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Abstract

This paper explores how to run randomized experiments when outcomes depend signif-
icantly on unobserved effort decisions taken by agents. Our first set of results show that
making selection explicit rather than implicit can generate greater information. This
information comes at the cost of oversampling agents with high valuation for the treat-
ment and undersampling agents with low valuation. These sampling costs disappear if
the sample size is large, or agents are very responsive to incentives. Our second set of
results study the effect of information on future adoption. Because effort responds to
beliefs, which in turn respond to information, informative experiments can potentially
encourage the adoption of useful technologies. We show that while information can in-
crease the expected take-up of a high-return technology under fairly broad conditions,
this is not always the case. Whether more information increases usage depends on the
quality of the information, on the shape of the mapping between agents’ beliefs and
usage, and on how agents interpret data.
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1 Introduction

This paper explores technology evaluation and technology diffusion when outcomes depend

significantly on unobserved effort decisions taken by agents.1 Even in a standard randomized

controlled trial (RCT), where the principal randomly and independently assigns experimental

subjects to either receive the technology or to be in the control group, unobserved effort limits

the information that can be obtained.2 For example, if a technology’s measured returns are

low, it is difficult to disentangle whether this is because the true returns are low or because

most agents put no effort into using the technology. Furthermore, given that effort responds

to beliefs, and beliefs respond to information, the returns measured by an initial RCT will

generally differ from the returns that better informed agents would obtain.

We take a mechanism design approach to examine the following questions:

Information Production: How can trials be designed to extract more information on the

returns to a technology?

Technology Diffusion: How does the information generated by trials affect the take up of

high return technologies?

The model considers a stylized two-stage experimental setting. To maximize the usefulness

of our theory for practice, we put particular emphasis on generality and allow the principal

and agents to hold general, and in particular heterogenous, beliefs.3 In the first stage, where

we study information production, the principal designs a mechanism that assigns agents to

the treatment or control group with a probability that depends on the transfers each agent

1Throughout the paper we call experimental subjects agents, and call the experimenter the principal.
Following usual conventions, we refer to the principal as she and refer to an agent as he.

2See Duflo, Glennerster, and Kremer (2008) for a more detailed description of RCTs. Our contribution
here is wholly theoretical, but along the lines of Besley and Case (1993) and Banerjee, Bardhan, Basu,
Kanbur, and Mookherjee (2005) we approach theory as an important input for empirical work.

3This is particularly important when we study technology diffusion, as heterogenous beliefs will lead
agents to interpret data differently. For studies of heterogeneous priors in various economic environments
see Piketty (1995), Yildiz (2003), Van den Steen (2004, 2005), Gentzkow and Shapiro (2006), Sandroni and
Squintani (2007), Acemoglu, Chernozhukov, and Yildiz (2007) and Sethi and Yildiz (2009).
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is willing to make.4 Each agent in the treatment group then makes an unobserved effort

decision, and an outcome is drawn from a distribution that depends on the technology, the

agent’s effort, and the agent’s type. At the end of the first stage, the data generated by

the experiment becomes public, i.e. the message sent, the transfer made, and the outcome

obtained by each agent are observed by the principal and all other agents. In the second

stage, where we study technology diffusion, agents use this data to update their beliefs about

the technology’s returns. All agents are then given free access to the technology and make

a private usage decision.

Our first set of results speak to information production, and show that what we call

selective trials are more informative than randomized controlled trials (RCTs). Selective

trials are simple dominance-solvable mechanisms in which agents can signal their value for

the technology by selecting a higher likelihood of treatment at some cost.5 These selective

trials are best seen as a straightforward extension of RCTs in which likelihood of treatment

can vary with agents. We also show that the agents’ value for the treatment is the only

additional information that can be elicited in dominant strategies. In that sense selective

trials are maximally informative.

Selective trials build on techniques already used in the field (see e.g. Ashraf, Berry, and

Shapiro, 2008; Karlan and Zinman, 2009), and may be useful in mitigating some of the

existing concerns over RCTs (Deaton, 2009). RCTs recover the local average treatment

effect (LATE) of the technology (Imbens and Angrist, 1994). However, subjects assigned to

the treatment group may refuse to be treated, and those assigned to the control group may

4Transfers can be thought of as monetary payments or, more generally, anything that requires the agent
to exert observable costly effort. For example, agents could choose between lines of different lengths to place
themselves into the treatment group with different probabilities.

5The idea that a higher price will select individuals with a higher value has been in the economics literature
for some time as it is closely related to classic selection models, see Roy (1951) and Oster (1995). Recently
Ashraf, Berry, and Shapiro (2008) have found support for this hypothesis in a study evaluating a water
treatment product in Zambia. In contrast, Cohen and Dupas (2009) and Dupas (2009b) find that price has
no effect on usage in a study evaluating mosquito nets for malaria prevention in Kenya.
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adopt the technology.6 Further, when usage is imperfectly observable the principal may not

even be aware of these subversions of the experimental protocol.7

Selective trials mitigate these problems by allowing agents to explicitly select themselves

into the treatment and control group based on their beliefs and their valuation of the tech-

nology.8 Such selective trials allow the principal to estimate the returns to the technology

for agents that value it differently. This corresponds to identifying the marginal treatment

effects analyzed by Heckman and Vytlacil (2005). Moreover, by offering the agents explicit

ways to select themselves in or out of the treatment, selective trials provide useful information

about the agents’ unobserved effort decisions. The basic insight underlying our approach is

that when unobservable effort cannot be controlled, explicit selection is preferable to implicit

selection.

It is important to note that selective trials inherit many of the robustness properties that

make RCTs attractive. In particular, the mechanisms we discuss identify the agents’ values

for the treatment regardless of whether the principal has correct beliefs about the returns to

the technology, or the distribution of agents’ types. While more sophisticated mechanisms

could potentially extract some more information (for instance, an agent’s beliefs about others’

returns) we believe that robustness is an essential property if these mechanisms are to be

used in practice.9

6Note that the percentage of agents rejecting, or opting-in to, treatment is often non-trivial. For example,
45% of the people Dupas and Robinson (2009) opened a savings account for never made a deposit, 72% of
the people offered a commitment saving product by Ashraf, Karlan, and Yin (2006) rejected it, and in a
study of educational vouchers in Columbia, Angrist, Bettinger, Bloom, King, and Kremer (2002) find that
25% of those randomly denied a voucher were awarded other scholarships, and 10% of those who were offered
vouchers declined them.

7Even in medical trials with double-blind designs unobserved refusal to accept treatment will still alter
the results of the study. For a brief review of RCTs in medicine see Stolberg, Norman, and Trop (2004).
Jadad (1998) provides a comprehensive review.

8Note that selective trials only allow agents to select themselves probabilistically, i.e. high value agents
may select themselves into a group that has higher probability of being treated, but some of them will still
end up in the control group.

9For an in-depth analysis of robust mechanisms, see Bergemann and Morris (2005) and the references
therein.
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However, selective trials are not a panacea. Incentive compatibility constraints imply

that, in equilibrium, agents with higher values will be assigned to the treatment group

with higher probability. This sampling constraint produces over-sampling at the top and

under-sampling and the bottom. In an environment with finitely many agents, these sam-

pling constraints adversely affect the statistical power of selective trials. From a theoret-

ical perspective, these losses can be made arbitrarily small by reducing the slope of the

probability-of-treatment menu that agents choose from. However, this reduces the agents’

incentives to accurately report (or even figure out) their values, which may increase overall

noise. A straightforward way to deal with this issue is to increase the number of agents in

the experiment.10

Our second set of results explore how information production in the first stage affects

technology diffusion in the second stage. In that part of the paper we envision the trial

as an experiment that the principal runs to convince potential users that the technology is

valuable. Whether greater information increases expected usage depends on the shape of the

mapping between agents’ beliefs and effort, as well as on how agents interpret data.11 If most

agents’ beliefs would lead them to use the technology in the absence of new information, a

trial that generates noisy information has little upside but might lead to less effort if the trial

yields a poor outcome because of noise.12 Further, agents may hold incorrect beliefs about

10Increasing the size of the experiment may be useful regardless of sampling constraints if the experimenter
chooses to analyze agents with different values separately. Note that increasing the sample size may be costly,
but rarely due to expenses directly related to providing the technology itself. The largest portion of the cost
is often incurred measuring the host of observables included as controls in RCTs. These controls are included
on the basis that they may be correlated with unobservables such as beliefs about the technology and known
privately known idiosyncratic payoff shocks. To the extent that selective trials are validated in the field they
may actually allow for larger samples at reduced costs as measurement of these unobservables is built into
the experimental protocol, and this may obviate the need for measuring observables.

11There is a natural link here to the literature on persuasion games (Milgrom and Roberts, 1986), however,
because we assume that the principal cannot hide data from the agents after running the experiment, the
strategic concerns in that literature are muted here. Recently, Rayo and Segal (2008) and Kamenica and
Gentzkow (2009) consider how the shape of the mapping between agent’s beliefs and their actions change
incentives for information provision, while Mullainathan, Schwartzstein, and Shleifer (2008) focus on how
agents interpret data.

12This point is made in a different setting by the industrial organization literature on experience goods
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what kind of data the trial would generate in the states of the world where the technology

has high returns. This could lead agents to dismiss a technology even though the trial yielded

positive results from the principal’s perspective. Both of these effects may result in lower

usage in the next stage.13

While our results suggest that some caution is required, we provide fairly broad sufficient

conditions under which information provision has a positive effect on the adoption of useful

technologies, and selective trials can be a useful tool to improve adoption.14 In such settings,

by giving the technology to the agents who value it most the principal will generate better

information, and increase expected take-up by the agents.15

The rest of the paper is structured as follows: Section 2 identifies settings in which our

approach is most relevant, Section 3 provides a few examples summarizing the main qualita-

tive points of the paper, Section 4 defines our framework, Section 5 explores how to design

randomized experiments to extract more information, Section 6 tackles the problem of infer-

ence given data produced by a selective trial, Section 7 explores how the information agents

obtain from observing experiments affects their effort decisions, Section 8 discusses various

limits to our approach. Appendix A extends the analysis to more general environments.

Proofs are contained in Appendix B.

(see, e.g., Bergemann and Välimäki, 2005). Our model differs as the principal and agents may have different
beliefs.

13This is related to the possibility of inefficient herding in models of social learning, see, e.g. Banerjee
(1992) and Bikhchandani, Hirshleifer, and Welch (1992). Note that this refines the natural intuition about
the diffusion of new technologies, which implicitly assumes that agents can accumulate good information over
time. For example, Suri (2008), states “[A] model where households learn about a technology with positive
returns would imply that aggregate adoption rates increase over time.” While this may be true in the very
long run—see for instance Smith and Sørensen (2000) for theoretical results along these lines—things may
be very different in the short-run.

14For remarkable experiment that demonstrates how information can successfully affect the behavior of
agents, see Dupas (2009a) which studies how information about relative risks of infection affects the sexual
behavior of young women in Kenya.

15Closely related to the ideas we develop here, Oster and Thornton (2008) find in a policy simulation
based on experimental data that targeting the distribution of a new technology (menstrual cups) to users
who value the product more would result in greater usage.
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2 A Taxonomy of Technologies

While our main focus here is on the use of RCTs in a public health or a development

context, our analysis applies to most environments involving decentralized experimentation.

For instance, if a firm wants to try a new way to organize production, specific plant managers

will have to decide how much effort to put towards implementing it. The firm’s CEO is in

the same position as the principal in our framework, and must guess the effort exerted by

his managers when evaluating the returns to the new technology. Similarly, if a school board

wants to experiment with a new program, individual teachers and administrators will have

to decide how much effort to expend implementing the program. In what follows we describe

the properties of technologies for which our model may be most relevant.

Our model is most applicable to the study of technologies where: 1) there are potentially

large private returns, 2) returns depend on the effort expended either learning about or using

the technology, 3) usage and effort decisions by agents are imperfectly observable, and 4)

agents learn from the outcomes of others. Note that none of these conditions are necessary

for the model to apply, or even for the model to be relevant. Rather, these are conditions

under which we believe that our approach will be most valuable.

