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Abstract. In this paper, we provide a formal framework for study-
ing the empirical content of a given theory. We define the falsi-
fiable closure of a theory T with respect to T ′ to be the largest
subtheory of T ′ with respect to which T cannot be falsified with
a finite data set. We provide a syntactic characterization of the
falsifiable closure operator, showing it is equivalent to the the-
ory which is axiomatized by all sentences satisfied by T which are
universal negations of conjunctions of atomic formulas (UNCA).
We also show that it is the smallest subtheory of T ′ containing
T all of whose predictions are empirically falsifiable. Lastly, the
falsifiable closure operator has the structure of a topological clo-
sure. The ideas here are useful for understanding theories which are
well-understood (for example, we describe Afriat’s theorem in our
context), but they can also be applied to theories with no known
axiomatization. We show, for example, that the theory of multi-
ple selves with a fixed finite set of agents (where multiple selves
are aggregated according to a neutral preference aggregation rule
satisfying independence of irrelevant alternatives), is a falsifiably
complete theory (for any neutral rule satisfying IIA).
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1. Introduction

Falsifiability has been a hallmark of the scientific method at least

since Popper (1959). The predictive power of a theory is only as good

as the falsifiable claims that it makes. Any two theories making the

same falsifiable claims are observationally equivalent. This paper is an

axiomatic study of the empirical content of a theory.

Most economic theories make some falsifiable claims, but not all its

claims may be falsifiable. An example that would be familiar to most

economists is the theory of utility maximization. If we imagine that

we can observe data on choices among pairs, then we can test for the

transitivity of preference: transitivity is a testable implication of the

theory of utility maximization. But we cannot test for the existence of

a rationalizing utility. In fact, it turns out that the theory of utility

maximization has the same empirical content as the theory of prefer-

ence maximization.1 In the terminology of our paper, the theory of

preference maximization is the falsfiable closure of the theory of utility

maximization. The falsifiable closure is our notion of empirical content.

Some theories make only falsifiable claims. Such theories are called

falsifiably complete; one example is the theory of preference maximiza-

tion (although this depends on the possible data taken as primitive,

as we explain below). A theory is falsifiably complete if, whenever the

theory is wrong in any way, it can be refuted empirically. One can

weaken a theory by, in a sense, discarding some of its claims, until it

becomes falsifiably complete. The falsifiable closure of a theory is the

least such weakening. A theory is falsifiably complete if it coincides

with its falsifiable closure; eliminating any of its claims results in an

observationally distinct theory.

Our main result is a characterization of falsifiable closure, and of

falsifiably complete theories. This allows us to understand the syntax

(the formal structure) of axioms that ensure falsifiable completeness,

and that characterize the empirical content of a theory. We apply our

1Our discussion in the introduction is necessarily very loose. Example 3 presents
these theories more rigorously.
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results to theories from behavioral economics and social choice; theories

that were not previously known to be fully testable.

The data that can be observed is a crucial primitive of our model.

For example, consider again the theory of preference maximization. It

matters whether we believe that we can observe weak preference only

(an alternative x is weakly preferred to y), or if we can also observe

strict preference. It also matters whether we can observe absence of

preference: do we allow observations of the type “x is not preferred to

y?”

We restrict the possible data by assuming a language. For example,

if we want to assume that we can observe preference and absence of

preference, then we can assume that we have two symbols R and R̃; we

intend to use R to denote a binary relation expressing weak preference,

and R̃ to denote absence of weak preference.2 We may hypothesize

the seemingly tautological statement that between any pair, there is

either preference or absence of preference, and never both. Though

this seems tautological, it illustrates the role language plays in our

framework. The key here is that our language needs to be rich enough

to allow us to discern between absence of an observation of preference,

and the observation of absence of preference.

Given a language, we can write axioms expressed in the symbols of

the language. These are the first-order sentences that can be expressed

in the language, a notion from mathematical logic. An axiomatization

of a theory is a collection of sentences which hold at, and only at,

each of the particular instances of the theory. We prove that axioms

that have a certain form (universal negations of conjunctions of atomic

formulas, or UNCA) characterize the empirical content of a theory. So

the falsifiable closure of a theory is axiomatized by UNCA sentences.

For example, if we use the language with the symbols R and R̃, an

UNCA axiom is the following sentence:

∀x∀y∀z¬[(x R y) ∧ (y R z) ∧ (z R̃ x)];

2Though this is in some sense equivalent to being able to observe preference and
strict preference, for formal exposition, these are the most tractable primitives.
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an axiom expressing transitivity.

We show that the falsifiable closure is a topological closure operator.

This is important, as it implies that the intersection of an arbitrary

number of falsifiably complete theories is also falsifiably complete. In

other words, no new implications can be derived from the intersection

of the theories; other than those which follow as logical consequences

of the implications already present. On the other hand, the empirical

content of joint hypotheses may be strictly more (i.e. imply stronger

restrictions) than the intersection of the content of each individual

hypothesis, but only when these individual theories are not falsifiably

complete.

Our paper formalizes existing ideas and notions. The formalization

raises new and subtle issues, and our results are readily applicable

to economic theories. First, we demonstrate this by characterizing

the empirical content of a large body of theories which as of yet have

resisted axiomatization: the theory of multiple selves. We model the

multiple selves hypothesis by assuming a fixed and finite set of selves,

each of whom has a strict preference. The preferences of these selves

are aggregated according to a preference aggregation rule satisfying two

very simple hypotheses (neutrality and IIA). We in fact demonstrate

that all such models are equivalent to their empirical content: they are

falsifiably complete, and thus possess an UNCA axiomatization. This

is by no means a trivial or well-known result, as a special case of it is

closely related to the unsolved dimension problem of order theory: our

result shows that the class of orders having dimension less than n for

any fixed n has a very special type of axiomatization; we believe this

result to be previously unknown (see Trotter (1992)).

Secondly, while the results we discuss seem intuitive and many might

feel they are already familiar with the ideas, there are many subtleties

involved. In fact, no results can be true without hypotheses; and in

fact, uncovering hypotheses which render the result true is, in this

case, a nontrivial task. We hope that our formal presentation will

aid in understanding the appropriate relationship between observable
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data, hypotheses, and the axiomatic approach, at least for positive

economics.

We do not wish to suggest that theories with no empirical content are

not useful economically. Many normative studies recommend situations

which could not be empirically falsified. The reason this is not an

issue is that such studies are intended to be prescriptive, rather than

descriptive.

1.1. The basic formal idea. To study the structure of axioms, we

need to have a way of talking about axioms as formal mathematical

concepts. Fortunately, the mathematical field of model theory provides

us with tools for such an analysis. Our paper uses definitions and basic

ideas from model theory. We model the data we can observe by a first

order language, involving predicate and function symbols. The pred-

icate and function symbols should be chosen to correspond to things

we think of as primitive observables. For example if we believe we can

observe a preference between a pair of alternatives, we need to include

a predicate for that preference; and if we believe we can observe the

absence of preference, we need to include a separate predicate corre-

sponding to absence of preference.

When we speak of a finite data set, we mean a finite set equipped

with relations (corresponding to the predicates) and partial functions

(a function whose domain is a subset of the finite set–corresponding

to the function symbols of our language). The data set involves all

elements we have observed to stand in a given relation, as well as the

image of certain elements of our domain under certain functions. In

the preference example, we have no function symbols, and a data set is

simply a set with a pair of binary relations (relating to weak preference

and absence of weak preference). The binary relations represent all

observed comparisons. The example illustrates a critical assumption

underlying our work: we do not want to equate non-observation of a

preference with an observation of a non-preference. In other words,

non observation of x being weakly preferred to y does not mean we

have observed x is not weakly preferred to y.
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We define a theory as a class of structures for the language, which

is closed under isomorphism. The idea is that a theory postulates

a class of structures which we believe may represent the real world.

We do not know which, if any, of these structures actually represents

the real world; this will be something we have to test. That theories

must be closed under isomorphism is postulated for technical reasons,

but it is fairly intuitive that a class of structures which is not closed

under isomorphism would be strange indeed. The reason is that, given

our language, we can only describe how certain things interact, but

we cannot refer to specific structures themselves. Any two structures

whose objects interact in the same way will be indistinguishable. This

notion of theory is therefore as general as could possibly be while still

being a meaningful concept. Theories will be denoted T and T ′.

Because as economists we often want to assume that a certain theory

of behavior is implicit, we provide relative definitions of falsifiability.

Our main results are a characterization of falsifiably complete theories

and characterizations of falsifiable closure (as well as properties of the

falsifiable closure operator). We define a theory T to be falsifiably

complete with respect to T ′ if every structure in T ′ which is not in

T contains a finite data set which falsifies T , in the sense that no

structure in T contains the same data set. To see why this definition

makes sense, theory T predicts that any structure outside of T is false.

