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We study repeated games with perfect monitoring (and complete infor-
mation). In this class of repeated games, players can observe the other
players’ actions directly and there is no uncertainty concerning to players’
types.

1 Model

We present a relatively general model of repeated games first, which will be
later specialized for each different repeated game with different monitoring
structure. Stage game is a standard strategic (normal) form game G =
{N,A, g} , where N = {1, 2, ..., n} be the set of players, Ai is player i’s finite
or compact action set

¡
A =

Q
i∈N Ai

¢
, and g : A→ <n is the payoff functions

of n players, with gi (a) being player i’s payoff. We assume that gi (a) is
continuous when Ai is compact. Feasible payoff set is denoted by V =
convex full of {g (a) |a ∈ A}. Players play the stage game repeatedly over
time. Time is discrete and denoted by t = 1, 2, .... Player i observes a signal
hi,t ∈ Yi in the end of period t. Player i’s signal is generated by fi : A→ 4Yi
every period given the action profile chosen in the period. Player i’s period t
history is hti = (hi,1, ...., hi,t−1), which is player i’s information accumulated
by the end of period t− 1. Let Ht

i

¡
= Y t−1i

¢
be the set of all possible player

i’s period t history at period t (H1
i = ∅ is null history in the beginning of the

game) andHi = ∪∞t=1Ht
i be all possible histories of player i. Player i’s (pure)

strategy σi is a mapping from Hi to Ai. I assume that strategies are pure
unless noted otherwise. Let Σi be the set of player i’s strategies. Take any
strategy profile eσ, which generates a sequence of action profiles ¡ea1,ea2, ...¢ .
Then player i0s discounted average payoff from the strategy profile eσ is given
by Vi (eσ) = (1− δ)

P∞
t=1 δ

t−1gi
¡eat¢ .1 where δ is a common discount factor.

1Another way to define average payoffs would be to use a variety of limit of arithmetic

average
PT
t=1 g(at)

T
. We don’t discuss these preferences here. See F&T (p148,149) [8] and
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Perfect Monitoring

Monitoring is perfect if players can observe the other players’ actions
directly. (Yi = A and Pr (fi (a) = a) = 1 for all i) . In this case, player i0s
period t history is hti =

¡
a1, ..., at−1

¢
. Since this history is public and shared

by all the players, we just denote period t history by ht without subscript.

Equilibrium

We use a notion of subgame perfect equilibrium for repeated games with
perfect monitoring. For each history ht, let σ|ht ∈ Σ be a profile of contin-
uation strategies for the subgame after ht.2 The payoff for the subgame is
simply Vi (σ|ht) = (1− δ)

P∞
s=t δ

s−tgi (as) where
¡
at, at+1, ...

¢
is a sequence

of action profiles generated by σ|ht .

Definition 1 σ∗ is a subgame perfect equilibrium if, for any history ht ∈ H,
σ∗|ht is a Nash equilibrium of the subgame starting at ht, i.e.,

Vi (σ
∗|ht) ≥ Vi

¡
σi,σ

∗
−i|ht

¢
for all σi ∈ Σi and all i

Note that the set of continuation strategies is identical to original strat-
egy set Σi. Indeed every subgame is completely identical to the original
game. We exploit this recursive nature of repeated games to characterize
the whole set of equilibrium payoffs in the next section.

The above definition is not so useful because there are uncountable num-
ber of constraints.3 We finish this preliminary section with one very useful
proposition, which claims that we need to check only a particular class of
incentive constraints. Consider the following type of deviations.

Definition 2 σ
0
i is one-shot deviation from σi if σ0i (h

0
t) 6= σi (h

0
t) for some

h0t ∈ Hi and σ0i (ht) = σi (ht) for all ht ∈ Hi/ {h0t} . Denote this one-shot
deviation by σ

h0i
i . We say σ

h0i
i is a profitable one-shot deviation for player i

if Vi
³
σ
h0i
i |h0i ,σ−i|h0i

´
> Vi

³
σ|h0i

´
.

There are only |H| one-shot deviation constraints for each player, which
are just countable. Thus the following claim reduces the number of incentive
constraints drastically.

