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Abstract

This paper examines a class of contractual relationships with specific investment,
a non-durable trading opportunity, and renegotiation. Furthering Watson’s (2007) line
of analysis, trade actions are modeled as individual and trade-action-based option con-
tracts are explored. Simple tools are developed for calculating the “punishment val-
ues” that determine the sets of implementable post-investment value functions, and
two results are proved. The first result establishes that, with ex post renegotiation,
constraining parties to use “forcing contracts” (as is implicit in public-action models)
implies a strict reduction in the set of implementable value functions. The second re-
sult shows that, by using non-forcing contracts, the party without the trade action can
be made residual claimant with regard to the investment action. The paper identifies
an important distinction, between divided and unified investment and trade actions,
that plays an important role in determining whether an efficient outcome is achieved.

The hold-up problem arises in situations in which contracting parties can renegotiate
their contract between the time they make relation-specific investments and the time at
which they can trade.! The severity of the hold-up problem depends critically on the pro-
ductive technology and on the timing of renegotiation opportunities. This paper contributes
to the literature by examining how the nature of the “trade action” in a contractual rela-
tionship influences the prospects for achieving an efficient outcome. We introduce a new
distinction—whether the party who invests also is the one who consummates trade—that
plays an important role in determining the outcome of the contractual relationship.

So that we can describe our modeling exercise more precisely, consider an example in
which contracting parties “Al” and ‘“Zoe” interact as follows. First Al and Zoe meet and
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write a contract that has an externally enforced element. Then one of them makes a private
investment choice, which influences the state of the relationship. The state is commonly
observed by the contracting parties but is not verifiable to the external enforcer. Al and
Zoe then send individual public messages to the external enforcer. After this, they have an
opportunity to renegotiate their contract.? Finally, the parties have a one-shot opportunity to
trade and they also obtain external enforcement. Trade is verifiable to the external enforcer.

This description obviously leaves the mechanics of trade and enforcement ambiguous.
In reality, the parties have individual actions that determine whether and how trade is con-
summated. Let us suppose that Al selects the individual trade action, which we call a. This
could be a choice of whether to deliver or to install an intermediate good, for example.
We then have an individual-action model, whereby Al chooses a and the external enforcer
compels a transfer ¢ as a function of @ and the messages that the parties sent earlier. In
contrast, a public-action model combines the trade action and the monetary transfer into
a single public action (a, t) that is assumed to be taken by the external enforcer. With
this modeling approach, the contract specifies how the public action is conditioned on the
parties’ messages.

Although the public-action model may typically be a bit unrealistic, it is simple and
lends itself to elegant mechanism-design analysis (for example, as in Maskin and Moore
1999 and Segal and Whinston 2002). On the other hand, Watson (2007) demonstrates that
analysis of the individual-action model can be straightforward as well. He also shows that
the public-action model is equivalent to examining individual trade actions but constraining
attention to “forcing contracts” in which the external enforcer forces a particular trade
action as a function of messages sent by the parties (so the trade action is constant in
the state). This characterization leads to the result that public-action models generally
under-represent the scope of contracting and thus overstate the problem of hold up. Watson
(2007) provides an example in which the restriction to forcing contracts has strict (negative)
efficiency consequences.

We provide a deeper analysis for a large class of contractual relationships. We show that
the properties of Watson’s (2007) example are robust. Furthermore, we prove the existence
of non-forcing contracts that make Al’s payoff constant in the state, gross of any investment
costs. In fact, we show that a straightforward “dual option” contract (in which only Zoe
sends a message) suffices. This implies that Zoe can be made the “residual claimant” in the
relationship. Remember that Al has the trade action in our story.® We thus have strong con-
clusions about how the technologies of trade and investment interact to determine whether
the efficient outcome can be achieved. If Zoe is the party who makes the investment choice
— we call this the divided case, because here the investment and trade actions are chosen
by different parties — then there is a contract that induces efficient investment and trade.

’This is called “ex-post” renegotiation because it occurs after messages.
3 As we will show in Section 4, it is in general possible to make the party without the trade action (player 2
in our general model) the residual claimant.



On the other hand, in the unified case in which Al makes the investment choice and also has
the trade action, the efficient outcome is generally not attainable because there typically do
not exist contracts that make Al the residual claimant.

Our results underscore the usefulness of modeling trade actions as individual. This is
particularly salient for the setting of cross/cooperative investment (Che and Hausch 1999),
where the investment by one party increases the benefit to the other party of subsequent
trade. The literature has regarded cross investment settings as especially prone to the hold-
up problem (and inefficient outcomes as a result). By introducing the distinction between
unified and divided investment and trade actions, we thus give a basis for deeper analysis.
We find that the hold-up problem can be completely solved in the case of cross investment
and divided actions, whereas hold-up is more problematic in the case of cross investment
and unified actions.

Our analysis utilizes mechanism-design techniques. With both the individual-action
and public-action modeling approaches, analysis of the contractual problem centers on cal-
culating the set of implementable value functions from just after the state is realized (before
messages are sent). Formally, an implementable value function is the state-contingent con-
tinuation value that results in equilibrium for a given contract. Let VEPF be the set of imple-
mentable value functions for the public-action model under ex-post renegotiation, and let
VEP be the corresponding set for the individual-action model. We also examine the case of
interim renegotiation, where the parties can renegotiate only before sending messages, and
let V! be the set of implementable value functions for this case. Watson (2007) shows that,
by their definitions, these three sets satisfy VEPF € VEP C V1 In Watson’s key example,
the inclusion relations are strict so that VEPF £ VEP £ p1,

We provide simple tools to calculate the “punishment values” that determine the imple-
mentable sets for the class of relationships we analyze here. Our first theorem establishes
that the inequalities VEPY £ VEP £ V1 always hold. In particular, in the important setting
of ex post renegotiation described above, limiting attention to forcing contracts (study-
ing VEPF rather than VEP) reduces the range of state-contingent continuation values. This
makes it more difficult to give the investing party the incentive to invest at the beginning
of the relationship. However, this does not mean that a more efficient outcome can always
be achieved when actions are modeled as individual, because efficiency depends on what
region of the implementable-value set is relevant for giving appropriate investment incen-
tives. That is, in some examples we have VEP £ VEPF byt these sets coincide where it
matters to induce optimal investment. Our second theorem establishes that VEF contains
functions that hold fixed the value of the player with the trade action (and give the other
player the full value of the relationship minus this constant). This result is the basis for our
insights on the relation between the investment and trade technologies.

In the class of trade technologies that we study here, a single player (player 1, Al above)
has the trade action. The key economic assumption we make is that player 1’s utility
is supermodular as a function of the state and trade action. That is, this player’s marginal



value of the trade action is monotone in the state. Our results generalize to settings in which
both players have trade actions. Our other assumptions are weak technical conditions that
guarantee well-defined maxima, non-trivial settings, and the like. We argue that these
conditions are likely to hold in a wide range of applications and that they are consistent
with what is typically assumed in the literature. Public-action models obviously do not
identify aspects of the technology of trade, although verbal accounts sometimes do.

The rest of the paper proceeds as follows. In the next section we provide the details
of the model. Section 2 provides an overview of the basic analytical tools, which mostly
restates material in Watson (2007). Section 3 contains our result on the difference in imple-
mentable sets based on the choice of a public- or private-action model. Section 4 contains
our second significant result; there we provide a detailed analysis of the interaction of the
trade and investment technologies in the context of cross investment and hold up. The
Conclusion includes a discussion of the case of durable trading opportunities. Some of the
technical material and proofs are contained in the appendices.

1 The Theoretical Framework

We look at the same class of contracting problems and use the same notation as Watson
(2007), except that we add a bit of structure on the trade technology to focus our analysis.
In particular, we examine the case in which a single player has a trade action. Throughout
the paper, we use the convention of labeling the player with the trade action as “player 1”
and we call the other “player 2.” These two players are the parties engaged in a contrac-
tual relationship with a non-durable trading opportunity and external enforcement. Their
relationship has the following payoftf-relevant components, occurring in the order shown:

The state of the relationship 6. The state represents unverifiable events that are assumed
to happen early in the relationship. The state may be determined by individual in-
vestment decisions and/or by random occurrences, depending on the setting. When
the state is realized, it becomes commonly known by the players; however, it cannot
be verified to the external enforcer. Let ® denote the set of possible states.

The trade action a. This is an individual action chosen by player 1 that determines whether
and how the relationship is consummated. The trade action is commonly observed
by the players and is verifiable to the external enforcer. Let A be the set of feasible
trade actions.

The monetary transfers t = (t,,t,). Here ¢; denotes the amount given to player i, fori =
1,2, where a negative value represents an amount taken from this player. Transfers
are compelled by the external enforcer, who is not a strategic player but, rather, who



Date 1 Players establish a contract.

