The Race Between Education, Technology, and the Minimum Wage

Jonathan Vogel

January 2024
Where we’re going

- **What is the dynamic impact of the minimum wage on inequality?**

- **Theory:** effect is small on impact and grows over time

- **Empirics:** document these dynamic effects

- **The impact of the minimum wage on inequality grows over time, with the medium-run effect being \(\approx \) twice the impact effect**
How we get there

1 **Motivation (The Race Between...):** In national time series, the real minimum wage helps shape the evolution of U.S. college premium + partially resolves a “puzzle”

2 **Theory:** Job-ladder model with many skills (or groups)
 - On impact $\uparrow \text{mw} \Rightarrow \uparrow$ in wages for those individuals bound by it *(direct effect)*
 - Over time, workers move up the job ladder \Rightarrow magnified effect *(indirect effect)*
 - Elasticity of the average wage of a skill group wrt mw \uparrow in share of wage income bound by mw and grows over time *(combo of effects)*

3 **Empirics:** Use state-and-group-level data, document that the elasticity of the state \times group average wage w.r.t. the minimum wage
 - is \uparrow in share of wage income earned at the mw on impact *(direct effect)*
 - this difference in elasticities grows by a factor of ≈ 2 over 2–3 years *(indirect effect)*
Motivation (The Race Between...): In national time series, the real minimum wage helps shape the evolution of U.S. college premium + partially resolves a “puzzle”

Theory: Job-ladder model with many skills (or groups)

- On impact $\uparrow mw \Rightarrow \uparrow$ in wages for those individuals bound by it (direct effect)
- Over time, workers move up the job ladder \Rightarrow magnified effect (indirect effect)
- Elasticity of the average wage of a skill group wrt mw \uparrow in share of wage income bound by mw and grows over time (combo of effects)

Theory embeds into any aggregate production function combining skill outputs:

Empirics: Use state-and-group-level data, document that the elasticity of the state × group average wage w.r.t. the minimum wage

- is \uparrow in share of wage income earned at the mw on impact (direct effect)
- this difference in elasticities grows by a factor of ≈ 2 over 2–3 years (indirect effect)
Contributions

- **Canonical model** (Tinbergen 74, Katz and Murphy 92, ...), including minimum wage (Autor, Katz, Kearney 08)
 - While supply and demand remain crucial, so too is the minimum wage
 - Minimum wage helps resolve the (apparent) rapid slowing SBTC in the 1990s

- **Impact of minimum wage on inequality**
 Meyer, Wise, 83; DiNardo et al., 96; Lee, 99; Card, DiNardo, 02; Autor ea., 16; Cengiz ea. 19; Dube, 19; Fortin ea. 21; Chen, Teulings 22; ...
 - Direct effect dominates in short run, but indirect effect grows over time
 - Identified within worker groups (i.e. for fixed observable characteristics)

- **Growing macro-labor literature of monopsony using quantitative models**
 Haanwinckel, 20; Engbom, Moser, 21; Ahlfeldt et al., 22; Berger et al., 22; Hurst et al., 22; Trottner, 22; ...
 - Job-ladder model like EM, but focus on dynamics
 - Dynamics like HKPW, but driven by job ladder rather than putty-clay capital
Motivation:
National time-series variation
I consider (for now atheoretical) regressions of the form

\[
\log \left(\frac{w_{ht}}{w_{\ell t}} \right) = \alpha + \beta_m \log m_t + \beta_L \log \left(\frac{Supply_{ht}}{Supply_{\ell t}} \right) + \gamma_1 t + [...] + \iota_t
\]

national time-series, \(t \), variation across college and non-college workers, \(h \) and \(\ell \)

- \(\log w_{ht} \) and \(\log w_{\ell t} \) are measures of average log wages
- \(\log Supply_{ht} \) and \(\log Supply_{\ell t} \) are measures of labor supply (hours worked)
- \(m_t \) is a measure of the real minimum wage at the national level