If this prediction can be empirically falsified, it means that any time

the theory is false; that is, any time the true world lies in T ′ but not

in T , we should be able to refute the theory with some finite data set.

This is precisely what our definition requires.

We show that a theory T is falsifiably complete with respect to T ′ if

and only if it has a very specific type of axiomatization. Namely, all ax-

ioms should be universal negations of conjunctions of atomic formulas–

we call this an axiomatization by UNCA formulas. While this sounds

complicated, it actually corresponds very closely with our intuition.

A universal theory is, as it sounds, a theory which postulates a given

relationship hold universally; that is, it is an axiom formulated with a

collection of ∀ symbols coming at the beginning of the formula.
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The proof that all falsifiably complete theories can be axiomatized

by UNCA formulas can be naively explained as follows. Each data set

that is ruled out by our theory can be used to specify an axiom. This

axiom states roughly that the observed data set should not occur. As

each data set consists of a number of statements about the primitive

elements of our language, this axiom can be written in an UNCA form.

That is, it rules out the conjunction of all statements true in the data

set holding simultaneously; and as each data set is finite, it constitutes

a meaningful sentence. While this intuition is roughly correct, the proof

is slightly subtle and relies on our formal definition of a theory.

Our theorem is related to the standard intuition on falsifiability; but

once it is formalized, falsifiability raises some subtle issues. Popper

(1959) claimed that all scientific theories must be universal, as only

universal theories could be falsifiable. Popper (famously) compared two

theories; the theory “all swans are white” is universal and falsifiable,

while the theory “there is a non-white swan” is existential and not

falsifiable. Most practitioners identify falsifiability with universality.

In fact, all falsifiably complete theories are universal, but the con-

verse is not true. Sometimes our language lacks the expressive power

to falsify our hypotheses. In other words, our data is not of the type

necessary to falsify the theory. This is why we also require that the

axioms be negations of conjunctions of atomic formulas (UNCA). To

understand this, suppose our theory only allows us to observe weak

preference, but does not allow us to observe absence of weak prefer-

ence. Consider an axiom which is simply a negation of a single atomic

formula. Such an axiom might express ∀x∀y,¬x R y. The atomic for-

mula here is x R y: note that the atomic formula comes in exactly the

form our data comes in. Consequently, we falsify the axiom whenever

we observe a pair being compared. By contrast, if our language only

allows us to observe R, then we could never falsify the universal axiom:

∀x∀y, x R y, as we could never observe when a pair is not compared.

1.2. Falsifiable closures. Our results on falsifiable completeness are

important as they help us to characterize the falsifiable closure of a
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given theory. The falsifiable closure of T with respect to T ′ is defined

to be the largest subtheory of T ′ with respect to which T is not falsi-

fiable. We show that, in fact, this is a topological closure operation:

it can be equivalently defined as the smallest falsifiably complete sub-

theory of T ′ containing T . So, if a theory is falsifiably complete, it

is its own falsifiable closure. The relevance of this concept is that it

provides the entire empirical content of a given theory. Therefore, any

two theories with identical falsifiable closures are empirically indistin-

guishable. Hence, the theory of utility maximization and the theory

of weak order are not empirically distinguishable. Other such results

exist in the literature: Afriat (1967) showed that, in the theory of lo-

cally non-satiated preference maximization on budget sets, the theory

of concave, monotonic utility representation of preference is empirically

vacuous (see Section 7).

Because the falsifiable closure is a topological closure, we know that

the falsifiably complete theories are closed under arbitrary intersection.

Thus, for an axiomatic theory, if each axiom generates a falsifiably com-

plete theory, then the theory characterized by all the axioms is itself

falsifiably complete. We present examples to show that a collection of

axioms may have more empirical content taken jointly than the inter-

section of their individual empirical contents, but this can only happen

when falsifiable completeness fails.

1.3. Previous literature. We are not the first to formally discuss

notions of falsifiability and empirical content in an abstract sense, al-

though the literature is slim. Results exist in the mathematical psy-

chology literature, as well as among philosophers. Adams, Fagot, and

Robinson (1970) seems to be the first work discussing empirical con-

tent in a formal sense (see also Adams (1992)). The main distinction

between this work and ours is of the definition these authors took as

data. While our notion of data is semantic, their notion is purely syn-

tactic, and consists of formulas of certain types. Necessarily, what they

consider to be data depends on the model under consideration. It is

quite different from what applied economists would recognize as data.
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Previous works characterize the notion of empirical equivalence in a

different way than us. The previously noted paper of Adams, Fagot,

and Robinson (1970) defines two theories to be empirically equivalent

if the set of all formulas (of a certain type) consistent with one theory is

equivalent to the set of all formulas (of a certain type) consistent with

the other. Just as in our work, the notion of empirical equivalence

necessarily depends on what is allowed as data. The distinction is that

these works do not provide a general characterization of the axiomatic

structure of empirical content, but rather focus on characterizing the

empirical content of specific theories. Pfanzagl, Baumann, and Huber

(1971) (p. 106-119) for example, simply define testable formulas to be

exactly the universal formulas. Our work should be useful in providing

a method for characterizing the axiomatic structure of the empirical

content of a given theory.

Simon and Groen (1973) present a formal study of the testable impli-

cations of scientific theories. The focus in their work is when a theory

that involves theoretical terms can be reduced to statements about ob-

servables by a process known as a Ramsey elimination. Apart from

the questions that they investigate, the main difference from our work

lies in their definition of data. They consider substructures (in the

sense of mathematical logic) to be data. Our notion of data, on the

other hand, is broader. The notion of substructure does not allow for

“partial” observation, whereas our notion does. For example, given

revealed preference observations of the type x is revealed preferred to y

and y is revealed preferred to z, Simon and Groen would not allow the

data to be silent about the relation x and y stands to each other. Our

notion of data allows for such partial observation, and we believe this

aspect is crucial. We discuss the alternative definition in Section 3.2,

and argue that it is inadequate as a notion of data in economics.

Finally, some of our formal arguments are close to results by Tarski

(1954). Tarski’s main results deal with languages involving no con-

stant or function symbols. In such a framework, he characterizes those

theories that have a universal axiomatization. As we demonstrate be-

low, the issue of universal axiomatization is related to falsification, but
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Tarski never explored this aspect of the results. In all, our results are

hardly novel contributions to Mathematical Logic or Model Theory.

Rather, we have formalized some questions that economists in particu-

lar care about, and obtained a characterization of the empirical content

of a theory.

2. Falsifiable closure: Semantics

We use standard notions from mathematical logic and model the-

ory. The interested reader should consult Marker (2002) for definitions

of language (definition 1.1.1), structure (definition 1.1.2), and isomor-

phism of structures (Definition 1.1.3).

The language we choose should correspond to those objects which we

believe to be observable as data in our theory. There are important and

subtle issues involved in the formulation of a language. For example, for

studying the basic theory of rational choice, we want a language that–

at a minimum–allows us to express the observation “x is preferred

to y.” Thus we need a language which includes a binary predicate

intended to represent (revealed) preference. Now, if we can observe

the absence of preference, “x is not preferred to y,” we need to include

a separate predicate corresponding to the absence of predicate. This

is an important point because the absence of preference does not need

to follow from the absence of an observed preference. To incorporate

the observation of absence of preference, we need to incorporate this

extra predicate. Our notion of data set (below) allows us to distinguish

between the absence of observation and the observation of absence; the

distinction turns out to be important.

1. Remark. We use the term ‘class’ for a collection that can be described

by some formula in the language of set theory, but which may be ‘too

large’ to be a set. Thus we can talk about the ‘class of all sets’ and

‘the class of all structures of a language L’, even though these classes

are not themselves sets. For a formal treatment, see Levy (2002).



EMPIRICAL CONTENT 11

2. Definition. Let L be a language. A theory T over L is a class of

structures that is closed under isomorphism (Marker, 2002, Definition

1.1.3). Elements of T are called models of T .

3. Example. Consider the language L = 〈R, R̃〉 with two binary pred-

icates:

• R, which is intended to express weak preference,

• and R̃, which is intended to express absence of weak preference.

A structure of L is a tripleM = (M,RM, R̃M), where M is a set, and

RM and R̃M are binary relations on M .

The theory of rationality is the theory of weak-order maximiza-

tion, denoted by Two. This is specified as the class of all structures

(M,RM, R̃M) for whichRM is complete and transitive, for all x, y ∈M ,

xR̃M y if and only if xRM y is false. That is, RM expresses preference,

while R̃M expresses the absence of weak preference.

We can write this more carefully as follows: Two is the set of struc-

tures for which the following axioms are true:

(1) ∀x∀y, (x RM y) ∨ (x R̃M y)

(2) ∀x∀y,¬[(x RM y) ∧ (x R̃M y)]

(3) ∀x∀y∀z,¬[(x R y) ∧ (y R z) ∧ (x R̃ z)]

(4) ∀x∀y,¬[(x R̃ y) ∧ (y R̃ x)].