2 Unverifiable events determine the state, 6.
3 | [Possible renegotiation of the contract. ]
4 | Players send verifiable messages, m.
s | [Possible renegotiation of the contract.]
Trade and 6 | Players choose verifiable trade actions, a.
enforcement 7 | [Possible renegotiation of the contract. ]
phase s |

External enforcer compels a transfer, 7.

Figure 1: Time line of the contractual relationship.

behaves as directed by the contract of players 1 and 2.* Assume #; + 7, < 0.

We assume that the players’ payoffs are additive in money and are thus defined by
a function u : 4 x ® — R2. In state 6, with trade action a and transfer ¢, the payoff
vector is u(a,0) + t. We assume that u is bounded and that the maximal joint payoff,
maxge4lui(a, 0) + us(a, 0)], exists for every 6.

In addition to the payoff-relevant components of their relationship, we assume that the
players can communicate with the external enforcer using public, verifiable messages. Let
m = (my, m,) denote the profile of messages that the players send and let M and M, be
the sets of feasible messages. The sets M; and M, will be endogenous in the sense that
they are specified by the players in their contract.

Figure 1 shows the time line of the contractual relationship. At even-numbered dates
through Date 6, the players make joint observations and they make individual decisions—
jointly observing the state at Date 2, sending verifiable messages at Date 4, and selecting
the trade actions at Date 6. At Date 8, the external enforcer compels transfers.

At odd-numbered dates, the players make joint contracting decisions—establishing a
contract at Date 1 and possibly renegotiating it later. The contract has an externally-
enforced component consisting of (i) feasible message spaces M; and M, and (ii) a transfer
function y: M x A — R? specifying the transfer ¢ as a function of the verifiable items m
and a. That is, having seen m and a, the external enforcer compels transfer t = y(m, a).
The contract also has a self-enforced component, which specifies how the players coordi-
nate their behavior for the times at which they take individual actions. Renegotiation of the
contract amounts to replacing the original transfer function y with some new function y’,
in which case )’ is the one submitted to the external enforcer at Date 8.

The players’ individual actions at Dates 4 and 6 are assumed to be consistent with se-
quential rationality; that is, each player maximizes his expected payoff, conditional on what

4That the external enforcer’s role is limited to compelling transfers is consistent with what courts do in
practice.



occurred earlier and on what the other player does, and anticipating rational behavior in the
future. The joint decisions (initial contracting and renegotiation at odd-numbered periods)
are assumed to be consistent with a cooperative bargaining solution in which the players
divide surplus according to fixed bargaining weights 7r; and m, for players 1 and 2, respec-
tively. The bargaining weights are nonnegative, sum to one, and are written 7 = (7, 72).
Surplus is defined relative to a disagreement point, which is given by an equilibrium in
the continuation in which the externally enforced component of the contract has not been
altered.’ The effect of the renegotiation opportunity at Date 7 is to constrain transfers to be
“balanced” — that is, satisfying

teR; ={' eR*|t] +1, =0}

Thus, we will simply assume that transfers are balanced and then otherwise ignore Date 7.

A (state-contingent) value function is a function from © to R? that gives the players’
expected payoff vector from the start of a given date, as a function of the state. Such a
value function represents the continuation values for a given outstanding contract and equi-
librium behavior. We shall focus on continuation values from the start of Date 3, because
these determine the players’ incentives to invest at Date 2. Thus, our chief objective is to
characterize the set of implementable value functions from the start of Date 3. A value
function v for Date 3 is implementable if there is a contract that, if formed at Date 1, would
lead to continuation value v(6) in state 6 from the start of Date 3, for every 6 € ©®.

Technology of Trade and Related Literature

Because the trade action «a is assumed to be taken by player 1, we have specified here
an individual-action model. A public-action model, in contrast, would abstract by treating
the trade action a as something that the external enforcer directly selects. Watson (2007)
shows that specifying a public-action model is equivalent to examining the individual-
action model but limiting attention to a particular class of contracts called “forcing con-
tracts,” which we describe in the next section.

Also note that, so far, we have not explicitly included any specific investment technol-
ogy in the model. That is, we have not described the individual investment actions that
determine the state. We leave them out for now because our first result concerns only how
the trade technology is modeled. In Section 4 we investigate the interaction between the
technology of trade and the technology of investment; there we add details on the invest-
ment phase of the contractual relationship.

Much of the recent contract-theory literature focuses on public-action mechanism-
design models. For instance, Che and Hausch (1999), Hart and Moore (1999), Maskin
and Moore (1999), Segal (1999), and Segal and Whinston (2002) have basically the same

>The generalized Nash bargaining solution has this representation. The rationality conditions identify a
contractual equilibrium; see Watson (2004) for notes on the relation between “cooperative” and “noncooper-
ative” approaches to modeling negotiation.



set-up as we do except that their models treat trade actions as public (collapsing together
the trade action and enforcement phase).® In some related papers, the verbal description
of the contracting environment identifies individuals who take the trade actions, but the
actions are effectively modeled as public due to an implicit restriction to forcing contracts.
In some cases, such as with the contribution of Edlin and Reichelstein (1996), simple forc-
ing contracts (or breach remedies) are sufficient to achieve an efficient outcome and so the
restriction does not have efficiency consequences.’

Examples of individual-action models in the literature, among others, are the articles
of Hart and Moore (1988), MacLeod and Malcomson (1993), and Noldeke and Schmidt
(1995). Also relevant is the work of Myerson (1982, 1991), whose mechanism-design
analysis nicely distinguishes between inalienable individual and public actions (he uses the
term “collective choice problem” to describe public-action models). Most closely related
to our work is that of Evans (2006, 2008), who emphasizes how efficient outcomes can be
achieved by conditioning external enforcement on costly individual actions. Evans (2006)
examines general mechanism-design problems; Evans (2008), which we discuss more in
the Conclusion, examines contracting problems with specific investment and durable trad-
ing opportunities. Related as well is the work of Lyon and Rasmussen (2004), which shares
the theme of Watson (2007), and the recent work of Boeckem and Schiller (2008) and Ell-
man (2006).%

In classifying the related literature, another major distinction to make is between mod-
els with cross investment and models with “own investment.” In the latter case, investment
enhances the investing party’s benefit of trade. We discuss this distinction in more detail
in Section 4. Since the hold-up problem is more problematic in the case of cross invest-
ment (and there the distinction between public- and individual-action modeling is critical),
Section 4 concentrates on the cross investment case.

6 Aghion, Dewatripont, and Rey (1994) is another example. The more recent entries by Roider (2004)
and Guriev (2003) have the same basic public-action structure. Demski and Sappington (1991), Noldeke and
Schmidt (1998), and Edlin and Hermalin (2000) examine models with sequential investments in a tradeable
asset; in these models, transferring the asset is essentially a public action.

7Stremitzer (2009) elaborates on Edlin and Reichelstein (1996) by examining the informational require-
ments of standard breach remedies (specifically, partially verifiable investments).

8 Also related are some studies of delegation in principal-agent settings with asymmetric information,
where implementable outcomes depend on whether it is the principal or agent who has the productive action.
As Beaudry and Poitevin (1995) show, ex post renegotiation imposes less of a constraint in the case of
“indirect revelation” (where the agent has the productive action). Thus, if it is possible to transfer “ownership”
of the productive action to the agent, the threat of ex post renegotiation provides one reason for doing this.
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2 Implementable Value Functions

In this section, we analyze equilibrium behavior and characterize the set of value functions
from Date 3 that can be implemented by choice of contract. Characterizing this imple-
mentable set is the key to determining what can be achieved in specific applications. For
example, consider a setting with specific investment, where one or both of the players
makes an investment at Date 2 that influences the state. In this setting, the players’ invest-
ment incentives follow directly from the value function that the parties’ contract implies for
Date 3. If a player can make an investment that increases the state variable, then she will
have the incentive to do so only if her Date 3 continuation value increases sharply enough
in the state (so she is rewarded for making the investment).

Much of the analysis in this section repeats material in Watson (2007), so we keep it
brief here and ask the reader to see Watson (2007) for more details. The culmination of the
basic analysis here are some simple characterization results from Watson (2007), which we
build upon in the subsequent sections.

The set of implementable value functions depends on whether renegotiation is possible
at Dates 3 or 5.° We will examine two cases: ex post renegotiation, where the parties can
renegotiate at Date 5, and interim renegotiation, where the parties can renegotiate at Date 3
but cannot do so at Date 5.1 We can characterize the implementable value functions by
backward induction, starting with Date 6 where player 1 selects the trade action.

State-Contingent Values from Date 6

To calculate the value functions that are supported from Date 6 (the “trade and enforce-
ment phase” shown in Figure 1), we can ignore the payoff-irrelevant messages sent earlier
(or equivalently, fix a message profile from Date 4) and simply write the externally en-
forced transfer function as y: A — R2. That is, J gives the monetary transfer as a function
of player 1’s trade action.

