i*'s discounted average payoff in equilibrium must be at least as large as v_i .

イロト 不得下 イヨト イヨト 二日

Trigger Strategy

• Consider the following PD $(g, \ell > 0)$.

$$\begin{array}{|c|c|c|c|}\hline C & D \\ \hline C & 1,1 & -\ell,1+g \\ \hline D & 1+g,-\ell & 0,0 \\ \hline \end{array}$$

• When can (C, C) be played in every period in equilibrium?

Such an equilibrium exists if and only if the players are enough patient.

Theorem

There exists a subgame perfect equilibrium in which (C, C) is played in every period if and only if $\delta \geq \frac{g}{1+g}$.

イロト イヨト イヨト イヨト

Proof.

- Consider the following trigger strategy:
 - Play C in the first period and after any cooperative history (C, C), ..., (C, C).
 - Otherwise play D.
- This is a SPE if the following one-shot deviation constraint is satisfied

$$1 \ge (1-\delta)(1+g)$$

, which is equivalent to $\delta \geq \frac{g}{1+g}$.

 By our previous observation, each player's continuation payoff cannot be lower than 0 after a deviation to D. Hence δ ≥ g/(1+g) is also necessary for supporting (C, C) in every period. Stick and Carrot

• Consider the following modified PD.

	С	D	Е
С	1, 1	-1, 2	-4, -4
D	2, -1	0,0	-4, -4
Ε	-4, -4	-4, -4	-5, -5

 The standard trigger strategy supports (C, C) in every period if and only if δ ≥ 1/2.

- The following strategy ("Stick and Carrot" strategy) support cooperation for even lower δ .
 - Cooperative Phase: Play C. Stay in Cooperative Phase if there is no deviation. Otherwise move to Punishment Phase.
 - Punishment Phase: Play E. Move back to Cooperative Phase if there is no deviation. Otherwise stay at Punishment Phase.
- There are two one-shot deviation constraints.

▶
$$1 \ge (1 - \delta)2 + \delta [(1 - \delta)(-5) + \delta]$$

- $(1-\delta)(-5) + \delta \ge (1-\delta)(-4) + \delta [(1-\delta)(-5) + \delta].$
- They are satisfied if and only if $\delta \geq \frac{1}{6}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Optimal Collusion

- We study this type of equilibrium in the context of dynamic Cournot duopoly model.
- Consider a repeated game where the stage game is given by the following Cournot duopoly game.

•
$$A_i = \Re_+$$

- Inverse demand: $p(q) = \max \{A (q_1 + q_2), 0\}$
- $\pi_i(q) = p(q)q_i cq_i$
- Discount factor $\delta \in (0, 1)$.

Cournot-Nash equilibrium and Monopoly

- In Cournot-Nash equilibrium, each firm produces $q^C = \frac{A-c}{3}$ and gains $\pi^C = \frac{(A-c)^2}{9}$.
- The total output that would maximize the joint profit is $\frac{A-c}{2}$. Let $q^M = \frac{A-c}{4}$ be the monopoly production level per firm.
- Let $\pi(q) = \pi_i(q, q)$ be each firm's profit when both firms produce q.
- Let π^d(q) = max_{qi∈ℜ+} π_i(q_i, q) be the maximum profit each firm can gain by deviating from q when the other firm produces q.

- We look for a SPE to maximize the joint profit.
- The firms like to collude to produce less than the Cournot-Nash equilibrium to keep the price high.
- We focus on **strongly symmetric SPE**. When the stage game is symmetric, an SPE is strongly symmetric if every player plays the same action after any history.

Structure of Optimal Equilibrium

- We show that the best SSSPE and the worst SSSPE has a very simple structure.
- Consider the following strategy:
 - Phase 1: Play q*. Stay in Phase 1 if there is no deviation. Otherwise move to Phase 2.
 - Phase 2: Play q_{*}. Move to Phase 1 if there is no deviation. Otherwise stay in Phase 2.
- The best SSSPE is achieved by a strategy that starts in Phase 1 (denoted by s(q^{*∞})) and the worst SSSPE is achieved by a strategy that starts in Phase 2 (denoted by s(q_{*}, q^{*∞})) for some q^{*}, q_{*}.

- Let \overline{V} and \underline{V} be the best SSSPE payoff and the worst SSSPE payoff respectively (Note: this needs to be proved).
- First note that the equilibrium action must be constant for \overline{V} .
 - Let q* be the infimum of the set of all actions above q^M that can be supported by some SSSPE. Let q^k, k = 1, 2, .. be a sequence within this set that converges to q*.
 - One-shot deviation constraint implies

$$(1-\delta)\pi(q^k) + \delta \overline{V} \ge (1-\delta)\pi^d(q^k) + \delta \underline{V}$$

Taking the limit and using $\pi(q^*) \geq \overline{V}$, we have

$$\pi(q^*) \ge (1-\delta)\pi^d(q^*) + \delta \underline{V},$$

which means that it is possible to support q^* in every period.