Measurement

- **Supply and wages** are composition adjusted (March CPS 1964 - 2017 spanning working years 1963 - 2016)
- **Instrument for supply** is composition-adjusted population (March CPS)
- **National real minimum wage** (Cengiz et al. (2019), DOL, FRED, March CPS)
 - For each state use the max of the state and national statutory minima
 - ... then average across states using time-invariant weights
 - ... and apply the GDP deflator
Result I: out-of-sample fit (2SLS)
Result I: out-of-sample fit (2SLS)
Residualized data
Using the population-based measure of relative college supply
Result II: in-sample elasticities...
... of the national college wage premium wrt relative supply and the real minimum wage

Regression Models for the College Wage Premium

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative supply</td>
<td>-0.632</td>
<td>-0.703</td>
<td>-0.608</td>
<td>-0.619</td>
<td>-0.387</td>
<td>-0.120</td>
<td>-0.117</td>
<td>-0.045</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.077)</td>
<td>(0.104)</td>
<td>(0.119)</td>
<td>(0.134)</td>
<td>(0.105)</td>
<td>(0.129)</td>
<td>(0.122)</td>
</tr>
<tr>
<td>Real m.w.</td>
<td>-0.220</td>
<td>-0.199</td>
<td>-0.133</td>
<td>-0.129</td>
<td>-0.132</td>
<td>-0.103</td>
<td>-0.131</td>
<td>-0.112</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.059)</td>
<td>(0.052)</td>
<td>(0.064)</td>
<td>(0.046)</td>
<td>(0.034)</td>
<td>(0.037)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Time Polynom.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Observations</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

The extended canonical model including polynomials of time up to degree \(j \) in column \(j \). Estimated using 2SLS, instrumenting for hours-based supply using population-based measure. Robust standard errors are shown in parentheses.

- **Sizable elasticity of the college premium wrt the real minimum wage**
 - e.g., 27\% ↓ in real minimum wage 1979 – 89 \(\implies \) 3 – 6\% ↑ in national college premium
Summary + robustness

Summary:
1. Relative supply growth fluctuations + trend demand growth crucial drivers of college premium, but changes in real minimum wage are also important.
2. Less dramatic slowing of SBTC (more generally, improved out-of-sample fit).

Sensitivity and additional results:
- ... using two alternative measures of relative supply
 - Tables with estimated elasticities
 - Figures with out-of-sample fit
- ... using Autor, Katz, and Kearney (2008) data
 - Table using the FLSA real minimum wage
 - Table using the average real minimum wage across states
- ... separately for college and non-college workers
Theory
Framework

Supply and demand:

- Exogenous supply L_{st} of homogeneous skill $s = 1, ..., S$ workers
- Aggregate production function combining skill output with skill-time-specific productivity A_{st} shaping relative demand
Framework

- **Supply and demand:**
 - Exogenous supply L_{st} of homogeneous skill $s = 1, \ldots, S$ workers
 - Aggregate production function combining skill output with skill-time-specific productivity A_{st} shaping relative demand

- **Job ladder:**
 - Zero discount factor: analysis of transitions to aggregate shocks
 - Worker can be employed or unemployed with exogenous separation (δ_s) and job-finding rates (λ_{su} unemployed and λ_{se} employed)
 - Bilateral generalized Nash bargaining btw new worker-firm match ($\beta_s =$ worker weight) over fixed real wage w/ current job as worker outside option

Real minimum wage: m_t

Impose no employment effect of m_t ($m_t < VMPL_{st}$), but will generalize

Discrete time: within t, separation shocks occur first, then new matches realized for those workers who did not separate in t
Framework

- **Supply and demand:**
 - Exogenous supply L_{st} of homogeneous skill $s = 1, \ldots, S$ workers
 - Aggregate production function combining skill output with skill-time-specific productivity A_{st} shaping relative demand

- **Job ladder:**
 - Zero discount factor: analysis of transitions to aggregate shocks
 - Worker can be employed or unemployed with exogenous separation (δ_s) and job-finding rates (λ_{su} unemployed and λ_{se} employed)
 - Bilateral generalized Nash bargaining btw new worker-firm match ($\beta_s = $ worker weight) over fixed real wage w/ current job as worker outside option

- **Real minimum wage:** m_t
 - Impose no employment effect of mw ($m_t < VMPL_{st}$), but will generalize
Framework

