Econ 201B: Problem Set IV

Due on February 16, 2012

1. Correlated Equilibrium

Characterize the set of distributions of action profiles that can be achieved by correlated equilibrium for the following Hawk-Dove game.

	Hawk	Dove
Hawk	$\frac{V-C}{2}, \frac{V-C}{2}$	V, 0
Dove	0, V	$\frac{V}{2}, \frac{V}{2}$
0 < V < C		

2. An Innovation Game and Supermodularity

Consider *n* firms which are independently making a decision regarding their R&D investments to develop a certain new technology. Firm *i* chooses the amount of resource $x_i \in R_+$ to spend for this R&D project. Suppose that the cost of x_i is $\frac{1}{2}kx_i^2$ where $0 < k < \frac{n-1}{2}$. Firm *i* succeeds in developing a new technology with probability $f(x_i) \in [0, 1]$. Firm *i*'s profit is 0 if it does not succeed and $g\left(\sum_{j\neq i} x_j\right) \geq 0$ if it succeeds, where *g* is a continuous increasing function. That is, firm *i*'s profit when succeeding depends on the amount of the other firms' investments. Thus firm *i*'s expected profit given $x = (x_1, ..., x_n)$ is

$$\pi(x) = f(x_i) g\left(\sum_{j \neq i} x_j\right) - \frac{1}{2}kx_i^2$$

We assume that each firm maximizes its expected profit. Answer the following questions.

- (a) Explain why there may be multiple symmetric Nash equilibria for this game
- (b) Assume that $f(x_i) = \log(1 + x_i)$ and $g\left(\sum_{j \neq i} x_j\right) = \sum_{j \neq i} x_j$. Find all symmetric Nash equilibria.
- (c) Verify that the largest equilibrium in (b) is decreasing in k.

- (d) Prove that there exists the largest equilibrium and the largest equilibrium is (weakly) decreasing in k when f is a continuous increasing function, without assuming any explicit functional form for f and g.
- (e) Explain why some symmetric Nash equilibrium may be (locally) increasing in k.

3. Increasing Difference

"f on lattice $X \times Y \in \mathbb{R}^k$ satisfies increasing differences in (x, y) if and only if f satisfies increasing differences in any pair of $(x_i, y_j) \in \mathbb{R}^2$ given any x_{-i}, y_{-j} ". Prove this statement.