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Abstract

Despite its normative appeal and widespread use, Bayes’ rule has two well-known limitations:
first, it does not predict how agents should react to an information to which they assigned
probability zero; second, a sizable empirical evidence documents how agents systematically
deviate from its prescriptions by overreacting to information that they deemed possible but
“unexpected.” By replacing Dynamic Consistency with a novel axiom, Dynamic Coherence,
we characterize an alternative updating rule that is not subject to these limitations, but at
the same time coincides with Bayes’ rule for “normal” events. In particular, we model an
agent with a utility function over consequences, a prior over priors ρ, and a threshold. In
the first period she chooses the prior that maximizes the prior over priors ρ - a’ la maximum
likelihood. As new information is revealed: if the chosen prior assigns to this information a
probability above the threshold, she follows Bayes’ rule and updates it. Otherwise, she goes
back to her prior over priors ρ, updates it using Bayes’ rule, and then chooses the new prior
that maximizes the updated ρ. We also extend our analysis to the case of ambiguity aversion.

Key words: Bayes’ Rule, Updating, Dynamic Consistency, Ambiguity Aversion.
JEL classification: D81, C61.

1. Introduction

One of the most widespread assumptions in economics is that agents update their beliefs using
Bayes’ rule. There seem to be many reasons for this popularity. First of all, it an extremely
intuitive procedure, so intuitive that it is often considered one of the features of rationality.
Moreover, there are many situations in which Bayes’ rule provides an accurate description of
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the agents’ reactions to information. In addition, its extremely convenient functional form
facilitates its application in economic models. Despite these advantages, however, Bayes’
rule has two well-known limitations. First, it has no prescription about how should the agent
react to an information to which she assigned probability zero – Bayes’ rule is simply not
defined in that case. This limitation has well-known consequences: for example, the notion of
Bayesian Nash Equilibrium is often criticized (and then refined) since it posits no restrictions
on the beliefs of the agents out of equilibrium path – which is an immediate consequence of
the fact that Bayes’ rule has no prescription about how should these beliefs be formed.

Moreover, even in the cases in which Bayes’ rule does apply, a sizable amount of evidence
collected in the past two decades has documented that decision makers systematically depart
from its prescriptions.1 While these departures take many forms, one seems to be of particular
relevance: people tend to violate Bayes’ rule when they receive news that they did not foresee,
i.e. information to which they originally assigned a small probability: “in violation of Bayes’
rule most people tend to overreact to unexpected and dramatic news events” (De Bondt and
Thaler (1985, pg. 804)). This tendency seems to persist even when appropriate incentives
are given to the subjects, and also when subjects are experts on the area in which they have
to make predictions.

The goal of this paper is to develop axiomatically an alternative updating rule that tries
to maintain the elements of appeal of Bayes’ rule, including its simplicity, but that also
reconciles with the two limitations mentioned above. In particular, we model an agent who
reacts according to Bayes’ rule when “normal” news is given to her, but who might overreact,
and change her prior beyond the bayesian prescriptions, when she receives some information
that she “did not expect.” To give an example of the behavior we have in mind, think about
an investor who is constructing a portfolio to allocate her wealth. To guide her decision, our
investor has a belief over the returns of each possible investment, a belief that could originate
from some properly calibrated economic model. As time goes by, our investor receives new
information, e.g. from observing the stock market, and revises her belief. In normal times it
is reasonable to expect that she revises her belief following Bayes’ rule. But what happens
if a big, shocking news is revealed, like a financial crisis? While such crisis might have been
considered possible by our investor – in the sense that she might have assigned it a positive
probability – it might also have been very unlikely for her – she could have assigned to it
a very small probability. How will she react? The point is, in light of this unexpected
event our investor might go beyond updating her prior using Bayes’ rule: she might think
that she used the wrong prior to begin with, given that it assigned such a small probability
to the realized event, and that she should therefore pick a whole new prior based on the
new information. The arrival of unexpected news might therefore lead her to a “change of
paradigm” that entails a change of belief beyond Bays’ rule. For example, if she was using
an economic model to form her original belief, and this model assigned a small probability to
the information that was later revealed, then she might question the validity of this model
and look for a new one. In this paper we aim to characterize this behavior.

1For experimental evidence of violations of Bayes’ rule in general, and for low probability events in par-
ticular, see, among others, Tversky and Kahneman (1974, 1981), Kahneman and Tversky (1982), Griffin and
Tversky (1992), Grether (1992) Holt and Smith (2009) and the surveys in Camerer (1995), Rabin (1998).
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Many generalizations of Bayes’ rule have been proposed in the literature. In the non-
axiomatic literature see for example the Jeffrey’s rule, Mullainathan (2002), Rabin (2002),
Mullainathan, Schwartzstein, and Shleifer (2008), Gennaioli and Shleifer (2009).2 All of these
papers, however, propose significant generalization of Bayes’ law, instead of focusing on the
violations of it for unexpected events, which is the goal of our paper. Moreover, none of
these papers have an axiomatic foundation, making it hard to test which of them provides
the most accurate description of the behavior. Within the surprisingly small axiomatic de-
cision theory literature, Epstein (2006) and Epstein, Noor, and Sandroni (2008) generalize
Bayes’ rule by allowing overweighting or underweighting of evidence. (Consequences of Non-
bayesian updating are discussed in Epstein, Noor, and Sandroni (2009).) These papers as
well, however, present much more general models, and do not focus on the kind of viola-
tions we are interested in. Furthermore, they look at a framework of preferences over menus
while we look at a standard dynamic Anscombe-Aumann setup. The recent work of Kochov
(2009) studies a Non-Bayesian behavior in the presence of unforeseen contingencies – agents
who fail to properly account for event that will take place in the non-immediate future, a
behavior very different from the one we are interested in. Both the lexicographic beliefs of
Blume, Brandenburger, and Dekel (1991), and the conditional probability systems of Myerson
(1986a,b) address the issue of beliefs for null events, with important results on the agent’s
reaction to them. Neither of these theories, however, seem to extend to non-bayesian reac-
tions to unlikely but non-null events, one of the goals of this paper; furthermore, they are
based on preferences that depart from standard expected utility maximization even for the
static case – for example in Blume, Brandenburger, and Dekel (1991) preferences are not
fully Archimedean. By contrast, we wish to study an agent that is completely standard in
the static case, but might have a non-standard reaction to news.

In the game theory literature Foster and Young (2003) present a model in which agents
use a procedure similar to ours to learn which strategies are used by their opponents. In
particular, just like in our model, their agents “test” whether their current belief is correct,
and perform a paradigm change if this hypothesis is rejected. (They also call their model
hypothesis testing.) Their analysis, however, is focused on learning in games, and does not
apply to the standard framework. Also, it contains no prescription about how a new belief
should be chosen if the current one is rejected, while this is an essential component of our
findings. Finally, as opposed to what happens in our model, their agents do not act as
standard Bayesian agents if an hypothesis is not rejected. In this sense, their model has a
similar spirit in terms of when a paradigm change should take place in a game, but is very
different in all other aspects.

Finally, in the literature on ambiguity a large attention is devoted to the issue of updating
ambiguous beliefs, and since the Bayesian postulates seems problematic in that framework,
many generalizations of them have been proposed.3 These generalizations, however, are aimed

2See also Brav and Heaton (2002) and Brandt et al. (2004) for additional references to the behavioral
literature.

3See, among others, Gilboa and Schmeidler (1993), Epstein and Le Breton (1993), Epstein and Schneider
(2003), Maccheroni, Marinacci, and Rustichini (2006), Siniscalchi (2006), Hanany and Klibanoff (2006), and
Ghirardato, Maccheroni, and Marinacci (2008).
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at reconciling the standard approach with the presence of ambiguity aversion, and most of
them reduce to Bayes’ rule in the case in which the agent is an expected utility maximizer
(ambiguity neutrality). By contrast, our main goal is to study violations of Bayes’ rule even
in the case of standard expected utility maximizers.4

We consider a standard dynamic Anscombe-Aumann model in which we observe the
preferences of the agent before and after she receives some information about the state of
the world. The main result of this paper is to provide an axiomatic foundation for what
we call the Hypothesis Testing representation. According to this representation, the agent
has a utility function u over consequences, a prior over priors ρ, and a threshold ε between
0 and 1. In the first period, our agent chooses the prior π that maximizes her prior over
priors ρ, and she uses it to to form her preferences as an expected utility maximizer. In our
example of the investor, we can see ρ as a belief over the possible economic models she can
use (each of which entails a certain belief over the state of the world), where the agent uses
the model that she considers the most likely – in a maximum likelyhoood fashion. As new
information i is revealed, our agent acts as follows. If the probability that her prior assigned
to the information is above the threshold ε, i.e. π(i) > ε, then the model is not rejected
and she simply updates her prior π using Bayes’ rule, thus acting like a standard agent. If,
however, the probability that her belief assigned to the information is below the threshold,
i.e. π(i) ≤ ε, then the model is rejected and our agent: goes back to her prior over priors
ρ; updates it using the additional information that she has received; then chooses the prior
π′ that maximizes her updated prior over priors; using this prior she forms her preferences
maximizing the expected utility. That is, if the model is rejected by the data she goes back
and picks the new maximum likelihood model, using the updated prior over priors.