- **Supply and demand:**
 - Exogenous supply L_{st} of homogeneous skill $s = 1, ..., S$ workers
 - Aggregate production function combining skill output with skill-time-specific productivity A_{st} shaping relative demand

- **Job ladder:**
 - Zero discount factor: analysis of transitions to aggregate shocks
 - Worker can be employed or unemployed with exogenous separation (δ_s) and job-finding rates (λ_{su} unemployed and λ_{se} employed)
 - Bilateral generalized Nash bargaining btw new worker-firm match ($\beta_s = \text{worker weight}$) over fixed real wage w/ current job as worker outside option

- **Real minimum wage:** m_t
 - Impose no employment effect of mw ($m_t < VMPL_{st}$), but will generalize

- Discrete time: within t, separation shocks occur first, then new matches realized for those workers who did not separate in t
Steady-state characterization

Suppose “binding” mw for given s (for exposition only)

- Wage ladder across “rungs”
- First rung is the minimum wage...
- ... and move up over time (if no separation shock)
- Average wage an average of mw and VMPL

Details and distribution
Transitions

Proposition

Consider an economy in steady state at date 0 that faces a small one-time change from \(m \) to \(m' > m \). For any skill \(s \) that was bound by \(m \):

1. For all \(t \geq 0 \) two job ladders coexist, with first rungs \(m \) (old) and \(m' \) (new)
2. The share on each rung \(j \) summed across the two ladders is constant across \(t \)
3. The share on rung \(j \) of the new ladder weakly increases in \(t \)
4. At each rung \(j \), wage on the new job ladder > than on the old one
5. The elasticity of the average wage wrt the minimum wage rises in \(t \)
6. On impact, this elasticity equals the share of income earned at \(m \) (the “bite”)
Transitions implication

- \(D \)-period elasticity of any group’s average wage wrt to a one-time increase in the real mw from \(m \) to \(m' > m \) at \(t = 0 \) (impulse response)

\[
\log \left(\frac{w_{D,s}}{w_{-1,s}} \right) / \log \left(\frac{m'}{m} \right) \equiv M_{D,s} \times B_{-1,s}
\]

\(D \) period elasticity of average wage wrt \(m \)

decomposed into initial minimum wage “Bite" + “Magnification” elasticity

- \(B_{-1,s} \) is the pre-shock share of wage income earned at the mw
- \(M_{D,s} \) is the “Magnification elasticity”
 - \(M_{0,s} = 1 \)
 - \(dM_{D,s}/dD > 0 \)
CS across steady states (including unemployment effects)

Across steady state effects of changes in the real mw, supply, demand

- **Average wage of skill** s

 \[d \log w_s = M_s B_s \partial \log m + (1 - M_s B_s) \partial \log \text{VMPL}_s \]

 where VMPL$_s$ is real and M_s is the steady-state Magnification elasticity

 \[M_s \equiv \lim_{D \to \infty} M_{D,s} = \frac{\delta_s + (1 - \delta_s)\lambda_{se}}{\delta_s + \beta_s(1 - \delta_s)\lambda_{se}} > 1 \]

- **This holds whether or not** m **affects unemployment**
 - $M_s B_s$ is the partial elasticity wrt m, holding employment (so VMPL) fixed
 - If mw does not affect employment,
 1. $M_s B_s$ is also the total elasticity wrt m
 2. VMPL determined by production function, but replacing L_s with $(1 - u_s)L_s$
 “Race between education, technology, and the minimum wage”

- **Distribution of wages for skill** s

The race
Distributional implication
Empirics
From theory to estimation

- Theory (omit s): if one-time permanent $m \uparrow$ btw $t - D$ and $t - D + 1$ then

$$\log \frac{w_t}{w_{t-D}} = M_{D-1} B_{t-D} \log \frac{m_{t-D+1}}{m_{t-D}}$$

which is equivalent to (a distributed lag model where the magnification elasticities are the lag weights)

$$\log \frac{w_t}{w_{t-D}} = \sum_{j=0}^{D-1} M_j B_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}$$
From theory to estimation