Given the state 0, y defines a trading game, in which player 1 selects an actiona € A
and the payoff vector is then u(a, ) + y(a). Focusing on pure strategies, we let a(6)
denote the action chosen by player 1 in state . This specification is rational for player 1
if, for every 6 € ®, a maximizes u;(a, 0) + y1(a) by choice of a. The state-contingent
payoff vector from Date 6 is then given by the outcome function w: ® — R? defined by

w(0) = u(a(9).0) + y(a(o)). ()

Let W denote the set of supportable outcome functions. Thatis, w € W if and only if there

?As noted earlier, we do not need to explicitly model the Date 2 investment technology in order to cal-
culate the set of implementable value functions from Date 3. In Section 4 we analyze specific investment
technologies and the hold-up problem.

10When ex-post renegotiation is allowed, there is no further constraint imposed by allowing renegotiation
at Date 3, so we don’t have to look at a separate case of renegotiation allowed at both Dates 3 and 5.



are functions y and & such that a is rational for player 1 and, for every 6 € ©, Equation 1
holds.

Public-Action Modeling and Forcing Contracts

Remember that we have specified an individual-action model, where player 1 takes the
trade action at Date 6. In the public-action variant of the model, the trade action would be
taken directly by the external enforcer. Since the enforcer does not observe the state, the
trade action must be constant in the state, conditional on the verifiable items determined in
earlier periods (the contract and messages). Thus, the public-action model is equivalent to
the individual-action model with the restriction to forcing contracts, which, for any given
message profile, prescribe that player 1 select a particular trade action. More precisely, a
forcing contract specifies a large transfer from player 1 to player 2 in the event that player 1
does not take his contractually-prescribed action; this transfer is sufficiently large to give
player 1 the incentive to select the prescribed action in every state.

For example, holding the message profile fixed, the transfer function y defined as fol-
lows will force player 1 to select action ¢* and impose the transfer ¢ * (as though the external
enforcer chose these in a public-action model):

Let L be such that L > sup,, g u1(a, 0) —inf, ¢ u1(a, 0). Then define j(a*) =
t* and, for every a # a*, set y(a) =t* + (—L, L).

We use the term forcing for any transfer function that, given the message profile, induces
player 1 to select the same trade action over all of the states.!! Let WF be the subset of
outcomes that can be supported using forcing contracts. It is easy to see that w € WF if
and only if there is a trade action ¢* and a transfer vector ¢* such that w(0) = u(a*,0)+t*
forall 6 € ®. We can compare individual-action and public-action models by determining
whether the restriction to forcing contracts implies a significant constraint on the set of
implementable value functions.

State-Contingent Values from Date S

So far, we have characterized the set of supportable state-contingent values from the
start of Date 6, which is the outcome set W in the case of the individual-action model
(unrestricted contracts) and is the set W in the case of the public-action model (restriction
to forcing contracts). We next step back to Date 5. If there is no opportunity for ex post
renegotiation, then nothing happens at Date 5 and so W and W are the supported state-
contingent value sets from the start of Date 5 as well.

On the other hand, if ex post renegotiation is allowed, then at Date 5 the players have
an opportunity to discard their originally specified contract y and replace it with another,

"10ne could add a public randomization device to the model for the purpose of achieving randomization
over trade actions using forcing contracts. Allowing such randomization does not expand the set of imple-
mentable value functions here.



y’. The original contract y would have led to a particular outcome w given the Date 4
message profile; by picking a new contract )’, the players are effectively choosing a new
outcome function w’, which is freely selected from the set W or the set WF depending on
how the trade action is modeled. If the outcome w would be inefficient given the realized
state and message profile, the players will renegotiate to select an efficient outcome w’.
The players divide the renegotiation surplus according to the fixed bargaining weights
and 5. Dividing the surplus in this way is feasible because W and W are closed under
constant transfers.

To state the bargaining solution more precisely, we let y(6) denote the maximal joint
payoff that can be obtained in state 6:

y(0) = Iiajc [ui(a, 0) 4+ us(a, 0)]. 2)

Clearly, we have y(0) = maxy,ewr [w;(0) + w,(0)] because the trade action that solves
the maximization problem in Equation 2 can be specified in a forcing contract to yield the
desired outcome. If the original contract would lead to outcome w in state 6, then the
renegotiation surplus is

r(w,0) =y(0)—w(0)—wy(0).

The bargaining solution implies that the players settle on a new outcome in which the
payoff vector in state 0 is w(6) + wr(w, 0).

An ex post renegotiation outcome is a state-contingent payoff vector that results when,
in every state, the players renegotiate from a fixed outcome in W. That is, a value function
z is an ex post renegotiation outcome if and only if there is an outcome w € W such that
z(0) = w(f) + nwr(w, O) for every 6 € O. Let Z denote the set of ex post renegotiation
outcomes. Note that all elements of Z are efficient in every state; also, Z and W are
generally not ranked by inclusion. If trade actions are treated as public (and so attention is
limited to forcing contracts) then the set of ex post renegotiation outcomes contains only
the value functions of the form z = w + 7 r(w, -) with the constraint that w € wt. Let ZF
denote the set of ex post renegotiation outcomes under forcing contracts.

With ex post renegotiation, the set of supportable state-contingent values from the start
of Date 5 is Z in the case of the individual-action model and is ZF in the case of the public-
action model. We will be a bit loose with terminology and refer to functions in Z and ZF,
in addition to functions in W and W, simply as outcomes.

State-Contingent Values from Dates 4 and 3

Analysis of contract selection and incentives at Date 4 can be viewed as a standard
mechanism-design problem. The players’ contract is equivalent to a mechanism that maps
messages sent at Date 4 to outcomes induced in the trade and enforcement phase (possibly
renegotiated at Date 5). The revelation principle applies in the following sense. We can

10



restrict attention to direct-revelation mechanisms, each of which is defined by (i) a message
space M = ©? and (ii) a function that maps ©?2 to the relevant outcome set that gives the
state-contingent value functions from the start of Date 5. The outcome set is either W,
WE, Z, or ZF, depending on whether ex post renegotiation and/or non-forcing contracts
are allowed. We can concentrate on Nash equilibria of the mechanism in which the parties
report truthfully in each state.!?

Let us write 1192 for the outcome that the mechanism prescribes when player 1 reports
the state to be 6; and player 2 reports the state to be 8,. Note that, in any given state 6
(the actual state that occurred), the mechanism implies a “message game” with strategy
space ©2 and payoffs given by ¥%192(8) for each strategy profile (6, 6,). For truthful
reporting to be a Nash equilibrium of this game, it must be that 1//199 0) > 1//199(9) and
¥89(0) > y% () forall § € ©.

We proceed using standard techniques for mechanism design with transfers, following
Watson (2007). The key step is observing that, for any two states 6 and 6’, the outcome
specified for the “off-diagonal” message profile (6’, 8) must be sufficient to simultaneously
(i) dissuade player 1 from declaring the state to be 6" when the state is actually 6 and (ii)
discourage player 2 from declaring “6” in state 6’. Thus, we require

996) > y?"?©) and ¥ 0 > vl

Because the outcome sets are closed under constant transfers, we can choose the outcome to
effectively raise or lower wf/e and 1//29 "0 while keeping the sum constant. Thus, a sufficient
condition for these two inequalities is that the sum of the two holds. Letting ¢ = %% and
v’ = ¥ we thus have the following necessary condition for implementing outcome
in state 6 and outcome V' in state 6’

(IC) There exists an outcome 1@ satisfying ¥1 (0) + ¥5(0") > 1/}1 (0) + 1/}2(9/).

This condition, applied to all ordered pairs (6, 6’), is necessary and sufficient for imple-
mentation. The sum 1/}1 0) + 1@2 (0) is called the punishment value corresponding to the
ordered pair (6, 6’). The punishment value plays a central role in our analysis. Lower
punishment values imply a greater set of implementable outcomes.

If interim renegotiation is not allowed, then the analysis above completely determines
the implementable set of value functions from Date 3. Allowing interim renegotiation has
the effect of requiring each “on-diagonal” outcome to be efficient in the relevant state; that
is, for each O we need 1%¢ to be efficient in this state. In the case of ex post renegotiation,
allowing interim renegotiation entails no further constraint because every outcome in Z is
efficient in every state.

