Econ 201B: Problem Set III

Due February 9, 2012

1. Non-Weakly Dominated Action is Cautious Best Response

Consider a finite strategic game with two players. We know that a_1 is not strictly dominated if and only if a_1 is a best response to some mixed strategy $\alpha_2 \in \Delta(A_2)$. A similar result holds for actions that are not weakly dominated: a_1 is not weakly dominated if and only if a_1 is a best response to some completely mixed strategy, i.e. $\alpha_2 \in \Delta(A_2)$ such that $\alpha_2(a_2) > 0$ for every $a_2 \in A_2$. Prove this statement.

Hint 1: You may follow the following steps. This approach is based on SHT.

(a) Let a_1^* be any action that is not weakly dominated for player 1. Let $v_1(a) = u_1(a_1, a_2) - u_1(a_1^*, a_2)$. We assume that, for every a'_2 , there exists different a'_1 such that

$$u_1(a'_1, a_2) - u_1(a^*_1, a_2) = \begin{cases} -1 \text{ for } a_2 = a'_2 \\ \varepsilon \text{ for } a_2 \neq a'_2 \end{cases}$$

for some $\varepsilon > 0$. If not, we can add such auxiliary actions. Verify that a_1^* is still not weakly dominated after adding such actions for small enough $\varepsilon > 0$.

- (b) Let U_1 be the subset of $\mathbb{R}^{|A_2|}$ that can be represented by a convex combination of v_1 . That is, $U_1 = \left\{ x \in \mathbb{R}^{|A_2|} | \exists \alpha_1 \in \triangle(A_1), \forall a_2 \in A_2, x(a_2) = \sum_{a_1 \in A_1} \alpha_1(a_1)v_1(a_1, a_2) \right\}$. Apply the separating hyperplane theorem to show that there exists $p^* \neq 0$ to separate $\mathbb{R}^{|A_2|}_+$ from U_1 , i.e. $p^* \cdot x \leq p^* \cdot y$ for any $y \in \mathbb{R}^{|A_2|}_+$ and any $x \in U_1$
- (c) Show that $p^* \gg 0$.
- (d) Complete the proof.

Hint 2: Here is another approach, which is more in line with the hint given by O&R for Exercise 64.2. This approach is based on MMT.

(e) Let a_1^* be any action that is not weakly dominated for player 1. Define a two player zero-sum game $(\{1, 2\}, (A_i), (v_i))$, where $v_1(a) = u_1(a_1, a_2) - u_1(a_1^*, a_2)$ and $v_2 = -v_1$. We assume that, for every a'_2 , there exists different a'_1 such that

$$u_1(a'_1, a_2) - u_1(a^*_1, a_2) = \begin{cases} -1 \text{ for } a_2 = a'_2 \\ \varepsilon \text{ for } a_2 \neq a'_2 \end{cases}$$

for some $\varepsilon > 0$. If not, we can add such auxiliary actions. Verify that a_1^* is still not weakly dominated after adding such actions for small enough $\varepsilon > 0$.

- (f) Show that (1) there exists a Nash equilibrium $\alpha^* \in \triangle(A_1) \times \triangle(A_2)$ and (2) α_i^* is a maximizer for i = 1, 2 (you can use the minimax theorem).
- (g) Show that playing a_1^* with probability 1 is a maxminimizer for player 1 and $\alpha_2^*(a_2) > 0$ for all $a_2 \in A_2$.
- (h) Complete the proof.

2. Iterated Elimination of Dominated Actions and Nash Equilibrium

Consider a general finite strategic game and an elimination process where all weakly dominated actions of every player are eliminated simultaneously in each step. This process stops in finite number of steps.

- (a) Let α^* be a mixed strategy Nash equilibrium of the remaining strategic game. Show that α^* is a Nash equilibrium of the original strategic game.
- (b) Is α^* a trembling hand perfect equilibrium? Explain.