- Theory (omit s): if one-time permanent $m \uparrow$ btw $t - D$ and $t - D + 1$ then

$$\log \frac{w_t}{w_{t-D}} = M_{D-1}B_{t-D} \log \frac{m_{t-D+1}}{m_{t-D}}$$

which is equivalent to

(a distributed lag model where the magnification elasticities are the lag weights)

$$\log \frac{w_t}{w_{t-D}} = \sum_{j=0}^{D-1} M_j B_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}$$

- Theory: if the one-time $m \uparrow$ was earlier, btw $t - D'$ and $t - D' + 1$ for $D' > D$ then

$$\log \frac{w_t}{w_{t-D}} = (M_{D'-1} - M_{D'-D-1})B_{t-D'} \log \frac{m_{t-D'+1}}{m_{t-D'}}$$

which is equivalent to

(a distributed lag model)

$$\log \frac{w_t}{w_{t-D}} = \sum_{j=0}^{D-1} M_j B_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}} + \sum_{j=D}^{D'-1} (M_j - M_{j-D})B_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}$$
In practice, \(m \) is changing frequently at state and national levels

- Apply previous formulas in presence of many changes

First set \(D = D' \) and estimate

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j,r}}{m_{t-j-1,r}} + \epsilon_{t,g,r}
\]

- the median across all periods of the mw bite for \((g, r)\)
- \(D \) lagged (and \(K \) lead) one-period changes in the mw in region \(r \)

defining

- \(g = \) group: intersection of age bin (5), gender (2), race (2), education (5)
- \(r = \) region: 50 US states
- \(t = \) time: half year (m1-6, m7-12) between 1979m1 – 2016m12
- \(D = 6 \) and \(K = 6 \)

winsorizing wage change at 2nd percentile within each \((g, r)\)
Exposure to exogenous shocks...

\[
\log \frac{W_{t,g,r}}{W_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times bite_{g,r} \times \log \frac{m_{t-j,r}}{m_{t-j-1,r}} + \ldots + \varepsilon_{t,g,r}
\]

- \(bite_{g,r}\) is (potentially not randomly assigned) exposure and the one-period changes in the \(mw\) are the shocks
- Borusyak and Hull (ECMA, 2023) show
 - how OVB may confound this approach
 - and how re-centering (or controlling for expected treatment) addresses this issue
- Use “design-based” approach (which requires different controls under different assumptions on minimum wage change process)
 - If \(mw\) change is \(i.i.d\). across \(r\) and \(t\): \(bite_{g,r}\)
 - If \(mw\) change is \(i.i.d\). across \(r\) w/ \(t\)-specific mean: \(FE_t \times bite_{g,r}\)
 - same estimates as when using nominal \(mw\) (given same controls)

which avoids negative \(ex\ ante\) weights (Borusyak and Hull WP, 2023)
- In some specifications, additionally include \(FE_{t,r}\)
• NBER Merged Outgoing Rotation Group of the CPS (1979 – 2016)
 ▶ Drop 1994 and 1995m1–m8: missing allocation flags
 ▶ End 2016m12 before many municipalities begin setting their own mws; e.g.,
 ★ NYC + Nassau, Suffolk, and Westchester counties on 12/31/2016
 ★ Minneapolis, MN in 2018
 ★ Los Angeles $0.50 above for large businesses on 7/1/16
 ★ San Diego $0.75 above on 1/1/15
 ▶ Measure $\text{bite}_{g,r}$ defining mw worker as those with wage \(\leq 1.05 \text{ mw} \)
• Minimum wage data from Vaghul and Zipperer (2016), Cengiz et al. (2019)
 ▶ Use maximum nominal mw in state-period
 ▶ Deflate by maximum monthly GDP deflator in period
\[
\log \frac{W_{t,g,r}}{W_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j,r}}{m_{t-j-1,r}} + \ldots + \varepsilon_{t,g,r}
\]

- Cluster standard errors by state
- Weigh by product of \((g, r)\) work hours in \(t\) and \(t - D\) divided by their sum
- Use balanced sample: \((g, r)\) with no missing wage data across \(t\)
- All results in figures, which display results...