The axiomatic foundation of the Hypothesis Testing representation maintains the stan-
dard axioms of Bayesian Updating in an Anscombe-Aumann setup, but replaces Dynamic
Consistency with a novel axiom, Dynamic Coherence. The basic idea of this axiom is to
impose that the agent behaves coherently also when she acts in a dynamically-inconsistent
manner, or when she faces some information to which she assigned probability zero (null
events). In this sense, Dynamic Coherence is neither stronger nor weaker than Dynamic
Consistency: it is not stronger since it allows the agent to act in a dynamically-inconsistent
manner, albeit in a regulated way; and it is not weaker than Dynamic Consistency since
it restricts the behavior of the agent when she faces an information to which she assigned
probability zero – events on which Dynamic Consistency has no bite.

We then extend our analysis to the case in which the agent is ambiguity averse, instead
of a standard expected utility maximizer like we have assumed in the first part of the paper.
Our starting point is one dynamic version of the model of Gilboa and Schmeidler (1989):
every period the agent has not one, but a set of priors, and she evaluates each acts using the
most pessimistic of them; when she receives new information, she updates every prior in the
set using Bayes’ rule. (This model has been characterized in Ghirardato, Maccheroni, and
Marinacci (2008).) We then depart from this model in a way similar to how we departed

4We will address the case of ambiguity aversion as well (see Section 3), but our model for updating
ambiguous beliefs will not reduce to Bayes’ rule in the case of ambiguity neutrality.
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from Bayesian updating. In the Hypothesis Testing representation with Ambiguity Aversion
the agent has a prior over sets of priors ρ and a threshold ε. In the first period she chooses
the set of priors Π that maximizes the prior over sets of priors ρ. As new information is
revealed, if the most pessimistic prior in Π assigns to the information a probability above the
threshold ε, then the agent updates every prior in Π following Bayes’ rule. Otherwise, she
updates the prior over sets of priors ρ, and chooses the new set of priors Π′ that maximizes
it.

The remainder of the paper is organized as follows. Section 2 presents the setup, the
axiomatic foundation, the main representation. Section 3 introduces the extensions of the
model to the case of ambiguity aversion. Section 4 concludes. The proofs appear in the
appendix.

2. The Hypothesis Testing Model

2.1 Setup and foundations

We adopt a standard dynamic version of the Anscombe-Aumann setup. We have a finite
(non-empty) set Ω of states of the world, a σ-algebra Σ over Ω, and a (non-empty) set X of
consequences, which is assumed to be a compact subset of a metric space. Let ∆(X) stand
for the set of all Borel probability measures (lotteries) on X. Denote by F the set of all
simple acts, that is, the set of all finite-valued Σ-measurable functions f : Ω→ ∆(X). With
a standard abuse of notation, for any p ∈ ∆(X) denote by p ∈ F the constant act that yields
the consequence p at every state ω ∈ Ω. For any A ∈ Σ, f, g ∈ F , denote by fAg ∈ F the act
that coincides with f in A and with g outside of it, that is, fAg(ω) = f(ω) for every ω ∈ A,
and fAg(ω) = g(ω) for every ω ∈ Ω\A. For any function u : X → R and p ∈ ∆(X), denote
by Ep(u) the expected value of u with respect to p. As standard, metrize F by the product
Prokhorov metric, and define null states as follows.

Definition 1. For any preference relation � on F , we say that B ∈ Σ is �-null if fBg ∼ g
for any f, g ∈ F .

The primitive of our analysis is a class of non-degenerate preference relations {�A}A∈Σ,
where by �A we understand the preference of the agent after she receives the information
A ∈ Σ, while we denote by �=�Ω the preference at time 0, before the agent receives any
information.

We start by imposing two standard postulates.

A.1 (Well-Behaved Standard Preferences (WbP)). For any A ∈ Σ, f, g, h ∈ F :

1. ( Continuity): the sets {f ′ ∈ F : f ′ �A f} and {f ′ ∈ F : f �A f ′} are closed;
2. ( Independence): for any α ∈ (0, 1) we have

f �A g ⇔ αf + (1− α)h �A αg + (1− α)h;
5



3. ( Monotonicity): if f(ω) �A g(ω) for all ω ∈ Ω, then f �A g.
4. ( Constant Preference Invariance): for any p, q ∈ ∆(X), p �A q ⇔ p � q

A.2 (Consequentialism (C)). For any A ∈ Σ, and f, g ∈ F , if f(ω) = g(ω) for all ω ∈ A,
then f ∼A g.

Axiom WbP (Axiom 1) is a collection standard postulates that guarantee that both before
and after the arrival of information our agent acts like a standard expected utility maximizer
(part (1), (2) and (3)), and that the arrival of information does not affect the agent’s ranking
of the consequences in ∆(X) (part (4)). Consequentialism (Axiom 2) is another standard
postulate that guarantees that the agent believes in the information she receives: if she is
told that the true state lies inside some A ∈ Σ, then she is indifferent between two acts that
differ only outside of A.

We now turn to restrict the way beliefs evolve with information. To this end, the standard
postulate is Dynamic Consistency.

A.3 (Dynamic Consistency (DC)). For any A ∈ Σ, A not �-null, and for any f, g ∈ F ,
we have

f �A g ⇔ fAg � g.

The basic idea of Dynamic Consistency is that the arrival of some information A ∈ Σ
should not modify the ranking of two acts that coincide outside of A. It is well known that
adding Dynamic consistency to WbP and Consequentialism implies that the agent follows
Bayes’ rule. (We refer to Ghirardato (2002) for an in-depth discussion of this standard
postulate of its implications.) While appealing, however, Dynamic Consistency has two
important limitations. First of all, it disciplines agent’s preferences only if the event A is not
�-null, that is only if A is assigned a positive probability to begin with. This implies that any
theory that derives from Dynamic Consistency is bound to have no predicting power on the
agent’s reaction to events to which she assigns probability zero. Second, as we mentioned in
the introduction, a sizable experimental evidence documents systematic violations of Bayes’
rule in general, and of Dynamic Consistency in particular. This seems to be especially true
when the revealed information was assigned a small probability. In other words, despite
its normative appeal on the one hand Dynamic Consistency seems to be too strong to be
accepted as a positive axiom, while on the other hand it seems not strong enough since it
doesn’t restrict the agent’s behavior in the case of null events.

To reconcile with the empirical evidence, we then replace Dynamic Consistency with
an axiom that allows the agent to behave in a dynamically-inconsistent manner, but that
guarantees that she does so in a regulated manner. At the same time, we would like such
regularity to apply also to the agent’s reaction to null events, so that we can develop a theory
that applies to that case as well. The basic idea is that want to rule out the possibility that
our agent could have a circular reaction to information. To illustrate, consider three possible
events A1, A2, A3 ∈ Σ such that: after being told that the true state lies either in A1 or in A2,
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then the agent is sure that it lies in A2; if instead she were told that it lies either in A2 or in
A3, than she is sure that it lies in A3; but if she is told that it lies either in A3 or in A1, then
she is sure that is lies in A1. That is, being told that the true state could be in one event or
the next, she thinks it is in in the latter; but were she told that it’s either in the last or in the
first, then she is sure it is in the first. Now, this would be naturally true if the agent had the
same preferences after each of these events, i.e. if �A1=�A2=�A3 : if this were the case, then
after each of these events she would be sure that the true state lies in A1 ∩ A2 ∩ A3, giving
us the beliefs described above. But, what if this is not the case, i.e. �A1 6=�A2 6=�A3? Then
the agent’s beliefs react to information in a circular manner: beliefs keep changing, but they
form a loop, since at the end the agent is sure that the true state lies in the first event. Notice
that this circularity could never take place when an agent is Bayesian, at least if A1, A2, and
A3 are non-null: Bayes’s rule would prevent it by construction. But of course Bayes’ rule is
stronger than simply postulating the lack of this circularity – it entails a much stronger form
of consistency. By contrast, in the next axiom we simply posits that this circularity could
not take place, for cycles of any length.