Private vs. Public Returns. Our mechanisms are designed to elicit the agents’ private

value for the technology. Naturally, this will be most informative when a large part

of the returns to the technology are private. For instance, eliciting private valuations

would be informative in a study of anti-retroviral drugs where private benefits are large

(Thornton, 2008), but less so in a study of deworming drugs where private returns are

relatively small (Miguel and Kremer, 2004).

Outcomes Depend on Effort. Eliciting the agents’ value for the technology is most useful

when the returns to the technology depend significantly on the effort expended on using

it properly. If this dependence is small as with, for example, the smallpox vaccine—
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a single-dose medication—eliciting valuation may be only marginally useful. If the

dependency is large as with, for example, antibiotics or anti-retroviral drugs, eliciting

valuation may be more useful. Note that effort can be understood quite broadly and

includes effort required to learn how to properly use a technology (see for instance, in

the case of fertilizer, Duflo, Kremer, and Robinson, 2008).

Limited Observability of Effort. Eliciting the agents’ value for the technology is useful

as it gives an indication of how much effort agents are likely to expend. This is

only informative if agents’ effort is difficult to observe. It is typically the case that

at least some dimension of effort is unobservable. Consider for instance the case of

fertilizer. One might observe outcomes such as whether a farmer is spreading fertilizer,

or how good his understanding of fertilizer use is, but the underlying effort the farmer

actually put towards properly using fertilizer is unobservable. Medical treatments taken

at home, and contraceptive products are particularly stark examples of technologies

where effort is necessary and unobservable.

Learning From Others’ Outcomes. Our analysis emphasizes the potential of experi-

ments to promote learning and technology diffusion. This is only useful if agents

learn from the outcomes of others (Foster and Rosenzweig, 1995; Kremer and Miguel,

2007; Oster and Thornton, 2008).

Altogether, our framework is likely to be useful when evaluating many (although not all)

of the technologies studied in the development or public health literatures, such as water

treatment products, fertilizer, antibiotics, or contraceptives.
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3 Illustrative Examples

This section uses a simplified version of our general framework to illustrate the main points

of the paper. We first explore the informativeness of selective trials versus RCTs, and

then consider how the information generated from a trial can increase or decrease future

adoption and usage of a product. With respect to information production, we show that

when agents are allowed to select into a trial by paying a price, the agents’ outcomes will

provide a clearer signal of the technology’s benefit. This remains true whether agents have

heterogeneous beliefs about the technology, heterogeneous costs of effort, or if there are

heterogenous private returns to using the technology. With respect to technology adoption,

we show that even though a selective trial will provide superior information, in certain

situations this may decrease rather than increase expected usage even when the technology

provides high returns.

In this section we use the example of a water treatment product for concreteness. How-

ever, because our framework applies to a variety of environments, it would be perfectly

appropriate to think through the implications in terms of other technologies, such as fertil-

izer or a drug that must be taken regularly.

3.1 Framework

While the model in this section is simplified, unless specifically noted, the notation and

concepts will carry through to the more general framework. There are infinitely many agents

indexed by i ∈ N. For any sequence of random variables (Zi)i∈N, we define

∫
Zi di ≡ lim

N→∞

1

N

N∑
i=1

Zi
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whenever the limit exists. Each agent has a treatment status τi ∈ {0, 1}. If agent i is in

the treatment group, τi = 1, and he is given the water treatment product by the principal.

Otherwise τi = 0 and the agent is in the control group.

Agent i has a public outcome yi (e.g. number of non-sick days), that depends on his

usage of the water treatment product:

yi = (R + ri)ei + εi,

where ei ∈ {0, 1} is agent i’s decision of whether or not to put effort into using the product,

i.e. adding it to his water, R ∈ {RL, RH} is the component of the technology’s return that is

common to all agents, ri is agent i’s privately known idiosyncratic return to the technology,

and εi is an idiosyncratic shock with unknown expectation. When the agent is not given

the technology ei = 0, so that an agent i in the control group will have an outcome yi = εi.

Thus, εi is the baseline health outcome that is controlled for using randomization. Given

effort ei, agent i has expected utility

ui(ei) = Ei[yi|ei]− ciei, (1)

where ci is agent i’s cost of effort, which is observationally equivalent to a preference for

using (or not) the technology. Both the idiosyncratic return ri and cost ci are privately

known to each agent i before they decide whether or not to add the product to their water.

We assume that the maximum cost of effort is c, and RL < c < RH .

The expectation in (1) is indexed by i, reflecting the fact that agents have heterogenous

beliefs about the common return R. Specifically, each player i has a private belief θi =

Probi(R = RH) that returns are high. Beliefs (θi)i∈N are distributed according to some

distribution Fθ, which need not be known to the principal or the agents. Note that agents

do not share a common prior, so others’ beliefs are not informative.

10



The difference in average outcomes between agents who are given the water treatment

product and those who are not is

R̂ =
1∫
τidi

∫
yi1τi=1 di− 1

1−
∫
τidi

∫
yi1τi=0 di,

which is observable to both the principal and agents. We contrast two ways of running a

trial of the water treatment product:

1. An RCT, where agents are randomly assigned to the treatment group with probability

π0 or

2. A selective trial where each agent has the option of paying a price p ∈ (0, RH − c)

to receive the product with probability π0.
16 Agents who do not pay price p do not

receive the treatment.

The public outcome is denoted by R̂0 for the RCT, and by R̂p for the selective trial.

The following subsections compare how these protocols produce information, before turn-

ing to the question of which protocol is better suited to increase take-up of a new technology

that the principal knows to be good.

3.2 Information Production

3.2.1 Heterogeneous Priors

To explore the role of heterogeneous priors in information production, we first consider the

case where all agents’ costs and returns are common, that is, for all i, ci = c and ri = 0.

In an RCT, when agent i is provided with a water treatment product, she chooses to

expend effort using it if and only if θiRH + (1 − θi)RL − c ≥ 0, which simplifies to θi ≥
16 Note that there is no need for the probability of treatment in the selective trial to be the same as in an

RCT; we use π0 here for notational simplicity. The experimenter could set the probability of treatment to
any πp ∈ (0, 1].
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c−RL
RH−RL

≡ θ. Hence,

R̂0 =
1

π0

∫
(R1θi≥θ + 0× 1θi<θ + εi)1τi=1di−

1

1− π0

∫
εi1τi=0 di

= R× Prob(θi ≥ θ) = R× (1− Fθ(θ)).

When the principal knows Fθ, the distribution of agent beliefs, then an RCT will allow her

to identify R. However, in most cases the principal does not know Fθ, and R̂0 only provides

a garbled signal of R. If the outcomes yi of agents in the treatment group aren’t particularly

good compared to agents in the control group, the principal does not know if this is because

returns are low, R = RL, or because few agents put effort into using the product.17

In a selective trial, by contrast, all agents who pay the price p are such that they will

find it worthwhile to add the product to their water, thus R̂p = R. An agent chooses to

participate in the trial if and only if π0(θiRH + (1 − θi)RL − c) > p, which is equivalent to

θi >
p/π0+c−RL
RH−RL

≡ θ > θ. As θ > θ, all agents who choose to participate in the trial will use

the product, given the chance.18 Thus, R̂p = R, in spite of aggregate uncertainty over the

distribution of beliefs, Fθ.

This example shows that if an underlying selection process is affecting measurable out-

comes, then more informative signals can be generated by making this selection process

explicit rather than implicit. In the following subsections, we show how this intuition ex-

tends in the presence of privately-known heterogeneous costs and returns.

3.2.2 Heterogeneous Costs (or Preferences)

When agents have heterogeneous privately-known costs, ci < c, then the signal R̂0 generated

by an RCT is garbled by the heterogeneity of costs and beliefs, but signal R̂p from a selective

17Note that the same reasoning holds from the perspective of agents.
18We implicitly assume that Fθ(θ) < 1, i.e. the price p is not too high (and the probability π0 is not too

low), so that a positive measure of agents participate in the experiment.
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trial is still perfectly informative. Agent i chooses to participate if and only if π0(θiRH +

(1− θi)RL − ci) > p, or equivalently, when θi >
p/π0+ci−RL
RH−RL

> ci−RL
RH−RL

. Once again if agent i

chooses to pay for the water treatment product, it is optimal for him to put effort into using

it, so R̂p = R.

3.2.3 Heterogeneous Returns

If agents have privately known idiosyncratic returns ri 6= 0 then a selective trial will still

be more informative than an RCT, but it will no longer provide a noiseless signal of the

common return.

For simplicity, we return to the case where ci = c, ∀i. Under an RCT agent i chooses to

expend effort if and only if θi ≥ c−ri−RL
RH−RL

≡ θi. Hence,

R̂0 =
1

π0

∫
((R + ri)1θi≥θi + εi)1τi=1di−

1

1− π0

∫
εi1τi=0 di

= R× Prob(θi ≥ θi) +

∫
ri1θi≥θi di

Estimator R̂0 is affected by two different sources of noise. The first, Prob(θi ≥ θi), reflects

uncertainty about what proportion of the treatment group actually uses the product. The

second,
∫
ri1θi≥θi di, corresponds to uncertainty about the private returns ri of agents who

do use the product.

If a selective trial is implemented with a small positive price p = 0+, the proportion of

agents who participate is ν̂p = Prob(θi ≥ θi), and is observable. Note that ν̂p may be much

less than 1 as all agents with non-positive value drop from the sample. Thus,

R̂p =
1

π0ν̂p

∫
((R + ri)1θi≥θi + εi)1τi=1di−

1

1− π0ν̂p

∫
εi1τi=0 di

= R +
1

ν̂p

∫
ri1θi≥θi di.
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As R̂0 = ν̂p × R̂p, knowing ν̂p and R̂p, is more informative than R̂0, even though it does not

necessarily allow one to infer R. This insight extends to very general settings. Here, offering

the water treatment product at some small price extracts greater information, as it identifies

the agents who are sufficiently convinced that the technology has high returns to put effort

into using it properly.

In a context where outcomes depend on the agents’ actions, and hence on the agents’

beliefs, greater information may be useful to persuade the agents to put effort in technologies

the principal believes to have high returns. In that respect one may consider running infor-

mative experiments in the initial phase of a program implementation to drive up adoption.

This being said, the next subsection shows that some caution is required, as it is not always

the case that better information will lead to greater expected usage of a good technology.

3.3 Technology Diffusion

We remain in the basic framework of Section 3.1, but assume that the principal believes

that R = RH with probability one.19 The principal is convinced that the technology has

high returns and would like to convince the agents to adopt it. The question is whether

information can help increase take-up. While more information is always welfare enhancing

from the agents’ perspective this section shows that this need not be true from the principal’s

point of view, even though the principal is an altruistic welfare maximizer.

3.3.1 Precision of the Data, and Distribution of Agents’ Beliefs

Abstracting away from the process which generates data, suppose that agents can observe a

public signal R̂, that takes one of two values, R̂ ∈ {R̂H , R̂L}, and there is common knowledge

19As mentioned earlier, in this model differences in beliefs correspond to differences in priors, not differences
in information. Therefore, the principal’s decisions have no signaling value.
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that

Prob(R̂ = R̂H |R = RH) = Prob(R̂ = R̂L|R = RL) = π > 1/2.

The principal is generating signal R̂ (for instance by running an experiment) and chooses

whether to generate the signal or not. If she chooses to generate signal R̂, the signal is public

and cannot be censored. If the principal chooses to give agents access to signal R̂, agent i’s

ex post beliefs will satisfy:

Probi(R = RH |R̂ = R̂L) < θi < Probi(R = RH |R̂ = R̂H)

where θi is agent i’s ex ante belief that R = RH . Given a belief θ, we denote by e(θ) the

agent’s optimal effort decision.20

If π = 1, the data is perfectly informative. The principal, who is convinced that R = RH ,

believes the data will be R̂H with probability one and from this the agents will conclude

that R = RH . In this case it is optimal from the principal’s point of view to allow agents

to observe the data as it leads them to agree with her. In contrast, when the data is not

perfectly informative, i.e. when 1/2 < π < 1, it may mislead the agents in the sense that a

bad signal could occur even if the state is good. Whether or not the principal expects data

to increase effort depends on the principal’s belief about the distribution of (θi)i∈N, and on

how the agents’ beliefs θ affect their effort choices e(θ).