 - ... converting pre-trends to their more typical “levels” form
 - negative of coefficients for \(j < 0\)
 - see Roth (2024): “Interpreting Event-Studies…”

 - ... displaying averaged *annual* effects, except for impact effect
 - for period \(j \neq 0\), display \((\hat{\mu}_j + \hat{\mu}_{j-1})/2 + \) corresponding 95% confidence interval
 - for period \(j = 0\), display \(\hat{\mu}_0 + \) corresponding 95% confidence interval
Results without controls

$$\log \frac{W_{t,g,r}}{W_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j,r}}{m_{t-j-1,r}} + \varepsilon_{t,g,r}$$

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years j and $j-1$, except for the impact estimate μ_0

- Raw correlations: no pre-trends, jump on impact, rising thereafter
- But cannot view this as a causal relationship
Alternative samples and definitions without controls

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]

- **Baseline:** mw workers those with wages $\leq 1.05 \times$ mw
 - mw workers those with wages $\leq 1.00 \times$ mw
 - mw workers those with wages $\leq 1.10 \times$ mw
 - mw workers those with wages $\leq 1.15 \times$ mw

- **Baseline uses all groups**
 - Only for groups without college degrees
 - Separately by gender
 - Exclude final 6 sample years (w/ sub-state mws)
 - Unbalanced panel of \((g, r)\)
Results with control 1

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \xi \text{bite}_{g,r} + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j\) and \(j - 1\), except for the impact estimate \(\mu_0\)
log \(\frac{w_{t,g,r}}{w_{t-D,g,r}} \) = \(\alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta \text{bite}_{g,r} + \varepsilon_{t,g,r}\)

- **Baseline:** mw workers those with wages \(\leq 1.05 \times \text{mw}\)
 - mw workers those with wages \(\leq 1.00 \times \text{mw}\)
 - mw workers those with wages \(\leq 1.10 \times \text{mw}\)
 - mw workers those with wages \(\leq 1.15 \times \text{mw}\)

- **Baseline uses all groups**
 - Only for groups without college degrees
 - Separately by gender
 - Exclude final 6 sample years (w/ sub-state mws)
 - Unbalanced panel of \((g, r)\)
Results with controls: II

\[
\log \frac{w_{t,g,r}}{\log w_{t-D,g,r}} = \sum_{j=1}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years j and $j - 1$, except for the impact estimate μ_0.
Alternative samples and definitions with control II

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

- **Baseline**: mw workers those with wages ≤ 1.05 × mw
 - mw workers those with wages ≤ 1.00 × mw
 - mw workers those with wages ≤ 1.10 × mw
 - mw workers those with wages ≤ 1.15 × mw

- **Baseline uses all groups**
 - Only for groups without college degrees
 - Separately by gender
 - Exclude final 6 sample years (w/ sub-state mws)
 - Unbalanced panel of (g, r)
Results with controls: III

$$\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_{t,r} + \varepsilon_{t,g,r}$$

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years j and $j - 1$, except for the impact estimate μ_0.
Alternative samples and definitions with control III

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_{t,r} + \epsilon_{t,g,r}
\]

- **Baseline:** mw workers those with wages \(\leq 1.05 \times \text{mw} \)
 - mw workers those with wages \(\leq 1.00 \times \text{mw} \)
 - mw workers those with wages \(\leq 1.10 \times \text{mw} \)
 - mw workers those with wages \(\leq 1.15 \times \text{mw} \)

- **Baseline uses all groups**
 - Only for groups without college degrees
 - Separately by gender
 - Exclude final 6 sample years (w/ sub-state mws)
 - Unbalanced panel of \((g, r)\)
Extended specification

Previously had 6 period change in wage on 6 lagged shocks. Now include 12 lags

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{12-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
Extended specification

Previously had 6 period change in wage on 6 lagged shocks. Now include 12 lags

\[
\log \left(\frac{w_{t,g,r}}{w_{t-6,g,r}} \right) = \sum_{j=-6}^{12-1} \mu_j \times \text{bite}_{g,r} \times \log \left(\frac{m_{t-j+1,r}}{m_{t-j,r}} \right) + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j \) and \(j - 1 \), except for the impact estimate \(\mu_0 \)