A.4 (Dynamic Coherence). There are no A1, . . . , An ∈ Σ such that �A1 6=�An, (Ω\Ai+1)
is �(Ai∪Ai+1)-null for i = 1, . . . , (n− 1), and (Ω\A1) is �(An∪A1)-null.

It is not hard to see that Dynamic Coherence is neither stronger nor weaker than Dynamic
Consistency. It is not stronger since it does allow violations of Dynamic Consistency, albeit
regulating them – as we mentioned before, Bayes’ rule is stronger than the lack of circularity
that we posit with Dynamic Coherence. At the same time, it is not weaker than Dynamic
Consistency since it disciplines the reaction to null events, on which Dynamic Consistency
has no bite.5

2.2 The model

We are now ready to introduce our main representation. For simplicity, let us define a
notation for Bayesian Updating. For any π ∈ ∆(Ω) and A ∈ Σ such that π(A) ≥ 0, define
BU(π,A) ∈ ∆(Ω) (bayesian update of π using A) as

BU(π,A)(B) :=
π(A ∩B)
π(A)

for all B ∈ Σ. Abusing notation, for any ρ ∈ ∆(∆(Ω)) and A ∈ Σ such that π(A) > 0 for
some π ∈ supp(ρ), define also

BU(ρ,A)(π) :=
π(A)ρ(π)∫

∆(Ω) π(A)ρ(π)dπ

5This implies that if there are no null events, then Dynamic Coherence is strictly weaker than Dynamic
Consistency. On the other hand, if null events exist, then it would make send to impose both Dynamic
Coherence and Dynamic Consistency: the representation theorem in Section 2.3 will analyze this case as well.
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for all π ∈ ∆(Ω).

Definition 2. A class of preferences relations {�A}A∈Σ admits an Hypothesis Testing
Representation if there exists a continuous function u : X → R, a prior ρ ∈ ∆(∆(Ω)) with
finite support, and ε ∈ [0, 1) such that for any A ∈ Σ there exist πA ∈ ∆(Ω) such that:

1. for any f, g ∈ F

f �A g ⇔
∑
ω∈Ω

πA(ω)Ef(ω)(u) ≥
∑
ω∈Ω

πA(ω)Eg(ω)(u);

2. {πΩ} = arg max
π∈∆(Ω)

ρ(π);

3.

πA =


BU(πΩ, A) if πΩ(A) > ε

BU(π∗A, A) otherwise

where {π∗A} = arg max
π∈∆(Ω)

BU(ρ,A)(π);

4. for any A ∈ Σ there exist π ∈ supp(ρ) such that π(A) > 0.

In an Hypothesis testing representation the agent has a utility function, a prior over priors
ρ, and a threshold ε. In the first period she chooses the prior π that maximizes the prior over
priors ρ. She behaves as if she were choosing which “theory” to use to forecast the states
of the world: given a certain belief ρ over the possible theories, she picks the most likely
one – in a maximum likelihood fashion. As new information A is revealed, two things can
happen. If the prior she was using assigned to this event a probability above the threshold,
i.e. π(A) > ε, then our agent “keeps” her prior, and simply updates it with Bayes’ rule. That
is, if the information is not unexpected, then we are in the “business as usual” situation, and
our agent behaves like a standard one. If, however, she is given an information that she did
not expect, that is, if the likelihood that her prior assigned to that information is below the
threshold, i.e. π(A) ≤ ε, then our agent revises which prior to use. It is as if she thought:
“If the prior I am using did not forecast what happened, then, maybe, it is the wrong prior!”
From this point of view, our agent acts as if she were “testing” her prior and “rejecting” the
hypothesis that it is correct if it falls below the threshold, as if it were a confidence level –
hence the name of the model. And how does she choose a new prior? She updates her prior
over priors using Bayes’ rule; then she chooses the prior that maximizes the updated prior
over priors; and finally she uses this prior until a new information is revealed.

The decision rule that we have just described in words, however, might leave some room
to indeterminacy: what would happen if there is more than one prior that maximizes the
updated prior over prior? Which one is chosen? Such indeterminacy could not take place in
an Hypothesis Testing model, since ρ is constructed in such a way that the argmax of the
updated prior over priors is always unique.

Just like Dynamic Coherence is neither stronger nor weaker than Dynamic Consistency,
an Hypothesis Testing representation is neither more general nor more restrictive than the
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standard Bayesian model. To see why, notice that if ε = 0, then our agent behaves exactly
like a standard Bayesian agent whenever Bayes’ rule applies; but her behavior is disciplined
also when Bayes’ rule does not apply (null events), thus extending the predictive power of
the theory to all possible events and making this model a special case of the Bayesian one.
On the other hand, when ε > 0 the Hypothesis Testing representation allows non-bayesian
reactions to non-null events. In this sense, the Hypothesis Testing representation generalizes
the Bayesian approach to allow for that over-reaction to unexpected news that has been
documented empirically.6

Since there could be multiple values of ε that represent the same preferences (see Section
2.3), we focus on the representations with the smallest possible values of ε.

Definition 3. An Hypothesis Testing Representation (u, ρ, ε) is minimal if there is no
ε′ ∈ [0, 1) such that ε′ < ε and (u, ρ, ε′) is an Hypothesis Testing Representation of the same
preferences.

2.3 Representation Theorem

Theorem 1. A class of preference relations {�A}A∈Σ satisfies WbP, Consequentialism, and
Dynamic Coherence if and only if it admits a minimal Hypothesis Testing Representation
(u, ρ, ε).
Moreover, ε = 0 if and only if {�A}A∈Σ satisfies also Dynamic Consistency.

Theorem 1 shows that by replacing Dynamic Consistency with Dynamic Coherence we
obtain exactly the Hypothesis Testing Representation. Moreover, it shows that Dynamic
Consistency and Dynamic Coherence together guarantee that our agent behaves like a stan-
dard Bayesian agent whenever Bayes’ rule applies, but reconsider which prior to use whenever
she faces an information to which she assigned probability zero.

We now turn to discuss the uniqueness properties of an Hypothesis Testing Represen-
tation. It is standard practice to show that the utility function is unique up to a positive
affine transformation. The threshold ε is unique, but only thanks to our focus on minimal
representations: in general there might be a continuum of values of ε that would work.7 As
for the prior over priors ρ, it turns out that it is not unique, and that even its support is
not unique. There are essentially three reasons why this is the case. (To avoid confusion
we address the elements of the support of ρ as “models.”) First, we can always add to the
support of ρ an additional model with a likelihood so low that it will never be used. That

6More precisely, if ε = 0 then the Hypothesis Testing model is a special case of the Bayesian one. The
converse is true if there are no null events. This means that if both conditions hold then the two models
coincide.

7To see why, call a the likelihood of the least likely event that does not trigger a violation of Bayes’ rule,
and call b the likelihood of the most likely event that does trigger a violation of Bayes’ rule. Then, we must
have b < a, and any ε ∈ [b, a) would work. The reason is, our space of events might not be “dense” in this
sense, and therefore the threshold ε is not uniquely identified. On the other hand, any ε must lie in this range.
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is, we can always add “redundant” models leaving the behavior unaffected. Second, even
if we removed these redundant ones, we are bound to identify models only after the events
that trigger the agent to use them, and therefore we have no control over what these models
prescribe outside of these events.8 For the same reason, moreover, there might be multiple
ways to combine these models, making also the cardinality of the support of ρ not unique.9

2.4 Discussion: the Hypothesis Testing model as a form of bounded rationality

One characteristic of the Hypothesis Testing model is that agents forms beliefs in a non-
standard way even in the first period, before any information is revealed. In fact, we can
think of the agent as if she had in mind a set of “conceivable” priors (the support of ρ),
which she can rank in terms of plausibility (forming ρ), of which, however, she uses only
one, the most likely one – a’ la maximum likelihood.10 The other priors in the support
of ρ, albeit “conceivable,” are in fact not used to make decisions unless some unexpected
news is revealed.11 This is in contrast to the behavior prescribed by the standard Bayesian
approach, according to which if the agent has a prior over priors, she should choose as a
belief its expectation, not its maximizer. That is, she should consider all conceivable priors
and weight them appropriately, instead of using only the most likely one. While these two
approaches are behaviorally indistinguishable in a static case, since all we can see is the belief
that is used and not where it comes from, it is the analysis of the dynamic case that allow us
to set them apart. In particular, it is by observing violations of Dynamic Consistency that
we can infer how has the agent formed her beliefs in the first place.