As illustrated in Figure 1(a), if most agents have beliefs slightly below the threshold where

they put high effort there is little downside to giving agents access to the data (as most of

them wouldn’t use the product without new information), moreover, there is a significant

upside since with high probability the data will be R̂ = R̂H , which will lead most agents to

use the technology. Giving agents access to signal R̂ is optimal.

20For this example, we assume that all agents share the same cost for effort, so that optimal effort depends
only on beliefs.
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(a) Information increases expected effort.
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(b) Information decreases expected effort

Figure 1: The effect of noisy information on expected effort, depending on the range of
beliefs (θi)i∈N.

In contrast, if as in Figure 1(b) most agents have beliefs slightly above the threshold where

they put high effort, then providing access to the data has little upside and a potentially

large downside, as a realization of R̂ = R̂L would dissuade many agents from expending

effort. In this situation, potential noise makes it optimal for the principal not to generate

any information.

3.3.2 Disagreements about Data Interpretation

Another environment in which (even very precise) information can reduce expected usage of

a good technology is when the principal and agents have different conditional beliefs about

what data would be generated conditional on true returns R. That is, it may be that data

which is supportive of R = RH , given the principal’s conditional beliefs, is actually indicative

of R = RL given agent i’s conditional beliefs.

This type of problem may occur if, for instance, the agent has overly high expectations

about the returns that would be obtained conditional on R = RH . Consider a setting where

signal R̂ takes value in {R̂L, R̂H , R̂HH} where R̂HH corresponds to an extremely positive

16



signal. The principal believes that conditional on R = RH the realization of R̂ will be R̂H ,

whereas conditional on R = RL, the realization of R̂ will be R̂L or R̂H with equal probability.

Agents share the belief that conditional o R = RL, R̂ will be R̂L or R̂H with equal probability.

However, agents have overly high expectations conditional on the state being high, i.e. they

believe that conditional on RH the realization of R̂ will be R̂HH with probability one. Then,

as the principal believes that R = RH , she knows that data R̂H will occur. This is data is

a positive signal given the principal’s conditional beliefs, but the agents will conclude that

the state of the world really is R = RL. Under such circumstances, the principal will prefer

not to generate any information in the first place.

The examples in this section make two points. First, careful experimental design can

produce more information about the agents’ beliefs and usage. Second, while it seems natural

that more information should lead to greater adoption of a good technology, this intuition

needs to be applied carefully. In particular, whenever the principal and agents have different

beliefs, providing agents with more information is not necessarily welfare improving. We

make these points more generally in the next sections.

4 General Framework

We address questions of information production and technology diffusion in a mechanism

design framework with two stages. In the first stage we consider the problem of a principal

designing experiments to extract more information about the value of a technology. In the

second stage we turn to technology adoption and analyze when the principal will want to

provide more (or less) information to the agents. We focus on the case where agents are

myopic and maximize their current payoffs, utilities are quasilinear, monetary transfers are

the only actions that mechanisms can require, and allocations are independent across agents.
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We relax these conditions in Appendix A.

Recall that the principal faces infinitely many agents indexed by i ∈ N. Agents have types

t from a type space T , which summarize the agents’ beliefs and payoff relevant parameters.

As before, types induce an effort decision e, that now takes value in some set E ⊂ Rq.

Returns R to the treatment can now be multidimensional and belong to some set R ⊂ Rq′ .

The data d generated by the agents’ outcomes is public and influences both beliefs and effort

choices in the second stage.

Types: Each agent i has a type ti ∈ T , so a profile of types is given by t ∈ TN. Types

are i.i.d. draws from some distribution χ ∈ ∆(T ). Type is decomposed into three attributes

ti = (θi, ηi, Fi). Extending the notation of the previous section, θi ∈ ∆(R) characterizes

agent i’s beliefs over returns R ∈ R. Parameter ηi characterizes the agent’s payoffs. In

the examples of Section 3, ηi would include both the heterogenous costs to effort ci, and

heterogeneous returns ri. Finally, Fi ∈ ∆(∆(T )) is the agent’s beliefs about the distribution

χ of other agents’ types.21 We assume that all measures Fi are absolutely continuous against

some measure F and denote by fi the density of Fi with respect to F . Similarly the principal

has some belief FP ∈ ∆(∆(T )) over the distribution of types, with density fP against F .

Treatment, effort and utilities: As above, the treatment status of agent i is denoted

by τi ∈ {0, 1}, with τi = 1 indicating the treated group and τi = 0 indicating the control

group. Assignment mechanisms are formalized below. If agent i is in the treatment group

(τi = 1), he must make a private effort decision ei ∈ E. He then obtains an outcome yi ∈ Y

which depends in part on R. The agent’s outcome yi is drawn from a c.d.f. F 1
y (R, ηi, ei) if

τi = 1, and drawn from c.d.f. F 0
y (ηi) if τi = 0. Agent i may be required to make a monetary

21Note that we implicitly assume that the profile of types t is exchangeable and that there is common
knowledge that this is the case.
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transfer pi ∈ R.22

Agents have quasilinear utility v(ηi, ei, yi) − pi, where ei = 0 if τi = 0.23 The indirect

utility of an agent with type ti given assignment (τi, pi) is V (θi, ηi, τi)− pi where,

V (θi, ηi, 1) = max
e∈E

∫
R∈R

∫
y∈Y

v(ηi, e, y)dF 1
y (R, ηi, e)dθi(R)

V (θi, ηi, 0) =

∫
y∈Y

v(ηi, 0, y)dF 0
y (ηi).

As usual, an agent’s preferences are determined up to an affine transformation, so we can

normalize V (θi, ηi, 0) = 0. Thus, V (θi, ηi, 1) measures type ti’s value for being assigned to

the treatment group. In a slight abuse of notation we denote V (θi, ηi, 1) by V (ti). For

simplicity we assume that there exists a known value Vmax > 0 such that for all t ∈ T, V (t) ∈

[−Vmax, Vmax].

Assignment mechanisms: A mechanism to assign treatment is a pair G = (M,µ) where

M is a set of messages and µ : M → ∆({0, 1}×R) maps individual messages to a probability

distribution over assignments τi and transfers pi. Note that in these mechanisms agent i’s

payment and probability of treatment depend only on his message, but not on messages sent

by others.

Beliefs and effort: The optimal effort for type ti = (θi, ηi, Fi) is denoted by e∗(θi, ηi) when

he is in the treatment group. At the end of the first stage, all agents observe public data

d = (di)i∈N = (mi, pi, τi, yi)i∈N ∈ D. Agent i uses this data to form a belief θi(d) = θi(·|d)

over R ∈ R.24 We assume common knowledge of rationality, so that each agent believes that

22Note that our framework can accommodate observables xi. An easy way to do this is to include them
as part of outcome yi.

23As Appendix A highlights our results extend naturally to general utility functions. This being said
quasilinear utility is a good approximation whenever the variation in monetary transfers is small. This
variation need only be large enough to provide agents with incentives to figure out their own preferences.

24In what follows, θi denotes agent i’s prior, while θi(d) denotes his posterior after having observed data
d.
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all other agents play a rationalizable strategy. Thus, θi(d) will depend on i’s belief about

other agents’ types. In the second stage, all agents are given access to the technology and

choose effort levels e∗(θi(d), ηi).
25

We first examine the problem of designing experiments to improve information produc-

tion, before turning to the question of how to maximize agents’ effort in the second stage.

5 Information Production

5.1 The Informativeness of Mechanisms

We use a notion of informativeness for mechanisms that corresponds to informativeness in

the sense of Blackwell. Intuitively, a mechanism G is at least as informative as a mechanism

G′ if the data generated by G′ can be simulated using only data generated by G.

The set of rationalizable messages for a player of type t in mechanism G is given by

RatG(t) ⊂M . By extension, we denote by RatG(t) =
∏

i∈N RatG(ti) the set of rationalizable

message profiles in mechanism G given a profile of types t. We denote by dG(t,m, R) :

TN ×MN × R → ∆(D) the random variable over data profiles generated by mechanism G

when the message profile is m and the state of the world is (t, R).

Definition 1 (informativeness of mechanisms). We say that mechanism G is at least as

informative as mechanism G′, denoted by G′ � G, if and only if there exists a mapping

h : D → ∆(D) such that ∀t ∈ TN,∀m ∈ RatG(t), ∀R ∈ R,

h(dG(t,m, R)) ∼ dG′(t,m, R).

25In most settings, this effort decision is multidimensional. For instance, in the case of fertilizer, it is
not enough for agents to just expend effort spreading fertilizer. Effort must be expended properly in, for
example, choosing the right seeds to go with the fertilizer, or learning how much and when to water the
crops. In this case it is natural to think of effort as a vector, where the first component corresponds to
picking the right seeds, the second to the right amount of fertilizer, the third to properly applying it, etc.
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This is a strong notion of informativeness for mechanisms as it does not depend on the

unknown selection mechanism for rationalizable messages. Note that � need not be reflexive

when some types have multiple rationalizable messages.

5.2 Benchmark Mechanisms

To anchor the mechanisms we consider to current practice, we propose two benchmark

mechanisms. The first, G0 = (∅, µ0), corresponds to the standard randomized controlled

trial (RCT) where all agents are assigned to the treatment group with the same probability

π0 ∈ (0, 1). The second, G0+ = (T, µ0), is an RCT where in addition agents can make costless

arbitrary statements about their type, for instance through a pre-treatment survey. In both

mechanisms agents are not required to make any transfers (p = 0).

Our first result shows that whenever a mechanism assigns a positive proportion of each

type to both the treatment and the control group, it is at least as informative as the bench-

mark mechanism G0.

Proposition 1 (full support sampling). Consider a mechanism G = (µ,M) with M finite.

If there exists ξ > 0 such that

∀m ∈ ∪t∈TRatG(t), Eµ(τi|mi = m) ∈ [ξ, 1− ξ],

then G0 � G.

This proposition shows that to be as informative as an RCT, it is sufficient that every

type have positive probability to end up in the control group and positive probability to end

up in the treatment group. While this may suggest that sampling rates do not matter much,

it is important to recognize that this result relies on having an infinite number of agents.

With a finite number of agents, sampling rates would matter significantly for the power of

our estimators. We discuss this point in greater detail in Section 5.3.
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Our second result shows that if we are willing to consider mechanisms in weakly dominant

strategies, then benchmark mechanism G0+ can extract all the information that agents have.

Proposition 2 (full revelation in weakly dominant strategies). Mechanism G0+ is such that

truthful revelation is weakly dominant for each type.

The intuition for this result is simple: as an agent’s inclusion in the treatment group is

not dependent on the message they send, sending a message which reveals his type is just

as good for the agent as sending any other message. Unfortunately, this means that any

other message is weakly dominant as well. Hence, although full revelation is possible here,

data generated by G0+ is likely to be unreliable, especially if figuring out one’s preferences is

costly. Indeed, as Kremer and Miguel (2007) and others have noted, reported beliefs about

the returns to a technology are often uncorrelated with willingness to pay. Thus, we turn to

implementation in strictly dominant strategies.

5.3 Selective Trials

A selective trial is a mechanism where agents are asked to indicate their value for the tech-

nology, and then randomly assigned to the treatment or control group based on their report.

As we are concerned with the implementability of selective trials, we focus on mechanisms

where each agent has a strictly dominant strategy.26

With quasi-linear utilities, describing a most informative selective trial is straightforward.