Rubinstein [11].
2σ|ht is defined as σ|ht (φ) = σ

¡
ht
¢
and σ|ht (hs) = σ

¡¡
ht, hs

¢¢
.

3There are |Σi| × |H| incentive constraints for player i in the definition Note that Σi
is not countable.
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Proposition 3 (One-Shot Deviation Principle): σ is a subgame-perfect
equilibrium if and only if there is no profitable one-shot deviation from a
strategy profile σ.

Proof. (Sketch) “Only if” follows from the definition of SPE. So we
just need to prove “if” part. First, if there is no profitable one-shot devia-
tion, then there is no profitable finite-period deviation. This follows from a
simple induction argument. Second, if there is profitable deviation which is
different from σi for infinite number of periods, then a finite truncation of
such deviation must be still profitable if you take a window of finite periods
large enough.4 This is a contradiction, thus there should be no profitable
infinite-periods deviation either.

2 Characterization of Equilibrium Payoff Set

2.1 Dynamic Programming Approach

In general, there are many equilibria in repeated games. For example, a
cooperative outcome can be supported in Repeated prisoners’ dilemma, but
playing always (D,D) is also a subgame perfect equilibrium. Indeed, this
multiplicity of equilibria is the reason why the cooperative outcome can
be ever supported in subgame perfect equilibrium. We can look at each
equilibrium one by one, but it is more useful to look at all equilibria (in
precise, the set of all equilibrium payoffs) at the same time. The results of
this Section are from Abreu, Pearce and Stacchetti [4].

As we observed before, any subgame is identical to the original game.
Hence, any continuation strategy profile of a subgame perfect equilibrium
is an equilibrium profile of the original game, that is, if E (δ) is the set
of equilibrium payoffs of a repeated game, then for any subgame perfect
equilibrium σ∗,

V (σ∗|ht) ∈ E (δ)
holds for any history ht. This fact motivates to define the following one shot
game. Fix a subgame perfect equilibrium σ∗ and let w be a mapping from A
to W ⊂ <n defined by w (a) = V (σ∗|a) and gw (a) = (1− δ) g (a) + δw (a) .
This defines a strategic form game {N,A, gw} . Let a1∗ be the equilibrium
action profile in the first period of σ∗. Then, clearly a1∗ should be also a
Nash equilibrium of {N,A, gw} .

Now, we explore this observation more formally.
4Difference in payoffs of any two strategy is negligible in very far future because of

discounting.
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Definition 4 For any W ⊂ <n, a pair (a,w (·)) is admissible with respect
to W ⊂ <n if (1) w (a) ∈ W for all a ∈ A and (2) a is a Nash equilibrium
of the strategic form game {N,A, gw} .
Definition 5 For any W ⊂ <n, B (W, δ) =

{v|∃ (a,w (·)) admissible w.r.t. W such that v = (1− δ) g (a) + δw (a) }
Our observation can be stated more formally with these definitions.

Lemma 6 E (δ) ⊂ B (E (δ) , δ)
Now we need a little bit more work to show the opposite inclusion.

Lemma 7 If W ⊂ <n is bounded and W ⊂ B (W, δ), then B (W, δ) ⊂ E (δ)
Proof. (sketch); Take any point v ∈ B (W, δ) . By definition, there

is an admissible pair a1 (v) ∈ A, and w1 (·|v) : A → W such that v =
(1− δ) g

¡
a1 (v)

¢
+δw1

¡
a1 (v) |v¢. SinceW ⊂ B (W, δ) , for every w1 ¡a1¢ , a1 ∈

A, we can find an admissible pair
¡
a2
¡
a1
¢
, w2

¡·|a1¢¢ such that w1 ¡a1¢ =
(1− δ) g

¡
a2
¡
a1
¢¢
+δw2

¡
a2
¡
a1
¢ |a1¢ . In this way, we can find an admissible

pair
¡
at
¡
ht
¢
, wt

¡·|ht¢¢ such that wt ¡ht¢ = (1− δ) g
¡
at
¡
ht
¢¢
+δwt+1

¡
at
¡
ht
¢ |ht¢

for every history ht =
¡
a1, a2, ...., at−1

¢
for t = 2, 3, ....(where wt

¡
ht
¢
=

wt
¡
at−1|ht−1¢ for ht = ¡ht−1, at¢).
Define a strategy profile σ by σ

¡
ht
¢
= at

¡
ht
¢
for t = 1, 2, ... Then you

can check that v = V (σ) and wt
¡
ht
¢
= V

¡
σ
¡
ht
¢¢
for all ht because W is

bounded. There is no profitable one-shot deviation from σ by construction.
Hence, σ is a subgame perfect equilibrium by one-shot deviation principle.