While seemingly irrational, we consider the use of only a subset of all possible theories as
rather realistic. To see why, let us go back to our example of the investor. When she chooses a
portfolio, our investor could indeed considers all possible economic and statistical models that
she can come up with, assign to them a relative likelihood, estimate them all, look at their

8Consider a model π used after the arrival of some information A ∈ Σ. Since all we observe is BU(π,A),
then we can replace π with any π′ such that BU(π|A) = BU(π′|A) and π(A) = π′(A).

9Consider four events A,B,C,D ∈ Σ, all with a likelihood below ε, such that A ⊃ B, C ⊃ D and
A ∩ C = ∅. Denote by πi the priors that are used after event i. Assume that we have BU(πA, B) 6= πB and
BU(πC , D) 6= πD. There are at least three ways to represent this case. First, we can create four distinct
models, one for each event, giving to ρ the appropriate weights. Second, we can have only two models, π1 and
π2, such that BU(π1, A) = πA, BU(π1, C) = πC ,BU(π2, B) = πB , BU(π2, D) = πD. (Model π1 is used after
A and C, while model π2 is used after B and D.) Third, we could use two other models, π3 and π4, such that
BU(π3, A) = πA, BU(π3, D) = πD,BU(π4, B) = πB , BU(π4, C) = πC . (Model π3 is used after A and D, while
model π4 is used after B and C.) Unfortunately, this example also shows that we cannot find a unique ρ with
“minimal” support.

10Of course this chosen prior might itself be the combination of multiple ones with given weight. For
example, the many priors in the support of ρ might originate from different weights put on a fixed set of
beliefs.

11This suggests that our agent might have two layers of belief, what is conceivable but not used, and what
is actually used. The idea of multiple layers of beliefs is explored also in Blume, Brandenburger, and Dekel
(1991), who consider the lexicographic probabilities. As we mentioned before, however, their model studies
the reactions to null-events by allowing non-standard (non-archimedean) preferences in the static case. By
contrast, our model has standard preferences on the static case but a non-standard dynamic, and moreover
allows for non-standard reactions to events that are not null but simply low probability.
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predictions, and finally come up with a belief which is the weighted average of the predictions
of all of these models. This is a behavior prescribed by the standard approach. Alternatively,
our agent could choose just a subset of these models, the ones that she consider the most
likely, estimate only these, and then use as a belief the weighted average of the predictions
of only this selected subset of models.12 She would then consider alternative models only if
some unexpected news is revealed. The latter behavior seems more realistic to us.

This leaves us with the question of why should the agent adopt this behavior, since by
restricting her attention to a specific subset of models she could end up with inaccurate pre-
dictions. There are at least four reasons why we believe this could be the case. First, it could
be a rational reaction to a form of bounded rationality/costly thinking/cost of considering
models. In fact, if estimating a model is costly, as in most cases it is, then our agent has an
incentive to be parsimonious in the number of models she considers.13 Such cost could also
be psychological: agents might not like to be reminded that they have a limited knowledge of
the reality, and that they do not even know which model to use, and might therefore prefer
to focus on a single one as if it were true – a tendency highly emphasized in the psychology
literature. Second, it could be seen simply as another instance of the standard behavioral
bias that leads the agents to disregard low probability events.14 Third, this behavior could
stem for a preference for simplicity : considering only a few models is simpler, and the agent
might prefer it in an Occam’s Razor sense. Finally, it turns out that considering such simpler
theories might actually be optimal even if there were no cost of considering models or other
additional costs. In fact, Gilboa and Samuelson (2008) show that considering complex the-
ories might induce people to overfit the data and engage in ineffective learning, generating
worse predictions. By contrast, simpler theories do not have this problems, and might lead
to optimal behavior. We refer to their work for an detailed analysis.

3. The Hypothesis-Testing model with ambiguity aversion

Our analysis thus far was carried out under the assumption that in every period, and after
every information, the decision maker behaves like a standard expected utility maximizer
with a well-formed (and unique) prior over the states of the world. This is an immediate
consequence of axiom WbP (Axiom 1) which includes independence. Since the Ellsberg
paradox, however, it is well known that independence is often violated, and agents do not
behave like standard expected utility maximizers with a single prior over the states of the
world. Rather, they are shown to be ambiguity averse: instead of using expected utility, they
dislike betting on outcomes that depend on the realization of unknown states of the world,
and have a preference for hedging. This seems all the more problematic in our analysis since

12Once again, notice that the chosen prior in an Hypothesis Testing representation could come from averaging
a set of models with a relative weight.

13In fact, it is easy to see that we could have re-written our representation as a representation in which the
agent is choosing the optimal number of models given a cost of considering each of them.

14That is, the models to which ρ assigns a small probability could be disregarded just like low probability
events are often disregarded in the choice among gambles.
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the instances in which we should expect a violation of the Bayesian model are also the ones
in which we should expect ambiguity aversion. The goal of this section is to show that an
appropriate extension of our results, using the same axiom, Dynamic Coherence, would hold
true also in the more general case in which agents are ambiguity averse.

The issue of updating beliefs under ambiguity has been studied by an extensive liter-
ature.15 Almost all of these works, however, have focused on the complicated interaction
between ambiguity aversion and Bayesian updating, without questioning the updating pro-
cedure in the first place. In particular, most of these model reduce to the case of Bayes’ rule
if the agent is ambiguity neutral (expected utility maximizer). By contrast, in Section 2 we
have suggested an alternative to Bayesian updating in the case of ambiguity neutrality, and
we now wish to do the same in the case of ambiguity aversion.

3.1 Foundations with Ambiguity Aversion

In what follows we model ambiguity aversion using the well-known model of Gilboa and
Schmeidler (1989). In particular, we replace standard Independence with their’s C-independence
and Ambiguity Aversion axioms, and obtain WbP-AA (Axiom 5) to replace WbP (Axiom
1). We refer to Gilboa and Schmeidler (1989) for a more detailed discussion.

A.5 (Well-Behaved Standard Preferences with Ambiguity Aversion (Wbp-AA)).
For any A ∈ Σ, f, g, h ∈ F :

1. ( Continuity): the sets {f ′ ∈ F : f ′ �A f} and {f ′ ∈ F : f �A f ′} are closed;
2. ( C-Independence): for any α ∈ (0, 1), x ∈ ∆(X)

f �A g ⇔ αf + (1− α)x �A αg + (1− α)x;

3. ( Uncertainty Aversion) for any α ∈ (0, 1), if f ∼A g then αf + (1− α)g �A f .
4. ( Monotonicity): if f(ω) �A g(ω) for all ω ∈ Ω, then f �A g.
5. ( Constant Preference Invariance): for any B ∈ Σ, p, q ∈ ∆(X), p �A q ⇔ p �B q

It is well-known that WbP-AA (Axiom 5) guarantees that in every period and after every
information the agent has a closed and convex set of prior beliefs over the states of the world
(instead of a unique prior), and judges every act by the expected utility computed with the
most pessimistic prior for that act. (Again, we refer to Gilboa and Schmeidler (1989) for a
discussion on the properties of this representation.)

While we replace WbP (Axiom 1) with WbP-AA above (Axiom 5), we posit that Conse-
quentialism and Dynamic Coherence hold as before also for the case with Ambiguity Aversion

15See, among others, Gilboa and Schmeidler (1993), Epstein and Le Breton (1993), Epstein and Schneider
(2003), Maccheroni, Marinacci, and Rustichini (2006), Siniscalchi (2006), Hanany and Klibanoff (2006), and
Ghirardato, Maccheroni, and Marinacci (2008).
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– with the same intuition. This is in contrast with what happens with Dynamic Consistency,
since it is well know that when agents are ambiguity averse, especially a’ la Gilboa and
Schmeidler (1989), Dynamic Consistency might be too strong of a requirement. For example,
consider an agents who updates her set of priors by updating each prior using Bayes’ rule:
Epstein and Schneider (2003) show that such agent might violate Dynamic Consistency.16

In fact, Ghirardato et al. (2008) show that this model is equivalent to the agent satisfying
a weakening of Dynamic Consistency, in which this axiom applies only to a subset of the
original preference relation, which they call the “unambiguously preferred” relation. In par-
ticular, following the analysis in Ghirardato et al. (2004) and Ghirardato et al. (2008), for
any A ∈ Σ define the preference relation �∗A as follows:

f �∗A g if λf + (1− λ)h �A λg + (1− λ)h

for all λ ∈ [0, 1] and all h ∈ F . (It is not hard to see that �∗A is the largest restriction of �A
that satisfy independence, and we clearly have �∗A=�A if the latter satisfies independence.)
The idea of the axiom is to impose a dynamically consistent behavior on this restricted
preference.

A.6 (Restricted Dynamic Consistency (RDC)). For any A ∈ Σ, A not �-null, and for
any f, g ∈ F , we have

f �∗A g ⇔ fAg �∗ g.