Itis also the case that without ex post renegotiation, W and WT yield the same set of im-
plementable value functions from Date 3. In other words, a restriction to forcing contracts

12The revelation principle usually requires a public randomization device to create lotteries over outcomes
(or that the outcome set is a mixture space), but it is not needed here.
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does not reduce the implementable set in the case of interim renegotiation.!® Therefore, we
have three settings to compare: unrestricted contracts with ex post renegotiation, forcing
contracts (public-actions) with ex post renegotiation, and forcing contracts with interim
(but not ex post) renegotiation. We denote the implementable value functions for these
three settings by, respectively, VEP, VEPF and V1,

A value function v : ® — R? is called efficient if v(0) + v2(0) = y(0) for every
6 € ©. The following theorem summarizes Watson’s (2007) characterization of VP,
VEPE “and V1

Result 1 [Watson 2007]: Consider any value function v:® — R2.

e Implementation with Interim Renegotiation: v is an element of V! if and only if v is
efficient and, for every pair of states 0 and 0', there is an outcome w € W¥ such that

v1(0) + v2(0") = w1 (0) + w2 (6").

e Implementation with Ex Post Renegotiation: v is an element of VE? if and only if v
is efficient and, for every pair of states 0 and 0’, there is an outcome z € Z such that

v1(0) + v2(0") = 21(0) + Z2(0").

e Implementation with Ex Post Renegotiation and Forcing Contracts: v is an element
of V¥ if and only if v is efficient and, for every pair of states 0 and 0', there is an
outcome 2 € ZF such that vi(0) + v2(0') > 2,(0) + 2,(0").

Furthermore, the sets VE?, VE! and V' are closed under constant transfers.

The following result, which follows from the characterization of the implementable
sets, collects three of Watson’s (2007) theorems.'*

Result 2 [Watson 2007]: The implementable sets are weakly nested in that VE* C VEP C
V. Furthermore, VEY* = VEP if and only if. for every pair of states 0,0’ € ® and every
Z € Z, there is an ex post renegotiation outcome Z € Z% such that Z,(0) + Z,(0) <
21(0) + 2,(0"). Likewise, VE® = V'ifand only if. for all 6,0’ € © and every w € W,

there is an ex post renegotiation outcome z € Z such that 2 (0)+2,(60") < w1(0)+w,(0).

To summarize, we have thus far analyzed the players’ behavior at the various dates in
the contractual relationship, leading to a simple characterization of implementable value

Bwatson (2007), Lemma 3.

4Watson’s (2006) Lemma 1 provides some of the supporting analysis (which was not explained fully in
the relevant proof in Watson 2007). This lemma establishes that, for any given ordered pair of states 6 and 6’
and any supportable outcome ¥/, there exists an implementable value function v for which vy (8) + v(0') =
Y1 (0)+v2(07). Because the minimum punishment values exists, in each case we can let i equal the outcome
that attains the minimum.
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functions from Date 3. The characterization is in terms of the minimum punishment val-
ues for each pair of states, which yields a way of relating the implementable sets for the
cases of interim renegotiation, ex post renegotiation, and ex post renegotiation and forcing
contracts. We next turn to investigate the relation more deeply.

3 Robustness for a Class of Trade Technologies

Watson (2007) provides an example for which VEPF £ VEP £ V1 The example demon-
strates the importance of explicitly accounting for individual trade actions. This is because,
in the realistic case that a trade action is taken by one of the contracting parties and the par-
ties can renegotiate just before the trade action is taken, no public-action model accurately
represents the scope of contracts. By not considering how trade actions can be used as op-
tions, a public-action model with ex post renegotiation understates the set of implementable
value functions. On the other hand, a public-action model with interim renegotiation over-
states the set of implementable value functions. Our main objective is to examine the
robustness of this conclusion. We consider the wide class of contractual relationships that
satisfy the following assumptions.

Assumption 1: The sets 4 and ® are compact subsets of R and contain at least two ele-
ments, and u (-, 6) and u;(-, €) are continuous functions of a for every 6 € ©®.

Define U(a, 0) = uy(a, 0) 4+ u,(a, 0), which is the joint value of the contractual rela-
tionship in state 6 if trade action a is selected. Define ¢ = min 4,@ = max 4, § = min O,
0 = max ®. Assumption 1 guarantees that these exist and that max,ec4 U(a, 6) exists;
that is, the efficient trade action is well-defined for each state. We make a slightly stronger
assumption on U(-, 0):

Assumption 2: U(-, 0) is strictly quasiconcave for every 6 € 0.

Define a*(0) = argmax,. ,U(a, 0), so we have U(a*(6),0) = y(6). Assumption 2
ensures that a*(6) is unique for each 6 € ©®.

Assumption 3: u; is supermodular, meaning that u(a,0) — u(a’,0) > ui(a,0’) —

uy(a’,0") whenevera > a’ and 6 > 6.

Assumption 4: There exist states 6!, 62 € © such that ' > 62 and either U(q, 6?) <
U@, 0*) orU(a,0") > U(a,b").

Assumption 5: Player 1’s bargaining weight is positive: ; > 0.

Assumptions 1, 2, 4, and 5 are mild technical assumptions. Assumptions 1 and 2 give us
a convenient and familiar technical structure to deal with. Assumption 4 basically removes
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a knife-edge case concerning the relative joint values of the extreme trade actions in the
various states. For instance, if ® has more than two elements and U(a, ) # U(a, 0) for
some a strictly between g and a, then Assumption 4 is satisfied. If ® has just two elements
(@ and 5), then Assumption 4 requires that either a is the efficient trade action in the high
state or @ is the efficient trade action in the low state.!”

Assumption 3 puts some structure on the payoff of player 1, the player with the trade
action: Without considering transfers, player 1’s marginal value of increasing his trade
action weakly rises with the state. In other words, higher trade actions are weakly more
attractive to him as the state increases. Note that if in a given application u satisfies
submodularity, one can redefine the trade action to be —a and then Assumption 3 would be
satisfied.

Many interesting examples in the studied in the literature satisfy these assumptions.
For instance, consider a buyer/seller relationship in which a is the number of units of an
intermediate good to be transferred from the seller to the buyer. The buyer’s benefit of
obtaining & units in state 6 is B(a, ). The seller’s cost of production and delivery is
c(a,0), and we let C(a,0) = —c(a, ). Suppose, as one would typically do, that B is
increasing and concave in a and that ¢ is increasing and convex in a. If a is the buyer’s
action (he selects how many units to install, for example), then the buyer would be player 1
and so we have u; = B and u; = C = —c. If the seller chooses a (she decides how many
units to deliver, say), then the seller is player 1 and so we have u; = C and u, = B. In
either case, Assumptions 1 and 2 are satisfied. Assumption 3 adds the weak monotonicity
requirement on the payoff of the player who selects a.

We have the following robustness result:

Theorem 1: Consider any contractual relationship that satisfies Assumptions 1-5. The
sets of implementable value functions in the cases of unrestricted contracts with ex post

renegotiation, forcing contracts with ex post renegotiation, and interim renegotiation are
all distinct. That is, VEF 4 VEP £ V1

The analysis underlying Theorem 1 amounts to characterizing and comparing the min-
imum punishment values that can be supported for each of the settings of interest. Recall
that the punishment value for the ordered pair (6, 8) is the value 1 (0) + ¥»(60’), where ¥
is the outcome specified in the message game when player 1 reports the state to be 6’ and
player 2 reports the state to be 6. Lower punishment values serve to relax incentive con-
ditions, so to completely characterize the sets of implementable value functions we must
find the minimum punishment values. We let P!, PE? and PE denote the minimum pun-
ishment values for the settings of interim renegotiation, ex post renegotiation, and ex post

151n Watson’s (2007) example, which has two states and two trade actions, a is the efficient trade action in
both states.

14



renegotiation and forcing contracts, respectively:
PY 6,0y = min wi(0) + w,(8),
weWF
PE(0,0") = min 2,(6) + 2,(0"),
ze
PEPF(G, 9/) = plgl 21 (9) + 22(9/)
zeZF

Our assumptions on the trade technology guarantee that these minima exist.

From Result 2, we know that Theorem 1 is equivalent to saying that there exist states
0,0” € O such that P'(0,60") < PFP(0,0’) and there exist (possibly different) states
0,0’ € O such that PE?(0,0") < PE(0,60’). Thus, to prove Theorem 1, we examine
the punishment values achieved by various contractual specifications in the different set-
tings. We develop some elements of the proof in the remainder of this section; Appendix A
contains the rest of the analysis. We shall focus in this section on the relation between V EPF
and VEP. The analysis of the relation between VEP and V! is considerably simpler and is
wholly contained in Appendix A.

We will establish PEP < PEPF by comparing the punishment values implied by (i)
the outcome in which player 1 would be forced to take a particular trade action (such as
one that yields the lowest punishment value in this class), and (ii) a related non-forcing
specification in which player 1 would be given the incentive to select some action « in state
0 and a different action «’ in state 6’. We derive conditions under which @ and @’ can be
arranged to strictly lower the punishment value for (6, 8’), relative to the best forcing case.
We then find states 6! and 6% such that the conditions must hold for at least one of the
ordered pairs (6!, 62) and (0%, 01!).