Expected hump-shaped pattern: impact effect doubles in \(\approx 2.5 \) years then falls to zero
Alternative samples and definitions from extended spec

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{12-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

- **Baseline:** mw workers those with wages \(\leq 1.05 \times \text{mw} \)
 - mw workers those with wages \(\leq 1.00 \times \text{mw} \)
 - mw workers those with wages \(\leq 1.10 \times \text{mw} \)
 - mw workers those with wages \(\leq 1.15 \times \text{mw} \)

- **Baseline uses all groups**
 - Only for groups without college degrees
 - Separately by gender
 - Exclude final 6 sample years (w/ sub-state mws)
 - Unbalanced panel of \((g, r)\)
Conclusions

What is the impact of the mw on inequality?

- **Empirical motivation:** two new facts in the national time series
 - minimum wage helps shape U.S. college wage premium
 - incorporating mw improves fit of “The race” + reduces trend break in SBTC

- **Theoretically:**
 - on impact, ↑ mw raises wages more for groups more bound by it
 - over time, this wage elasticity wrt the mw rises due to indirect effects

- **Empirically:** Find evidence consistent with these dynamic predictions
 - using state and group level data
 - holding the composition of workers fixed

with magnification elasticity doubling after ≈ 2.5 years
Empirical Appendix
Regression Models for the College Wage Premium
Using dual of composition-adjusted changes in wages
Instrumenting with efficiency-unit populations

<table>
<thead>
<tr>
<th></th>
<th>1963-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Relative supply</td>
<td>-0.584</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
</tr>
<tr>
<td>Real m.w.</td>
<td>-0.207</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
</tr>
<tr>
<td>Time Polynom.</td>
<td>1</td>
</tr>
<tr>
<td>Observations</td>
<td>54</td>
</tr>
</tbody>
</table>
Regression Models for the College Wage Premium
Reduced-form specification

<table>
<thead>
<tr>
<th></th>
<th>1963-2016</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Relative supply</td>
<td>-0.555</td>
<td>-0.816</td>
<td>-0.632</td>
<td>-0.692</td>
<td>-0.356</td>
<td>-0.119</td>
<td>0.001</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.083)</td>
<td>(0.101)</td>
<td>(0.110)</td>
<td>(0.106)</td>
<td>(0.103)</td>
<td>(0.158)</td>
<td>(0.210)</td>
</tr>
<tr>
<td>Real m.w.</td>
<td>-0.307</td>
<td>-0.257</td>
<td>-0.132</td>
<td>-0.115</td>
<td>-0.126</td>
<td>-0.102</td>
<td>-0.136</td>
<td>-0.120</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.058)</td>
<td>(0.047)</td>
<td>(0.058)</td>
<td>(0.038)</td>
<td>(0.032)</td>
<td>(0.040)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Time Polynom.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Observations</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>
Results: predicted college premium alternative supply

Using dual of composition-adjusted changes in wages
Instrumenting with efficiency-unit populations
Results: predicted college premium reduced form

Reduced-form specification

- College premium
- Predicted w/out mw
- Predicted with mw

Year: 1960, 1980, 2000, 2020

Graph showing the predicted college premium over time with and without a variable mw.
Impact of minimum wage is at least as robust as impact of supply
Regression Models for the College Wage Premium
Using Data from AKK Replication Package (1963-2005)...
... but replacing FLSA mw with average across states

<table>
<thead>
<tr>
<th></th>
<th>1963-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>Relative supply</td>
<td>-0.459</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
</tr>
<tr>
<td>Minimum wage</td>
<td>-0.150</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
</tr>
<tr>
<td>Time Polynom.</td>
<td>1</td>
</tr>
<tr>
<td>Observations</td>
<td>43</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.947</td>
</tr>
</tbody>
</table>

Slight increase in elasticity wrt real minimum wage
Replace $\log \frac{w_{ht}}{w_{lt}}$ with $\log w_{ht}$ and with $-\log w_{lt}$.