We refer to Ghirardato, Maccheroni, and Marinacci (2008) for further discussion. Notice
that if every preference satisfies independence (Axiom 1), then Restricted Dynamic Consis-
tency (Axiom 6) is clearly equivalent to standard Dynamic Consistency (Axiom 3).17

3.2 The representation with Ambiguity Aversion

In the case of ambiguity aversion modeled a’ la Gilboa and Schmeidler (1989) the agent
has not one, but a set of priors. As she receives new information this sets of priors will be
modified: a natural extension of the standard Bayesian approach to this case is the model
in which the agent reacts to this new information by updating using Bayes’ rule each of
the priors in her set of priors. Just like in the first part of the paper we started from the
Bayesian model and defined the Hypothesis Testing one, in our analysis here we start from
this generalization to extend the Hypothesis Testing model to the case of ambiguity aversion.
The idea of this generalization is that our agent has a prior over sets of priors, and picks the

16In particular, they show that the agent satisfies Dynamic Consistency if and only if the set of priors
they use in the first period satisfies a property called rectangularity. But this means that a postulate that
is supposed to regulate only the reaction to information is actually constraining the beliefs even before any
information is revealed.

17Moreover, it turns out that if there are no null events, then under WbP and Consequentialism we have
that Dynamic Coherence is weaker than Restricted Dynamic Consistency. (This is an immediate consequence
of Theorem 5 below.)
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set of priors that maximizes this prior. Then, she tests this set of prior using a threshold: if it
passes the test, she updates every prior in the set using Bayes’ rule. Otherwise, she updates
her prior over sets of priors, and chooses the new set that maximizes it.

For simplicity, we introduce a notation for the extension of the notion of Bayesian Updat-
ing to updating a set of priors and a prior over sets of priors. By G denote the set of closed
and convex subsets of ∆(Ω). For any Π ⊆ G and A ∈ Σ such that π(A) > 0 for some π ∈ Π,
define B̂U(Π, A) as

B̂U(Π, A) := {π ∈ ∆(Ω) : π = BU(π′, A) for some π′ ∈ Π}.

Moreover, for any ρ ∈ ∆(G) and A ∈ Σ such that for some Π ∈ supp(ρ) we have π(A) > 0
for all π ∈ Π, define BU(ρ,A) as

BU(ρ,A)(Π) :=
min
π∈Π

π(A) ρ(Π)∫
G

min
π∈Π

π(A) ρ(Π)dΠ
.

Definition 4. A class of preferences relations {�A}A∈Σ admits an Hypothesis Testing
Representation with Ambiguity Aversion if there exists a function u : X → R, a prior
ρ ∈ ∆(G) with finite support, and ε ∈ [0, 1] such that for any A ∈ Σ there exist a ΠA ∈ G
such that:

1. for any f, g ∈ F

f �A g ⇔ min
π∈ΠA

∑
ω∈Ω

π(ω)Ef(ω)(u) ≥ min
π∈ΠA

∑
ω∈Ω

π(ω)Eg(ω)(u);

2. {ΠΩ} = arg max
Π∈G

ρ(Π);

3.

ΠA =


B̂U(ΠΩ, A) if π(A) > ε for all π ∈ ΠΩ

B̂U(Π∗A, A) otherwise

where {Π∗A} = arg max
Π∈G

BU(ρ,A)(Π);

4. for any A ∈ Σ there exist Π ∈ supp(ρ) such that π(A) > 0 for all π ∈ Π.

Definition 5. An Hypothesis Testing Representation with Ambiguity Aversion (u, ρ, ε) is
minimal if there is no ε′ ∈ [0, 1) such that ε′ < ε and (u, ρ, ε′) is an Hypothesis Testing
Representation with Ambiguity Aversion of the same preferences.

Finally, the representation theorem.

Theorem 2. A class of preference relations {�A}A∈Σ satisfies Wbp-AA, Consequentialism,
and Restricted Dynamic Coherence if and only if it admits a minimal Hypothesis Testing
Representation with Ambiguity Aversion (u, ρ, ε).
Moreover, ε = 0 if and only if {�A}A∈Σ satisfies also Restricted Dynamic Consistency.
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Theorem 2 shows that the same Dynamic Coherence that we have imposed for the stan-
dard case gives us the desired representation also for the case of Ambiguity Aversion. More-
over, when Restricted Dynamic Consistency is satisfied as well, we obtain a representation in
which the agent updates the set of prior using Bayes’ rule if she faces a non-null event, and
picks a new set of prior otherwise.

4. Conclusion

In this paper we have developed axiomatically an alternative to the standard Bayesian model.
We study an agent who behaves like a standard Bayesian when she receives an information
that is not “unexpected,” i.e. to which she assigned a probability above a threshold. If this is
not the case, however, instead of following Bayes’ rule she reconsiders her prior by updating
a prior over priors and picking the most likely one after the update. We have also discussed
extensions of the model to the case in which the preferences are ambiguity averse.

Appendix: Proofs

Proof of Theorem 1

[Sufficiency of the Axioms] Given Axiom 1, it is standard practice to show that for any A ∈ Σ, there exist
uA : X → R, πA ∈ ∆(X) such that for any f, g ∈ F

f �A g ⇔
X
ω∈Ω

πA(ω)Ef(ω)(uA) ≥
X
ω∈Ω

πA(ω)Eg(ω)(uA), (A.1)

where πA is unique and uA is unique up to a positive affine transformation. It is also standard practice to
show that Axiom 1.(4) implies that, for any A ∈ Σ, all uA are positive affine transformations of uΩ, which
means that we can assume uΩ = uA for all A ∈ Σ. Define u : X → R as u = uΩ and π = πΩ.

Claim 1. For any A,B ∈ Σ, A ⊇ B, if (Ω\B) is �A-null, then �A=�B .

Proof. Consider A,B ∈ Σ, A ⊇ B such that (Ω\B) is �A-null. Notice that since A = A ∪ B, then (Ω\B) is
�A∪B-null. At the same time, since (Ω\A) is �A∪B-null by Axiom 2. But then, Axiom 4 implies �A=�B as
sought.

Claim 2. For any A,B ∈M , if πA(B) = 1 = πB(A), then πA = πB .

Proof. Consider any A,B ∈M such that πA(B) = 1 = πB(A). Notice that by construction of πA and πB we
must have πA(A∩B) = 1 = πB(A∩B). But then, by Claim 1 we must have πA = πA∩B = πB as sought.

Define now the set K ⊆ Σ as follows:

K := {A ∈ Σ : A is � -null} ∪ {A ∈ Σ : ∃f, g ∈ F s.t. f �A g and g � fAg, or f �A g and g � fAg}.
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These are the events after which either Dynamic Consistency does not apply (null-events), or after which it is
violated. Define now ε as ε := max{π(B) : B ∈ K} if K 6= ∅, ε = 0 if K = ∅. Notice also that, by construction
of K, this implies that ε ≥ π(A) for all A ∈ K. Also, by construction we must have ε ∈ [0, 1). To see why,
consider any A ∈ Σ such that π(A) = 1. This implies that (Ω\A) is �-null. But then, �A=�Ω by Claim 1,
hence A /∈ K. This implies that max{π(B) : B ∈ K} < 1, hence ε ∈ [0, 1).

Consider now A ∈ Σ\K (notice that this set includes all A ∈ Σ such that π(A) > ε, by construction of ε).

Claim 3. For any f, g, h ∈ F , A ∈ Σ\K we have

f �It,A g ⇔ fAh �It gAh

Proof. Consider f, g, h ∈ F , and A ∈ Σ\K. By construction of K, for any r, s ∈ F we have rAs � s iff r �A s.
Notice now that by Axiom 2 we have fAh ∼A f and gAh ∼A g. This implies f �A g iff fAh �A gAh. Define
f ′ := fAh and g′ := gAh. Notice that we have fAh �A gAh iff f ′ �A g′ iff f ′Ag′ �It g′ iff fAh �It gAh
(where the last passages use the fact that π(A) > ε).

Claim 4. For any A ∈ Σ\K, πA(B) = π(A∪B)
π(A)

= BU(π,A).

Proof. Now first of all that for any A ∈ Σ\K we must have π(A) > 0, because any A which is �-null belongs
to K. We then have that for any f, g ∈ F

f �A g ⇔ fAh � gAh
⇔

X
ω∈A

π(ω)Ef(ω)(u) +
X

ω∈Ω\A

π(ω)Ef(ω)(u) ≥
X
ω∈A

π(ω)Eg(ω)(u) +
X

ω∈Ω\A

π(ω)Eg(ω)(u)

⇔
X
ω∈A

π(ω)Ef(ω)(u) ≥
X
ω∈A

π(ω)Eg(ω)(u)

⇔ 1

π(A)

X
ω∈A

π(ω)Ef(ω)(u) ≥ 1

π(A)

X
ω∈A

π(ω)Eg(ω)(u)

Since πA is unique, this proves that for any A ∈ Σ\K, πA(B) = π(A∪B)
π(A)

as sought. In particular, this is also

true for any A ∈ Σ such that π(A) > ε.