The first axiom expresses that there must be either preference or

absence of preference between all pairs. The second axiom expresses

consistency between preference and absence of preference: if there is a

preference between x and y, there cannot be absence of a preference.

The third formalizes transitivity, and the last formalizes completeness.

For future reference, we denote the class of all structures for which

axioms 2,3, and 4 are true by Tw.

We distinguish Two from the theory of utility maximization, which is

the class of structures Tu for which there exists a real-valued function

u : M → R such that x R y ↔ u(x) ≥ u(y) and x R̃ y ↔ u(x) < u(y).

Finally, we can define the “vacuous theory” Tv of all the structures

of L. Note that Tu ⊆ Two ⊆ Tw ⊆ Tv. So we can express if one theory

is more restrictive than another by set containment.
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4. Remark. Marker and other model theory textbooks only study first-

order theories (See Definition 18 below). In our definition of theory we

follow Tarski (1954).

5. Definition. Let L be a language. A data set D over L is given by:

(1) A non-empty set D (the domain of D)

(2) An n-ary predicate PD over D for every n-ary relation symbol

P of L
(3) A function fD : Dom(fD) ⊆ Dn → D for every n-ary function

symbol f of L.

(4) A set C(D) of constant symbols of L and an element cD ∈ D
for every c ∈ C(D).

A data set D is finite if the domain D and the sets {P |PD 6= ∅},
{f |Dom(fD) 6= ∅}, and C(D) of, respectively, relation symbols, func-

tion symbols and constant symbols that appear in D are finite.

There are some subtle issues in the definition of data set. In partic-

ular, as we explain in detail in Section 3.2, a data set does not impose

that one observe all the theoretically possible relations among objects

in the data set. This imposition would result in a rather unrealistic

notion of data set, and our definition avoids it.

6. Definition. Let L be a language. A structure M of L contains a

data set D, denoted D ⊆M if the following conditions are satisfied:

(1) D ⊆M , where D and M are the domains of D and M.

(2) PD ⊆ PM for every relation symbol P

(3) fD is the restriction of fM to Dom(fD) for every function sym-

bol f .

(4) cD = cM for every constant symbol c ∈ C(D).

Observe that we do not require PD to be the restriction of PM to

D (and similarly for functions). Consider the language in Example 3,

and the structureM = (R,≥, <) of Two, where ≥ is the usual order on

R. Then the data set D with domain {1, 2, 3} and the binary relation

RD = {(2, 1)}, is contained in M.
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7. Definition. Let L be a language.

(1) A data set D falsifies a theory T if no model of T contains D.

(2) Let M be a structure. A theory T is falsifiable at M if M
contains a data set that falsifies T .

A theory T is falsified at a modelM if some claim that T makes is is

incompatible with data that could be observed ifM was the structure

that represents the real world.

The following lemmas establish some simple properties which are

useful later.

8. Lemma. If T1 ⊆ T2 are theories and T2 is falsifiable at a structure

M then T1 is also falsifiable at M.

9. Lemma. If T1, T2 are theories that are falsifiable at a structure M
then T1 ∪ T2 is falsifiable at M.

10. Lemma. If a theory T is falsifiable at a structure M then T is

falsifiable at every isomorphic copy M′ of M.

Proof of Lemma 8. Let D ⊆ M be a finite data set that falsifies T2.

Then D falsifies T1. �

Proof of Lemma 9. Let D1 and D2 be finite data sets that are contained

in M and falsify T1 and T2 respectively. Let D1 ∪ D2 be the data set

with domain D1∪D2 and such that pD1∪D2 = pD1∪pD2 for every relation

symbol p, fD1∪D2 = fD1 ∪ fD2 for every function symbol f and C(D1 ∪
D2) = C(D1)∪C(D2). Note that fD1 ∪ fD2 is well-defined because D1

and D2 are contained in M. Then D1 ∪ D2 falsifies T1 ∪ T2. �

Proof of Lemma 10. Let η : M′ → M be an isomorphism, and let

D ⊆ M be a finite data set with domain D that falsifies T . Let

D′ ⊆M′ be the data set with domain D′ = η−1(D), and such that the

relations and functions ofD′ are the pullbacks by η of the corresponding

relations and functions of D, C(D′) = C(D) and cD
′

= η−1
(
cD
)

for

every c ∈ C(D). Then D′ falsifies T . (The last assertion follows from

the fact that T is closed under isomorphism). �
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11. Definition. A theory T is falsifiable if there exists some data set

that falsifies T .

A theory T is falsifiable if T makes at least one claim that can be

demonstrated to be false. Consider Example 3. The theory Tu of utility

maximization is falsifiable: the data set D = (D,RD, PD) with domain

D = {a, b} and where RD = ∅ and R̃D = {(a, b), (b, a)} falsifies Tu.

On the other hand, Tu is falsifiable, not all its claims are falsifiable.

For an example, consider the structureMlex = (R2
+,≤lex, <lex), where

≤lex is the lexicographic order on R2
+. It is well-known thatMlex 6∈ Tu,

but no finite data set in Mlex falsifies Tu.

Thus, we may be interested in theories all of whose claims are falsi-

fiable, and more importantly, in the empirical content of a theory such

as Tu. These observations motivate the following definitions.

12. Definition. A theory T is falsifiably complete if T is falsifiable at

every structure which is not a model of T .

13. Definition. Let T be a theory. The falsifiable closure of T , denoted

fc(T ) is the class of all structures M such that T is not falsifiable at

M.

From Lemma 10 it follows that fc(T ) is a theory (i.e. closed under

isomorphism). The theory fc(T ) captures our idea of empirical content.

In particular, T is falsifiably complete if and only if fc(T ) = T .

14. Example. Consider again Example 3. Then fc(Tu) = fc(Two) = Tw.

Thus, the theory of utility maximization and the theory of preference

maximization are empirically indistinguishable. In addition, the em-

pirical content of Tu and Two is, in a sense, contained in axioms 2-4

of Example 3. Axiom 1 expresses an non-testable property, and the

additional hypotheses implicit in Tu are also non-testable.

15. Lemma. If a theory T is falsifiable at a structure M then fc(T ) is

also falsifiable at M.

Proof. Let D be a finite data set that is contained in M and falsifies

T . By Definition 13 no model of fc(T ) contains D (since D falsifies T ).
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By Definition 7 this means that D falsifies fc(T ). SinceM contains D
it follows that fc(T ) is falsifiable at M. �

The following proposition says that the operator T 7→ fc(T ) over

theories T has the properties of a topological closure. The theory ∅ is

the theory which contains no structures.

16. Proposition. The falsifiable closure has the following properties.

Extensiveness: T ⊆ fc(T ) for every theory T .

Idempotence: fc(fc(T )) = fc(T ) for every theory T .

Preservation of Nullary Union: fc(∅) = ∅.

Preservation of Binary Union: fc(T1 ∪ T2) = fc(T1) ∪ fc(T2)

for all theories T1, T2.

Proof. Extensiveness follows from the fact that T is not falsifiable at its

own models. Idempotence from Lemma 15: IfM /∈ fc(T ) then T is fal-

sifiable atM and therefore fc(T ) is falsifiable atM, i.e. M /∈ fc(fc(T ).

Preservation of nullary union follows as every model contains a data set

falsifying ∅. Preservation of binary union follows from Lemma 9. �

3. Syntax

We now formalize the assertions that can be expressed using the

language L to describe properties of L-structures. Expressions in our

language are strings of symbols built from the symbols of L, variable

symbols v1, v2, . . . , the equality and inequality symbols =, 6=, Boolean

connectives ¬,∨,∧, quantifiers ∃, ∀ and parentheses (, ).

17. Remark. Following Marker, we use the same equality symbol ‘=’

in our L-strings and in our meta-language. We additionally require a

similar inequality symbol ‘6=’ in our L-strings.

We again follow Marker for standard terminology; the modifications

we must make (to include the 6= sign) are listed below.

We use the standard definition of a term (Marker, Definition 1.1.4).

Our first modification is in the definition of “atomic formula” we

allow the expression of inequality of two terms to be considered an

atomic formula.
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An atomic formula φ is either

(1) t1 = t2 or t1 6= t2 where t1, t2 are terms

(2) R(t1, . . . , tn) where R is an n-ary relation symbol of L.

Using this definition for atomic formula, the definition of formula is

then the same as (Marker 1.1.5), as well as the definitions of sentence.

The definition of satisfaction in a structure (Marker, 1.1.6) (and conse-

quently truth) is the same as Marker, but with the additional statement

“If φ is t1 6= t2, then M � φ(a) if tM1 (a) 6= tM2 (a).”

18. Definition. For a set Γ of sentences of L, let T (Γ) be the theory

of all structures M of L such that all the formulas in Γ are true in

M. Theories of the form T (Γ) for some set Γ of formulas are called

first-order theories. We also say that Γ axiomatizes T (Γ).

