Econ 201A: Problem Set III

Due on October 26, 2012

1. Revealed Preference and Utility. Suppose that the optimal consumption vector for Alice is $x \in \mathbb{R}_{+}^{L}$ when the price is $p \in \mathbb{R}_{++}^{L}$ and x^{\prime} when the price is p^{\prime} Alice is maximizing her utility $u: \mathbb{R}_{+}^{L} \rightarrow \mathbb{R}$. Answer the following questions.
(a) Show $u(x) \geq u\left(x^{\prime}\right)$ if x is revealed preferred $\left(p \cdot x^{\prime} \leq p \cdot x\right)$.
(b) Show $u(x)>u\left(x^{\prime}\right)$ if x is strictly revealed preferred $\left(p \cdot x^{\prime}<p \cdot x\right)$ and u is locally nonsatiated.
(c) Show by an example that local nonsatiation is necessary for (b).
(d) Show $u(x)>u\left(x^{\prime}\right)$ if x is revealed preferred to $x^{\prime}\left(p \cdot x^{\prime} \leq p \cdot x\right), x^{\prime} \neq x$, and u is strictly quasi-concave.

2. More Abstract Approach to Choice and Preference

In many problems, an individual's choice set is just more than a budget set. So it is useful to think about (revealed) preference and choice in a more abstract setting. Let X be a set of a set alternatives. Let \mathcal{B}^{X} be a collection of some subsets of X. Choice rule C is a mapping that assigns a nonempty subset $C(B) \subset B$ for every $B \in \mathcal{B}^{X}$. Here B corresponds to a "budget set" and $C(B)$ represents the individual's choices. Call $\left(\mathcal{B}^{X}, C\right)$ choice structure. A choice structure $\left(\mathcal{B}^{X}, C\right)$ satisfies the weak axiom if the following holds:

If $x, y \in B \in \mathcal{B}^{X}, x \in C(B)$, and $y \in C\left(B^{\prime}\right)$ for $B^{\prime} \in \mathcal{B}^{X}$ such that $x, y \in B^{\prime}$, then $x \in C\left(B^{\prime}\right)$.
(a) Let \succeq be a preference on X and $C^{\succeq}: \mathcal{B}^{X} \rightarrow 2^{X}$ be a choice rule defined by

$$
C^{\succeq}(B):=\{x \in B \mid x \succeq y \text { for all } y \in B\},
$$

where $C^{\succeq}(B) \neq \varnothing$ is assumed. Show that $\left(\mathcal{B}^{X}, C^{\succeq}\right)$ satisfies the weak axiom.
(b) Find an example of choice structure $\left(\mathcal{B}^{X}, C\right)$ for which the weak axiom is satisfied, but there is no rational preference \succeq that rationalizes it (i.e. $C^{乙}=C$) (Hint: MWG, Proposition 1.D.2).
(c) Show that the weak axiom is equivalent to the following two properties when \mathcal{B}^{X} contains all nonempty subsets of X.
i. If $x \in B \subset B^{\prime}$ and $x \in C\left(B^{\prime}\right)$ for $B, B^{\prime} \in \mathcal{B}^{X}$, then $x \in C(B) .{ }^{1}$
ii. If $x, y \in B \subset B^{\prime}, x \in C(B)$ and $y \in C\left(B^{\prime}\right)$ for $B, B^{\prime} \in \mathcal{B}^{X}$, then $x \in C\left(B^{\prime}\right)$.

[^0]
[^0]: ${ }^{1}$ This property is often called IIA (Independence of Irrelevant Alternative).