Define now the set K∗ as follows.

K∗ := {A ∈ Σ : πΩ(B) ≥ πΩ(A) for some B ∈ K}.

Notice that we must have K∗ = {A ∈ Σ : π(A) ≤ ε} by construction of ε. This is the set of events such that
there exist an event in K that is more likely than some of them. Define now the sets H := K∗ ∪ {Ω} and
M := {πm ∈ ∆(Ω) : m ∈ K∗} ∪ {πΩ}.

Claim 5. The following holds for no A,B,C,D ∈ K∗ ∪ {Ω}: πA = πB , πC = πD, πC(A) = 1, πA(C) < 1,
πB(D) = 1 and πD(B) < 1.

Proof. Say by means of contradiction that such A,B,C,D ∈ M and notice that πC = πD and πC(A) = 1
imply πD(A) = 1. Similarly, πA = πB and πB(D) = 1 imply πA(D) = 1. But then, Claim 2 implies πA = πD,
which means πA = πC . But by construction of πC this contradicts πA(C) < 1.

Define now the binary relation B on M as

πm B πm′ ⇔ πm′(m) = 1 and πm(m′) < 1.

Notice that B is well defined by Claim 5, and it is also irreflexive for the same reason.
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Claim 6. Consider π1, . . . , πn ∈ M such that π1 B · · · B πn. Then, there exist A1, . . . , An ∈ K∗ such that
πi = πAi , πAi+1(Ai) = 1 and πAi(Ai+1) < 1 for i = 1, . . . , (n− 1).

Proof. For simplicity for focus on the case in which n = 3: it is trivial to show that the proof extends to
the general case. Consider π1, π2, π3 ∈ M such that π1 B π2 B π3. By construction of B we know that there
exist A1, A2, A

′
2, A3 ∈ K∗ such that π1 = πA1 , π2 = πA2 = πA′2 , π3 = πA3 and πA2(A1) = 1, πA1(A2) < 1,

πA3(A′2) = 1, πA′2(A3) < 1. Since πA2 = πA′2 , we must also have πA′2(A1) = 1. If we can prove that we also

have πA1(A′2) < 1, then we are done. Say, by contradiction, that πA1(A′2) = 1. But then, since πA′2(A1) = 1,
by Claim 2 we have πA1 = πA′2 , hence π1 = π2, which contradicts the fact that B is irreflexive.

Claim 7. B is acyclic.

Proof. By means of contradiction consider π1, . . . , πn ∈ M such that π1 B . . . πn B π1. By Claim 6 there
exist A1, . . . , An ∈ K∗ such that πi = πAi , πAi+1(Ai) = 1 and πAi(Ai+1) < 1 for i = 1, . . . , (n − 1), and
πA1(An) = 1 and πAn(A1) < 1. Since B is irreflexive notice that we must have that πAi 6= πAi+1 for
i = 1, . . . , (n − 1), and πA1 6= πAn . Now construct Ei = Ai ∩ Ai+1 for i = 1, . . . , n, and En = An ∩ A1.
Notice that Ei ∪Ei+1 = (Ai−1 ∩Ai) ∪ (Ai ∩Ai+1), and since πAi(Ai+1) = 1, then πAi(Ei ∪Ei+1) = 1, hence
πAi = πEi∪Ei+1 for i = 1, . . . , (n−1) by Claim 1. A similar argument shows that πAn = πEn∪E1 . Then we have
πEi∪Ei+1(Ei+1) = 1 for i = 1, . . . , (n− 1), and πEn∪E1(E1) = 1. Therefore we have πAi = πEi∪Ei+1 = πEi+1

for i = 1, . . . , (n− 1), and πEn∪E1 = πE1 . Hence πAi = πEi+1 for i = 1, . . . , (n− 1), and πAn = πE1 . At the
same time, since πAi 6= πAi+1 for i = 1, . . . , (n− 1) and πA1 6= πAn , then πEi 6= πEi+1 for i = 1, . . . , (n− 1),
and πE1 6= πEn . But this contradicts Axiom 4.

Define γ∗ := max{πA(B) : A,B ∈ K∗, πA(B) < 1} and define δ := 1
|M|

1−γ∗
γ∗

. (Notice that γ∗ is well defined

since M is finite, and that γ∗ ∈ (0, 1) and consequently δ > 0.) Notice also that since M is finite and B
is acyclic. Consider now the transitive closure of B and call it B̂. Since B is irreflexive and antisymmetric,
so must B̂. To see why, say, by contradiction, that we have A,B ∈ M such that AB̂BB̂A. Then, by
definition of transitive closure, there must exist m1, . . . ,mn+m ∈ M such that A Bm1 B · · · Bmn B B and
B Bmn+1 B · · ·Bmm+n BA. But this violates the acyclicity of B.

Since M is finite, enumerate it and construct the function f as follows. Set f(m1) = 0. Consider mn. Assign
to f(mn) any value such that: for all i < n, f(mn) 6= f(mi); f(mn) > f(mi) if mnB̂mi; and f(mn) < f(mi)
if miB̂mn. To see why this is always possible, notice that for all mn,mi,mj , with n ≥ i, j, if we have mnB̂mi

and mjB̂mn, then we must also have that mjB̂mi since B̂ is transitive, which implies that we must also have
f(mj) > f(mi). Thus f is well defined. Normalize now the function f so that it has a range in (0, δ) and call
it v. Notice that we must have that πB π′ implies v(π) > v(π′), and such that v(π) 6= v(π′) for all π, π′ ∈M .

Construct now ρ ∈ ∆(∆(Ω)) as

ρ(π) :=
v(π) + 1

|M|P
m∈M v(π) + 1

|M|
.

for all π ∈M , ρ(π) = 0 otherwise.

We now turn to show that M and ρ that we just constructed are the ones that we are looking for.

Claim 8. {πΩ} = arg max
π∈∆(Ω)

ρ(π).

Proof. Say, by means of contradiction that there exist π ∈ ∆(Ω) such that π 6= πΩ and ρ(π) ≥ ρ(πΩ). For
this to be possible we must have ρ(π) > 0, which in turns implies that π = πm for some m ∈ H. Say first that
we have that πΩ(m) = 1 for all m ∈ H such that πm = π. Then, since we also have that πm(Ω) = 1 for all
m ∈ H such that πm = π, then Claim 2 would imply π = πΩ, a contradiction. This means that we must have
πΩ(m) < 1 for some m ∈ H such that πm = π. Also, notice that we must have πm(Ω) = 1 (by definition),
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which implies that we have πΩ B πm = π. But then we must have v(πΩ) > v(π) by construction of v, which
in turns implies that we must have ρ(πΩ) > ρ(π), a contradiction.

Notice now that for any A ∈ Σ, given the definition of ε, the agent will behave as prescribed in the represen-
tation if π(A) > ε. We now turn to analyze the events with probability below the threshold.

Claim 9. For any A ∈ H, if π ∈ arg max
m∈M

BU(ρ,A), then π(A) = 1.

Proof. Consider A ∈ H and say by means of contradiction that there exist π ∈ arg max
m∈M

BU(ρ|A) such that

π(A) < 1. This means that we must have π(A)ρ(π) ≥ πA(A)ρ(πA). Notice that since A ∈ H, by construction
we must have πA(A) = 1, which implies that we must have π(A)ρ(π) ≥ ρ(πA). By construction of ρ this is
possible only if π ∈M and

(v(π) +
1

|M | )πA ≥ v(πA) +
1

|M | .

Since by construction v(πA) > 0 and πA ≤ γ∗, then this implies

(v(π) +
1

|M | )γ∗ >
1

|M | ⇒ v(π) >
1

|M |
1− γ∗
γ∗

.

But since v has range (0, 1
|M|

1−γ∗
γ∗

), this is a contradiction.

Claim 10. For any A ∈ H we have {πA} = arg max
m∈M

BU(ρ,A).

