# Econ 201B: Problem Set I 

Due January 26, 2012

## 1. Third Price Auction

Suppose that $n \geq 3$ bidders with values $v_{1}>v_{2}>\ldots>v_{n}>0$ play a sealedbid third price auction: the highest bidder wins the object and pays the third highest bid. Answer the following questions.
(a) Is it a weakly dominant action for bidder $i$ to bid $v_{i}$ ?
(b) Is there any weakly dominant action for any bidder?
(c) Find a Nash equilibrium.
(d) Is there any Nash equilibrium where bidder 1 is not the winner?

## 2. A Model of Party Competition in Election

Suppose that elections will be held simultaneously at $n$ districts. There are two parties: party A and party B , and there is one candidate from each party at each district. Party A's resource for the election is $W_{A}>0$ and party B's resource is $W_{B}>0$. If A and B spend $x_{k}$ and $y_{k}$ at district $k$ respectively, then the candidate from party A wins with probability $f_{k}\left(x_{k}, y_{k}\right) \in[0,1]$ and the candidate from party B wins with probability $1-f_{k}\left(x_{k}, y_{k}\right)$. Party A and B choose $\left(x_{1}, \ldots, x_{n}\right) \geq 0$ and $\left(y_{1}, \ldots, y_{n}\right) \geq 0$ simultaneously subject to the constraint: $\sum_{k=1}^{n} x_{k} \leq W_{A}$ and $\sum_{k=1}^{n} y_{k} \leq W_{B}$. Each party maximizes the expected number of districts that their candidates win. Assume that each $f_{k}: \mathbb{R}_{+}^{2} \rightarrow[0,1]$ is twice differentiable and satisfies $\frac{\partial^{2} f_{k}}{\left(\partial x_{k}\right)^{2}} \leq 0$ and $\frac{\partial^{2} f_{k}}{\left(\partial y_{k}\right)^{2}} \geq 0$ for (a) and (b).
(a) Show that there exists a Nash equilibrium in this game.
(b) Show that each party's expected payoff (=number of districts) is the same in any Nash equilibrium.
(c) Suppose that $f_{k}$ is given by the same function $f$ in all districts. Assume that $f$ is homogeneous of degree 0 and satisfies $\frac{\partial f}{\partial x}>0, \frac{\partial f}{\partial y}<0$, $\lim _{x \rightarrow 0} \frac{\partial f(x, y)}{\partial x}=\infty, \lim _{y \rightarrow 0} \frac{\partial f(x, y)}{\partial y}=-\infty$ and $\frac{\partial^{2} f}{(\partial x)^{2}} \leq 0$ and $\frac{\partial^{2} f}{(\partial y)^{2}} \geq 0$ in
$\mathbb{R}_{++}^{2}$. Also assume that $f(0, y)=0$ for any $y>0, f(x, 0)=1$ for any $x>0$ and $f(0,0)=0.5$. Find all Nash equilibria.

## 3. Learning Nash Equilibrium in Simple Cournot Model

Consider the simple Cournot model we discussed in the class with firm 1 and 2 , the inverse demand function $P\left(q_{1}, q_{2}\right)=\max \left\{12-q_{1}-q_{2}, 0\right\}$ and linear cost function $3 q_{i}$ for $i=1,2$.
(a) Consider a hypothetical dynamic adjustment process in which each firm chooses a best response to the other firm's production in the previous period. This generates a sequence of production profiles $q(t)=$ $\left(q_{1}(t), q_{2}(t)\right), t=0,1,2, \ldots$ given any starting production profile $\left(q_{1}(0), q_{2}(0)\right)$, where $q_{i}(t)$ is a best response to $q_{-i}(t-1)$ for $i=1,2$ and $t=1,2, .$. . Prove that this process converges to the Cournot-Nash equilibrium given any starting point. (Hint: note that $q_{i}(t) \leq \frac{9}{2}$ for all $t \geq 1$, then $q_{i}(t) \geq \frac{9}{4}$ for all $t \geq 2 \ldots$...)
(b) Consider a different dynamics in which each firm best responds to the past average productions of the other firm. This generates a sequence of production profile $q(t)=\left(q_{1}(t), q_{2}(t)\right), t=0,1,2, .$. given any starting production profile $\left(q_{1}(0), q_{2}(0)\right)$, where $q_{i}(t)$ is a best response to $\frac{\sum_{t=0}^{t-1} q_{-i}(k)}{t}$ for $i=1,2$ and $t=1,2, \ldots$ Prove that this process converges to the Cournot-Nash equilibrium given any starting point.