Consider the selective trial G∗ such that M = [−1, 1], any agent sending message m is

assigned to the treatment group with probability πm = 1+m
2

(independently of the treatment

of other agents), and must make a transfer p(m) = Vmax

4
m2. One can think of agents as

having a baseline probability of being in the treatment group equal to 1/2 and deciding

by how much they want to deviate from this baseline. An agent with value V (t) chooses

26For some of the mechanisms that follow, an agent with value V has a strictly dominant strategy only
for almost every value V (with respect to the Lebesgue measure on R), rather that every value.
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message m to maximize

πmV (t)− p(m) = V (t)
m+ 1

2
− Vmax

m2

4
.

This problem is concave in m, and first order conditions yield an optimal message m∗ =

V (t)/Vmax. Our first result highlights that no mechanism in strictly dominant strategies can

reveal more information than G∗.

Proposition 3 (value revelation in strictly dominant strategies). Any mechanism G such

that every type t has a strictly dominant message is such that G � G∗.

This implies that the only information we can extract from an agent in dominant strate-

gies is his value for being in the treatment group. This provides a useful bound on what one

can hope to reveal using mechanisms. Another way to say this is that for any mechanism

in strictly dominant strategies, the message m sent by the agent is only a function of the

agent’s value V (t). Note that the mechanism used to elicit agents’ values does not depend

on the principal’s beliefs about the distribution of agents’ types. In that sense G∗ and the

mechanisms we describe below are robust in the sense of Wilson (1987) or Bergemann and

Morris (2005).

While mechanism G∗ is relatively simple, letting agents choose from a continuous menu

of lotteries may be unattractive. In what follows we restrict attention to mechanisms G =

(M,µ) such that M has cardinal n < ∞ and every type t has a strictly dominant action.

For simplicity, but without loss of generality, we assume that the set of possible values

{V (ti)|ti ∈ T} is convex.27 Also without loss of generality, we focus on mechanisms without

redundant messages and assume that every message in M is rationalizable for some type.

Finally, given sequences π = (πk)k=1,··· ,n ∈ [0, 1]n and p = (p(k))k=1,··· ,n ∈ Rn, we denote by

27If it’s not the case, set equality (2) in Proposition 4 holds as long as each side is intersected with
{V (t)|t ∈ T}.
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Gπ,p the mechanism such that M = {1, 2, · · · , n} and an agent that sends message k pays

cost p(k) and is assigned to the treatment group with probability πk.

Proposition 4 (a representation result). Consider a mechanism G = (M,µ) such that M

has cardinal n. There exists a mapping g : M → {1, · · · , n}, as well as numbers V0 < V1 <

· · · < Vn, π1 < · · · < πn and a mapping p : {1, · · · , n} → R such that for all m ∈M ,

{V (ti)|RatG(t) = m} = (Vg(m)−1, Vg(m)) (2)

Eµ(τi|mi = m) = πg(m)

Eµ(pi|mi = m) = p(g(m)).

Conversely, the mechanism Gπ,p is such that a type ti with value V (ti) will find it strictly

optimal to send message j if and only if V (ti) ∈ (Vk−1, Vk).

Furthermore, given strictly increasing value thresholds (Vk)k=0,··· ,n and strictly increasing

probabilities of treatment (πk)k=1,··· ,n ∈ (0, 1)n, it is straight-forward for an experimenter to

design a mechanism that partitions agents’ value according to thresholds (Vk)k=0···n. Specifi-

cally the sequence of transfers (p(k))k=1,··· ,n is such that Gπ,p categorizes values V (t) accord-

ing to the partition {(Vk−1, Vk)|k = 1, · · · , n} if and only if

p(k) = p(k − 1) + (πk − πk−1)Vk−1. (3)

Note that the sequence of transfers is entirely determined by p(1).

Proposition 4 highlights that general selective trials can be thought of as a simple gener-

alization of RCTs in which the agents’ likelihood of being in the treatment group depends on

their willingness to make monetary transfers. Beyond this, Proposition 4 has two main im-

plications. The first is that in any dominant strategy mechanism, agents can be categorized

according to an increasing sequence of thresholds (Vk)k∈{0,··· ,n}. The information revealed
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by the mechanism is which interval (Vk, Vk+1) the agent’s value belongs to. Furthermore

all agents whose value belongs to (Vk, Vk+1) are sampled into the treatment group with the

same probability πk and the sampling probabilities (πk)k∈{1,··· ,n} are strictly increasing in k.

This implies that agents with high values are over-sampled and those with low-values are

under-sampled.

With infinitely many agents, sampling rates do not affect the informativeness of the

data, but this would no longer be the case with finitely many agents. In order to maximize

statistical power at each point along the distribution of values, it it is often desirable to

assign half of the agents with a given value the treatment group and and the other half to

the treatment groups. The fact that sampling rates must increase with value means that this

cannot be achieved and statistical power will generally not be maximized. As Proposition 5

shows, this can be mitigated to the extent that the sequence (πk)k∈{1,··· ,n} must be strictly

increasing, but can in theory be arbitrarily flat.

Proposition 5 (approximately flat sampling). Pick any ρ < ρ in (0, 1). For any mechanism

G = (M,µ) with M finite, there exists a mechanism G′ = (M,µ′) such that G � G′, and

∀m ∈M, Eµ′(τi|mi = m) ∈ [ρ, ρ].

Example 1: Mechanism G∗ can be generalized to mechanisms G∗λ such that M = [−1, 1],

πm = 1+λm
2

and p(m) = λVmaxm2

4
, where λ is the slope of the sampling profile. Note that as

λ goes to zero, each agent will be sampled with probability approaching 1
2
, irrespective of

the message they send. Sending message m = V (t)/Vmax is still a dominant strategy for an

agent of type t.

Still the constraint remains that one cannot over-sample low value agents and under-

sample high value agents. Furthermore, as Proposition 6 shows, reducing over- and under-

sampling to negligible levels, reduces the agents’ incentives to send truthful messages. To

25



put this another way, significant over- and under-sampling may be necessary to generate

reasonably large incentives for agents to reveal their valuation. To formalize this, define

U(t|m,G) = πmV (t) − p(m), the conditional utility of type t when sending message m in

mechanism G.

Proposition 6 (incentives and sampling rates). Consider a mechanism G = (M,µ) with

M finite such that every message is rationalizable for some type and such that ∀m ∈

M,Eµ(τi|mi = m) ∈ [ρ, ρ], then we have that ∀t ∈ T

max
m,m′∈M

|U(t|m,G)− U(t|m′, G)| ≤ 2(ρ− ρ)Vmax.

In particular, if agents have to learn their own value, providing them with incentives to

learn will require the sampling scheme to exhibit sufficient slope.

Example 1 (cont.): Consider an environment in which agents do not know their value

for the good but instead have a uniform prior over [−Vmax, Vmax]. Agents can learn their own

value by paying a cost k. Mechanism G∗λ will lead agents to learn their own value if and only

if the value of knowing one’s type and sending optimal message m∗(t) rather than m = 0 is

greater than cost k, i.e. if and only if

Et[U(t|m∗, G∗λ)] ≥ k ⇐⇒ λ ≥ 12
k

Vmax

.

Taken together, Propositions 4, 5 and 6 imply that using selective trials is costly to the

extent that it leads to oversampling of high value agents and undersampling of low value

agents. However, this cost can be made small if there are many agents or if agents are very

responsive to incentives.
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5.4 Possible Implementations of Selective Trials

There are several ways to implement selective trials. Proposition 4 suggests an implemen-

tation as a menu of lotteries with varying prices and likelihood of treatment. This has the

benefit of highlighting the close relationship between selective trials and RCTs. We give an

example in which agents are categorized in four bins.

Example 2: Suppose the principal wishes to segment the population into four groups

according to the partition {(−Vmax, 0), (0, Vmax

4
), (Vmax

4
, Vmax

2
), (Vmax

2
, Vmax)}, that is, she would

like to divide agents into those who think the technology will harm them on the on hand,

and agents with low, intermediate and high value for the technology on the other hand. The

principal wants to make sure that those that think they will be damaged by the technology

will not receive it or have to pay to be taken out of the experiment, so she sets p(1) = 0 and

π = (0, 1
3
, 1

2
, 3

4
). According to recurrence condition (3), this determines the price schedule

and we obtain p = (0, 0, Vmax

24
, Vmax

6
).

An other common mechanism for eliciting values in experimental settings is that of

Becker, DeGroot, and Marschak (1964) (BDM).28 In the BDM mechanism the agent sends a

message indicating his value. The principal then compares the value conveyed by the agent’s

message to a pre-selected benchmark value: if the agent’s message indicates a value greater

than the benchmark, the agent pays the benchmark and receives the technology. If the

agent’s value is less than the benchmark, no transaction occurs. In a BDM implementation

of selective trials, we randomize the benchmark and this randomization is done independently

for each agent according to the same distribution. If the message space includes [−Vmax.Vmax]

and FBDM(·) has full support over [−Vmax, Vmax], it is a strictly dominant strategy for each

agent to truthfully reveal their value.

28For an overview see Bohm, Lindén, and Sonneg̊ard (1997) and references therein.
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Proposition 7 (BDM Implementation). Every mechanism G in strictly dominant strategies

has an equivalent BDM implementation.

The proof is straight-forward. Given any mechanism G, denote by πG(V ) the probability

that an agent with value V gets the technology. Note that by Proposition 4, we know that

πG(V ) must be increasing.29 Therefore, πG is a c.d.f. over R. It is immediate that the BDM

mechanism with c.d.f. FBDM = πG yields the same data as mechanism G.

Example 2 (cont.): In the case of Example 2, c.d.f. FBDM is given by

FBDM(V ) =



0 if V ≤ 0

1/3 if V ∈ (0, Vmax/4)

1/2 if V ∈ (Vmax/4, Vmax/2)

3/4 if V > Vmax/2.

Each message of the original mechanism is associated with a step in c.d.f. FBDM .

6 Information and Inference

Selective trials extract the maximum amount of information from agents independently of the

underlying model generating outcomes. However, using this data to make inferences about

underlying parameters necessarily requires a prior over the possible underlying structural

models. In this section we consider inference from the principal’s perspective. In Section 7

we study how data affects the beliefs and behavior of agents.

29This implies that πG(V ) has a right-continuous version. We identify the two functions.
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6.1 Robust Identification of Marginal Treatment Effects

The mechanisms we describe in Section 5 are robust in the sense that they elicit the agents’

valuation for every possible profile of types t ∈ TN. In addition, the subsequent random-

ization of agents in the treatment or control groups allows us to identify treatment effects

conditional on an agent’s valuation. This corresponds exactly to the marginal treatment

effects (MTEs) studied by Heckman and Vytlacil (2005).

MTEs are extremely useful in evaluating the effect of a treatment in different policy

contexts, provided the distribution of agents’ types does not change. For example, a policy

maker might like to use the results of an RCT to understand the effect of partially subsidizing

access to a program. Clearly, those who decide to join the program at its subsidized rate are

not representative of the general population. Thus, the results of the RCT are not necessarily

useful in projecting the impact of improved accessibility on outcomes. In contrast, the MTEs

generated by a selective trial can be used to predict the effect of the program for those who

are likely to join the program for different levels of subsidization. In the same way that

randomized controlled trials provide assumption-free instruments to measure the effect of

treatment on the treated, selective trials provide assumption-free local instruments that

Heckman and Vytlacil (2005) show are necessary to identify MTEs.30

MTEs contain the necessary information to perform policy simulations only if the dis-

tribution of agents’ types is fixed across different policies. This requirement may fail in a

number of settings. In particular, to the extent that beliefs (in our notation θs) are mal-

leable and respond to data, the distribution of types in the same population of agents may

change from one period to the next. In addition, some policies, for instance advertisement

campaigns, can change the agents’ preferences (in our notation ηs). In such circumstances,

one may be interested in uncovering structural parameter R to predict how policies affecting

beliefs or preferences would change the realized returns to the technology.

30See Moffitt (2008) for other recent work on the estimation of marginal treatment effects.
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6.2 Sufficient Conditions for Full Inference

Given a state R, a distribution of types χ ∈ ∆(T ), and an interval of values V ⊂ R, let us

denote by F̂ 1
y (R,χ,V) the distribution of outcomes among agents with value V ∈ V when

assigned to the treatment group. Similarly let us denote by F̂ 0
y (χ,V) the distribution of

outcomes among agents with value V ∈ V when assigned to the control group.