To explore the possible outcomes in the cases of ex post renegotiation, consider player 1’s
incentives at Date 6. For any given transfer function 7, the following are necessary condi-
tions for player 1 to select trade action a in state 6 and action a’ in state 6

ui(a,0) + yi(a) = ui(@,0) + ji(d) and
ur(a',0) + (@) =z ui(a,0) + yi(a)
Transfer function y can be specified so that player 1 is harshly punished for selecting any

trade action other than a or @’. Then, in every state, either a or ¢’ maximizes player 1’s
payoff from Date 6. Thus, we have:

3)

Fact 1: Consider two states 0,0’ € ® and two trade actions a,a’ € A. Expression 3 is
necessary and sufficient for the existence of a transfer function y : A — R(Z) (defined over
all trade actions) such that player 1’s optimal trade action in state 0 is a and player 1’s
optimal trade action in state 0" is a’.

Summing the inequalities of Expression 3, we see that there are values j (), j(a') € R
that satisfy (3) if and only if

Ml(a»e)—ul(a/»e) Zul(a,e/)—ul(a/»e/)- “4)
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Assumption 3 then implies:

Fact2: If 0 > 0’ then a > a' implies Inequality 4. If 0 < 0’ then a < a' implies
Inequality 4.

Note that Fact 2 gives sufficient conditions. In the case in which u,(:,-) is strictly super-
modular (replacing weak inequalities in Assumption 3 with strict inequalities), player 1 can
only be given the incentive to choose greater trade actions in higher states.

For any two states 0, 0’ € ©, define

E0,0") = {(a,d") € A x A | Inequality 4 is satisfied.}.
Also, for states 6, 8’ € ® and trade actions a,a’ € A with (a,a’) € E(6,0"), define
Y(a,d',0,0") = {j: A — R | Condition 3 is satisfied.}.
Condition 3, combined with the identity y; = —J,, implies:

Fact3: Forany 0,0’ € ® anda,a’ € A, with (a,a’) € E(0,0), we have

. min ﬁl(a)+ﬁ2(a/) :ul(a/’e)_ul(ave)'
yeY(a,a’,0,0")
Using the definition of the set W (recall Expression 1 on page 8), any given w € W
can be written in terms of the trade actions and transfers that support it. We have

w(0) = u(a(0).0) + y(a(v))

and
w(0") = u(a(®’), o) + pa("),

where a gives player 1’s choice of trade action as a function of the state and y is the transfer
function that supports w. B

For any state 6 and trade action @, define R(a, 6) to be the renegotiation surplus if,
without renegotiation, player 1 would select a. That is, R(a, ) = U(a*(0),60) — U(a,0).
Combining the expressions for w in the previous paragraph with Fact 1 and the definition
of ex post renegotiation outcomes, we obtain:

Fact 4: Consider any two states 0,0’ € © and let a be any number. There is an ex post
renegotiation outcome z € Z that satisfies z1(0) + z2(0') = « if and only if there are trade
actions a,a’ € A and a transfer function y such that (a,a’) € E(0,0), y € Y(a,d',0,6"),
and

a=1ui(a,0)+ y1(a) + m1R(a,0) +ux(d',0") + y.(d’) + myR(d', 6"). (5)
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In the last line, the first three terms are w(6) plus player 1’s share of the renegotiation
surplus in state 6, totaling z;(0). The last three terms are w,(6’) plus player 2’s share of
the renegotiation surplus in state 6’, totaling z,(6).

Finding the best (minimum) punishment value for states # and 6’ means minimizing
21(0) + 2,(8’) by choice of Z € Z. For now, holding fixed the trade actions a and «’ that
player 1 is induced to select in states € and 6’, let us minimize the punishment value by
choice of y € Y(a,d’, 0, 0’). To this end, we can use Fact 3 to substitute for p;(a) + p»(a’)
in Expression 5. This yields the punishment value for trade actions @ and &’ in states 6 and
0’, respectively, written

Ma,d' ,0,0")y=u(d,0)+ 7 R(a,0) +uy(d',0)+ m,R(d, 0. (6)

Next, we consider the step of minimizing the punishment value by choice of the trade
actions @ and @', which gives us a useful characterization of PEF(6,6’). Assumption 1
guarantees that A(a,d’, 6, 0’) has a minimum.

Fact 5: The minimum punishment value in the setting of ex post renegotiation is charac-
terized as follows:

PEP(6,0") = i Ma,d' ,0,0").
( ) (a,a’)rgg%é’,é”) (Cl a )

We obtain a similar characterization of the minimal punishment value for the setting in
which attention is restricted to forcing contracts. The characterization is exactly as in Fact 5
except with the additional requirement that ¢ = ' because forcing contracts compel the
same action in every state.

Fact 6: The minimum punishment value for the setting of forcing contracts and ex post
renegotiation is characterized as follows:

PEF(0,6") = minA(a,a,6,0).
acA

Recall that proof of Theorem 1 requires us to establish that PEP(6,0') > PEPY(0,0")
for some pair of states 6,60" € ®. Appendix A finishes the analysis by exploring how one
can depart from the optimal forcing specification in a way that strictly reduces the value

Aa,d,0,0).
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4 Hold Up and the Technologies of Trade and Investment

Although Theorem 1 is quite general, its implications for applied settings are more nu-
anced. For example, we could have VEP £ VEPF byt still, these sets could coincide where
it matters to induce optimal incentives at Date 2. To determine whether this is the case, we
must add structure to the model in order to specify exactly what occurs at Date 2 — that is,
specify the technology of investment — and we then must examine how the technology of
investment interacts with the technology of trade.

We shall limit attention to the standard setting of “specific investment with hold up,”
where one of the players makes an investment choice at Date 2 and this investment influ-
ences the state. The rest of the model is unchanged; we continue to denote as “player 17
the party who has the trade action at Date 6. Also, we focus here on the case of ex post
renegotiation, so the implementable set will be either VE? or VEFF depending on whether
there is a restriction to forcing contracts (public-action model of trade).

Our analysis here has two objectives. The firstis to compare public-action and individual-
action models to see if a restriction to forcing contracts implies a restriction in the level of
investment that can be supported — that is, whether differences between VEP £ VEPE
really matter for ex ante investment incentives. The second objective is to find some con-
ditions under which efficient investment and trade can be supported using general (non-
forcing) contracts. We shall provide intuition and some partial analysis toward the first
objective; this leads to a general result along the lines of the second objective.

The technology of investment includes a specification of (a) which player has the in-
vestment action and (b) how the players stand to benefit from the investment. The litera-
ture has demonstrated that forcing contracts can prevent the hold-up problem in the “own-
investment” case, where the investing party obtains a large share of the benefit created by
the investment.'® Therefore we will concentrate on the case of cross investment, in which
the main beneficiary of the investment is the non-investing party. To simplify the discus-
sion, we will refer to the non-investing party as the beneficiary even though we generally
allow for the investing party to garner a small portion of the benefits of his investment. We
thus have two main cases to consider:

e Unified case — Player 1 has both the Date 2 investment action and the Date 6 trade
action, and player 2 is the beneficiary.

e Divided case — Player 2 has the Date 2 investment action, player 1 has the Date 6
trade action, and player 1 is the beneficiary.

Let the investment choice be denoted x > 0. We assume that the investment imposes
an immediate cost of x on the investor and that investment tends to raise the state. Specifi-

16See, for example, Chung (1991), Rogerson (1992), Aghion, Dewatripont, and Rey (1994), Noldeke and
Schmidt (1995), and Edlin and Reichelstein (1996). An exception is the “complexity/ambivalence” setting
studied by Segal (1999), Hart and Moore (1999), and Reiche (2006).
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cally, 6 is drawn from a distribution G (x) that is increasing in x in the sense of first-order
stochastic dominance. We will sometimes refer to the beneficiary’s payoff as B(«, 6) and
the investor’s payoff as C(a, 6). We take these to be gross of investment cost (that is, they
do not include —x for the investor). In the divided case, we thus have u; = B and u, = C.
In the unified case, we have u; = C and u, = B. Recalling that y(0) = U(a*(0),0) is
the maximum joint value in state 6, we see that the efficient level of investment x* solves:

mgg)c/y(@)dG(x) —X.

We also add structure to the trade technology:

Assumption 6: The lowest trade action is ¢ = 0. Further, u1(0,0) = u,(0,0) = 0 for all
0.

The first part of this assumption (that ¢ = 0) is just a normalization. We interpreta = 0
as “no trade.” The second part is the assumption that the no-trade action always yields zero
to both players, gross of the investor’s cost of investment. The null contract in our model
is the contract that forces a = a regardless of the message profile. Che and Hausch (1999)
have shown that when the investor receives a sufficiently small share of the benefits of the
investment, the null contract is optimal among forcing contracts. For the discussion in the
next two subsections, we restrict attention to environments in which this result holds, which
allows us to concentrate on evaluating what non-forcing contracts can achieve.

Typically x* > 0. Thus, letting i denote the investing party, we will want to implement
a value function v so that v; () is increasing in 6 to some particular extent. In this way,
player i will be rewarded for investing.