Such W to satisfy W ⊂ B (W, δ) is called a self-generating set.
From the above two lemmas, we obtain the following theorem.

Theorem 8 E (δ) = B (E (δ) , δ)

This means that E (δ) is a “fixed point” of the set valued operator
B (·, δ) . But, E (δ) is not the only set to satisfy this equation. For example,
any unique Nash equilibrium payoff profile v∗ satisfies v∗ = B (v∗, δ) . <n
also trivially satisfies it as well. More precisely, E (δ) is the maximal set in
V which satisfies E (δ) = B (E (δ) , δ) .

Remark. All the subsets of V forms a lattice with respect to ∪ and ∩
and a partial order induced by inclusion. Since B (·, δ) is a monotone op-
erator on this lattice as claimed below, (1) there exists a maximal fixed
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point, (2) a minimal fixed point, and (3) all fixed points form a com-
plete lattice by Tarski’s fixed point theorem. The maximal fixed point is
given by ∪W⊂V :W⊂B(W,δ)W (union of all self-generating sets). Since E (δ) ⊂
∪W⊂V :W⊂B(W,δ)W by Theorem 8 and ∪W⊂V :W⊂B(W,δ)W ⊂ E (δ) by Lemma
7, E (δ) is the maximal fixed point of B (·, δ) .

It is easy to show that E (δ) is compact.

Proposition 9 E (δ) is compact

Proof. I assume that A is finite. The proof for compact A is left as
an exercise. Since E (δ) is bounded, we just need to show that it is closed.
I sketch two proofs. The first, more direct one, is as follows. (1) Pick
vn ∈ E (δ) and v∗ such that limn vn → v∗. Let σn ∈ Σ be a subgame
perfect equilibrium to support vn. Then you can find a subsequence of {σn}
(how?) which converges to some σ∗ ∈ Σ at every history. In the limit, σ∗
achieves v∗ and every one-shot deviation constraint is satisfied for σ∗. Thus
σ∗ is a subgame perfect equilibrium by one-shot deviation principle, hence
v∗ ∈ E (δ) . (2) we show E (δ) ⊂ B

³
E (δ), δ

´
, which implies E (δ) ⊂ E (δ)

(definition of closedness). Again pick vn ∈ E (δ) and v∗ such that limn vn →
v∗. Let (an, wn (·)) be an admissible pair with respect to E (δ) to achieve vn.
Since A is a finite set and E (δ) is compact, {(an, wn (·))}n has a subsequence
which converges to (a∗, w∗ (·)) which is admissible with respect to E (δ) and
achieves v∗. Therefore v∗ ∈ B

³
E (δ), δ

´
Exercise. Prove this proposition when Ai, i = 1, ..., n are compact sets

in two ways ((1) and (2)). (hint: use simple strategies for (1) (the definition
below))

Algorithm to compute E (δ)

Here we assume that Ai is finite. We need two useful lemmas about
operator B.

Lemma 10 (monotonicity) If W 0 ⊂W 00, then B (W 0, δ) ⊂ B (W 00, δ)

Lemma 11 (compactness) B (W, δ) is compact if W is compact.

The proof of these lemmas is left for your exercise (The first one is obvious
and the proof of the second one is identical to the proof (2) above). They
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can be used to derive a useful algorithm to obtain the “fixed point” E (δ) .
Let W 0 be any compact set to include E (δ) such that B

¡
W 0, δ

¢ ⊂W 0. For
example, the whole feasible payoff set V can be taken as W 0.

Theorem 12 E (δ) = limt→∞Bt
¡
W 0, δ

¢
.

