Econ 201A: Problem Set III

Due on October 26, 2012

- 1. Revealed Preference and Utility. Suppose that the optimal consumption vector for Alice is $x \in \mathbb{R}^L_+$ when the price is $p \in \mathbb{R}^L_{++}$ and x' when the price is p' Alice is maximizing her utility $u : \mathbb{R}^L_+ \to \mathbb{R}$. Answer the following questions.
 - (a) Show $u(x) \ge u(x')$ if x is revealed preferred $(p \cdot x' \le p \cdot x)$.
 - (b) Show u(x) > u(x') if x is strictly revealed preferred $(p \cdot x' and u is locally nonsatiated.$
 - (c) Show by an example that local nonsatiation is necessary for (b).
 - (d) Show u(x) > u(x') if x is revealed preferred to x' $(p \cdot x' \le p \cdot x), x' \ne x$, and u is strictly quasi-concave.

2. More Abstract Approach to Choice and Preference

In many problems, an individual's choice set is just more than a budget set. So it is useful to think about (revealed) preference and choice in a more abstract setting. Let X be a set of a set alternatives. Let \mathcal{B}^X be a collection of some subsets of X. Choice rule C is a mapping that assigns a nonempty subset $C(B) \subset B$ for every $B \in \mathcal{B}^X$. Here B corresponds to a "budget set" and C(B) represents the individual's choices. Call (\mathcal{B}^X, C) choice structure. A choice structure (\mathcal{B}^X, C) satisfies the weak axiom if the following holds:

If
$$x, y \in B \in \mathcal{B}^X$$
, $x \in C(B)$, and $y \in C(B')$ for $B' \in \mathcal{B}^X$ such that $x, y \in B'$, then $x \in C(B')$

(a) Let \succeq be a preference on X and $C^{\succeq}: \mathcal{B}^X \to 2^X$ be a choice rule defined by

$$C^{\succeq}(B) := \{ x \in B | x \succeq y \text{ for all } y \in B \}$$

where $C^{\succeq}(B) \neq \emptyset$ is assumed. Show that $(\mathcal{B}^X, C^{\succeq})$ satisfies the weak axiom.

(b) Find an example of choice structure (\mathcal{B}^X, C) for which the weak axiom is satisfied, but there is no rational preference \succeq that rationalizes it (i.e. $C^{\succeq} = C$) (Hint: MWG, Proposition 1.D.2). (c) Show that the weak axiom is equivalent to the following two properties when \mathcal{B}^X contains all nonempty subsets of X.

i. If $x \in B \subset B'$ and $x \in C(B')$ for $B, B' \in \mathcal{B}^X$, then $x \in C(B)$.¹ ii. If $x, y \in B \subset B'$, $x \in C(B)$ and $y \in C(B')$ for $B, B' \in \mathcal{B}^X$, then $x \in C(B')$.

¹This property is often called IIA (*Independence of Irrelevant Alternative*).