Econ 201B: Problem Set II

Due February 2, 2012

1. Bertrand Competition with Homogeneous Good

There are two firms i = 1, 2 that provides the identical good to the market. Suppose that firm 1's marginal cost c_1 is lower firm 2's marginal cost c_2 . There is no fixed cost. The firms choose prices simultaneously. Firm *i*'s profit given $p = (p_1, p_2) \in \mathbb{R}^2_+$ is $\pi_i(p) = (p_i - c_i)D_i(p)$, where the demand function is given as follows:

$$D_{i}(p) := \begin{cases} K(>0) & \text{if } p_{i} < p_{-i} \\ \frac{K}{2} & \text{if } p_{i} = p_{-i} \\ 0 & \text{if } p_{i} > p_{-i} \end{cases}$$

- (a) Show that there is no pure strategy Nash equilibrium in this game.
- (b) Find a mixed strategy Nash equilibrium.

2. Rationalizability in First Price Auction

Consider a first price auction with 2 bidders, where each bidder can bid an integer value from \$0 to \$100. Suppose that the values of bidders are given by $v_1 = 90 > v_2 = 80$. Answer the following questions.

- (a) Suppose that the winner is selected randomly when bids are tied. Delete strictly dominated actions iteratively (delete all strictly dominated actions in each round). Show that any bid $b \ge v_1$ is deleted for bidder 1 and any bid $b \ge v_1 - 1$ is deleted for bidder 2 in this process. How many rounds it would take for this process of iterated deletions to stop?
- (b) Suppose that bidder 2 wins when bids are tied. Delete strictly dominated actions iteratively as in (a). Show that any bid $b \ge v_1 + 1$ is deleted for bidder 1 in this process and any bid $b \ge v_1$ is deleted for bidder 2. How many rounds it would take for this process of iterated deletions to stop?

3. Iterated Deletion of Dominated Actions

Delete strictly dominated actions iteratively in the Traveler's dilemma game. Describe each step carefully. Which action set survives this process of iterated deletions?