The rest of this section has three parts. In the first subsection, we show how non-forcing
contracts improve investment incentives in both the unified and divided cases when there
is pure cross investment. In the second subsection, we discuss the case of near pure cross
investment and we show that the results extend in the divided case but in the unified case
they depend on how investment affects the investor’s benefit/cost of trade. We thus find that
the hold-up problem is lessened in the divided case but can persist in the unified case. This
result is strengthened and formalized in the third subsection, where we provide the result
that the hold-up problem can, in fact, be completely alleviated in the divided case.

Pure Cross Investment

We begin by examining the environment in which cross investment is pure so that the
investing party receives none of the benefit of his investment. That is, the investor’s trade
utility C(a, 0) is constant in the state 6.

First consider the divided case where player 1 is the beneficiary (and has the trade
action) and player 2 is the investor. Player 2’s motivation to invest depends on making
v2(0) — v2(0’) large for 6 > 6’, which requires making vy (6) 4+ v,(6’) small. Thus it is the
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punishment value Z,(0) + 2,(0") = A(a,d’,0,0’) that we need to minimize. Using Che
and Hausch’s result (that the optimal forcing contract is the null contract), we see that a
non-forcing contract can provide better incentives for investment if and only if there exists
a,a’ € A such that

Ma,d' ,0,0") < A(0,0,0,60").

This is equivalent to the following (see Appendix B for the derivation):
ul(a/’e) +u2(a/’9/) _7T2U(a/,9/) < 7T1U(a,9). (7)

Supermodularity of player 1’s utility function implies that we must have ' < a.!” One
non-forcing contract that will ensure that Expression 7 holds is ¢’ = 0 and a = a*(0).
This makes the left hand side zero, while the right hand side is positive by Assumption 2
as long as a*(0#) > 0. Thus, we can always find a non-forcing contract that provides
investment incentives for player 2 that are stronger than those under the optimal forcing
contract. While the null (forcing) contract would lead player 2 to under-invest, one can
find a non-forcing contract that induces a more efficient investment level.

In the case of unified decision-making, the investing party chooses the action and is
therefore denoted player 1. Investment is best motivated by making vy (6) — vy(0’) large
for 6 > 6, requiring v;(0’) + v,(0) to be low. Thus we want the punishment value
21(0") + 22(0) = A(d',a, 0, 0) to be small. Here a non-forcing contract can provide better
investment incentives if and only if there exists a, a’ such that

Md',a,6',0) < A(0,0,0,0).
This is equivalent to the following (see Appendix B for the derivation):
7/[1(61,9/) +u2(a’9) _TL—ZU(a’Q) < 7T1U(a/,0/) (8)

Because player 1’s utility is constant in the state (and thus not strictly supermodular),
we are not bound by the constraint that ¢ must be at least as high as «’. Therefore an
implementable non-forcing contract that will ensure that Expression 8 holds is &' = a*(6’)
and @ = 0. This makes the left hand side zero, while the right hand side is positive by
Assumption 2 as long as ¢*(6’) > 0 and so a non-forcing contract can improve on the best
forcing contract just as in the divided case.

Near Pure Cross Investment

Suppose now that the setting is close to pure cross investment in the sense that the
investor’s trade utility C(a, 6) depends only a bit on the state 6. For example, we could

"That is, using the terminology of the proof of Theorem 1, we need (a,a’) € E(0,6’), which requires
a>ad.
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have C(a,0) = eaf where ¢ is a constant that is close to zero. Results will depend on
whether ¢ is positive or negative.

If the investment is such that the beneficiary receives more than the total benefit cre-
ated by the investment (so ¢ < 0), then the investor’s trade utility becomes submodular
in 6. In the divided case, this reinforces the incentives of the beneficiary to take higher
actions in higher states and the analysis from the previous subsection goes through. In the
unified case, in order to satisfy Theorem 1’s assumption of weak supermodularity, we sim-
ply reverse the action space: The investor’s utility function is then weakly supermodular in
(—a, 0). Just as in the case of pure cross investment, it is clear that there is a feasible option
contract in which the investor will select a*(6’) in state #’ and 0 in state 6.'® This implies
that, for investment incentives, a non-forcing contract can improve on a forcing contract in
this case as well.

Next suppose that the beneficiary receives less than the total benefit created by the
investment (so ¢ > 0). For the divided case, the argument from the pure-investment setting
goes through: the trade-action-based option contract improves on the investment incentives
of the best forcing contract. However, in the unified case the argument is not robust. The
utility function of the investing party (player 1) is strictly supermodular, and so a non-
forcing contract can only induce a > « for two states 6,0’ with 8 > 6. Thus, it is
not possible to induce player 1 to choose 0 in state 8 and a*(6’) in state 6. As a result,
Expression 8 will not hold in general, and whenever this condition fails, the incentives
provided by the forcing contract cannot be improved upon using a non-forcing contract.

Supporting the First-Best (Efficient) Investment Level

The analysis in the previous subsections indicates where the larger implementable set
of value functions VEP leads to strictly more efficient investment levels than one finds with
the set VEPF. We next investigate whether efficient investment levels can be supported.
Since we found that non-forcing contracts sometimes do not improve on forcing contracts
in the unified case, the key question is whether efficient investment can be supported in the
divided case, where player 2 is the investor and player 1 is the beneficiary.

We have a strong affirmative answer to this question. The conclusion relies on the fol-
lowing general result, which shows that the implementable set V £¥ includes value func-
tions that hold player 1’s payoff constant across the set of states:

Theorem 2: Consider any contractual relationship that satisfies Assumptions 1, 3 and 6.
Let k be any real number and define value function v by v1(0) = k and v,(0) = y(0) — k
forall € ©. Thenv € VP,

Note that the assumptions have to do solely with the technology of trade; they put no
constraints on the technology of investment. We provide a constructive proof of Theorem 2
that shows how to implement these value functions using a straightforward “dual option”

18Recall that (a*(0),0) € E(6’, 0) is required.
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contract in which player 2 declares the state 6 at Date 4 and the contract then gives player 1
the incentive to tender trade action a*(6) or ¢ = 0. Thus, a message is required, but only
from player 2."°

Proof of Theorem 2: For any fixed k, consider the following contract. In the message
phase (Date 4), player 2 must declare the state. Let 6 denote player 2’s announcement.
If player 1 subsequently selects action a*(@) the enforcer is to compel a transfer of 7 =
(k — ul(a*(G) 9) ul(a*(G) 9) k). If player 1 selects action ¢ = 0 then the transfer is
t = (k,—k). It player 1 chooses any other trade action, then the enforcer compels transfer
(—7, 7), where t is set large enough to force player 1 to choose between a*(@) and a. That
is, regardless of 6, in no state will player 1 have the incentive to choose a & {a*(@) al.
Suppose that Date 6 is reached without renegotiation and that the state is 6. Note that,
by Assumption 6, player 1 would get a payoff of k if he chooses a. Alternatively, his payoff
would be

u1(@*(),0) + k —u,(a*(8),6)

if he chooses a* (é) We know that the difference between these pa OffS,
pay
ul(a*(é), 9) — ul(a*(é), é),

is weakly increasing in 6 and zero at 0 = 6. This follows from Assumption 3, which
establishes that u (a* (é), 0) —u1(0, 0) is increasing, and Assumption 6, which establishes
that u(0, 8) = 0. Thus, it is rational for player 1 to choose a*(é) if & > 6 and to select a
otherwise, which we suppose is how player 1 will behave.

Consider next how player 2’s payoff from Date 4 depends on 6. Let 0 be the actual
state. If player 2 declares 6 =0 then, under the original contract, player 1 would choose
a*(é) at Date 6 and there is nothing to be jointly gained by renegotiating at Date 5. In this
case, the payoffs from Date 4 are k for player 1 and

u(a*(0),0) + ux(a*(0),0)—k = y(0)—k

for player 2.

If player 2 were to instead declare the state to be 6 > 0, then the players anticipate
that player 1 would select ¢ at Date 6 under the original contract. Incorporating the impact
of renegotiation at Date 5, player 1’s payoff from Date 4 would then be k + 71 R(0, 0).
Recall that R(a, 0) denotes the renegotiation surplus in state 6 if, without renegotiation,
the players anticipate that a will be the chosen trade action. Since R > 0, player 1’s payoff
from Date 4 weakly exceeds k and we conclude that player 2’s payoff is weakly less than

y(0)—k

19 An equivalent and more realistic contract would have player 2 request a trade action directly, with
player 1 then choosing between this action and zero.
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Finally, suppose that player 2 were to declare the state to be 6 < 6. In this case, the
players anticipate that player 1 would select a*(6) at Date 6 under the original contract.
Incorporating renegotiation at Date 5, player 1’s payoff from Date 4 would then be

ui(a*(0),0) + k —uy(a*(0),0) + m R(0,0).

The fist and third terms sum to weakly more than zero, so the entire expression weakly
exceeds k. This implies that player 2’s payoff is weakly less than y(6) — k.

We have shown that player 2 optimally tells the truth at Date 4; that is, she declares
6 = 6. The payoffs from Date 3 are thus k for player 1 and y(6) — k for player 2, which
means that the contract implements the desired value function. Q.E.D.