Since selective trials identify the agents’ willingness to pay for the treatment, they are suf-

ficiently informative to infer state R only if knowing the agents’ values allows to disentangle

potential confounding effects. This is made more specific in the following definition.

Definition 2 (distinguished states). We say that two states R and R′ in R are distinguished

if and only if for any two distributions of types χ and χ′ there exists an interval V such that

(F̂ 1
y (R,χ,V), F̂ 0

y (χ,V)) 6= (F̂ 1
y (R′, χ′,V), F̂ 0

y (χ′,V)). (4)

The purpose of Definition 2 is the following. We want to use data on outcomes to

distinguish whether the fundamental state is R or R′. The difficulty is that potentially, the

same outcome data may be rationalized different combinations of returns and distributions

of types, (R,χ) and (R′, χ′). Condition (4) ensures that any two possible rationalizations of

the outcome distributions can be distinguished by considering the conditional distribution

of outcomes for agents with values in some interval V . The following result is immediate.

Proposition 8. Selective trials allow to identify the fundamental state R for any realization

of the data if and only if any two states R and R′ are distinguished.

While distinguishability is a strong condition, it will be satisfied in a number of relevant

environments.

Example 3: Consider for instance the example in Section 3.2, except that we allow R to

take value in the entire interval [RL, RH ] and e to take value in [0, 1]. As before, y1
i = Rei+εi
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and y0
i = εi. If there exists V + such that for all types t satisfying V (t) > V +, e∗(t) = 1,

then any mechanism which identifies agents with value greater than V + allows the principal

to infer R.

An other interesting case is one where there is uncertainty over the technology’s baseline

returns, as well as the technology’s returns to effort.

Example 4: Imagine that state R takes the form R = (Rb, Re) ∈ R2. Parameter Rb corre-

sponds to baseline returns for being in the treatment group and parameter Re corresponds

to additional returns to effort for those in the treatment group. We have e ∈ [0, 1] and

y1
i = Reei + Rb + εi while y0

i = εi. If there exists V + and V − such that all types with

V (t) > V + choose e∗(t) = 1 and all types with V (t) < V − choose e∗(t) = 0, then any

mechanism which identifies agents with value below V − and agents with value above V +

allows the principal to infer R.

Note that in both of the above examples, inference relies on the knowledge of effort deci-

sions taken by extreme types. This is similar to inference strategies that rely on identification

at infinity (Heckman, 1990).

6.3 Incomplete Inference—A Monte-Carlo Study

We now turn to settings in which full inference is not possible and show, by way of simulation,

that selective trials can still significantly improve the quality of information generated by an

experiment. We consider the model of Section 3 and use a selective trial with three bins,

similar to that described in Example 2. Specifically, agents have public outcome:

yi = τi(R + ri)ei + εi
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where, as in Section 3, R ∈ {RH , RL} and ei ∈ {0, 1}. Each agent has a private belief

θi = Probi(R = RH), and decides to put effort into using the technology when:

ei = 1 ⇐⇒ θiRH + (1− θi)RL + ri − ci > 0

We consider a selective trial where agents can send one of three messages mi ∈ {1, 2, 3} that

are designed such that a message mi = 1 indicates Vi ∈ (−∞, 0], mi = 2 indicates Vi ∈ (0, 1]

and mi = 3 indicates Vi ∈ (1,∞). Note that all agents who will not expend effort send

mi = 1. The treatment probabilities for each message are {0.35, 0.5, 0.65}, respectively. The

principal observes {mi, τi, yi}i∈N , and makes inferences using this data.

For each simulated trial, we have N agents, each with private belief drawn from θi ∼

Beta(1 + λ, 1 + (1 − λ)) where λ ∼ U [0, 1] is an unknown parameter. Uncertainty over λ

corresponds to aggregate uncertainty over the distribution of beliefs. Each agent has id-

iosyncratic returns ri ∼ N(0, σ) where σ ∼ U [0, σ] is also an unknown parameter, and σ

is known. Uncertainty over σ corresponds to aggregate uncertainty over the distribution

of idiosyncratic returns. Altogether, the fact that there is aggregate uncertainty over both

idiosyncratic returns and beliefs means that if a population has a large amount of agents

with high values, it is hard to determine whether this is because many agents have opti-

mistic beliefs or whether because many agents have high idiosyncratic returns. For this

reason, perfect inference is impossible. Finally, εi ∼ N(µε, σε) where µε and σε are known

parameters.

Throughout, we set RH = 3, RL = 0.5, and ci = 2. Additionally, σ = 3, µε = 1 and

σε = 5. Finally, we set Prob(R = RH) = 0.5.
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6.3.1 Conditional and Unconditional Treatment Effects

We first use data produced by our simulations to estimate the returns of the technology

conditioning on the declared value of agents. Figures 2 and 3 present the results of OLS

regressions from 10,000 experiments, each with 200 agents. Note that the unconditional

treatment effects estimated using RCTs and displayed in Figure 2 systematically underesti-

mate the true returns to the technology as approximately 56% of the agents do not expend

effort.

0

50

100

150

−2 0 2 4 6 8
Histogram of OLS estimates when R=3

Notes: Results of 10,000 trials. Data from each trial is used to
estimate yi = α + βτi + εi, and histogram presents estimates of β
for each trial where R = RH . Vertical line indicates RH .

Figure 2: RCTs only allow the estimation of a single treatment effect, which is systematically
biased downwards conditional on R = RH .

Selective trials allow the estimation of the treatment effect conditional on the message

sent by the agents, as shown in Figure 3. These estimates may be useful in determining

which agents should receive a subsidy for, and which should receive education about, the

technology.

The first panel of Figure 3 shows the treatment effect for agents who sent mi = 1. These
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agents will not put in any effort, and their returns to treatment are on average estimated to

be zero. The second panel shows OLS estimates for agents who sent mi = 2 (Vi ∈ (0, 1]),

and the third panel shows agents with mi = 3 (Vi ∈ (1,∞)). The second and third panel

are thus the treatment effects conditional on the agents value being between zero and one,

and being greater than one. Note that estimates are quite a bit higher when mi = 3. This

is to be expected as E[ri|mi = 3] > E[ri|mi = 2] > 0. Indeed, agents who send messages

indicating they have higher values have, on average, higher idiosyncratic returns. Note also

that the variance of estimates is larger in a selective trial because fewer agents are in each

group.

To draw inference from this data while controlling for possible selection bias, i.e. the fact

that E[ri|mi = 3] > E[ri|mi = 2] > 0, we turn to Bayesian inference.

6.3.2 Bayesian Policy Evaluation

The principal wants to subsidize a technology, and possibly launch an information campaign

to encourage take-up if R = RH , but not if R = RL. We use Bayesian inference, and assume

that the principal will subsidize the technology if the posterior probability that R = RH

given the data from the trial is greater than 0.5. Throughout this section, the principal

knows the data generating process, whether that data is produced by an RCT or a selective

trial. Due to computational constraints we use only N = 100 agents per trial.

As usual, the principal can make two types of error: a false positive occurs when the

principal subsidizes the trial even though R = RL, and a false negative occurs when she

fails to subsidize the technology when R = RH . The panels of Figure 4 show how the

improvement in inference due to using a selective trial rather than an RCT varies with the

percent of agents who do not expend effort (ei = 0).31 For our limited simulation, selective

31The code used to produce the simulations, and documentation on Bayesian inference from this model is
available from the authors on request.
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Figure 3: Selective Trials allow the estimation of the returns to technology, conditional on
reported values. 35



trials consistently reduce total errors by about 50%. Note that as fewer agents expend effort

the selective trial also samples fewer agents, which results in a slightly smaller improvement

in total errors.

The second column of Figure 4 shows the corresponding error rates when the principal

observes data generated by a maximally informative selective trial that identifies each agent’s

exact valuation. The improvement over the selective trial with three bins is small as much

of the informational gains come from knowing which agents will put in effort (ei = 1) and

which will not.

Altogether, this section shows that inference depends critically on the principal’s beliefs

about the way in which data is generated. In the next section we extend this analysis and

consider what agents will infer from data. We also examine the ways in which differences

in the principal’s and agents’ beliefs influence the principal’s incentives to setup informative

experiments for the benefit of the agents.

7 Information, Persuasion and Technology Diffusion

In this section we take the perspective of a principal that knows the technology has high

returns and thus would like agents to adopt it. To the extent that the agents’ effort decisions

depend on their beliefs and that their beliefs respond to information, providing agents with

relevant data may improve take-up. A reasonable and salient way to provide information

is to run public experimental trials for the benefit of the agents. We focus on a situation

where once such a public experiment is setup the principal cannot suppress the data, even

if it happens to make the technology look bad. This approach is similar to that of Rayo

and Segal (2008) and Kamenica and Gentzkow (2009).32 Our model differs as we consider

32In particular, they also consider a framework in which the principal can commit not to interfere with
realized data.
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Figure 4: Selective trials consistently reduce inference errors.
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an environment where the principal has limited information about the agents’ types. In

particular we allow for agents to have unknown heterogenous beliefs. As a consequence

we do not try to fine tune the optimal information revelation mechanism to the principal’s

beliefs. Rather, we characterize properties of the environment which ensure that optimal

mechanisms take a simple form: either reveal all possible information, or reveal as little

information as possible.

We focus exclusively on dominance-solvable mechanisms G. Thus, under common knowl-

edge of rationality, there is a unique mapping from types to messages. This means that a

belief fi(t) over types t ∈ TN induces a unique rationalizable belief over data profiles d. In

what follows, we denote by dG the data generated by mechanism G and denote by fi(dG)

agent i’s beliefs over data generated by mechanism G. We use similar notation to denote

conditional distributions.

7.1 The Common Prior Case

When the principal and the agents have a common prior over R and t, then it is obvious that

providing more information in the first stage improves the welfare of agents in the second

stage. This occurs because the principal can trust agents to “do the right thing” with the

data (Van den Steen, 2005).

As Section 3.3 highlighted, this is not true anymore when the principal and agent have

different beliefs. Indeed, while data will help an agent make better decisions from his per-

spective, this need not be the case anymore from the principal’s perspective. As in many

environments with heterogeneous beliefs the principal has incentives for paternalism (see

Sandroni and Squintani (2007) for a related point in the context of insurance).
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7.2 Data and Beliefs when Priors are Heterogeneous

We first consider when data will move the agents’ beliefs closer to those of the principal,

before introducing the principal’s specific optimization problem in the next subsection. We

focus on the case where there is a set of states RH ⊂ R where the technology can be thought

of as having high returns and RL ≡ R \ RH is the set of states where the technology has

low returns. The principal believes R ∈ RH with probability 1. Given data d, agent i’s

conditional belief that R ∈ RH is:

θi(RH |d) =
θi(RH)fi(d|RH)

θi(RH)fi(d|RH) + θi(RL)fi(d|RL)
.

The question is whether data will move belief θi(RH |d) closer to θP (RH) = 1. The change

in agent i’s belief is given by,

∆i(d) ≡ θi(RH |d)− θi(RH) = θi(RH)θi(RL)
fi(d|RH)− fi(d|RL)

θi(RH)fi(d|RH) + θi(RL)fi(d|RL)
.

Upon receiving data d, agent i will increase or decrease his belief that R ∈ RH depending

on whether fi(d|RH)− fi(d|RL) is positive or not. Note that from the perspective of agent

i, ∆i(d) has zero expectation, that is, agent i does not expect her beliefs to change in

a systematic way. In contrast, as the principal believes that R ∈ RH , it may be that

EP [∆i(d)] 6= 0. Intuitively, it is likely that from the principal’s perspective ∆i(d) will be

biased upwards, i.e. giving agents data should lead them to agree with her. However this

need not be the case when the principal and agent i hold different beliefs about what data d

will be generated conditional on state R, i.e. when agents and the principal disagree about

how to interpret the same data.