19. Example. In Example 3, the theory Two is a first order theory.

The theory Tu is not a first order theory.

20. Definition. Let L be a language. A universal negation of a con-

junction of atomic formulas (UNCA) sentence of L is a sentence of the

form

∀v1∀v2 . . . ∀vn¬ (φ1 ∧ φ2 · · · ∧ φm)

where φ1, φ2, . . . , φm are atomic formulas with variables v1, . . . , vn.

The following result provides the syntactic characterization of the

semantic concept of falsifiable completeness. Falsifiably complete the-

ories are exactly those which have an UNCA axiomatization. This is

our main result.

21. Theorem. A theory T is falsifiably complete if and only if it admits

an UNCA axiomatization.

The following corollary is an immediate consequence of Theorem 21

and Definition 12. It will be of interest to us later, in comparing our

work with that of Tarski (1954).

22. Corollary. Let L be a language and T a theory over L. Then T

admits an axiomatization by UNCA sentences if and only if the follow-

ing condition is satisfied: For every structure M, if every finite sub
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data-set of M is contained in some model of T then M is a model of

T .

For a theory T denote by uncaf(T ) the set of UNCA formulas that

are true in all models of T .

Theorem 21 is an immediate consequence of Proposition 23

23. Proposition. For every theory T one has fc(T ) = T (uncaf(T )).

Let L be a language and D a finite data set. For every d ∈ D \C(D)

let vd be a variable, and let zd for every d ∈ D be the term given by

zd = c if d = cD for some c ∈ C(D) and zd = vd if d ∈ D \ C(D). Let

φD be the following UNCA formula of L:

φD = ∀v̄¬φ̄D(v̄), where

φ̄D(v̄) =
(∧

(zd 6= zd′)
∧

P
(
zd1 , . . . , zdn

)
∧
∧

f
(
zd1 , . . . , zdn

)
= zfD(d1,...,dn)

)
,

(1)

The first conjunction ranges over all pairs d 6= d′ ∈ D; the second

conjunction ranges over all relation symbols P that appear in D and

every (d1, . . . , dn) ∈ PD; and the third conjunction ranges over all

function symbols f that appear inD and every (d1, . . . , dn) ∈ Dom(fD).

The following lemma is easily seen:

24. Lemma. Let D be a finite data set. Then φD is not true in M if

and only if D is contained in some isomorphic copy of M.

Proof of Proposition 23. We divide the proof into two steps:

Step 1: If M∈ T (uncaf(T )) then M∈ fc(T )

Let D be a data set that falsifies fc(T ). Then from Lemma 24,

and the fact that T is closed under isomorphism it follows that φD ∈
uncaf(T ). Therefore M |= φD, as by hypothesis M ∈ T (uncaf(T )).

By Lemma 24 again it follows that M does not contain D. Therefore

M does not contain any data set that falsifies D, so that T is not

falsifiable at M, i.e. M∈ fc(T ) as desired.



18 CHAMBERS, ECHENIQUE, AND SHMAYA

Step 2: If M /∈ T (uncaf(T )) then M /∈ fc(T )

Let φ ∈ T (uncaf(T )) be not true in M. Let v̄ = (v1, . . . , vn) be

the variables of φ so that φ = ∀v̄¬φ̄(v̄) ∈ T (uncaf(T )) where φ̄(v̄) is a

conjunction of atomic formulas.

Since φ is not true in M, it follows that then φ̄[d̄] is true in M
for some d̄ = (d1, . . . , dn). Let D be the finite data set defined as

follows: The domain D ⊆M of D is the set of all elements of the form

t[d1, . . . , dk] where t is some term that appears in φ̄. For every relation

symbol P ,

PD = {(t1[d1, . . . , dk], . . . , tn[d1, . . . , dk]) |P (t1, . . . , tn) appears in φ̄}.

For every function symbol f ,

Dom(fD) = {(t1[d1, . . . , dk], . . . , tn[d1, . . . , dk]) |f [t1, . . . , tn] appears in φ̄},

and for every (t1, . . . , tn) such that the atomic formula t = f(t1, . . . , tn)

appears in φ̄

fD (t1[d1, . . . , dk], . . . , tn[d1, . . . , dk]) = t[d1, . . . , dk].

If there are two different atomic formulas that appear in φ̄ with the

same arguments of f then we choose one of them arbitrarily to define

the corresponding value of fD.

Then D is a data set that is contained inM and φ̄[d1, . . . , dk] is true

and, in particular, φ is not true in any such structure. Then, for any

model of T , φ is not true in that model. Therefore D falsifies T . Thus,

we proved that M contains a data set that falsifies T and therefore

M /∈ fc(T ). �

Proof of Lemma 24. If a structure M contains D then substituting d

for vd we get that φ̄D[d̄] is false

Assume now that M is a structure of L such that φD is not true

in M, and assume without loss of generality that the domains M and

D of M and D are disjoint (otherwise replace M with an isomorphic

structure). Let m̄ = (md)d∈D be elements ofM such that φ̄D[m̄] is false

in M. Consider the isomorphic structure of M′ which is obtained by
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replacing every element md with d. Then φ̄D[d̄] is false inM′. It follows

that all the corresponding substitutions of d̄ in the atomic formulas

in the conjunctions that makes up φD in (1) are true. In particular,

(d1, . . . , dn) ∈ PM′ for every relation symbol P that appears in D and

every (d1, . . . , dn) ∈ PD. Thus, PD ⊆ PM′ for every relation symbol P

that appears in D, and so property (2) in Definition 6 is satisfied. The

other properties are proved by similar argument. Therefore M′ is an

isomorphic copy of M that contains D. �

3.1. Joint hypotheses. We present a trivial example establishing that

the falsifiable closure operator does not commute with respect to inter-

section. While the falsifiable closure of two falsifiably complete theories

is the intersection of the closures, this is not true of theories that are

not falsifiably complete.

25. Example. Let the language L = 〈R, S〉 involve two unary pred-

icates. T ′ is the vacuous theory of all structures with two unary re-

lations. T1 is the theory axiomatized by ∀x,R(x). T2 is the theory

axiomatized by ∀x,R(x)→ ¬S(x). Note that the falsifiable closure of

T1 is T ′, while the falsifiable closure of T2 is T2 itself. Consequently,

the intersection of the falsifiable closures is T2.

However, the UNCA axiom ∀x,¬S(x) is true in T1∩T2, while it is not

true in either T1 or T2. Consequently the falsifiable closure of T1 ∩ T2

is a proper subtheory of the intersection of the individual falsifiable

closures.

The example is trivial, but captures the essence of a familiar prob-

lem. One often thinks of hypotheses that are stronger when imposed

jointly than what they are in isolation. Our results imply that this

only happens for theories which are not falsifiably complete.

3.2. Data sets vs. substructures.

26. Definition. Let M and B be two structures for the language L.

Say that B is a substructure of M if

(1) |B| ⊆M
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(2) PB is the restriction of PM to |B| for every relation symbol P ,

(3) fB is the restriction of fM to |B| for every function symbol f .

(4) cB = cM for every constant symbol c of L.

Our notion of data sets have an important feature. One may only

be able to observe some relations among the data, not all of them.

For example, for data on revealed preferences, if one observes that x is

revealed preferred to y, and that y is revealed preferred to z, one may

not know (not observe) the direction of revealed preference between x

and z. Our notion of data sets accommodates this feature of real-world

data sets. The competing notion of substructures as data sets (see the

discussion in Section 8) does not.

4. Relative notions

It is often useful to have a relative notion of falsifiability. In some

cases, there is a theory which we postulate to be a “base” theory,

and we want to test some additional hypothesis (a stronger theory).

For example, consider the theories in Example 3. We may ask about

additional empirical content in the Tu, relative to Two; and conclude

that the hypotheses that Tu adds to Two have no additional empirical

content.

The theories we have been describing up until now must be necessar-

ily completely specified, and everything that these theories postulate

must be open to testing–including the primitives. Our results do not

require such a detailed description.

To take a trivial example, we may know that there are at least three

alternatives over which an agent forms a preference. We could formalize

this by ensuring that all structures in our theory have universes with

at most three elements. It turns out that so long as our theory is not

vacuous, this theory could never be falsifiably complete. The reason

is that, if we are given any model M of our theory, and consider a

substructure M∗ ⊆ M of this theory with a universe containing only

two elements, then M∗ is clearly not a model of our theory. But our

theory is also not falsifiable at M∗, as M∗ ⊆ M. This is only a
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trivial example, of course, but it illustrates the need to allow for some

hypotheses to be taken as “given.”