Proof. Consider A ∈ H and say, by means of contradiction, that we have π ∈ arg max
m∈M

BU(ρ|A) for some

π 6= πA. This means that we have π(A)ρ(π) ≥ πA(A)ρ(πA). By Claim 9 we know that we must have π(A) = 1
and since πA(A) = 1, then this means that we must have ρ(π) ≥ ρ(πA). For this to be possible we must have
π ∈ M , which implies that there exists B ∈ H ∪ {Ω} such that πB = π. Now, if we have πA(B) = 1, then
since πB(A) = π(A) = 1, by Claim 2 we have π = πA, a contradiction. Therefore, we must have πA(B) < 1.
But then, we must have πABπB = π, which implies v(πA) > v(πB), hence ρ(πA) > ρ(π), a contradiction.

Claim 10 proves the representation. Notice also that point (4) of the representation is trivially true by our
construction of ρ. We have therefore found an Hypothesis Testing Representation (u, ρ, ε). Notice that by the
definition of ε, u, ρ, ε is also a minimal representation.

[Necessity of the Axioms] The proof the necessity of Axiom 1 (WbP) and Axiom is standard practice. Axiom
2 is immediate from the representation. We are left with Axiom 4. Consider A1, . . . , An ∈ Σ such that
�A1 6=�An , (Ω\Ai+1) is �(Ai∪Ai+1)-null for i = 1, . . . , (n−1), and (Ω\A1) is �(An∪A1)-null. Consider first the
case in which π(Ai ∪Ai+1) > ε for i = 1, . . . , (n− 1), and π(A1 ∪An) > ε. By the representation, this means
that we must have πAi∪Ai+1 = BU(π,Ai ∪ Ai+1) for i = 1, . . . , (n − 1), and πA1∪An = BU(π,A1 ∪ An). But
since (Ω\Ai+1) is �(Ai∪Ai+1)-null for i = 1, . . . , (n− 1), hence πAi∪Ai+1(Ai\Ai+1) = 0, then by construction
of BU we must have π(Ai\Ai+1) = 0 for i = 1, . . . , n. For the same reason we must also have π(An\A1) = 0.
But then we must have that π(∩ni=1Ai) = π(∪ni=1Ai), and so, by definition of BU, we must have πA1 = πAn ,
hence �A1=�An , a contradiction.

Consider now the more general case in which there exist some i such that π(Ai ∪ Ai+1) > ε, or in which we
have π(A1 ∪ An) > ε. Say without loss of generality that we have π(A1 ∪ A2) > ε. By the representation it
must be π(A1 ∪A2) = BU(π,A1 ∪A2). At the same time we have π(A1 ∪A2)(A1\A2) = 0, and by definition
of BU this means that we have π(A1 ∪ A2) = π(A2). Then π(A2) > ε, hence π(A2 ∪ A3) > ε. Proceed like
this to prove that we must have π(Ai ∪ Ai+1) > ε for i = 1, . . . , (n − 1), and that π(A1 ∪ An) > ε. But we
have already shown that this leads to a contradiction.
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We are left with the case in which π(Ai ∪ Ai+1) ≤ ε for i = 1, . . . , (n − 1) and π(A1 ∪ An) ≤ ε. Now
define E1, . . . En as Ei = Ai ∪ Ai+1 for i = 1, . . . , (n − 1) and En = A1 ∪ An. Notice that we must have
π(Ei) ≤ ε for i = 1, . . . n. Moreover, by construction we must also have that BU(π∗Ei

, Ei)(Ei+1) = 1 for
i = 1, . . . , n − 1 and BU(π∗En

, En)(E1) = 1. This implies π∗Ei
(Ei+1) ≥ π∗Ei

(Ei) for i = 1, . . . , n − 1 and
π∗En

(E1) ≥ π∗En
(En). Now, notice that since π∗Ei

is the unique element in arg maxπ∈∆(Ω) BU(ρ,Ei)(π) for
i = 1, . . . , n, then we must have that for all i, j = 1, . . . , n, ρ(π∗Ei

)π∗Ei
(Ei) > ρ(π∗Ej

)π∗Ej
(Ei) if π∗Ei

6= π∗Ej
.

This, together with the fact that π∗Ei
(Ei+1) ≥ π∗Ei

(Ei) for i = 1, . . . , n − 1 and π∗En
(E1) ≥ π∗En

(En), implies
that ρ(π∗Ei

)π∗Ei+1
(Ei+1) ≥ ρ(π∗Ei+1

)π∗Ei+1
(Ei+1), where the inequality is strict if π∗Ei

6= π∗Ei+1
. Hence for

i = 1, . . . , (n − 1), ρ(π∗Ei
) ≥ ρ(π∗Ei+1

), where the inequality is strict if π∗Ei
6= π∗Ei+1

, and ρ(π∗En
) ≥ ρ(π∗E1),

where the inequality if strict if π∗E1 6= π∗En
. But then we have ρ(π∗E1) ≥ ρ(π∗E2) ≥ . . . ρ(ρ(π∗E2)) ≥ ρ(π∗E1), and

so none of this inequalities can be strict, hence π∗E1 = π∗Ei
for i = 1, . . . , n. But then, BU(π∗E1 , Ei)(Ei+1) = 1

for i = 1, . . . , n − 1 and BU(π∗E1 , En)(E1) = 1, which implies that BU(π∗E1 , En) = BU(π∗E1 , E1), hence
πE1 = πEn and �E1=�En . Repeating the same argument we obtain �Ei=�Ei+1 for i = 1, . . . , (n− 1), hence
�Ei=�Ej for i, j = 1, . . . , n. Now recall since (Ω\An) is �(An−1∪An)-null, and notice now that for any π ∈
arg maxπ∈∆(Ω) BU(ρ,An−1∪An) such that BU(π,An−1∪An)(An) = 1 (since (Ω\An) is �(An−1∪An)-null), we
must also have π ∈ arg maxπ∈∆(Ω) BU(ρ,An) and BU(π,An) = BU(π,An−1 ∪An) (by definition of BU). But
since the argmax is unique, then πAn = πAn−1∪An = πEn−1 . Similarly we obtain that πA1 = πA1∪An = πEn .
But since πEn−1 = πEn , then πA1 = πAn , hence �A1=�An , a contradiction.

[ε = 0 iff Dynamic Consistency ] Notice first of all that if ε = 0, then the agent updates her prior using Bayes’
rule every time she is told that a non-null event has occurred, which it is well know to imply that Dynamic
Consistency is satisfied. Consider now the case in which the {�A}A∈Σ satisfies Dynamic Consistency. Let us
say, by means of contradiction, that we have a minimal Hypothesis Testing representation (u, ρ, ε) of {�A}A∈Σ

in which ε 6= 0. Since {�A}A∈Σ satisfies Dynamic Consistency, however, then (u, ρ, 0) must also represent it,
contradicting the minimality of (u, ρ, ε). Q.E.D.

Proof of Theorem 2

[Sufficiency of the Axioms] We proceed in a similar way to how we proceeded for the proof of Theorem 1.
Given Axioms 5, from Gilboa and Schmeidler (1989) we know that for any A ∈ Σ, there exist uA : X → R,
ΠA ⊆ ∆(Ω), Π convex and compact, such that for any f, g ∈ F

f �A g ⇔ min
π∈ΠA

X
ω∈A

π(ω)Ef(ω)(u) ≥ min
π∈ΠA

X
ω∈A

π(ω)Eg(ω)(u) (A.2)

where ΠA is unique and uA is unique up to a positive affine transformation. It is also standard practice to
show that Axiom 5(5) implies that, for any A ∈ Σ, all uA are positive affine transformations of uΩ, which
means that we can assume uΩ = uA for all A ∈ Σ. Define u : X → R as u = uΩ and π = πΩ. Moreover, notice
that for any A,B ∈ Σ A is �B-null if and only if π(A) = 0 for all π ∈ ΠB .

Notice that Claims 1 holds true here as well. Moreover, notice the following claim (which parallels Claim 2 in
the proof of Theorem 1.)

Claim 11. For any A,B ∈M , if πA(B) = 1 = πB(A) for all πA ∈ ΠA and πB ∈ ΠB , then ΠA = ΠB .

Proof. Consider any A,B ∈ M such that πA(B) = 1 = πB(A) for all πA ∈ ΠA and πB ∈ ΠB . Notice that
by construction of ΠA and ΠB we must have πA(A ∩ B) = 1 = πB(A ∩ B) for all πA ∈ ΠA and πB ∈ ΠB .
Hence (Ω\(A ∩ B)) is both �A-null and �B-null But then, by Claim 1 we must have ΠA = ΠA∩B = ΠB as
sought. �

Define now the set KAA ⊆ Σ as follows:
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KAA := {A ∈ Σ : A is � -null} ∪ {A ∈ Σ : ∃f, g ∈ F s.t. f �∗A g and g �∗ fAg, or f �∗A g and g �∗ fAg}.