Regression Models for the College and Non-College Wages

<table>
<thead>
<tr>
<th></th>
<th>College premium (a)</th>
<th>College wage (b)</th>
<th>Non-college wage (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real m.w.</td>
<td>-0.220 (0.048)</td>
<td>-0.104 (0.059)</td>
<td>-0.117 (0.058)</td>
</tr>
<tr>
<td>Observations</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

$\uparrow mw \Rightarrow \uparrow$ non-college average wage but also \downarrow college wage
\[
\frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
No controls female sample

$$\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}$$
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times b_{t,g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
\[\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times b_{t,g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r} \]
No controls mw cutoff of 1.10

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
No controls mw cutoff of 1.15

\[
\log \left(\frac{w_{t,g,r}}{w_{t-D,g,r}} \right) = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \left(\frac{m_{t-j+1,r}}{m_{t-j,r}} \right) + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta \text{bite}_{g,r} + \varepsilon_{t,g,r}
\]
Control I female sample

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta \text{bite}_{g,r} + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta \text{bite}_{g,r} + \varepsilon_{t,g,r}
\]
\[\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta \text{bite}_{g,r} + \varepsilon_{t,g,r} \]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta \text{bite}_{g,r} + \varepsilon_{t,g,r}
\]
Control I mw cutoff of 1.00

\[\log \frac{W_{t,g,r}}{W_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r} \]
Control I mw cutoff of 1.10

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \alpha + \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
Control II female sample

$$\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}$$
Control II male sample

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_t,g,r
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
Control II mw cutoff of 1.00

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times b_{t,g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t b_{t,g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
Control II mw cutoff of 1.15

\[\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times bit_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t bit_{g,r} + \alpha_t + \epsilon_{t,g,r} \]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_{t,r} + \varepsilon_{t,g,r}
\]
Control III female sample

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]
Control III male sample

\[
\log \frac{W_{t,g,r}}{W_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_{t,r} + \epsilon_{t,g,r}
\]
\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times b_{i,g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t b_{i,g,r} + \alpha_{t,r} + \varepsilon_{t,g,r}
\]
Control III unbalanced sample

$$\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D} \mu_j \times b_{t,g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t b_{t,g,r} + \alpha_{t,r} + \varepsilon_{t,g,r}$$
\[\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r} \]
Control III mw cutoff of 1.10

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_{t,r} + \epsilon_{t,g,r}
\]
Control III mw cutoff of 1.15

\[
\log \frac{w_{t,g,r}}{w_{t-D,g,r}} = \sum_{j=-K}^{D-1} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_{t,r} + \varepsilon_{t,g,r}
\]
Extended specification: mw cutoff of 1.00

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j\) and \(j - 1\), except for the impact estimate \(\mu_0\)
Extended specification: mw cutoff of 1.10

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_t,g,r
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j \) and \(j - 1 \), except for the impact estimate \(\mu_0 \)
Extended specification: mw cutoff of 1.15

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j \) and \(j - 1 \), except for the impact estimate \(\mu_0 \).
Extended specification: non-college sample

\[
\log \frac{w_{t, g, r}}{w_{t-6, g, r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g, r} \times \log \frac{m_{t-j+1, r}}{m_{t-j, r}} + \zeta_t \text{bite}_{g, r} + \alpha_t + \varepsilon_{t, g, r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j\) and \(j - 1\), except for the impact estimate \(\mu_0\)
Extended specification: female sample

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j \) and \(j - 1 \), except for the impact estimate \(\mu_0 \)
Extended specification: male sample

\[
\log \frac{W_{t,g,r}}{W_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j\) and \(j - 1\), except for the impact estimate \(\mu_0\)
Extended specification: 1979-2010 sample

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j\) and \(j - 1\), except for the impact estimate \(\mu_0\)
Extended specification: unbalanced sample

\[
\log \frac{w_{t,g,r}}{w_{t-6,g,r}} = \sum_{j=-6}^{11} \mu_j \times \text{bite}_{g,r} \times \log \frac{m_{t-j+1,r}}{m_{t-j,r}} + \zeta_t \text{bite}_{g,r} + \alpha_t + \varepsilon_{t,g,r}
\]

