Econ 201B: Problem Set III

Due February 9, 2012

1. Non-Weakly Dominated Action is Cautious Best Response

Consider a finite strategic game with two players. We know that a_{1} is not strictly dominated if and only if a_{1} is a best response to some mixed strategy $\alpha_{2} \in \Delta\left(A_{2}\right)$. A similar result holds for actions that are not weakly dominated: a_{1} is not weakly dominated if and only if a_{1} is a best response to some completely mixed strategy, i.e. $\alpha_{2} \in \triangle\left(A_{2}\right)$ such that $\alpha_{2}\left(a_{2}\right)>0$ for every $a_{2} \in A_{2}$. Prove this statement.
Hint 1: You may follow the following steps. This approach is based on SHT.
(a) Let a_{1}^{*} be any action that is not weakly dominated for player 1 . Let $v_{1}(a)=u_{1}\left(a_{1}, a_{2}\right)-u_{1}\left(a_{1}^{*}, a_{2}\right)$. We assume that, for every a_{2}^{\prime}, there exists different a_{1}^{\prime} such that

$$
u_{1}\left(a_{1}^{\prime}, a_{2}\right)-u_{1}\left(a_{1}^{*}, a_{2}\right)=\left\{\begin{array}{c}
-1 \text { for } a_{2}=a_{2}^{\prime} \\
\varepsilon \text { for } a_{2} \neq a_{2}^{\prime}
\end{array}\right.
$$

for some $\varepsilon>0$. If not, we can add such auxiliary actions. Verify that a_{1}^{*} is still not weakly dominated after adding such actions for small enough $\varepsilon>0$.
(b) Let U_{1} be the subset of $\mathbb{R}^{\left|A_{2}\right|}$ that can be represented by a convex combi-
nation of v_{1}. That is, $U_{1}=\left\{x \in \mathbb{R}^{\left|A_{2}\right|} \mid \exists \alpha_{1} \in \triangle\left(A_{1}\right), \forall a_{2} \in A_{2}, x\left(a_{2}\right)=\sum_{a_{1} \in A_{1}} \alpha_{1}\left(a_{1}\right) v_{1}\left(a_{1}, a_{2}\right)\right\}$.
Apply the separating hyperplane theorem to show that there exists $p^{*} \neq 0$ to separate $\mathbb{R}_{+}^{\left|A_{2}\right|}$ from U_{1}, i.e. $p^{*} \cdot x \leq p^{*} \cdot y$ for any $y \in \mathbb{R}_{+}^{\left|A_{2}\right|}$ and any $x \in U_{1}$
(c) Show that $p^{*} \gg 0$.
(d) Complete the proof.

Hint 2: Here is another approach, which is more in line with the hint given by O\&R for Exercise 64.2. This approach is based on MMT.
(e) Let a_{1}^{*} be any action that is not weakly dominated for player 1 . Define a two player zero-sum game $\left(\{1,2\},\left(A_{i}\right),\left(v_{i}\right)\right)$, where $v_{1}(a)=u_{1}\left(a_{1}, a_{2}\right)$ $u_{1}\left(a_{1}^{*}, a_{2}\right)$ and $v_{2}=-v_{1}$. We assume that, for every a_{2}^{\prime}, there exists different a_{1}^{\prime} such that

$$
u_{1}\left(a_{1}^{\prime}, a_{2}\right)-u_{1}\left(a_{1}^{*}, a_{2}\right)=\left\{\begin{array}{c}
-1 \text { for } a_{2}=a_{2}^{\prime} \\
\varepsilon \text { for } a_{2} \neq a_{2}^{\prime}
\end{array}\right.
$$

for some $\varepsilon>0$. If not, we can add such auxiliary actions. Verify that a_{1}^{*} is still not weakly dominated after adding such actions for small enough $\varepsilon>0$.
(f) Show that (1) there exists a Nash equilibrium $\alpha^{*} \in \triangle\left(A_{1}\right) \times \triangle\left(A_{2}\right)$ and (2) α_{i}^{*} is a maxminimizer for $i=1,2$ (you can use the minimax theorem).
(g) Show that playing a_{1}^{*} with probability 1 is a maxminimizer for player 1 and $\alpha_{2}^{*}\left(a_{2}\right)>0$ for all $a_{2} \in A_{2}$.
(h) Complete the proof.

2. Iterated Elimination of Dominated Actions and Nash Equilibrium

Consider a general finite strategic game and an elimination process where all weakly dominated actions of every player are eliminated simultaneously in each step. This process stops in finite number of steps.
(a) Let α^{*} be a mixed strategy Nash equilibrium of the remaining strategic game. Show that α^{*} is a Nash equilibrium of the original strategic game.
(b) Is α^{*} a trembling hand perfect equilibrium? Explain.