These are the events after which either Reduced Dynamic Consistency (Axiom 6) does not apply (null-events),
or after which it is violated. Define ε as ε := max

A∈K
max
π∈ΠΩ

π(A) if KAA 6= ∅, ε = 0 if K∗AA = ∅. (This is well defined

since Ω is finite.)

Consider now A ∈ Σ\KAA (notice that this set includes all A ∈ Σ such that π(A) > ε for all π ∈ ΠΩ, by
construction of ε).

Claim 12. For any A ∈ Σ\KAA , f, g, h ∈ F , we have

f �A g ⇔ fAh �Ω gAh

Proof. Consider f, g, h ∈ F , A /∈ K∗AA. Notice first of all that by Axiom 2 we have fAh ∼A f and gAh ∼A g.
This implies that we have f �A g iff fAh �A gAh. Define f ′ := fAh and g′ := gAh. Notice that we have
fAh �A gAh iff f ′ �A g′ iff (since A /∈ K∗AA) f ′Ag′ �Ω g′ iff fAh �Ω gAh, as sought. �

Finally, from Ghirardato, Maccheroni, and Marinacci (2004) we know that for any A ∈ Σ, �∗A satisfies
monotonicity, continuity and independence, and it can be represented by

f �∗A g ⇔
X
ω∈Ω

π(ω)Ef(ω)(u) ≥
X
ω∈Ω

π(ω)Ef(ω)(u) ∀π ∈ ΠA

where ΠA is a compact and convex subset of ∆(Ω), it is the same as the one in Equation A.2, and it is
unique.18 This means that for any A ∈ Σ such that π(A) > ε for some π ∈ ΠΩ (which also means π(A) > 0
for some π ∈ ΠΩ) we have

f �∗A g ⇔ fAh �∗Ω gAh

⇔
X
ω∈A

π(ω)Ef(ω)(u) +
X

ω∈Ω\A

π(ω)Ef(ω)(u) ≥
X
ω∈A

π(ω)Eg(ω)(u) +
X

ω∈Ω\A

π(ω)Eg(ω)(u) ∀π ∈ ΠΩ

⇔
X
ω∈A

π(ω)Ef(ω)(u) ≥
X
ω∈A

π(ω)Eg(ω)(u) ∀π ∈ ΠΩ

⇔ 1

π(A)

X
ω∈A

π(ω)Ef(ω)(u) ≥ 1

π(A)

X
ω∈A

π(ω)Eg(ω)(u) ∀π ∈ ΠΩ

Since ΠA is unique, this proves that for any A ∈ Σ such that π(A) > ε for some π ∈ ΠΩ, then ΠA(B) =
B̂U(ΠΩ, A).

Define now the set K∗ as follows.

K∗AA := {A ∈ Σ : π(A) ≤ ε for some π ∈ Π}.

Define the sets HAA := K∗AA ∪ {Ω} and MAA := {πm ∈ ∆(Ω) : m ∈ K∗AA} ∪ {πΩ}.

We can now proceed replicating exactly the steps in the proof of Theorem 1 and prove the adaptations of
Claims 5, 6, and 7, with the following modifications: use sets of priors Πm instead of priors πm; whenever

18See Ghirardato, Maccheroni, and Marinacci (2004). In Section 5.1 they discuss how their Theorem 14
implies that the set of priors found by the representation of �∗ using their Theorem 11 must coincide with
the one found with a representation of � a la Gilboa and Schmeidler (1989).
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we have πm(A) = 1 replace it with π(A) = 1 for all π ∈ Πm; replace the conditions π(A) ≤ ε with the
corresponding condition π(A) ≤ ε for all π ∈ ΠΩ; use the set K∗AA, HAA,MAA instead of K∗, H,M . In
particular, construct the preference B on MAA.

Define γ∗AA := max{ min
π∈ΠA

π(B) : A,B ∈ K∗AA, π(B) < 1 for someπ ∈ ΠA} and define δ := 1
|M|

1−γ∗
γ∗

. (Notice

that γ∗ is well defined since M is finite, and that γ∗ ∈ (0, 1) and consequently δ > 0.) Proceed like in the
proof of Theorem 1 in constructing constructing the transitive closure of B̂ of B, and the function f and v on
MAA, and construct ρ ∈ ∆(G) as

ρ(Π) :=
v(Π) + 1

|M|P
m∈M v(Π) + 1

|M|
.

for all Π ∈ M , ρ(Π) := 0 otherwise. Finally, we need to prove that MAA and ρ that we just constructed are
the ones that we are looking for. But it’s easy to replicate the passages in the proof of Claims 8, 9, 10 in the
proof of Theorem 1 (once again whenever we have πm(A) = 1 we need to replace it with π(A) = 1 for all
π ∈ Πm, and use MAA, v, and ρ as constructed here). Condition (4) will also be trivially true here as well by
construction, since for any event A ∈ K∗AA we construct Π ∈ supp(ρ) such that each π(A) > 0 for all π ∈ Π.

[Necessity of the Axioms] Axiom 1 and Axiom 2 are immediate. We are left with Axiom 4. Consider
A1, . . . , An ∈ Σ such that �A1 6=�An , (Ω\Ai+1) is �(Ai∪Ai+1)-null for i = 1, . . . , (n − 1), and (Ω\A1) is
�(An∪A1)-null. Consider first the case in which π(Ai ∪ Ai+1) > ε for some π ∈ Π, for all i = 1, . . . , (n − 1),
and π(A1 ∪ An) > ε for some π ∈ Π. Since (Ω\Ai+1) is �(Ai∪Ai+1)-null for i = 1, . . . , (n − 1), then
it must be that π(Ai\Ai+1) = 0 for all π ∈ ΠAi∪Ai+1 for i = 1, . . . , (n − 1), and π(An\A1) = 0 for
all π ∈ ΠAn∪A1 . Notice that by the representation it must be that ΠAi∪Ai+1 = BU(ΠΩ, Ai ∪ Ai+1) for
i = 1, . . . , (n − 1), and ΠA1∪An = BU(ΠΩ, A1 ∪ An). But then, for all π ∈ ΠΩ we have π(Ai\Ai+1) = 0
for i = 1, . . . , (n − 1), and π(A1\An) = 0. Hence π(∪ni=1) = π(∩ni=1Ai) for all π ∈ ΠΩ, and so Π =
BU(ΠΩ,∩ni=1Ai) = BU(ΠΩ, Aj ∪Aj+1) = BU(ΠΩ, A1 ∪An) for j = 1, . . . , n− 1. But this implies �A1 6=�An ,
a contradiction.

Consider now the more general case in which there exist some i such that π(Ai∪Ai+1) > ε for some π ∈ ΠΩ, or
the case in which π(A1∪An) > ε for some π ∈ ΠΩ. Say without loss of generality that we have π(A1∪A2) > ε
for some π ∈ ΠΩ. By the representation it must be ΠA1∪A2 = BU(ΠΩ, A1 ∪ A2). At the same time we have
π(A1∪A2)(A1\A2) = 0 for all π ∈ ΠA1∪A2 , and by definition of BU this means that we have π(A1∪A2) = π(A2)
for all π ∈ ΠΩ. But then π(A2) > ε for some π ∈ ΠΩ, hence π(A2∪A3) > ε for some π ∈ ΠΩ. Proceed like this
to prove that we must have π(Ai ∪Ai+1) > ε for some π ∈ ΠΩ for i = 1, . . . , (n− 1), and that π(A1 ∪An) > ε
for some π ∈ ΠΩ. But we have already shown that this leads to a contradiction.

Then we are left with the case in which π(Ai∪Ai+1) ≤ ε for all π ∈ Π for i = 1, . . . , (n−1), and π(A1∪An) ≤ ε
for all π ∈ Π. Then, we can replicate the same passages in the proof of the necessity of the axioms in Theorem
1, but putting π(A) = 1 for all π ∈ Πm whenever we have πm(A) = 1 for m ∈ Σ.

[ε = 0 iff Reduced Dynamic Consistency ] Ghirardato, Maccheroni, and Marinacci (2008) show that the agent
updates her set of priors using Bayes’ rule every time she is told that a non-null event has occurred if and
only if she satisfies Reduced Dynamic Consistency. If ε = 0, therefore, Reduced Dynamic Consistency applies.
Conversely, assume that Reduced Dynamic Consistency is satisfied and let us say, by means of contradiction,
that we have a minimal Hypothesis Testing representation with Ambiguity Aversion (u, ρ, ε) of {�A}A∈Σ

in which ε 6= 0. Since {�A}A∈Σ satisfies Reduced Dynamic Consistency, however, then (u, ρ, 0) must also
represent it, contradicting the minimality of (u, ρ, ε). Q.E.D.
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