To discuss relative notions of falsifiability, in this section we fix two

theories T ⊆ T ′. We assume that T ′ is a “base”, or known, theory. We

say that T is falsifiable with respect to T ′ if T is falsifiable at some model

of T ′. Thus a theory T is falsifiable with respect to a weaker theory

T ′ if some claim that T makes in addition to T ′ is incompatible with

data that could be observed if T ′ were true. T is falsifiably complete

with respect to T ′ if T is falsifiable at every model of T ′ which is not a

model of T . The falsifiable closure of T in T ′, denoted fcT ′(T ), is given

by fcT ′(T ) = T ′ ∩ fc(T ), the class of all modelsM of T ′ such that T is

not falsifiable at M. Note that T is falsifiably complete with respect

to T ′ if and only if fcT ′(T ) = T . We have the following theorem:

27. Theorem. Suppose T ⊆ T ′. Then T is falsifiably complete with

respect to T ′ if and only if there exists a set Σ of UNCA sentences of

L such that T = T ′ ∩ T (Σ).

Proof of Theorem 27. If T is falsifiably complete with respect to T ′,

then by Proposition 23

T = fcT ′(T ) = T ′ ∩ fc(T ) = T ′ ∩ T (Σ),

where Σ = uncaf(T ).

Assume now that T = T ′∩T (Σ) for some set Σ of UNCA sentences.

In particular, every sentence in Σ is true in every model of T and

therefore Σ ⊆ uncaf(T ). It follows that

T ′ ∩ fc(T ) = T ′ ∩ T (uncaf(T )) ⊆ T ′ ∩ T (Σ) = T,

where the first equality follows from Proposition 23 and the inclusion

from the fact that Σ ⊆ uncaf(T ). Since in addition T ⊆ T ′ ∩ fc(T ), we

get that T = T ′ ∩ fc(T ), so that T is falsifiably complete with respect

to T ′. �

28. Proposition. Let T ⊆ T ′ be theories. Then fcT ′(T ) is the smallest

theory that contains T and is falsifiably complete with respect to T ′.
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Proof. From the fact that fc is a topological closure and is hence closed

under intersection and idempotent (Proposition 16), we conclude that

fcT ′(fcT ′(T )) = fc(fc(T ) ∩ T ′) ∩ T ′ = fc(T ) ∩ fc(T ′) ∩ T ′ = fcT ′(T ).

Hence fcT ′ is idempotent. It follows that fcT ′(T ) is falsifiably complete

with respect to T ′. Assume now that T ⊆ T̃ ⊆ T ′ and T̃ is falsifiably

complete with respect to T ′. Then

fcT ′(T ) ⊆ fcT ′(T̃ ) = T̃ ,

where the first inclusion follows from monotonicity of the closure and

the fact that T ⊆ T̃ and the equality from the fact that T̃ is falsifiably

complete with respect to T ′. �

29. Example. Consider again the language L = 〈R, R̃〉. We define the

theory of orders, To, as the class of all structures satisfying

∀x∀y,¬[(x RM y) ∧ (x R̃M y)].

Then fcTo(Tu) = fcTo(Two) = Two. That is, if we assume that every pair

is either ranked or unranked (in fact, this assumption would usually

be implicit), then the theory of weak order is falsifiably complete. The

theory of weak order is the falsifiable closure of the theory of utility

maximization. The idea that numerical representation of preference is

without empirical content is well-known, but it is comforting that our

formal notion coincides with our intuition in this case.

5. Relation to Tarski

5.1. Tarski’s result on relational systems. An UNCA sentence is

a special case of a universal sentence, i.e. a sentence of the form

∀v1 . . . vnφ(v1, . . . vn),

where φ is quantifier-free formula. A theory T admits a universal ax-

iomatization if T = T (Σ) for some set Σ of universal sentences.

Tarski (1954) proved the following theorem:
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30. Theorem. Let L be a language without constants and function

symbols and let T be a theory over L. Then T admits axiomatization by

universal sentences if and only if the following conditions are satisfied:

(1) T is closed under substructures

(2) For every structure M, if every finite substructure of M is a

model of T , then M is a model of T .

The similarity of our condition in Corollary 22 and Tarski’s second

condition is clear: In our framework data sets replace substructures.

Indeed; the reason we are able to prove a theorem axiomatizing theories

with function symbols whereas Tarski could not is that the notion

of data set allows a function to be defined on a subdomain of the

universe under consideration. In general; however, if we consider a

function restricted to an arbitrary subset of a universe, the function

may not take values in that subset, and hence the resulting object will

not be a substructure. In a sense, the distinction between functions

and predicates in mathematical logic is made because of the way these

objects relate across structures: in our context, they can be considered

the same type of object (any function is a predicate).

We now turn to formalize the relationship between the syntactic

notions of UNCA and universal axiomatization.

Let us say that a language L supports negation of relations if its

relation symbols are divided into pairs (P, P̃ ). The idea is that P̃ should

represent the predicate ‘P does not hold’. If L supports negation of

predicates, we denote by ΛL the set of sentences of the form

∀v1 . . . ∀vn¬P (v1, . . . , vn)↔ P̃ (v1, . . . , vn)

for all n-ary relation symbols p in the language. We say that a theory

T respects negation of relations if T ⊆ T (ΛL), so that P̃ is interpreted

as ‘P does not hold’ in all models of T .

31. Lemma. Let L be a language that supports negation of predicates.

Then for every universal sentence φ in L there exist UNCA sentences

φ1, . . . , φn such that ΛL ` φ↔ φ1 ∧ · · · ∧ φn.
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32. Corollary. Let L be a language that supports negation of predicates,

and let T ⊆ T (ΛL). Then there exists a set of universal sentences

Σ such that T = T (ΛL) ∩ T (Σ) if and only if there exists a set of

UNCA sentences Σ′ such that T = T (ΛL)∩T (Σ). T admits a universal

axiomatization relative to T (ΛL) if and only if T admits an UNCA

axiomatization relative to T (ΛL).

Thus, for theories that respect negation of relations our theorem and

Tarski’s provide the same type of axiomatization.

Proof of Lemma 31. We give a purely syntactic proof: Consider the

universal sentence ∀v̄φ̄(v̄), where φ is quantifier free and v̄ are the

variables that appear in φ. Writing φ̄ in its conjunctive normal form,

we get that φ is equivalent to a formula of the form

∀v̄
m∧
i=1

n∨
j=1

φi,j

where each φi,j is a literal, i.e. an atomic formula or a negation of

an atomic formula. Changing the order of the conjunction and the

universal quantifier we obtain a formula of the form

m∧
i=1

∀v̄
n∨
j=1

φi,j.

Using De Morgan’s law and replacing each φi,j with its negation we get

a formula of the form

(2)
m∧
i=1

∀v̄¬
n∧
j=1

φi,j.

Finally, under ΛL every literal is equivalent to an atomic formula: for

every term t0, t1, . . . , tk, ¬f(t1, . . . , tk) = t0 is equivalent to f(t1, . . . , tk) 6=
t0, and ¬P (t1, . . . , tk) is equivalent to P̃ (t1, . . . , tk). Therefore we can

change the formulas φi,j in (2) to atomic formulas and so we arrive at

a conjunction of UNCAs, as desired. �

Our proof is very similar to Tarski’s; unlike Tarski however we allow

function symbols.
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In fact, for the theory of falsifiability, it is often important that our

theory support negation of relations. The following example is our

example of weak order maximization, recast in a language involving

only one predicate.

33. Example. Let L = 〈R〉 be a language involving only one binary

predicate, interpreted as weak preference. Consider the theory T ∗wo,

where M = (M,RM) ∈ T ∗wo if and only if RM is a weak order on M .

Let T ∗v denote the vacuous theory, consisting of all structures with bi-

nary relations. We claim that fc(T ∗wo) = T ∗v . This means, in particular,

that the theory of weak order has no empirical content unless one can

reasonably observe absence of preference.

To see why this is the case, let D = (D,RD) be a data set, and let

M = (D,RM), where RM is the binary relation which ranks all pairs.

Then D ⊆M, and M∈ T ∗wo.
This example also serves to illustrate the difference between a data

set and a substructure. In the example, D is not a substructure ofM;

yet it is a sub data set.

5.2. The theorem of  Loś-Tarski.

Theorem ( Loś-Tarski). A first order theory is closed under substruc-

tures if and only if it admits a universal axiomatization.

We now turn to give an analogue of  Loś-Tarski’s theorem for the

case of UNCA axiomatizations. Let L be a language. Let M and N
be structures of L with domains M and N respectively. Recall thatM
is a weak substructure of N if there exists an embedding η : M → N

such that

(1) η
(
fM(a1, . . . , an)

)
= fN (η(a1), . . . , η(an)) for every n-ary func-

tion symbol f

(2) (a1, . . . , an) ∈ RM only if (η(a1), . . . , η(an)) ∈ RN for every

n-ary relation symbol R

(3) η(cM) = cN for every constant symbol c.

34. Theorem. A first order theory is closed under weak substructures

if and only if it admits an UNCA axiomatization.
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The proof is similar to the proof of  Loś-Tarski’s Theorem and is omit-

ted.