Obara (UCLA)

- Secondly, we can show that the worst SSSPE can be achieved by $s(q_*, q^{*\infty})$ ("stick and carrot") for some $q_* \ge q^C$.
 - Take any path $Q' = (q'_1, q'_2, ...,)$ to archive the worst SSSPE.
 - Since π(q'_t) ≤ π(q^{*}) for all t and π(q) is not bounded below, we can find q_{*} ≥ q'₁ such that Q_{*} = (q_{*}, q^{*}, ...) generates the same discounted average payoff as Q'.
 - ► Then c(q_{*}, q^{*∞}) is a SPE that archives the worst SSSPE payoff because

$$egin{aligned} V(Q') &\geq (1-\delta)\pi^d(q_1') + \delta V(Q') \ && \Downarrow \ && V(Q_*) \geq (1-\delta)\pi^d(q_*) + \delta V(Q_*). \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

To summarize, we have the following theorem.

Theorem (Abreu 1986) There exists $q^* \in [q^M, q^C]$ and $q_* \ge q^C$ such that $s(q^{*\infty})$ achieves the best SSSPE and $s(q_*, q^{*\infty})$ achieves the worst SSSPE.

• Note: This can be generalized to the case with nonlinear demand function and many firms.

イロト 不得下 イヨト イヨト 二日

- Q: How many SPE? Which payoff can be supported by SPE?
- A: Almost all "reasonable" payoffs if δ is large.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- What does "almost all" mean?
- We know that player *i*'s (pure strategy) SPE payoff is never strictly below <u>v</u>_i. We show that every feasible v strictly above <u>v</u> can be supported by SPE. This is so called **Folk Theorem** in the theory of repeated games.

(日) (同) (三) (三)

Definitions

- v ∈ F is strictly individually rational if v_i is strictly larger than v_i for all i ∈ I. Let F* ⊂ F be the set of feasible and strictly individually rational payoff profiles.
- Normalize \underline{v}_i to 0 for every *i* without loss of generality.
- Let $\overline{g} := \max_{i} \max_{a,a' \in A} |g_i(a) g_i(a')|$.

・ロン ・四 ・ ・ ヨン ・ ヨン

For the repeated PD, the yellow area is the set of strictly individually rational and feasible payoffs.

Obara (UCLA)

March 1, 2012 27 / 33

Folk Theorem

There are many folk theorems. This is one of the most famous ones.

Theorem (Fudenberg and Maskin 1986) Suppose that \mathcal{F}^* is full-dimensional (has an interior point in \mathfrak{R}^N). For any $v^* \in \mathcal{F}^*$, there exists a strategy profile $s^* \in S$ and $\underline{\delta} \in (0, 1)$ such that s^* is a SPE and achieves v for any $\delta \in (\underline{\delta}, 1)$.

< 回 > < 三 > < 三 >

Folk Theorem

Idea of Proof

- Players play $a^* \in A$ such that $v^* = g(a^*)$ every period in equilibrium.
- Any player who deviates unilaterally is punished by being minmaxed for a finite number of periods.
- The only complication is that minmaxing someone may be very costly, even worse than being minmaxed.
- In order to keep incentive of the players to punish the deviator, every player other than the deviator is "rewarded" after minmaxing the deviator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof

- Step 1. Pick v^j ∈ F* for each j ∈ N so that v^{*}_j > v^j_j for all j and vⁱ_j > v^j_j for all i ≠ j. We assume that there exists a*, a^j ∈ A, j = 1, ..., N such that v* = g (a*) and v^j = g (a^j) for simplicity (use a public randomization device otherwise).
- Step 2. Pick an integer T to satisfy $\overline{g} < T \min_{i,j} v_i^j$.

(日) (同) (三) (三)

Proof

- Step 3. Define the following strategy.
 - Phase I. Play a* ∈ A. Stay in Phase I if there is no unilateral deviation from a*. Go to Phase II(i) if player i unilaterally deviates from a*.
 Phase II(i). Play <u>a(i)</u> ∈ A (the action minmaxing player i) for T periods and go to Phase III(i) if there is no unilateral deviation. Go to Phase II(j) if player j unilaterally deviates from <u>a(i)</u>.
 Phase III(i). Play aⁱ ∈ A. Stay in Phase III(i) if there is no unilateral deviates from aⁱ. Go to Phase II(j) if player j unilaterally deviates from <u>a(i)</u>.

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof

• Step 4. Check all one shot deviation constraints.

Phase I

$$(1-\delta)\overline{g} \leq (1-\delta)\left(\delta+,...,+\delta^{\mathcal{T}}
ight)v_{j}^{*}+\delta^{\mathcal{T}+1}\left(v_{j}^{*}-v_{j}^{j}
ight)$$
 for all $j\in N$

Phase II(i)(the first period): IC is clearly satisfied for *i*. For $j \neq i$,

$$(1 - \delta^{T+1}) \overline{g} \leq \delta^{T+1} \left(\mathbf{v}_j^i - \mathbf{v}_j^j \right)$$

Phase III(i)

$$(1-\delta)\,\overline{g} \leq (1-\delta)\,(\delta+,...,+\delta^{\,T})v^i_j + \delta^{\,T+1}\left(v^i_j - v^j_j
ight)\,\, ext{for all }j\in N$$

These constrains are satisfied for some large enough $\underline{\delta}$ and any $\delta \in (\underline{\delta}, 1)$.

References

- Abreu, "On the theory of infinitely repeated games with discounting," *Econometrica* 1988.
- Fudenberg and Maskin, "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," *Econometrica* 1986.
- Mailath and Samuelson, *Repeated Games and Reputations*, Oxford Press 2006.