Proof. By assumption, E (δ) ⊂ W 0. Applying B (·, δ) to both sides,
we obtain E (δ) ⊂ B

¡
W 0, δ

¢
= W 1 ⊂ W 0 by Monotonicity Lemma and

Theorem 8. Then by induction, W t = Bt
¡
W 0, δ

¢
, t = 1, 2, ... satisfies

E (δ) ⊂ ... ⊂W t.... ⊂W 2 ⊂W 1 ⊂W 0

Since
©
W t
ª
t
are all compact sets by Compactness Lemma, ∩tW t =

limt→∞W t is compact (and nonempty because E (δ) is nonempty). Clearly
E (δ) ⊂ ∩tW t. On the other hand, for any v ∈ ∩tW t, there exist admissible
pairs

¡
at, wt

¢
, t = 0, 1, 2, ... such that wt : A→W t and v = (1− δ) g

¡
at
¢
+

δwt
¡
at
¢
. Since eachW t is compact, we can take a converging subsequence of¡

at, wt
¢→ (a∗, w∗) such that (a∗, w∗) is admissible with respect to eachW t,

hence also admissible with respect ∩tW t, and v = (1− δ) g (a∗) + δw∗ (a∗) .
Thus, we obtain ∩tW t ⊂ B

¡∩tW t, δ
¢
, which implies ∩tW t ⊂ E (δ) by

Lemma 7

Remark. Since E (δ) is an nonempty intersection of compact sets, com-
pactness of E (δ) follows from this theorem, too.

This theorem still does not offer an explicit method to compute E (δ) .
Here is one algorithm to compute E (δ) (Judd, Yeltekin, and Conklin [9]).
Start with cW 0 = V. At step t, find a outer (inner) polytope approximationfW t−1 which contains (is contained in) cW t−1. A systematic way to do this
is to pick a finite points on the boundary of cW t−1 which is largest with
respect to a set of preselected finite directions and use them to define an
outer (inner) polytope approximation. Apply B (·, δ) to fW t−1 to obtain cW t

(this step is computationally easy because fW t−1 is a polytope) and go to
step t+1. You can show that the sequence

nfW t
o
t
is a decreasing sequence

and ∩tfW t provides an upper bound and a lower bound of E (δ) depending
on whether you use an outer polytope approximation or an inner polytope
approximation. If the polytopes at each step is a good approximation of cW t

(if the number of preselected finite directions is large), then the resulting
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upper estimate and lower estimate of E (δ) gets very close and you can
obtain a good idea of the boundary of E (δ) .

If E (δ) is one dimensional, then you may be able to compute E (δ) with
pen and pencil. Try the following exercise. Also see the application in the
next subsection and Cronshaw and Luenberger [5].

Exercise. Strongly symmetric subgame-perfect equilibrium is a subgame-
perfect equilibrium in which every player plays the same action at every
history. Let ESSSPE (δ) be the strongly symmetric SPE payoff set of the
repeated game of the following PD game. For which δ does ESSSPE (δ)
coincides with all symmetric feasible payoffs {(x, x) : x ∈ [0, 1]}?

C D

C 1, 1, −1, 2
D 2,−1 0, 0

Comparative Statics in δ

We have fixed δ so far. How E (δ) would change as players become more
patient? Intuitively, we should be able to support more payoffs as players
become more patient. This conjecture is partially justified by the following
proposition.

Proposition 13 If W is convex, then W ⊂ B (W, δ) implies that W ⊂
B
¡
W, δ0

¢
for δ0 ∈ (δ, 1) .

Proof. Take any v ∈W and an admissible pair (a,w (·)) to generate v.
Define wδ0 (·) as follows;

wδ0 (a) =

¡
1− δ0

¢
δ

(1− δ) δ0
w (a) +

δ0 − δ

(1− δ) δ0
v

Since wδ0 (a) is a positive linear combination of w (a) and v, wδ0 (a) ∈W.
It is also straightforward to check all the incentive constraints are satisfied,
hence (a,wδ0 (·)) is admissible w.r.t. W, and (a,wδ0 (·)) generates v. So,
W ⊂ B ¡W, δ0¢ .