5.3. A result on axiomatizations using unobservables. Often,

a theory has an axiomatization involving unobservables. Obviously,

such an axiomatization cannot directly lead to empirical falsification.

We find conditions under which a theoretical axiomatization can be

“projected” on observables to yield a falsifiably complete theory.

Let F ⊆ L be languages, such that L contains all the symbols of F
and possibly additional relation symbols. The idea is that the addi-

tional symbols in L are meant to signify theoretical and unobservable

terms. For every L-structureM, we denote by F (M) the F -structure

induced from M by forgetting the relations that corresponds relation

symbols not in F . For every L-theory T we denote by F (T ) the theory

of all structures of the form F (M) for some model M of T .

35. Proposition. If T is a falsifiably complete L-theory then F (T ) is

a falsifiably complete F-theory.

So a theory that is falsifiably complete when we say that theoretical

objects are observable is automatically falsifiably complete in the cor-

rect observable form—as long as the observable structures are obtained

by “projection” from unobservables as in the proposition.

6. Application: Multiple selves preferences

We apply our concepts to a popular model without a known axiom-

atization, the model of multiple selves. The purpose of this exercise

is to demonstrate that the concepts we introduce are useful for study-

ing theories which have no known axiomatizations (and hence whose

empirical content is not completely understood). Models of multiple

selves are motivated by empirical observations (see e.g. Ambrus and

Rozen (2008), Green and Hojman (2008), Manzini and Mariotti (2007),

O’Donoghue and Rabin (1999) or Fudenberg and Levine (2006)), but

they lack an axiomatization in terms of observables. Here we exhibit a

broad class of such models which are falsifiably complete.
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Given is a fixed and finite set of agents, the “selves.” Given is also

a rule for aggregating agents’ preferences into a single preference. The

interpretation is that an individual has conflicting preferences (perhaps

different preferences for different motivations) and reconciles these pref-

erences with a preference aggregation rule. We observe an aggregate

preference (a revealed preference), and we would like to know whether

it could be generated by the rule for some profile of agents’ prefer-

ences.3 We want to test whether or not a specific group of selves uses a

particular preference aggregation rule in making decisions, only having

observed the aggregate ranking. This question is the correct formula-

tion of the standard revealed-preference exercise for the multiple selves

model.

Multiple selves theories are an excellent example of how hard it can

be to show falsifiability. The theories have a trivial existential (second-

order) axiomatization: Given a preference aggregation rule, the theory

is the collection of observables for which there exists preferences for

individual selves generating the observable behavior. Leaving aside

the second-order nature of this axiomatization, the problem with an

existential axiomatization is that we cannot conclude that the theory is

falsifiable. Recall the example of Popper (1959): the theory that there

is a non-white swan is not testable because we would need to examine

all the swans in the universe. Here, for a given observed behavior, we

would need to check all possible preferences that the selves might have;

for an infinite set of alternatives, this set of preferences is vast. The

fact that the axiomatization is second order means we have to search

over preference profiles–themselves extremely complicated objects. We

present a class of aggregation rules that lead to falsifiably complete

theories; theories with an UNCA axiomatization.

We require a finite cardinality of agents, and any preference aggre-

gation rule which is neutral and satisfies independence of irrelevant

alternatives. We show that the theory is falsifiably complete, given

3In this paper, we focus on preferences which are linear orders; however the results
apply more broadly.
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that we can observe both aggregate preference and absence of aggre-

gate preference (and that these predicates behave in the proper way).

The models relate to the theory of social choice, where there have

been efforts to provide an axiomatization. When the society can be

arbitrarily large, it is known that any transitive antisymmetric rela-

tion is the Pareto relation for some society (which may be large)–this

is essentially the Szpilrajn theorem. Because of this, any complete

binary relation with a transitive asymmetric part is the result of the

Pareto extension rule for some society (we identify indifferent alterna-

tives for the Pareto extension rule with unranked alternatives for the

Pareto ordering–see Sen (1969)). Results for majority rule are even

weaker: McGarvey (1953) showed that any complete binary relation is

the majority rule relation for some society of agents (which again may

be large). Kalai (2004) generalizes this result to a much broader class

of social choice rules.

The current behavioral literature interprets the society as a group

of conflicting tendencies within an individual decision maker: multiple

selves. This literature attempts to understand the empirical content of

such assumptions. In particular, Ambrus and Rozen (2008) and Green

and Hojman (2008) generalize McGarvey’s program to choice func-

tions.4 We only consider preference relations and not choice functions

here; however, we show that the predictions of nearly every such model

can be empirically falsified even in the case where we hypothesize a

finite and known cardinality of “selves.”5

There are very few results like ours, assuming a fixed and finite popu-

lation of selves. Dushnik and Miller (1941) give necessary and sufficient

conditions for a binary relation to be the intersection of a pair of linear

orders; this can dually be seen as an axiomatization for binary relations

4Most such models assume choice satisfies some variant of (Young, 1974)’s rein-
forcement condition. A paper more closely related to ours in spirit is DeClippel
and Eliaz (2009). They provide a related result, characterizing choice rules which
can result from a specific social choice rule–the fallback solution on a fixed pair of
agents.
5It is surprisingly more difficult to axiomatize such models for a fixed and known
set of selves, than for an arbitrary set of agents.
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which are the image of the Pareto extension rule for two agents. This

characterization theorem both relies on existential quantification, and

is not a first order characterization.6 Dushnik and Miller (1941)’s exis-

tential axiomatization cannot be the basis for falsification.7 Sprumont

(2001) provides a similar characterization in a restricted case. Both of

these results are of interest as those relations which are the intersec-

tion of a pair of linear orders are exactly those relations which can be

rationalized by the Pareto-extension rule.

We work with neutral preference aggregation rules which satisfy in-

dependence of irrelevant alternatives. By working with such preference

aggregation rules, we need not specify what the global set of alterna-

tives is in advance. A set of agents N is fixed and finite. A preference

aggregation rule is therefore defined to be a mapping carrying any

set of alternatives X and any N vector of linear orders8 (termed a

preference profile) over those alternatives (R1, ..., Rn) to a complete

binary relation over X. We write Rf(R1,...,Rn) for the binary relation

which results (suppressing notation for dependence on X). We assume

the following property:

(Neutrality and Independence of irrelevant alternatives): For all sets

X and W , for all x, y ∈ X and all w, z ∈ Y and all preference profiles

(R1, ..., Rn) over X and (R′1, ..., R′n) over Y , if for all i ∈ N , x Ri y ⇔
w R′i z, then x Rf(R1,...,Rn) y ⇔ w Rf(R′1,...,R′n) z.9

This hypothesis embeds both the neutrality and independence of

irrelevant alternatives assumptions. These assumptions seem to be the

minimal assumptions needed to apply Theorem 30.

6That is, it involves quantification over relations.
7In particular, the theory of Pareto relations for n agents was not known to be
falsifiably complete. Our Theorem 36 demonstrates that it is.
8A linear order is complete, transitive, and anti-symmetric
9Formally, neutrality means that social rankings should be independent of the
names of alternatives, and independence of irrelevant alternatives means that the
social preference between a pair of alternatives should depend only on the individ-
ual preferences between that pair. We have collapsed these two hypotheses into one
larger condition.
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Given f , we will say that a binary relation R on a set X is f -

rationalizable if there exists a profile of linear orders (R1, ..., Rn) for

which R = Rf(R1,...,Rn).

Denote by L = 〈R, R̃〉 the language involving two binary predicates,

and let T (ΛL) be the theory of all structures satisfying the axiom

∀x∀y, xRMy ↔ ¬xR̃My.

A structure is f -rationalizable ifRM is f -rationalizable and xRMy ↔
¬xR̃My. The class of f -rationalizable structures is denoted Tf . Note

that Tf is in fact a theory, as it is closed under isomorphism (this is

the content of neutrality).

36. Theorem. For every f , Tf is falsifiably complete with respect to

T (ΛL).

Proof. We first show that Tf has a universal axiomatization; the result

then follows immediately from Corollary 32.

We use Theorem 30 to show that Tf is universally axiomatizable.

We must verify that Tf satisfies the following two properties:

(1) Closure under substructures: If A ∈ T , and A′ is a substructure

of A, then A′ ∈ T .10

(2) Finite substructure property: If for all finite substructures A′

of A, A′ ∈ T , then A ∈ T .11

The first property is obviously satisfied; it follows from the neutrality

and IIA assumption.

To prove that the second is satisfied, let A be an arbitrary structure

for the language L, and suppose that for all finite substructuresA′ ofA,

A′ ∈ T . A structure consists of a set X and a complete binary relation

RM on X, where R̃
M

is a binary relation which is the complement

of RM. The assumption that for all finite substructures A′, A′ ∈ T
means that for all finite subsets Y ⊆ X, RM|Y is f -rationalizable. We

need to show that RM on X is also f -rationalizable.