We provide conditions which ensure that data will on average push the agents’ beliefs

closer (or further) from those of the principal.
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Definition 3 (weakly optimistic conditional beliefs). The principal has weakly optimistic

conditional beliefs over the data generated by G if and only if for any type ti and event E,

fP (dG|RH , ti, E) ≥ fi(dG|RH , E) ⇐⇒ fi(dG|RH , E) ≥ fi(dG|RL, E). (5)

When the principal has weakly optimistic conditional beliefs, she puts weakly higher

probability than agent i (conditional on RH) on data dG such that ∆i(dG) ≥ 0, i.e. on data

that increases agent i’s belief that R ∈ RH . A particular case of weakly optimistic conditional

beliefs is that of common conditional beliefs, where fP (t|R) = fi(t|R), i.e. conditional on

state R, agent i and the principal have the same beliefs over the distribution of types in the

population, and hence they have the same beliefs about what data dG will be generated.

Note that this does not preclude heterogenous beliefs over state R. Weakly optimistic beliefs

stand in contrast with strongly pessimistic beliefs.

Definition 4 (strongly pessimistic conditional beliefs). The principal has strongly pessimistic

conditional beliefs for the data generated by G if and only if for any type ti and event E,

fP (dG|RH , ti, E) ≥ fi(dG|RL, E) ⇐⇒ fi(dG|RH , E) ≤ fi(dG|RL, E). (6)

Condition (6) implies that the principal puts higher probability than agent i (conditional

on RL) on data dG such that ∆i(dG) ≤ 0, i.e. on data that decreases agent i’s belief that

R ∈ RH . As discussed in Section 3.3.2, a natural environment in which the principal will

have strongly pessimistic conditional beliefs is one in which the agents have overly high

expectations about the outcomes of treatment conditional on R ∈ RH . Imagine for instance

that the agent believes that conditional on R ∈ RH the data will look extremely good, to

the point that the principal expects such data to have zero probability. Then the principal

knows that whenever data has positive conditional probability from her perspective, it is
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disappointing for the agents. This implies that the principal holds strongly pessimistic

conditional beliefs.

As the following proposition shows, Definitions 3 and 4 allow us to characterize when

providing agents with more informative data will move their beliefs closer (or further) from

those of the principal.

Proposition 9 (biased posteriors). Consider dominance solvable mechanisms G and G′

such that G′ � G. Whenever the principal holds weakly optimistic conditional beliefs over

dG, then EP [∆i(dG)] ≥ EP [∆i(dG′)].

Whenever the principal holds strongly pessimistic conditional beliefs over dG, then EP [∆i(dG)] ≤

EP [∆i(dG′)].

In words, from the perspective of a principal with weakly optimistic conditional beliefs,

giving agents information generates a positive bias in agents’ beliefs, whereas, from the

perspective of a principal with strongly pessimistic conditional beliefs information generates

a negative bias in agents’ beliefs.33

Intuitively, if the principal expects that information will lead agents’ beliefs to converge

towards hers, information should improve welfare from the principal’s perspective. The last

remaining issue is that while information may improve the agents’ beliefs on average, it

need not improve them for sure when information is noisy. We explore this trade-off in the

following section.

33If G is strictly more informative than G′, in the sense that the additional data extracted by G can change
the agent’s posterior beliefs, then the inequalities in Proposition 9 are strict.

41



7.3 Bias, Variance, and the Optimality of Information Provision

In this section we are interested in how data d affects the agents’ effort decisions e∗(θi(·|d), ηi).

We consider an environment in which e ∈ R and the principal wants to maximize

W = EP

∫
e∗(θi(·|d), ηi)di. (7)

As discussed in the previous section, θi(·|d) is a random variable centered on θi from the

perspective of the agent but may have some bias from the perspective of the principal.

Given (7), e∗(θi(·|d), ηi) can be seen as the principal’s utility over agent i’s beliefs. In this

context, θi is a sure outcome, and θi(·|d) is a lottery over agent i’s beliefs. Therefore, the

principal’s choice to provide information or not can be seen as a choice problem between a

sure outcome and a biased lottery. Given this interpretation, it is intuitive that the principal’s

optimal decision will depend both on the slope and the convexity of mapping e∗ with respect

to θi(·|d). Distribution θi(·|d) ∈ ∆(R) is potentially a high dimensional object. For the

purpose of tractability, we focus on the case where R = {RL, RH}, so that beliefs θi ∈ ∆(R)

are unidimensional. We abuse notation and define θi ≡ θi(R = RH), player i’s belief that

R = RH . We also define θi(dG) ≡ θi(R = RH |dG). Finally, we assume that ∂e∗

∂θ
≥ 0 so

that agents with higher beliefs put higher effort, and the principal wants to encourage high

beliefs.

To increase the smoothness of the mapping between beliefs and effort, we average effort

over different types. To do so, we decompose payoff shock ηi as an aggregate and an idiosyn-

cratic shock, i.e. ηi = (η
||
i , η

⊥
i ), where η

||
i is correlated among agents, and hence is correlated

to the data, while η⊥i is independent of all other variables, including the aggregate data.

Given ti = (θi, η
||
i , η

⊥
i , Fi), we define

φ(θ, ti) =

∫
η⊥i

e∗(θ, ηi)dFP (η⊥i |θi, η
||
i , Fi).
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Note that ∂e∗

∂θ
≥ 0 implies ∂φ

∂θ
≥ 0. The principal is maximizing W = EP [φ(θi(d), ti)]. The

following example demonstrates the transformation from e∗ to φ.

Example 5: Recall the example of Section 3. Assume that ui(ei) = Ei[yi|ei]− ciei, with ci

uniformly distributed over [0, c], independent of other data, RL < c < RH and ei ∈ {0, 1}.

In this case, η⊥i = ci. We have e∗(θ, ci) = 1
θ≥ ci−RL

RH−RL
, which is discontinuous in θ. In contrast,

φ(θ, ti) = [θ(RH −RL) +RL]/c is linear in θ.

We now provide sufficient conditions under which more informative mechanisms generate

greater expected effort from the agents.

Proposition 10 (sufficient conditions for informativeness to be optimal). Consider a dom-

inance solvable mechanism G. Assume that for any data dG, θi(dG) ∈ [θ, θ]. If the principal

has weakly optimistic conditional beliefs and,

inf
θ∈[θ,θ]

∂φ(·, ti)
∂θ

+
1

2
inf

θ∈[θ,θ]

∂2φ(·, ti)
∂θ2

≥ 0, (8)

then for all dominance solvable mechanisms G′ � G, we have W (G′) ≤ W (G).

As φ is increasing in θ, a sufficient condition for more information to increase the prin-

cipal’s welfare is for φ to be convex. This is a property that is frequently encountered in

the industrial organization literature on experience goods. A similar condition appears in

Kamenica and Gentzkow (2009). Our results differ as our model allows for heterogeneous

priors and thus, the agents’ posteriors may be biased from the principal’s perspective.

Given Proposition 9, the principal’s choice over whether or not to provide information

can be framed as a choice between a biased lottery and a sure prize. Therefore it is not

surprising that (8) involves a trade-off between the first and second derivative of φ. Whenever

Proposition 10 applies, information will increase expected effort independently of whether
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agent i starts with a high or low belief that R = RH , and independently of how informative

mechanisms G and G′ are.

It is important to note that Proposition 10 holds under the condition that the principal

has weakly optimistic conditional beliefs. When the principal has strongly pessimistic beliefs,

the agents’ posteriors have a negative bias from the principal’s perspective, EP [θi(d)] ≤ θi.

If this is the case, the next proposition shows that under broad circumstances it will be in

the principal’s interest to provide as little information as possible.

Proposition 11 (information provision under pessimistic beliefs). Consider a dominance

solvable mechanism G. Assume that for any data dG, θi(dG) ∈ [θ, θ]. If the principal has

strongly pessimistic conditional beliefs and,

− inf
θ∈[θ,θ]

∂φ(·, ti)
∂θ

+
1

2
sup
θ∈[θ,θ]

∂2φ(·, ti)
∂θ2

≤ 0 (9)

then for all dominance solvable mechanisms G′ � G, we have W (G′) ≥ W (G).

In particular, when Proposition 11 applies, it will be in the principal’s interest not to

run any experiment. It is tempting to interpret situations where the principal holds strongly

pessimistic beliefs as situations where the agents are systematically misinterpreting informa-

tion. If this is the case, the principal may be able to frame (and simplify) the information

in a way that the agents will understand better. In that sense, when information is used to

persuade, it may be worthwhile to sacrifice precision for the benefit of clarity.

Example 5 (cont.): Consider φ from the previous example. Then, ∂φ
∂θ

= (RH−RL)/c ≥ 0

and ∂2φ
∂θ2

= 0. This implies that both (8) and (9) are satisfied. The principal cares only about

the expected beliefs of the agents. This implies that whether or not the principal should

provide information depends on whether the principal has weakly optimistic or strongly

pessimistic conditional beliefs. In the focal case where principal and agents have common
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conditional beliefs, that is fP (dG|R,E) = fi(dG|R,E), the principal will find it advanta-

geous to run the most informative experiment. If on the other hand, the principal believes

that agents are going to be systematically disappointed by data, she should not run any

experiment.

8 Discussion

Our mechanism design approach suggests that adding a simple selection mechanism to stan-

dard RCTs can increase their informativeness. By eliciting agents’ private value of treatment,

selective trials help control for unobservable effort decisions that reduce the informativeness

of outcomes. Further, under fairly broad conditions, providing agents with better informa-

tion will increase agents’ use of valuable technologies. Thus, selective trials could be used as

a way to promote adoption.34

Although our approach emphasizes both generality and robustness, it is important to

recognize its limitations. First, we focus entirely on eliciting the agents’ private value for the

technology. This information is useful in settings where the private returns are potentially

large, but less useful when the technology’s returns are mostly public. More sophisticated

mechanisms, such as mechanisms where assignment is not independent across agents, could

potentially elicit additional information on agents’ beliefs about the public returns of the

technology. This is beyond the scope of this paper, but is an attractive avenue for future

research.

Second, because selective trials are somewhat more sophisticated than RCTs, they might

increase the artificiality of the experiment. This may make experimental disturbances such as

the Hawthorne effect more pronounced. The John Henry effect, where agents in the control

group feel compelled to compete with agents in the treatment group, may be a particular

34This is also suggested by Oster and Thornton (2008).
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concern as in a selective trial agents make an explicit choice between lotteries, and some

agents who signal a high valuation may be assigned to the control group. It is difficult to

anticipate the prevalence of these problems, but we believe they may be minimized by careful

experimental design.

We draw attention to several possible options for dealing with experimental disturbances

that fit within our model and may be of practical use. First, agents can be dealt with on

an individual basis and need not know the assignment of others in the first stage of the

experiment. Second, agents in the control group can be given a consolation prize which

they may, in fact, prefer to the treatment. This would help reduce the feeling that those

who got the treatment are somehow winners and that the losers must catch up with them.

Third, our analysis extends naturally to settings where lotteries are associated with different

inconvenience costs rather than different prices. For example, agents who want the treatment

with high probability may be required to perform boring tasks, sit through long information

sessions, take tests, or come back to learn their treatment status. Fourth and finally, the

choices that agents make need not be framed as lotteries, in the sense of gambling. For

instance, in a BDM implementation, agents only have to pay if they are assigned to the

treatment group, although the amount they do pay depends on the message they send.35

Altogether, we want to emphasize that the mechanisms we describe in this paper have many

degrees of freedom and can be adapted to a variety of environments.

A third potential limitation of our approach is that we use a Bayesian model of learning

to study the effect of information on future usage, which suggests that we require high

levels of rationality on the part of players. However, because we allow the agents to have

35Each of these suggestions may have its own drawbacks. Agents that score high on the test will be different
from agents that score low. Information sessions that increase knowledge about how to use the technology
may be a benefit, rather than a cost. Telling agents assigned to the control group that the treatment is no
longer available may make them feel cheated. This may be interpreted as deception and could significantly
affect the success of future studies; see Ortmann and Hertwig (2002). We bring these options up not as tried
and true methods, but as possibilities practitioners may wish to consider.