Remark. This implies that E (δ) is “weakly expanding” in δ when it is
convex. Note that if there is a public randomization device, it convexifies
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the equilibrium payoff set, hence the equilibrium payoff set should be weakly
increasing. (Stahl [13]).

If there is no public randomization device, then E (δ) may not be convex,
and indeed may not be monotonically expanding as δ → 1. Consider the
following example by Sorin [12].

L R

U 1, 0 0, 0

D 0, 0 0, 1

Suppose that δ = 1
8 . Then

¡
7
8 ,
1
8

¢
can be achieved by playing (U,L) first

and playing (D,R) forever. However this cannot be achieved with δ = 1
4 .

Note that (U,L) must be played in the first period. Then each player’s
continuation payoff must be 1

2 to achieve
¡
7
8 ,
1
8

¢
. But whoever gets one in

the next period gets more than 3
4 . Of course (U,R) or (D,L) must not be

played because they are inefficient.
Nonmonotonicity can be really extreme (Mailath, Obara and Sekiguchi

[10]). Take the PD game in the above exercise. Consider the best equilibrium
payoff v2 (δ) for player 2 among all the efficient payoff profiles. v2 (δ) is 1.5
when δ ∈ £23 , 1¢ . No efficient profile is supported when δ ∈ ¡0, 12¢ . In ¡12 , 23¤,
v2 (δ) is downward sloping almost everywhere and there are uncountably
many discontinuity points (within

¡
1
2 ,
2
3

¤
).

However we will show later that E (δ) expands to its natural limit as
δ → 1.

Simple Strategy (Abreu [2])

Since E (δ) is compact, for each player i, there exists a SPE payoff wi
which minimizes player i0s payoff among E (δ) . Let Qi be the equilibrium
path to generate wi. Take any equilibrium strategy σ∗ and let Q0 be the
equilibrium path of the equilibrium σ∗. Now consider a following simple
strategy σ (Q0, Q1, ...,Qn) based on the n path Q0, Q1, ..., Qn;

(1) Play Q0 if there is no deviation or there are simultaneous deviations

by more than one player. If there is a unilateral deviation by player i,

then go to (2) (i).

(2)(i) Play Qi if there is no deviation or there are simultaneous deviations

by more than one player. If there is a unilateral deviation by player j,

then go to (2) (j).
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This is a well defined strategy, generates the same payoff as σ∗, and
still a subgame perfect equilibrium (because all the punishments in σ∗ are
replaced by the harshest punishments wi, i = 1, ..., n). This means that
every equilibrium payoff can be supported by simple strategies and we can
restrict our attention to wi, i = 1, ..., n as a mean of punishment without
loss of generality. Remember that wi, i = 1, ..., n are critical numbers to
determine the shape of the whole equilibrium payoff set. The smaller the
possible punishments wi, i = 1, ..., n are, the more payoffs you can support.

2.2 Application to Dynamic Oligopoly Problem

This subsection studies a dynamic Cournot competition model from Abreu
[1]. This and related class of dynamic oligopoly models have been an impor-
tant application of repeated games and, at the same time, a source of idea
behind theoretical development of repeated games.

We focus on strongly symmetric equilibrium: equilibrium in which all
firms produce the same output after every history. This means that the
dimension of E (δ) is at most 1. This fact simplifies computation of an
equilibrium payoff set. Furthermore, we just need to focus on the best and
the worst equilibrium payoffs in order to find the best equilibrium payoff. A
pair of the best payoff and the worst payoff turns out to be a fixed point of
two simple mappings.

There are n firms with payoff functions πi (q) =
³
p
³P

j qj

´
− c
´
qi,

where q = (q1, ..., qn) is a profile of quantity chosen by the n firms, c is a
constant marginal cost, and p : <+ → <+ is a strictly decreasing and con-
tinuous inverse demand function such that p (0) > c and limq→∞ p (q) < c.
We assume that the monopoly output and the Cournot equilibrium out-
put is unique. Let Qm be the monopoly output and xm = Qm

n , and denote
Cournot equilibrium output for each firm by xcn. Let πi (q) be firm i’s payoff
when every firm chooses q and π∗i (q

0) = maxqi∈[0,∞] πi
¡
qi, q

0
−i
¢
(the maxi-

mum payoff when deviating from a symmetric profile q0). Figure 1 shows a
typical π∗i and πi.