10A structure A′ = (X ′, R′) is a substructure of A = (X,R) if X ′ ⊆ X and
R|X′ = R′.
11A structure A = (X,R) is finite if X is finite.
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To this end, consider {0, 1} endowed with the discrete topology.

Identify the set of binary relations on X with B = {0, 1}X×X and

topologize with the product topology. Then B is a compact topological

space. Denote the set of f -rationalizable binary relations on X by Bf .
For x, y ∈ X, let Bx,y = {B ∈ Bf : B(x, y) = RM(x, y)}. Note that for

all (x, y), Bx,y is nonempty.12 We now seek to show that it is a closed

subset of B. To see this, note that for all B ∈ Bx,y, by definition, there

exists a preference profile (R1, ..., Rn) for which B = Rf(R1,...,Rn). For

each B ∈ Bx,y, choose one such profile. Suppose {Bλ}λ∈Λ ⊆ Bx,y is

a net converging to some B. By compactness of B, we may without

loss of generality assume that (R1
λ, ..., R

n
λ) → (R1, ..., Rn) (see Kelley

(1955), p. 71). In particular, it is easy to verify that each Ri is a

linear order (by definition of product topology convergence). Also by

definition limλ∈ΛRf(R1
λ,...,R

n
λ) = B. The limit can be passed through

f .13 Conclude that Rf(R1,...,Rn) = B. Clearly, B(x, y) = RM(x, y).

Conclude that B ∈ Bx,y, so that Bx,y is closed.

Now, we claim that
⋂

(x,y)∈X×X Bx,y 6= ∅. To show this, we will show

that for every finite set Z ⊆ X × X,
⋂

(x,y)∈Z Bx,y 6= ∅ and appeal

to the finite intersection property. So, let Z ⊆ X × X be finite. Let

Y = Z1×Z2, where Zi denotes the projection of Z on the ith coordinate.

Note that Y is finite; so by hypothesis, RM|Y is f -Pareto rationalizable.

Let (R1, ..., Rn) be linear orders on Y for which Rf(R1,...,Rn) = RM|Y .

Each of these can be extended to linear orders on all of X by the

Szpilrajn theorem, say to Ri∗. Then Rf(R1∗,...,Rn∗)|Y = RM|Y (this

follows from the neutrality and independence of irrelevant alternatives

hypothesis). In particular, for all (x, y) ∈ Z, Rf(R1∗,...,Rn∗)(x, y) =

12This follows from the fact that RM|{x,y} is f -rationalizable. This implies that
there exist linear orders (R1, ..., Rn) on {x, y} for which Rf(R1,...,Rn) = RM|{x,y}.
The argument now follows from the Szpilrajn theorem, by taking appropriate ex-
tensions of Ri for all i and appealing to independence of irrelevant alternatives.
13To see this, note that for all x, y ∈ X by definition of convergence, there exists
λ∗ ∈ Λ for which for all λ ≥ λ∗ and for all i ∈ N , Riλ(x, y) = Ri(x, y). Recall
that for a pair x, y ∈ X for which x 6= y and a linear order R over X, R|{x,y}
is determined by R(x, y). As Riλ(x, y) = Ri(x, y) for all i ∈ N and λ ≥ λ∗, we
may conclude that Rf(R1

λ,...,R
n
λ)|{x,y} = Rf(R1,...,Rn)|{x,y} for all such λ. Therefore,

Rf(R1
λ,...,R

n
λ) → Rf(R1,...,Rn).
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RM(x, y), so that
⋂

(x,y)∈Z Bx,y 6= ∅. This verifies the finite intersection

property, and as each Bx,y is closed and B is compact, we conclude that⋂
(x,y)∈X×X Bx,y 6= ∅. This establishes that RM ∈ Bf .

�

The above discussion assumes that preferences are linear orders, but

many of the multiple-selves papers put different restrictions on the

selves’ preferences. While the proof above does not directly apply, it

is easy to see that the theorem is true on different domains of prefer-

ence profiles: Any domain of preference profiles which is closed in the

product topology as defined above will work.

7. Application: Afriat’s theorem

Afriat’s theorem (Afriat, 1967; Varian, 1982) states that consump-

tion data are rationalizable by a monotonic and concave utility if and

only if they are at all rationalizable. We shall recast his theorem, using

our results, as a statement about the empirical content (the falsifiable

closure) of the theory of concave utility maximization.

The language and definitions are similar to those of Example 3, but

we need to make some changes to model that preferences are revealed

by demand choices at competitive budgets.

Let Π ⊆ Rn
++ ×R+. A function d : Π→ Rn

+ that satisfies

(1) p · d(p, I) = I, and

(2) d(p, I) = d(λp, λI) for all λ > 0 such that (λp, λI) ∈ Π

is a demand function.

Let L be a language with two binary predicates, R and P . The

language should also include a constant symbol for every element of Rn
+

and R.14 We shall introduce three theories: the theory T ′ of classical

14We introduce constant symbols for each element of Rn
+ so that we do not need to

worry about describing consumption space and the relation ≥ , the function ·, etc.
as part of the problem. The technique of introducing a constant to represent every
element in some concrete set is very useful in a variety of contexts in which the
underlying set is something whose behavior is well-understood, but whose defining
symbols are not meant to be taken as data. Otherwise, we would need to take ≥
and the values of the function · as “observable data.”
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demand theory, the subtheory T ′wo of weak-order maximization, and

the subtheory Tc of concave utility maximization.

First, T ′ is the class of all structures isomorphic to some M of L
with M = Rn

+, all constant symbols refer to their named objects, and

for which there is a demand function d and Π ⊆ RN
++ ×R+, such that

• (x, y) ∈ R if and only if there is (p, I) ∈ Π such that x = d(p, I)

and p · y ≤ I;

• (x, y) ∈ P if and only if there is (p, I) ∈ Π such that x = d(p, I)

and p · y < I.

Second, the theory of weak order maximization is the subtheory T ′wo
of T ′ defined as structures isomorphic to some (Rn

+, R
∗, P ∗) in T ′ for

which there is a complete, reflexive, and transitive binary relation �
on X such that

(x, y) ∈ R∗ ⇒ (x, y) ∈�

(x, y) ∈ P ∗ ⇒ (x, y) ∈� .

The theory of concave utility maximization is the subtheory Tc of T ′

that is the class of all structures isomorphic to some (Rn
+, R

∗, P ∗) in T ′

for which there is a monotonic and concave function u : Rn
+ → R such

that

(x, y) ∈ R∗ ⇒ u(x) ≥ u(y)

(x, y) ∈ P ∗ ⇒ u(x) > u(y).

We obtain the following expression of Afriat’s (1967) theorem:

37. Theorem. T ′wo is the falsifiable closure of Tc with respect to T ′.

Proof. Consider the set Σ = {φn, : n = 2, . . .} of UNCA formulas, where

φn is

∀v1, . . . ,∀vn(¬(v1, v2) ∈ R ∨ ¬(v2, v3) ∈ R∨, . . . ,∨¬(vn, v1) ∈ P ).

By a well-known theorem (see Richter (1966) and Suzumura (1976)),

if a structure (X,R∗, P ∗) satisfies these sentences, then it is in T ′wo. And

if a structure (X,R∗, P ∗) is in T ′wo, it is clear to see it satisfies these

sentences. So (X,R∗, P ∗) ∈ T ′wo if and only if it is in T ′ and satisfies
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the formulas in Σ. Then, by Theorem 27 T ′wo = T ′∩T (Σ) implies that

T ′wo is falsifiably complete with respect to T ′, as the formulas in Σ are

all UNCA.

Note that for (X,R∗, P ∗) in T ′, the interpretation of the sentences

in Σ is that the strong axiom of revealed preference holds.15 Note

that it is meaningful to talk about a finite data set as “satisfying” a

collection of sentences in this case, so long as the sentences do not

refer to any constants. This is because there are no function symbols

in our language. A data set in this context is a structure for our

language ignoring constants. Formally, Afriat’s theorem then states

that if a finite data set (D,RD, PD) satisfies the sentences in Σ, there

is a structure (X,R∗, P ∗) in Tc containing it.

Let (X,R∗, P ∗) be a structure in T ′wo \ Tc, and let D be a finite

data set contained in (X,R∗, P ∗). It is easy to verify that each of the

axioms in Σ are true for D. So, there exists M ∈ Tc containing D by

the argument implied by Afriat’s theorem.

Since T ′wo is falsifiably complete, we conclude that T ′wo is the falsifi-

able closure of Tc with respect to T ′. �

8. Other notions of refutability

We are not the first to formalize the notions of falsification and Pop-

per’s logical positivism. We discussed the work involving Adams et al in

the introduction (Adams, Fagot, and Robinson, 1970; Adams, 1992),

see also (Pfanzagl, Baumann, and Huber, 1971) and (Luce, Krantz,

Suppes, and Tversky, 1990). Here, we discuss an approach whose for-

malism is more similar to ours. In a series of papers (Simon and Groen,

1973; Simon, 1979, 1983, 1985; Rynasiewicz, 1983; Shen and Simon,

1993), Herbert Simon and coauthors discuss a notion of falsifiability,

and the formal structure of falsifiable theories. The focus of this work,

as we mentioned in the introduction, is on the elimination of theoretical

terms.