46



heterogenous priors, and in particular hold beliefs that are systematically different from

those of the principal, we believe that our approach is flexible enough to accommodate many

boundedly rational models of learning. For example, our model can accommodate agents

that do not take selection bias into account when they update. Imperfect updating of this

form seems to be at the basis of the winner’s curse, and appears in many behavioral models

that try to improve on the standard Bayesian framework (see e.g., Eyster and Rabin, 2005;

Crawford and Iriberri, 2007). In that setting, oversampling high value agents would help

promote adoption as other agents do not take into account the fact that the treatment

group selected itself on the basis of high anticipated return. Conversely, our model can

accommodate agents that systematically overestimate others’ effort in using the technology,

which would lead them to decrease their estimate of the technology’s value when presented

with others’ outcomes. In such a setting, improving both the quality and the clarity of

the data is essential to insure that providing information does not reduce usage of good

technologies.

A Extensions

A.1 Non-quasilinear preferences

Section 4 makes the assumption that agents have quasilinear utilities and that mechanisms

G = (M,µ) map messages m ∈ M to assignments over treatment τ ∈ {0, 1} and monetary

transfers p ∈ R. In this section we assume that instead of monetary transfers p, the agent is

assigned some action a ∈ A, which can either be thought of as an actual action (e.g. wait in

line) or as a good (e.g. a pound of sugar, a pack of cigarettes. . . ). For simplicity, we focus

on the case where A is finite. A mechanism G = (M,µ) is now characterized by a message

space M and an assignment function µ : M → ∆({0, 1} × A).

The principal’s effort decision e ∈ E, the possible returns to treatment R ∈ R, the agents’
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types t = (θi, ηi, Fi) ∈ T , and the outcome distributions F 1
y (R, η, e) and F 0

y (η) are the same

as in Section 4. The preferences of agent i are now represented by a general utility function

u(ηi, ei, yi, ai).

We denote by U(θi, ηi, τi, ai) the indirect utility of type ti when her assignment is (τi, ai).

Depending on whether or not agent i is assigned to the treatment group, we have,

U(θi, ηi, 1, ai) = max
e∈E

∫
R∈R

∫
y∈Y

u(ηi, e, ai, y)dF 1
y (R, ηi, e)dθi(R)

U(θi, ηi, 0, ai) =

∫
y∈Y

u(ηi, 0, ai, y)dF 0
y (ηi).

Definition 5 (normalized utilities). Denote U0 the set of normalized utility functions defined

by

U0 = {U : {0, 1} × A→ [0, 1] | min
(τ,a)∈{0,1}×A

U(τ, a) = 0 and max
(τ,a)∈{0,1}×A

U(τ, a) = 1}.

For every type ti = (θi, ηi, Fi), type ti’s preferences U(θi, ηi, τ, a) over (τ, a) ∈ {0, 1} × A

are uniquely represented by an element of U0. We normalize all utilities in this way from

now on. The data generated by mechanism G = (M,µ) is a sequence d = (mi, ai, τi, yi)i∈N.

Our notion of informativeness of mechanisms remains that of Definition 1. We denote U(t)

the utility function in U0 that represents the indirect preferences of an agent with type t.

Utility U(t) is the only information that can be elicited from an agent with type t by using

mechanisms in dominant strategies, i.e. in any mechanism G = (M,µ), the best response

m(t) of an agent with type t is really a function m(U(t)) of type t’s indirect utility.The results

of Sections 6 and 7 are unchanged provided that we replace V (t) by U(t). We now outline

how, as in Section 5, it is possible to elicit the utility U(t) of each type. We only describe

one mechanism which achieves that. There are many variations which may be better suited

to implementation in the field.
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We denote by L = ((τ 1, a1), (τ 2, a2), z) ∈ ({0, 1} × A)2 × [0, 1] a lottery over two as-

signments (τ 1, a1) and (τ 2, a2), where assignment (τ 1, a1) is chosen with probability z. We

denote by L the uniform distribution over such lotteries and consider i.i.d. random variables

(Lk)k∈{1,2} distributed according to L.

Consider the mechanism G̃ = (M,µ) such that M = U0. Given a message m ∈ U0,

assignment µ is decided as follows:

1. two lotteries L1 and L2 are drawn according to L

2. the experimenter picks the lottery L∗ that maximizes the agent’s stated preferences m

3. the agent’s assignment is drawn according to lottery L∗.

Clearly, it is in the agent’s interest to state his true preferences. Furthermore, every type

has positive probability of being assigned to every pair (τ, a) ∈ {0, 1}×A. It follows that G̃

is a most informative mechanism.

A.2 General mechanisms

Throughout the paper we consider mechanisms such that the assignment of agent i depends

only on the message sent by agent i. This facilitates the implementation of such mechanisms

to the extent that transfers between the agents and the principal only need to occur once, and

the assignments of multiple agents need not occur at the same time. This being said, although

there may be significant practical hurdles, there is no theoretical difficulty in allowing the

assignment of agent i to be dependent on: the outcome yi of agent i, the outcomes y−i of

other agents, the messages m−i sent by other agents. While considering such mechanisms is

beyond the scope of our analysis, we outline here what sort of information they could elicit

and the situations in which that information could be valuable.
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Assignment conditional on own outcome: By allowing the agent to choose between

contracts that depend on his outcome yi, it is possible to elicit the beliefs of agent i over his

outcome yi. A side effect is that such contracts will change the agents’ incentives to exert

effort. This may not be a problem if contracts related to yi simply ensure that the agent

puts high effort trying to adopt the technology. However, such contracts may also lead the

agent to put effort manipulating his measured outcome.

Assignment conditional on other’s outcomes: Offering agents contracts indexed on

other’s outcomes would potentially allow to infer the agent’s beliefs over how the treatment

affects the returns of others. This might also provide information about what the agent

perceives are the social returns to the treatment.

Assignment conditional on other’s messages: Finally, one may elicit an agent’s beliefs

over others’ beliefs by making his assignment dependent on others’ messages. For instance

on top of mechanism G∗, one could offer the agent some money to guess the average message

of others in the population. This would provide useful information to understand social

learning (i.e. do agents think that others put effort. . . ).

A.3 Forward looking agents

The framework of Section 4 considers myopic agents that only maximize their current payoffs.

When an agent of type t is forward looking, his value V (t) for being in the treatment group

simply becomes

V (t) = max
e∈E

∫
R∈R

∫
y∈Y

v(η, e, y)dF 1
y (R, η, e)dθ(R) + δW (t, θ(·|I)) (10)

where δ is the agent’s discount factor and W (t, θ(·|I)) is the continuation value of an agent

with initial type t whose beliefs θ(·|I) have been updated after receiving information I.
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Provided that the experimental setup does not change the information I obtained by the

agent at the end of the experiment (this will be the case if the outcome of the experiments

are only privately observed), then eliciting the agent’s valuation does not change the agent’s

effort and the analysis of Sections 5 and 6 is unchanged. Because Section 7 specifically

considers the impact of information provision, the analysis there becomes more subtle.

In Section 7 we consider the effect of giving agents information about the technology.

One way to provide this kind of information would be to run a public experiment. The issue

is that anticipating to receive information may change the agents’ incentives to put effort

in the first period. Indeed, as (10) highlights, agent’s incentives to put effort depend on

the value of the information I generated by his private experimentation. The perspective

of getting additional information later on may reduce the agent’s incentive to experiment.

Chamley and Gale (1994) study this point in detail in a dynamic model of investment.

B Proofs

Proof of Proposition 1: We break down the data dG in two subsamples (d
σ1(i)
G )i∈N and

(d
σ0(i)
G )i∈N such that σ0, σ1 are non-decreasing mappings from N to N, and for all i ∈ N,

τσ1(i) = 1 and τσ0(i) = 0. Since ∀m ∈ ∪t∈TRatG(t),Eµ(τi|mi = m) ∈ [ξ, 1 − ξ], we have that

each such subsample is infinite and we can pick σ1 and σ0 to be strictly increasing from

N→ N. We define mapping h such that h(dG) ∼ dG0 as follows.

We use the notation h(dG) = (dhi )i∈N, where dhi = (mh
i , p

h
i , τ

h
i , y

h
i ). For every i ∈ N, we

set mh
i = ∅, phi = 0, we draw τi as the Bernoulli variable of parameter π0. Finally we set

yhi = yστi (i). It is easy to check that indeed, h(dG) ∼ dG0 . �

Proof of Proposition 2: Since an agent’s outcome is independent of the message she sends,

any strategy is weakly dominant, in particular truthful revelation of her own type. �

51



Proof of Proposition 3: The proof is very similar to that of Proposition 1. Consider a

mechanism G = (M,µG) such that every player has a strictly dominant strategy. We show

that G � G∗. An agent with value V (ti) chooses a message mi to solve

max
m∈M

Eµ(τi|mi = m)V (ti)− Eµ(pi|mi = m).

This problem is entirely defined by player i’s value V (ti). Since players have strictly dominant

strategies, this problem must have a unique solution. Hence we can define the mapping

hM(V (ti)) ≡ arg maxm∈M Eµ(τi|mi = m)V (ti)− Eµ(pi|mi = m). By definition hM(Vi) ∈ M .

We now construct a mapping h : D → ∆(D) such that the data generated by G can be

simulated from data generated by G∗ using mapping h. For simplicity we describe the

mapping h in the case where M is finite. Given dG∗ , h(dG∗) is generated iteratively as

follows.

First, we break down the basic data dG∗ in 2 × cardM subsets, according to treatment

τ and the message m corresponding to the value declared by the agent. Formally, for all

m ∈ M and τ ∈ {0, 1}, we define (d
σm,τ (i)
G∗ )i∈N ordered subsequence such that for all i,

hM(Vσm,τ (i)) = m and τσm,τ (i) = τ . Since (V − Vmax)/V ∈ (0, 1), all these subsamples are

infinite. Hence, σm,τ can be chosen to be strictly increasing from N → N. We use these

subsamples to simulate data dG.

Let us denote h(dG∗) = (dhi )i∈N. For all i ∈ N, dhi = (mh
i , p

h
i , τ

h
i , y

h
i ). We first set

mh
i = hM(Vi). Then using µG(mh

i ), we draw values τhi and phi . Finally we set yhi = yσ
mh
i
,τh
i

(i).

This defines h : D → ∆(D). It is easy to check that h(dG∗) ∼ dG.36 This concludes the

proof. �

36Note that for the sake of notational simplicity, this construction ends up wasting data points by not
taking consecutive elements from the subsamples. This is inconsequential here since we have infinitely many
data points.
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Proof of Proposition 4: Consider the probabilities Eµ(τi|mi = m) for all m in M . Since

every message is uniquely rationalizable for some type, it must be that for all m 6= m′,

Eµ(τi|mi = m) 6= Eµ(τi|mi = m′). Otherwise, either messages m and m′ are equivalent for

all types, or one message dominates the other for all types. Hence, there exists a mapping

g : M → {1, · · · , n} such that when we define πk = Eµ(τi|mi = g−1(k)) for k ∈ {1, · · · , n}

we have π1 < · · · < πn.

In what follows we assume without loss of generality that M = {1, · · · , n} and g(k) = k

for all k. We define p(k) = Eµ(pi|mi = k). For any k > 1, let us consider V (ti|mi = k)

the value of a type ti choosing to send message k and V (ti|mi = k − 1) the value of a type

choosing to send message k − 1. We have that

πkV (ti|mi = k)− p(k) ≥ πk−1V (ti|mi = k)− p(k − 1)

πkV (ti|mi = k − 1)− p(k) ≤ πk−1V (ti|mi = k − 1)− p(k − 1).

Subtracting the two inequalities yields that (πk−πk−1)(V (ti|mi = k)−V (ti|mi = k−1)) ≥ 0,

which implies that V (ti|mi = k) ≥ V (ti|mi = k − 1). Let us denote by Vk the maximum

value such that a type of that value V (ti) would send message k. We define V0 = −V . It

must be that an agent i sends message k if and only if her value V (ti) belongs to [Vk−1, Vk].