For each discount factor, there is a certain level of q (δ) such that any
q > q cannot be chosen in any equilibrium. This is because if q0 is large
enough, then πi (q0, q−i) becomes very low for any q−i so that the discounted
average payoff is negative even if firm i becomes a monopoly from the next
period. Thus we can restrict firms’ choice sets to a compact set [0, q] without
loss of generality. We omit subscript i from now on unless necessary because
the game is symmetric.
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For V 0 ≥ V 00, let

f
¡
V 00, V 0

¢
= max
q∈[0,q],V ∈[V 00,V 0]

(1− δ)π (q) + δV (1)

s.t. (1− δ) (π∗ (q)− π (q)) ≤ δ
¡
V − V 00¢

and

g
¡
V 00, V 0

¢
= min
q∈[0,q],V ∈[V 00,V 0]

(1− δ)π (q) + δV (2)

s.t. (1− δ) (π∗ (q)− π (q)) ≤ δ
¡
V − V 00¢

We can apply the algorithm of Theorem 12. Let’s start with W 0 =
[0,π (xm)] , which is a feasible set of symmetric payoffs. Note that f (0,π (xm))
and g (0,π (xm)) provides the upper end and the lower end of compact set
W 1 = B

¡
W 0, δ

¢
.

For some parametric example, W t, t = 0, 1, 2, ... are always convex. In
this case, the operator B reduces to two mappings f and g. The equilibrium
payoff set E (δ) is a closed interval and (minE (δ) ,maxE (δ)) is a fixed point
of (f, g) .

Even when W t, t = 0, 1, 2, ... are not convex, the best and worst equi-
librium can be still characterized by f and g. Let V 1 = f (0,π (xm)) and
V 1 = g (0,π (x

m)) . Even though W 1 may be strictly smaller than
£
V 1, V 1

¤
,

we can apply f and g to
¡
V 1, V 1

¢
to obtain

©
V t, V t

ª
t
. It can be easily

shown that V t is a decreasing sequence and V t is an increasing sequence,
thus converging to some V and V respectively, which is a fixed point of
(f, g) . Then it is easy to show that V = maxE (δ) and V = minE (δ) still
holds.

Exercise. Prove V = maxE (δ) and V = minE (δ) .

Remark.

• Note that we can just focus on two points, which can simplify the
computation significantly.

• The only assumptions we have used so far are that (1) symmetry, (2)
continuity of π (q) , and (3) compactness of the choice sets.

Now let’s try to figure out the equilibrium behavior for V and V . See
the following figure.
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π(q)

π*(q)

x xm cn

(δ/1-δ) (V – V )

q* q
*

Figure 1

From this figure, it is clear that, given any V < V , the solution of
(1) is q∗ ∈ [xm, xcn] which satisfies (1− δ) (π∗ (q∗)− π (q∗)) = δ

¡
V − V ¢

(≤ if q∗ = xm) and is closest to xm. Similarly, the solution of (2) turns
out to be q∗ (≥ xcn) and V such that (1− δ) (π∗ (q∗)− π (q∗)) = δ

¡
V − V ¢

without loss of generality. This is because of the following reason. Fix any³eq, eV ´ which satisfies (2). If eV < V , then we can find ³eeq, V ´ such that (1):
(1− δ)π

³eeq´+ δV = (1− δ)π (eq) + δeV (because π (q) is unbounded below)
and (2) incentive constraints are satisfied.5

5 (2) can be shown as follows,

(1− δ)π
³eeq´+ δV

= (1− δ)π (eq) + δeV
= (1− δ)π∗ (eq) + δV

= (1− δ)π∗
³eeq´+ δV .
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Therefore V (V ) can be supported by playing q∗ (q∗) in the current period
and using V and V as continuation payoffs. This means that V can be sup-
ported by a simple (symmetric) strategy σ (Q∗, Q∗) where Q∗ = (q∗, q∗, ....)
and Q∗ = (q∗, q∗, q∗, ....) (called “stick and carrot”). Similarly, V can be
supported by a simple strategy σ (Q∗, Q∗) .