15In first-order logic, the strong axiom is an infinite number of axioms, as we make
evident here.
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This literature has based the idea of falsification on the notion of

data as a substructure. We now discuss their notion of falsification,

and argue that substructures are inadequate as a notion of data. The

definition of falsifiability was proposed by Simon and Groen (1973).16

They intend their definition to capture the theories that can be axiom-

atized using only universal quantifiers.

A structure M is finite if its domain M is finite.

38. Definition. A theory T is finitely testable if there is a structure

M that is not a model of T , and if, for every structure M that is not

a model of T , M has a finite substructure that is not a model of T .

39. Definition. A theory T is irrevocably testable if no model of T has

a finite substructure that is not a model of T .

Thus T is finitely and irrevocably testable (FIT) if there is a structure

that is not a model of T , and if for every structureM,M is not a model

of T if and only ifM contains a finite substructure that is not a model

of T . That is,M is a model of T if and only if every finite substructure

of M is a model of T . Note that this latter condition also appears in

Theorem 30, on relational systems. FIT is the notion of falsifiability

used by Simon and Groen. It build on substructures as a notion of

data. Note that a relative definition exists: for T ⊆ T ′, T is FIT with

respect to T ′ if there exists a structure in T ′ that is not a model of T ,

and if for every structure M ∈ T ′, M is not a model of T if and only

if M contains a finite substructure that is not a model of T .

40. Proposition. If a theory satisfies FIT then it is closed under sub-

structures.

Proof. Let T satisfy FIT. Let M be a structure in T . If M has a

substructure that is not in T then this substructure has a finite sub-

structure B that is not in T . But B is also a substructure of M, so

16Rynasiewicz (1983) proposes a different notion, which he calls “finitely strongly
falsifiable.” One can show that example 41 presents a theory that is falsifiably
complete, and closed under substructures, but is not finitely strongly falsifiable.
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FIT implies that M is not in T . It follows that M cannot have any

substructure that is not a model of T . �

By Proposition 40 and the  Loś-Tarski Theorem, FIT implies a uni-

versal axiomatization whenever T is a first order theory. The relation

between falsifiability and the  Loś-Tarski Theorem is, we hope, clear

from our results in Section 5.2.

The following example shows that a theory T may be falsifiably

complete with respect to another theory T ′ [Definition 12], but fail to

be FIT (with respect to T ′). The example points out that FIT-ness may

fail simply because there are no finite substructures of a theory. This

can occur for technical reasons related to the definition of substructure.

41. Example. Consider the language L = 〈0, q, <, f〉 where q is an

unary relation symbol, < is a binary relation symbol, f is a one-place

function symbol, and 0 is a constant symbol. Let T ′ be the class of

structures isomorphic to someM = (Z, 0M, qM, <M, fM) where 0M is

0 in Z, <M is a linear order and x <M fM(x).

Let T be the class of structures in T ′ where the formula

∀x¬q(x)

is true. Then by Theorem 27, T is falsifiably complete with respect to

T ′.

T is also closed under substructures because, if (Z, 0M, qM, <M, fM)

is isomorphic to a model of T and B is a substructure of M, then qB

coincides with the qM on |B|.
On the other hand, no model of T ′ contains any finite substructures.

Suppose, to the contrary, that B is a substructure ofM∈ T ′ and that

|B| is finite. Then |B| has a largest element z̄ according to <B. Note

that fB = fM||B| and z̄ <M fM(z̄) = fB(z̄) ∈ |B|. But z̄, fB(z̄) ∈ |B|
and z̄ <M fB(z̄) imply that z̄ <B fB(z̄), which contradicts that z̄ was

the largest element of |B|.
Consequently, if T were to satisfy FIT with respect to T ′, it must

contain every model of T ′, which is false. It follows that T does not

satisfy FIT with respect to T ′.
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A theory may satisfy FIT but fail to be falsifiably complete; a simple

example involves one unary predicate R and theory T axiomatized by

∀x,R(x).

9. Conclusion

We have developed a theory of the empirical content of an eco-

nomic theory. The leading examples, throughout the paper, are bor-

rowed from revealed-preference theory; they should be familiar to most

economists. We have shown that the results are applicable to less well-

understood theories, and can give new substantive results. In particu-

lar, we have illustrated the usefulness of our results by presenting con-

ditions under which theories of multiple-selves in behavioral economics,

and theories of preference aggregation in social choice, are falsifiably

complete. That is, all its claims are fully testable.

A recurring methodological issue in economics is the argument over

unreal assumptions. There is an early literature, sparked by Milton

Friedman’s 1953 position that the truth of assumptions does not mat-

ter. Recent methodological discussions by Rubinstein (2006), Gul and

Pesendorfer (2008), Dekel and Lipman (2009), and Gilboa (2009), deal

with (among other issues) whether the truth of the “story” behind a

theory is relevant. In our results, assumptions and stories do not ap-

pear explicitly. They appear implicitly in the specification of concrete

theories (see for example the theories in Example 3, and Sections 6

and 7). This is because we have focused on the testable implications

of a theory: an UNCA axiomatization can be seen as a test for the

theory.

However, the framework we have laid out is applicable to the treat-

ment of theoretical objects. We have already mentioned one venue for

application using Proposition 35; this result can in fact be applied to

study the testable implications of Nash equilibrium or Nash bargaining,

something we omitted from the paper because the details are involved

and the paper is already long as it is. A second illustration lies in Paul

Samuelson’s (see Archibald, Simon, and Samuelson (1963)) response

to Friedman’s position on assumptions. Samuelson effectively counters
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Friedman by using ideas that we have formalized in our paper. Samuel-

son makes the point that assumptions matter because either a theory T

(described by its “assumptions”) is falsifiably complete and thus equiv-

alent to its empirical content, in which case Friedman’s point is moot;

or it makes non-falsifiable claims, in which case the failure to refute

the theory is uninformative about the theory’s non-falsifiable claims.

In fact, Samuelson argues, by Occam’s Razor one should choose the

weaker theory, consisting of the empirical content of T (what we have

formally termed fc(T )), rather than unnecessary claims in T . Regard-

less of one’s position on the question of realism, we hope that this

example shows how our notions may be useful.

Finally, we have studied basic ideas from philosophical positivism.

They are seen as naive by some philosophers because researchers may

have complicated agendas, and be motivated by their environment, in

ways that makes falsification not the focus of their research. Philoso-

phy of science since Popper has therefore focused on the sociology of

what drives actual research. We are not expert on these matters, of

course, but it seems to us that most economists still find the problem

of falsification interesting. In fact, the recent methodological discus-

sions in Gul and Pesendorfer (2008), Dekel and Lipman (2009), and

Gilboa (2009), all take for granted that one wants to understand a

theory’s empirical content (a possible exception is Rubinstein (2006)).

We believe that a formal understanding of empirical content is useful,

independently of the complexities involved in the actual production of

research.17

10. Appendix: The dual of falsifiable completeness

We have so far discussed falsifiability as a primitive notion, but falsi-

fiability has a dual concept: verifiability. The simplest way to explain

these concepts using those we already have is as follows. We can say

17Gilboa (2009; Chapter 7.3) presents this viewpoint very convincingly.
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that a theory T is verifiably complete with respect to T ′ if T ′\T is falsi-

fiably complete with respect to T ′. Hence, just as falsifiable complete-

ness specifies that all claims of a theory should be falsifiable, verifiable

completeness specifies that all claims should be verifiable. Falsifying

the complement of a theory is the same as verifying the theory itself–in

this sense, falsification and verification are dual.

We can then define the verifiable interior of a theory T with respect

to T ′, viT ′(T ) = T ′\fcT ′(T ′\T ). Thus, the verifiable interior of a theory

T with respect to T ′ is the largest subtheory of T which is verifiably

complete. It corresponds to the weakest strengthening of the hypothe-

ses for which the theory becomes verifiably complete. Unsurprisingly,

the verifiable interior operation is a topological interior, corresponding

to the same topology as the falsifiable closure.

Lastly, we can define a sentence to be an ECAF (existential conjunc-

tion of atomic formulas) if it is a sentence of the form

∃v1∃v2...∃vn(φ1 ∧ φ2... ∧ φn)

where each φi is an atomic formula.

The following result is a trivial consequence of Theorem 27.

42. Theorem. A theory T is verifiably complete with respect to T ′ if

and only if there exists a set of ECAF sentences, Λ, for which T =

(
⋃
λ∈Λ T (λ)) ∩ T ′.

We mention that it is commonly the case that the verifiable interior

of a given theory is empty.
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