Consider a value function that satisfies v{(6) = k and v,(0) = y(0) —k forall 6 € ®
and suppose that the players contract at Date 1 to implement this value function. Let us
observe what this implies for investment in the divided case, where player 2 is the investor.
Clearly player 2 selects x at Date 2 to maximize

/vz(O)dG(x) —Xx = /y(@)dG(x) —x —k.

Since k is a constant, player 2 seeks to maximize the joint value of the relationship and
thus player 2’s optimal investment level is x*. Efficient investment and trade are obtained.
At Date 1, the players will select such a value function to maximize the joint value of
their relationship, and they will use k to divide the value between them. We formalize this
conclusion by stating:

Corollary: Under Assumptions 1, 3, and 6 and in the divided case in which player 2 is the
investor and player 1 has the trade action, optimal contracting induces efficient investment
and trade (the first best outcome).

The picture is not so rosy in the unified case, where player 1 is the investor. Observe
that, in the unified case, the investor (player 1) would have the incentive to invest efficiently
if the value function holds player 2’s payoff constant; that is, we need to implement a value
function v satisfying, for some constant k, v,(0) = k and v,(0) = y(6) — k for all
6 € ©. Consider two states 8 and 6’, and order them so that 8 > 6’. The conditions for
implementation associated with these two states (for (6, 68’) and (6’, 0)) are

v1(0) + v2(0") > PEP(6,0)

and
v1(0') + v2(0) > PEP (0, 0).
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Using Fact 5 from Section 3, these conditions are equivalent to the existence of trade actions
a,a’ ,b,b’' such that (a,a’) € E(6,0"), (b',b) € E(0',0),

U1 (9) + v2(9/) = )\‘(a’a/a 9’ 9/)

and
U1 (9/) + v2(9) = )\‘(b/a ba 9/’ 9)

Substituting for v; and v, using the identities v,(0) = k and v, (0) = y(0) — k, these two
inequalities become:

AMa,d',0,0) < y(0) 9)

and

A, b, 0, 0) < p(0). (10)

Summarizing, we have:

Lemma: Consider any contractual relationship that satisfies Assumptions 1 and 3. Let k
be any real number and define value function v by v,(0) = k and v,(0) = y(0) — k for
all 0 € ©. Then v € VE? if and only if for all pairs of states 0,0 with 6 > 0, there are
trade actions a,d’, b, b’ such that (a,a’) € E(6,0'), (b',b) € E(0',0), and Inequalities 9
and 10 hold.

One can use these conditions to establish whether efficient investment can be obtained
in specific examples with unified investment and trade actions, but sufficient conditions
would be much stronger than are the assumptions we have made here.

For an illustration of cases where the conditions of the Lemma fail, suppose that the
strict version of Assumption 3 is satisfied, meaning u; is strictly supermodular. Further
suppose that Assumptions 1, 2, and 5 hold. Also suppose that U is strictly increasing in 6
and that U(a, #) > y(8). That is, the joint value of the highest trade action in the highest
state exceeds the maximal joint value in the lowest state (gross of investment cost).

Using Equation 6, U = u; + u,, and some algebra, we can rewrite Inequality 10 as:

m[U(b,0) =U®',0)] < maly(0') — y ()] — [u1 (b, 0) — u1(b, 0)].
Examining the case of 6 = 6 and 6’ = 6, this becomes
m[U(b,6) — U, 0)] < ma[y (0) — y(0)] — [u1(b. 0) — u1 (b, 0)]. (11)

Because u; is strictly supermodular, b > b’ is required. From Assumption 2, that
U(a,0) > y(0), and that U is strictly increasing in 6, we conclude that the left side of
Inequality 11 is strictly positive and bounded away from zero. We also have that the first
bracketed term on the right side is strictly negative.
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Thus, if |u;(b, 0) — uy (b, 0)] is small relative to 75|y (6) — y(0)|, then Inequality 11
fails to hold and there is no way to implement value functions that make player 2’s payoff
constant in the state. In other words, in the case of unified investment and trade actions,
with pure or near-pure cross investment, the first-best level of investment generally cannot
be induced.

5 Conclusion

In this paper, we have reported on the analysis of contractual relationships for a large class
of trade technologies. We have provided general results on the relation between individual-
action and public-action models of contractual relationships, showing that limiting atten-
tion to forcing contracts has significant implications for inefficiency. Further, we have
shown that (by utilizing non-forcing contracts) the payoff of the party with the trade action
can be neutralized so that the other party claims the full benefit of the investment, gross of
investment costs. This result led to the key novel insight of our analysis for applications,
which is to identify the distinction between the divided and unified cases of investment and
trade actions. We find that, in the important setting of cross investment, the hold-up prob-
lem can be averted (and efficiency obtained) in the divided case but generally not in the
unified case.

Our results reinforce the message of Watson (2007) on the usefulness of modeling
trade actions as individual, particularly in settings of cross investment. The results suggest
revisiting some of the conclusions of public-action models in the existing literature. In
particular, settings with cross investment are generally not as problematic as previous mod-
eling exercises (Che and Hausch 1999, Edlin and Hermalin 2000, and others) have found.
Efficient outcomes can be achieved in the case of divided investment and trade actions.
Our results show the importance, for applied work, of differentiating between the cases of
divided and unified investment and trade actions.

In our model, the trading opportunity is non-durable in that there is a single moment in
time when trade can occur. One might wonder if the results differ substantially in settings
with durable trading opportunities (where if trade does not occur at one time, then it can
still be done at a later date). This issue has been explored by Evans (2008) and Watson and
Wignall (2007), both of which examine individual-action models. Evans’ (2008) elegant
model is very general in terms of the available times at which the players can trade and
renegotiate. He constructs equilibria in which, by having the players coordinate in different
states on different equilibria in the infinite-horizon trade/negotiation game, the hold-up
problem is partly or completely alleviated. Evans’ strongest result (in which the efficient
outcome is reached) requires the ability of the players to commit to a joint financial hostage;
that is, money is deposited with a third party until trade occurs, if ever. Without the joint
financial hostage, the efficient outcome may not be achieved.
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Watson and Wignall (2007) examine a cross-investment setting without the possibility
of joint financial hostages, and their model is more modest in other dimensions. They show
that the set of implementable post-investment payoff vectors in the setting of a durable
trading opportunity is essentially the same as in the setting of a non-durable trading oppor-
tunity. This suggests that, in general, the results from the current paper carry over to the
durability setting. Watson and Wignall also show that, in the divided condition, there are
non-stationary contracts that uniquely support the efficient outcome.

Our modeling exercise, combined with the recent literature, suggests some broad con-
clusions about the prospect of efficient investment and trade in contractual relationships.
First, the hold-up problem is not necessarily severe, and efficient outcomes can often be
achieved. Durability of the trading opportunity does not worsen the hold-up problem and
may soften it in some cases, but it depends on the investment and trading technologies.
Inefficiency may be unavoidable in the following problematic cases:

e when there is cross investment and unified investment and trade actions, as identified
herein;

e when trade involves “complexity/ambivalence” as described by Segal (1999), Hart
and Moore (1999), and Reiche (2006); and

e when the investment conveys a significant direct benefit (not requiring trade) on the
non-investing party, in addition to any benefit contingent on trade.

On the last point, Ellman’s (2006) model provides intuition in terms of the notion of speci-
ficity.

In each of the cases above, the hold-up problem would be reduced if the parties have
some way of creating joint financial hostages, as explored by Evans (2008) and Baliga and
Sjostrom (2008). Bull (2009) provides a cautionary note on the ability of such financial
arrangements to withstand side-contracting.

Regarding extensions of our analysis here, it may be useful to examine different classes
of trade technologies, in particular ones in which both parties take trade actions (either
simultaneously or sequentially). We expect our results to extend in some way to the case
of verifiable trade actions.?’ Perhaps more interesting would be to examine settings with
partially verifiable trade actions. For example, a court may observe whether a particular
trade was made but have trouble identifying which party disrupted trade (in the event that
trade did not occur). Hart and Moore’s (1988) model has this feature. It is straightforward
to incorporate partial verifiability into the modeling framework developed here. One can
represent the external enforcer’s information about the trading game as a partition of the
space of action profiles. One can then simply assume that the contracted transfers y must
be measurable with respect to this partition.

20The contract could force one of the players to select a specific trade action and give the other player an
option as studied here. It would be interesting to work out how Assumption 3 would have to be modified to
generate the same results.
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A Proof of Theorem 1

In this appendix, we complete the proof of Theorem 1. We start with the comparison of
VEPE and VEP and then provide the analysis for the comparison of VEF and V.