Remark. Every player gets a payoff below the stage game (Cournot)
equilibrium payoff in the first period to achieve V . Even in more general
settings, this is always true when the minimum (strongly symmetric) SPE
is lower than the stage game Nash equilibrium payoff.

3 Folk Theorem

We already know that there can be many equilibria in repeated games.
But how many? A celebrated Folk Theorem says that, in general, any
feasible and “reasonable” payoff profile can be supported in subgame perfect
equilibrium if players are patient enough. We prove this theorem in this
section. This entire section is based on [6].

We need some new notations.

• (minmax payoff): vi = mina−i∈Qj 6=iAj maxai∈Ai gi (ai, a−i)

We normalize v = (v1, ..., vn) to 0 ∈ <n without loss of generality.

• (Action minmaxing player i): mi ∈ A
• (Individually rational payoff set): V ∗ = {v ∈ V |vi > 0 for all i ∈ I}
• g = maximaxa,a0∈A {gi (a)− gi (a0)}

We assume that players can use a public randomization device so that
any payoff profile in V is feasible at each period.

First note that in any SPE (indeed any Nash) equilibrium, each player
can get at least her minmax payoff every period by playing her best response
action.

Proposition 14 For any equilibrium profile σ ∈ Σ, Vi (σ) ≥ 0 for all i ∈ I

We show that almost every payoff profile above the minmax payoff profile
can be supported in subgame perfect equilibrium.
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Theorem 15 Suppose that V ∗ has a nonempty interior in <n. Then, for
any v ∈ V ∗, there exists δ such that for all δ ∈ (δ, 1) , there exists a subgame
perfect equilibrium in which player i’s discounted average payoff is vi for
i ∈ I.

We assume that there exists a ∈ A to achieve v (= g (a)). This is without
loss of generality when (1) a public randomization is available or (2) mixed
strategy is observable or (3) action set is compact and g is continuous.

The basic idea of the proof is simple. Players play a every period if
there is no deviation. Any unilateral deviation from a is punished by a
finite number of minmax action plays. The only complication arises when
the other players suffer from minmaxing a deviator. To keep incentive of
these players to punish the deviator, each player other than the deviator
gets a “reward” after a finite number of periods minmaxing the deviator.
More precisely, we use a payoff profile evj = ³evj1, ..., evjn´ ∈ for each j ∈ I
which satisfies the following two properties: (1) vi ≥ evii and (2) evji > evii
for every i, j 6= i. If player j is the deviator, then the players receive evj
after minmaxing player j for the finite number of periods. When player i
deviates from punishing the deviator j, she is immediately minmaxed for a
finite number of periods and receive evi afterwards. Since evji > evii, she would
lose some payoff forever once the punishment phase is over. So player i
does not have incentive to deviate from minmaxing player j if she is enough
patient even though it could be costly to her in the short run. Finally, evi
can be easily supported exactly like v.

Proof. Take any v ∈ V ∗ and a ∈ A such that v = g (a) . If there is
not such a pure action profile, we can use public randomization device to
generate v by randomizing between appropriate action profiles. We can findevj = ³evj1, ..., evjn´ ∈ V ∗ for each j ∈ I to satisfy the above properties when V
has an nonempty interior (how?). Again we assume that there exists eaj ∈ A
such that g

¡eaj¢ = evj . Choose an integer T as follows,
g < T ·min

i
evii. (3)

Now we construct a subgame perfect equilibrium with payoff v. The game
start in Phase I.

• Phase I: Play a as long as there was no unilateral deviation from a in
the last period (or in the initial period). If player i deviates from a
unilaterally, then move to phase IIi.
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• Phase IIi: Play mi T periods, and go to Phase IIIi. If any player j 6= i
deviates unilaterally in Phase IIi, then move to Phase IIj . Otherwise
stay in Phase IIi.

• Phase IIIi; Play eai as long as aiε there was no unilateral deviation from
a in the last period (or in the beginning of the Phase IIIi). If player j
deviates from a unilaterally, then move to phase IIj .

We check that there is no profitable one-shot deviation for every sub-
game, i.e. in Phase I,II,III.