Furthermore, since πk − πk−1 > 0, agent i has strict incentives to send message m whenever

V (ti) ∈ (Vk−1, Vk).

The second part of the proposition is immediate given quasilinear preferences. �

Proof of Proposition 5: Given mechanism G = (M,µ), we define mechanism G′ = (M,µ′)
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as follows:

∀m ∈M, µ′(m) =


τ = 0, p = 0 with probability ρ

µ(m) with probability ρ− ρ

τ = 1, p = 0 with probability ρ

Clearly mechanism G′ is strategically equivalent to mechanism G. The proof that G � G′ is

omitted since it is simple and essentially identical to that of Propositions 1 and 3. �

Proof of Proposition 6: For any message m ∈ M , we define πm = Eµ(τi|mi = m) and

p(m) = Eµ(pi|mi = m). Consider two messages m and m′ respectively sent by types with

values V (t) and V (t′). We must have that

πmV (t)− p(m) ≥ πm′V (t)− p(m′)

πmV (t′)− p(m) ≤ πm′V (t′)− p(m′).

These two inequalities yield that (πm′ − πm)V (t) ≤ p(m′)− p(m) ≤ (πm′ − πm)V (t′), which

implies that |p(m′)− p(m)| < (ρ− ρ)Vmax. Hence the difference in utilities between sending

two messages m and m′ for an agent with value V ∈ [−Vmax, Vmax] is |(πm− πm′)V − p(m) +

p(m′)| ≤ 2(ρ− ρ)Vmax. �

Proof of Proposition 8: The proof of Proposition 8 is immediate and hence omitted. �

Proof of Proposition 9: Since G′ � G, there must exist h : D → ∆(D) such that
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h(dG) ∼ dG′ . We have,

EP [∆i(dG)]− EP [∆i(dG′)] = EP [∆i(dG))−∆i(h(dG))]

= EP [EP [θi(RH |dG)− θi(RH |h(dG))|h(dG)]].

We focus on term EP [∆i,h(dG)|h(dG)] where ∆i,h ≡ θi(RH |dG)− θi(RH |h(dG)). We have

∆i,h = θhi (RH)θhi (RL)
fi(dG|RH , h(dG))− fi(dG|RL, h(dG))

θhi (RH)fi(dG|RH , h(dG)) + θhi (RL)fi(dG|RL, h(dG))
(11)

where θhi ≡ θi(·|h(dG)). Furthermore,

∫
dG

∆i,h ×
[
θhi (RH)fi(dG|RH , h(dG)) + θhi (RL)fi(dG|RL, h(dG))

]
dF (dG) = 0. (12)

Subtracting (12) from (11) and integrating out yields that

EP [∆i,h|h(dG)] =

∫
dG

∆i,h × αi(dG)dF (dG) (13)

where

αi(dG) ≡ fP (dG|RH , ti, h(dG))−fi(dG|RH , h(dG))+θhi (RL)[fi(dG|RH , h(dG))−fi(dG|RL, h(dG))].

It is straightforward to verify that whenever the principal has weakly optimistic conditional

beliefs, then ∆i,h × αi(dG) ≥ 0 and when the principal has strongly pessimistic conditional

beliefs, then ∆i,h × αi(dG) ≤ 0. This, in combination with (13), concludes the proof. �

Proof of Proposition 10: Since G′ � G, there must exist h : D → ∆(D) such that
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h(dG) ∼ dG′ . This implies that W (G′) = EP [φ(θi(dG′), ti)] = EP [φ(θi(h(dG)), ti)]. Hence,

W (G)−W (G′) = EP [φ(θi(dG), ti)− φ(θi(h(dG)), ti)]

= EP [EP [φ(θi(dG), ti)− φ(θi(h(dG)), ti)|h(dG)]]. (14)

where the last line follows from the law of iterated expectations. Focus on the term ∆W ≡

EP [φ(θi(dG), ti)−φ(θi(h(dG)), ti)|h(dG)]. As θi(dG) ∈ [θ, θ], it follows that θi(h(dG)) ∈ [θ, θ].

We denote ∆i,h(dG) ≡ θi(dG) − θi(h(dG)). Using a Taylor series expansion with Lagrange

remnant, we know that there exists θ̃ ∈ [θi(h(dG)), θi(dG)] such that

φ(θi(dG), ti)− φ(θi(h(dG)), ti) =
∂φ(·, ti)
∂θ

(θi(h(dG)))∆i,h(dG) +
1

2

∂2φ(·, ti)
∂θ2

(θ̃)∆i,h(dG)2

≥ ∂φ(·, ti)
∂θ

(θi(h(dG)))∆i,h(dG) +
1

2
∆i,h(dG)2 inf

θ∈[θ,θ]

∂2φ(·, ti)
∂θ2

where the last line follows from the definition of the infimum and the fact that as θi(dG) ∈

[θ, θ], it follows that θi(h(dG)) ∈ [θ, θ]. For concision, we denote a = ∂φ(·,ti)
∂θ

(θi(h(dG))) and

b = infθ∈[θ,θ]
∂2φ(·,ti)
∂θ2

. Thus

∆W ≥ EP

[
a∆i,h(dG) +

b

2
∆i,h(dG)2

∣∣∣∣h(dG)

]
.

Furthermore, we have that θi(dG) = Ei(1R=RH |dG) = Ei(1R=RH |dG, h(dG)). Hence, using

the notation θhi = θi(h(dG)), we obtain

∆i,h(dG) = θhi (1− θhi )
fi(dG|RH , h(dG))− fi(dG|RL, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))
.
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Recalling that Fi and FP are absolutely continuous with respect to F , we have

EP (∆i,h(dG)|h(dG)) =

∫
dG

θhi (1− θhi )
fi(dG|RH , h(dG))− fi(dG|RL, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))

×fP (dG|RH , ti, h(dG))dF (dG) (15)

EP (∆i,h(dG)2|h(dG)) =

∫
dG

[θhi (1− θhi )]2
(

fi(dG|RH , h(dG))− fi(dG|RL, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))

)2

×fP (dG|RH , ti, h(dG))dF (dG). (16)

Furthermore, we have

∫
dG

∆i,h(dG)[θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))]dF (dG) = 0. (17)

Using (17) with (15), we obtain

EP (∆i,h(dG)|h(dG)) =

∫
dG

θhi (1−θhi )
fi(dG|RH , h(dG))− fi(dG|RL, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))
αi(dG)dF (dG)

(18)

where

αi(dG) = fP (dG|RH , ti, h(dG))−fi(dG|RH , h(dG))+(1−θhi )[fi(dG|RH , h(dG))−fi(dG|RL, h(dG))].

(19)

Focus on the case where fi(dG|RH , h(dG)) − fi(dG|RL, h(dG)) ≥ 0. Then, the assumption

of weakly optimistic beliefs implies that fp(dG|RH , ti, h(dG)) ≥ fi(dG|RL, h(dG)) , and thus

αi(dG)[fi(dG|RH , h(dG))− fi(dG|RL, h(dG))]

≥
(
fP (dG|RH , h(dG))

fi(dG|RH , h(dG))
− θhi

)
[fi(dG|RH , h(dG))− fi(dG|RL, h(dG))]2.
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We now relate this to EP (∆i,h(dG)2|h(dG)). We have that

fP (dG|RH , ti, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))
≤ fP (dG|RH , ti, h(dG))

θhi fi(dG|RH , h(dG))
.

Finally observe that since fP (dG|RH ,ti,h(dG))
fi(dG|RH ,h(dG))

≥ 1 we have

fP (dG|RH , ti, h(dG))

θhi fi(dG|RH , h(dG))
≤ 1

θhi (1− θhi )

(
fP (dG|RH , ti, h(dG))

fi(dG|RH , h(dG))
− θhi

)
.

Consider now the case where fi(dG|RH , h(dG))− fi(dG|RL, h(dG)) ≤ 0. The assumption of

weakly optimistic beliefs implies that fP (dG|RH , ti, h(dG)) ≤ fi(dG|RH , h(dG)). Hence

αi(dG)[fi(dG|RH , h(dG))−fi(dG|RL, h(dG))] ≥ (1−θhi )[fi(dG|RH , h(dG))−fi(dG|RL, h(dG))]2.

Furthermore, we have that

fP (dG|RH , ti, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))
≤ 1 ≤ 1

θhi
.

Altogether, this implies that EP (∆i,h(dG)|h(dG)) ≥ EP (∆i,h(dG)2|h(dG)). Hence whenever

a+ b/2 ≥ 0 then W (G)−W (G′) ≥ 0. Given that a ≥ infθ∈[θ,θ]
∂φ(·,ti)
∂θ
≥ 0, this concludes the

proof. �

Proof of Proposition 11: The proof is similar to that of Proposition 10 and we use the

same notation. Using (14) from Proposition 10 and a Taylor series expansion with Lagrange

remnant, there exists θ̃ ∈ [θi(h(dG)), θi(dG)] such that

φ(θi(dG), ti)− φ(θi(h(dG)), ti) =
∂φ(·, ti)
∂θ

(θi(h(dG)))∆i,h(dG) +
1

2

∂2φ(·, ti)
∂θ2

(θ̃)∆i,h(dG)2

≤ ∂φ(·, ti)
∂θ

(θi(h(dG)))∆i,h(dG) +
1

2
∆i,h(dG)2 sup

θ∈[θ,θ]

∂2φ(·, ti)
∂θ2
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For concision, we denote a = ∂φ(·,ti)
∂θ

(θi(h(dG))) and b = supθ∈[θ,θ]
∂2φ(·,ti)
∂θ2

, thus

∆W ≤ EP

[
a∆i,h(dG) +

b

2
∆i,h(dG)2

∣∣∣∣h(dG)

]
.

Using (16), (18) and (19) from Proposition 10, we first focus on the case fi(dG|RH , h(dG))−

fi(dG|RL, h(dG)) ≤ 0. The assumption of strongly pessimistic beliefs implies that fp(dG|RH , ti, h(dG)) ≥

fi(dG|RL, h(dG)) thus,

αi(dG)[fi(dG|RH , h(dG))− fi(dG|RL, h(dG))]

≤ −
(
fP (dG|RH , ti, h(dG))

fi(dG|RL, h(dG))
− (1− θhi )

)
[fi(dG|RH , h(dG))− fi(dG|RL, h(dG))]2.

We now relate this to EP (∆i,h(dG)2|h(dG)). We have that

fP (dG|RH , ti, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))
≤ fP (dG|RH , ti, h(dG))

(1− θhi )fi(dG|RL, h(dG))
.

Finally observe that since fP (dG|RH ,ti,h(dG))
fi(dG|RL,h(dG))

≥ 1 we have

fP (dG|RH , ti, h(dG))

(1− θhi )fi(dG|RL, h(dG))
≤ 1

θhi (1− θhi )

(
fP (dG|RH , ti, h(dG))

fi(dG|RL, h(dG))
− (1− θhi )

)
.

Let us now turn to the case where fi(dG|RH , h(dG))−fi(dG|RL, h(dG)) ≥ 0. The assump-

tion of strongly pessimistic beliefs implies that fP (dG|RH , ti, h(dG)) ≤ fi(dG|RL, h(dG)).

Hence

αi(dG)[fi(dG|RH , h(dG))−fi(dG|RL, h(dG))] ≤ −θhi [fi(dG|RH , h(dG))−fi(dG|RL, h(dG))]2.
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Furthermore, we have that

fP (dG|RH , ti, h(dG))

θhi fi(dG|RH , h(dG)) + (1− θhi )fi(dG|RL, h(dG))
≤ 1 ≤ 1

1− θhi
.

Altogether, this implies that −EP (∆i,h(dG)|h(dG)) ≥ EP (∆i,h(dG)2|h(dG)). Hence when-

ever −a + b/2 ≤ 0 then W (G) − W (G′) ≤ 0. Given that a ≥ infθ∈[θ,θ]
∂φ(·,ti)
∂θ

≥ 0, this

concludes the proof. �
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