Completion of the Proof that VEPF £ VEP

We pick up from the analysis at the end of Section 3. Consider a pair of states 6!, 92
that satisfies Assumption 4. That is, we have 8! > 6% and either U(a, 6%) < U(a, 6?) or
U(a,0') > U(a,0"). Let b! denote a solution to the forcing-contract problem

minA(a,a,0',6?%)
acA

and let b denote a solution to the forcing-contract problem

minA(a, a, 6%,60").
acA

We shall demonstrate that either PE(0!, 0%) < PEPF(91, 62) or PEP(02,01) < PEPF(92,01),
or both, which implies that VEPF =£ VEP,

Let us evaluate the minimum punishment value corresponding to the ordered pair of
states (0!, 60?). Specifically, compare the optimal forcing contract punishment (forcing
player 1 to select b! in both states) with a non-forcing specification in which player 1 is
induced to select b! in state 6! and g in state 62. This is a valid non-forcing contractual
specification because, by Fact 2, 8! > 6% and b! > g imply (b!,a) € E(6!,6?).

If VEP = VEPF then it must be that A(b!, 5!, 01,0%) < A(b',a,0"',0?%). Applying the
definition of A, this is

ul(blvel) +7T1R(b1’91) + uz(bl’QZ) + 7T2R(b1392)
S ul(gagl) + an(blael) + MZ(QaGZ) + an(Qaez)'

Canceling the second term on each side and using the definition of R, we arrive at
ur(b',0") +us(b',0%) — U (b, 0%) < ui(a.0") + us(a, 0°) — 12U(a, 6%).

Substituting u, (-, 02) = U(-, 0%) — u;(-, 6%) on both sides, we have

ul(blvel) + U(bl’GZ) _ul(bl’OZ) _nZU(bI’GZ)
<ui(a,0") +U(a, 0%) —ui(a, 0% — m2U(a, 0°).

Finally, rearranging this expression a bit and using m; + m» = 1, we conclude that
AL, b1, 01,0%) < A(b',a,0',0?) is equivalent to

ur(b',0") —ui(a,0") —[ur(b',0%) — u1(a,0%)] < m[U(a, 0*) = UK',6%)].  (12)
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Similarly, ordering states 6! and 62 in the opposite way, we compare the optimal forc-
ing contract punishment (forcing player 1 to select 52 in both states) with a non-forcing
specification in which player 1 is induced to select b? in state 8% and @ in state 6!. Note
that 62 < 0! and b? < @ imply (b2,a) € E(62,0"). If VEP = VEPF then it must be
that A(b2,52%,02,0") < A(b?,a, 0%, 0'), which similar algebraic manipulation reveals to
be equivalent to

u(@ 0"y —u (b*,0") —[u1(@, 0% —u(b*, 65 < mi[U@, 0") —UB*, 0H]. (13)

We have shown that if VEP = VEP | then Expressions 12 and 13 hold. Assumption 3
then implies that the left sides of these inequalities are non-negative, which implies

U(a,6%) > U(', 0% and U@, 6" > U®?0").
Using Assumption 2, we obtain:
Fact7: If VEY = VEP then U(a, 0%) > U(a, 0%) and U(a,0') > U(a, 01).
Assumption 4 and the contrapositive of Fact 7 provide the contradiction that proves VEFF £

Ve,

Proof that VEP #£ V!

We next prove the claim about the relation between V' and V. Since forcing contracts
are sufficient to construct V!, we have:

Fact 8: The minimum punishment value in the setting of interim renegotiation is charac-

terized as follows:
P'(6,0) = mir;1 ui(d’,0) +ud", o).
a’e

Remember that, by Result 2, V! = VEP if and only if PEP(0,0") = PY(0,0’) for all
0,0" € ®. We can again compare the minimization problems to determine if this is the
case.

Take 0!, 62 satisfying Assumption 4. Consider any solution to the minimization prob-
lem that defines PEP(6!, 62) and denote it (b, b’). That is, (b, b’) solves

min ~ u(d,0") + 1 R(a,0") + ux(d, 6% + mR(d', 0?).
(a,a’)eE(61,02)

Then PEF(9!,02) = PY(6', 6?) is equivalent to

u (b, 0" + i R(b,0Y) + ur(b',0%) + mR(P, 0%) = mir;lu](a”, ') + us(d”, 6%).
a’e
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Because R(-,-) > 0, we see that PEP(9!,02) = P1(0!,62) only if b’ solves the minimiza-
tion problem on the right side of the above equation and also R(b,0') = R(b’,0%) = 0.

By Assumption 2, R(b’,6%) = 0 if and only if b’ = a*(6?). Combining this with the
requirement that ' must minimize (-, 0') + u,(-, 0%), we derive that

uy(a*(0%),0") + ur(a*(0%),0%) < u(a”,0") + uy(a”, 0%)
for all @”. In particular, the following inequality must hold:
ur(@*(0%),0") + u2(a*(60%).6%) < ui(a.0") + uz(a. 6%).
Using the identity u, = U — u; and rearranging terms, we see that this is equivalent to
ur(@*(92),0") —ui(a, 0') — [u1(a*(0?),0%) —ui(a, 6%)]

< U(a.0%) — U(a*(6?),6%).
(14)

Similarly, ordering states ! and 62 in the opposite way, it is necessary that a* (') must
solve P'(62,0") in order for PEY(62,0') = PY(9%,0!). In particular, we must have

ur(a*(0"),0%) + ux(a*(0").0") < u(@ 0% + ux@@ o).

This inequality is equivalent to

u(@ 0 —uy(a*(0'),0") —[ui(a, 0%) —u(a*(0Y), 62)]
<U@0") - U(a*(9"),0").
(15)
By Assumption 3, the left sides of Expressions 14 and 15 must be non-negative, which
implies both U(a, #%) > U(a*(0?),0?) and U(a,0') > U(a*(6'),0"'). From Assump-
tion 2, we see that this is only possible if ¢ = a*(0?) and @ = a*(0!). If this is the case,

Assumption 2 also implies that U(a, 0%) > U(a, 6?) and U(a,0') > U(a,0'). Thus we
obtain:

Fact9: If V! = VP then U(a, %) > U(a, 6%) and U(a@, 0') > U(a, 6").

The contrapositive of Fact 9 combined with Assumption 4 provides the contradiction that
proves V! £ VEP. Q. ED.
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B Other Analysis

Below are derivations for Inequalities 7 and 8 in the text (starting on page 20).

Derivations for Pure Cross Investment, Divided Case

If we expand
Ma,d',0,0") < 1(0,0,0,0

using Expression 6 (on page 17), we have

ul(a/’ 9) + 7TIR(aa 9) + uZ(a/’ 9/) + 7T2R(a/a 9/)
< 7/[1(0, 9) + 7TIR(Oa 9) + 7/[2(0, 9/) + 7T2R(Oa 9/)

Because 11(0, 0) = u;,(0, 0"), this reduces to
ul(a/’ 9) + 7TIR(aa 9) + uZ(a/’ 9/) + 7T2R(a/a 9/) < an(Oa 9) + 7T2R(0’ 9/)
Using the definition of renegotiation surplus, we have

ul(a/v 9) + 1y U(Cl*(e), 0) - 7TlUv(av 9) + I/lz(a/, 9/) + j'L'zU(Cl*(G/), 9/) - 7T2U(Cl/, 9/)
<mU(a*(0),0) — 7 U(0,0) + mU(a*(0"),0") — m,U(0, 8),

which simplifies to
ul(a/’ 9) - 7Tll](aa 9) + uZ(a/’ 9/) - 7T2U(a/a 9/) < _jTlU(O’ 9) - 7T2U(0’ 9/)

and further to
ui(d,0) +uyd,0)—mnU(d,0") < mU(a,b),

which is Equation 7 in the text.

Derivations for Pure Cross Investment, Unified Case

We start with
AMd',a,0',0) < 1(0,0,60,0).

Expanding this inequality using Expression 6, we have

ul(aa 9/) + 7TIR(a/a 9/) + uZ(aa 9) + 7T2R(aa 9)
< 7/[1(0, 9/) + 7TIR(Oa 9/) + 7/[2(0, 9) + 7T2R(Oa 9)

This reduces to

ul(aa 9/) + 7TIR(a/a 9/) + uZ(aa 9) + 7T2R(aa 9) < an(Oa 9/) + 7T2R(0’ 9)
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Using the definition of renegotiation surplus, this inequality becomes

ul(av 9/) + 1y U(Cl*(e/), 9/) - ﬂlU(a/’ 9/) + uZ(av 9) + j'L'zU(Cl*(@), 0) - 7T2U(Cl, 9)
< M U(@*(0').0') — 1 U(0.0') + maU(a*(8). 0) — maU(0. 0).

Simplifying yields
ul(aa 9/) - 7Tll](a/a 9/) + uZ(aa 9) - 7T2U(aa 9) < _jTlU(O’ 9/) - 7T2U(Oa 9)3
and further

ul(aa 9/) + uZ(aa 9) - 7T2U(aa 9) < 7Tll](a/a 9/)3

which is Equation 8.
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