• Phase I: If player i deviates from a, the maximum deviation gain is
bounded by g, while she loses vi for T periods at least (and more if
vi > evii). So her incentive constraint is satisfied if

g 5
¡
δ + δ2 + ...+ δT

¢
vi

holds. This equality is satisfied strictly every i ∈ I if δ is large enough
by (3).

• Phase IIi: Clearly player i does not have incentive to deviate from mi.
If any player j 6= i deviates from mi, then player j can gain at most g
for at most T periods. On the other hand, player j have to lose evij−evjj
forever after T periods. So her incentive constraint is satisfied if¡

1 + δ + ...+ δT−1
¢
g 5

¡
δT + δT+1 + ...

¢
ε

holds. This incentive constraint holds strictly if δ is large enough.

• Phase IIIi: the same as Phase I.

Hence, the strategy described above is a subgame perfect equilibrium in
which players’ discounted average payoff profile is v.

Exercise. Construct evj to satisfy (1) and (2) when V ∗ has a nonempty
interior (hint. When V ∗ has a nonempty interior, you can find an interior
point in any small neighborhood of any point in V ∗).

Remark.

• What we need for the above proof is simply a set of asymmetric payoff
profiles evi, i = 1, ..., n to satisfy (1) and (2). A weaker condition than
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nonempty interior of V ∗ is sufficient for this. Abreu, Dutta and Smith
[3] proposed a condition called NEU condition, which is equivalent to
existence of such payoff profiles (given that V ∗ 6= ∅). NEU stands for
Non Equivalent Utility, which means that any two players’ payoffs are
not equivalent (up to affine transformation).

• The following is an example from Fudenberg and Maskin [6] in which
the folk theorem fails.

(1,1,1) (0,0,0)
(0,0,0) (0,0,0)

(0,0,0) (0,0,0)
(0,0,0) (1,1,1)

Player 1 chooses a row, player 2 chooses a column, and player 3 chooses
either the right game or the left game. The minmax payoff is 0 for every
player. But, the equilibrium payoff cannot be less than 1

4 (the one-
shot mixed strategy equilibrium payoff). Note that this payoff matrix
violates NEU.

• When NEU is violated, standard minmax payoff is not the right ref-
erence point. Wen [14] introduced the notion of effective minmax to
general stage games, which coincide with the standard minmax when
NEU is satisfied and show that the folk theorem always holds with
respect to effective minmax.

Player i’s effective minmax is defined as follows,

min
a∈A

max
j∈J(i)

max
aj∈Aj

gi (a)

where J (i) is the set of the players whose payoffs are equivalent to
player i. In the above example, each player’s effective minmax is 1

4
assuming observable mix strategies (thus all mixed strategies are es-
sentially pure strategies). Therefore the subgame perfect equilibrium
payoff set coincides with

©
(x, x, x) : x ∈ £14 , 1¤ª in this example (in the

limit as δ → 1).

• Suppose that action sets are finite, mixed strategies are unobservable,
and a public randomization is not available. Then there may not exist
a to achieve v or eai to achieve evi. In this case, for any v ∈ V and
ε > 0, you can find δ ∈ (0, 1) and a sequence of action profiles which
achieves v and the continuation payoff profile after any period is within
ε of v for δ ∈ (δ, 1). Using this fact, all the arguments based on strict
individual rationality and strict incentive constraints go through if you
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pick a small enough ε and players are enough patient. See Fudenberg
and Maskin [7] for a detail.

• We have restricted attention to pure strategy. What would happen
if mixed strategies are allowed? The only change is that we can use
mixed minmax payoffs

³
mina−i∈

Q
j 6=i4Aj maxai∈Ai gi (ai, a−i)

´
rather

than pure minmax payoffs. Mixed minmax can be smaller than pure
minmax by definition (Ex. Matching Penny). The proof of the above
folk theorem is almost identical in this case. The only complication
arises in Phase IIi when player j 6= i needs to randomize to minmax
player i. To give her incentive to do so, you can adjust the continuation
payoff after a finite number of minmaxing periods based on the real-
ization of actions so that player j has incentive to randomize. Again
see Fudenberg and Maskin [7] for a detail.
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