Notes: Point estimates and 95% CIs averaging coefficients, averaging two half years \(j\) and \(j - 1\), except for the impact estimate \(\mu_0\)
Theoretical Appendix
Proposition

Consider an economy in steady state at date 0 that faces a small one-time change from m to $m' > m$. Then for any skill s that was bound by m:

1. For all $t \geq 0$ two job ladders coexist, with first rungs m (old) and m' (new).
2. The share on each rung j summed across the two ladders is constant across t.
3. The share on rung j of the new ladder rises (weakly) in t.
4. At each rung j, wage on the new job ladder is higher than on the old one.
5. The elasticity of the average wage wrt the minimum wage rises in t.
6. On impact, this elasticity equals the share of income earned at m (the “bind”).

And, if $m' < m$, then

- 1, 2, and 3 are identical.
- 4 and 5 are reversed.
- 6: the instantaneous elasticity of the average wage $= 0$.
Transitions (for one s bound by m)

- Economy in steady state at date 0

pre shock
$t = -1$
Transitions (for one s bound by m)

- Economy in steady state at date 0; a small one-time change to $m' > m$

On impact, the first rung disappears on the original ladder and appears, higher, on the new ladder (direct effect)

$$\log \left(\frac{w_{0^+,s}}{w_{-1,s}} \right) / \log \left(\frac{m'}{m} \right) \equiv B_{-1,s}$$

share of wage income earned at mw before shock
Transitions (for one s bound by m)

- Economy in steady state at date 0; a small one-time change to $m' > m$

- One period later, the second rung on the original ladder starts emptying out as the second rung on the new ladder starts filling in (small indirect effect)

\[
\log \left(\frac{w_{1,s}}{w_{-1,s}} \right) / \log \left(\frac{m'}{m} \right) > B_{-1,s}
\]
Transitions (for one s bound by m)

- Economy in steady state at date 0; a small one-time change to $m' > m$

... converging to the new steady state, w/ all on the new job ladder, with the importance of the indirect effect growing each period

$$
\log \left(\frac{w_{t',s}}{w_{t-1,s}} \right) / \log \left(\frac{m'}{m} \right) > \log \left(\frac{w_{t,s}}{w_{t-1,s}} \right) / \log \left(\frac{m'}{m} \right) \quad \text{for all} \quad t' > t \geq 0
$$
Transition proof (for given s) for a small $\uparrow m$ at $t = 0$

- g_j rung j share in SS; $g_{t,j}$ and $g_{t,j}'$ rung j shares on original, new ladders at t

$$
\Rightarrow g_{t,0}, j + g_{t,0}', j = g_j \text{ for all } j \geq 0
$$

For some $t \geq 0$: suppose $g_{t,j}, j + g_{t,j}', j = g_j$ for all $j \geq 0$

$$
\Rightarrow \text{date } t+1 \text{ and for any } j > 1, \text{ we have } g_{t+1,j}, j = g_{t,j} (1 - \delta)(1 - \lambda e) + g_{t-1,j} (1 - \delta) \lambda e$

$g_{t+1,j}', j = g_{t,j}' (1 - \delta)(1 - \lambda e) + g_{t-1,j}' (1 - \delta) \lambda e$

and if $j = 1$ replace $(1 - \delta) \lambda e / \lambda u \text{[and note that }] g_{t,0} = 0$

$$
\text{Summing these expressions yields } g_{t+1,j} + g_{t+1}', j = g_j (1 - \delta)(1 - \lambda e) + g_j - 1 (1 - \delta) \lambda e = g_j
$$

where the final equality follows from the steady-state derivation of g_j back
Transition proof (for given s) for a small $\uparrow m$ at $t = 0$

- g_j rung j share in SS; $g_{t,j}$ and $g'_{t,j}$ rung j shares on original, new ladders at t

- At $t = 0$: first rung + unemployment fully reallocate (and nothing else)
 - $\Rightarrow g_{0,j} + g'_{0,j} = g_j$ for all $j \geq 0$
Transition proof (for given s) for a small $\uparrow m$ at $t = 0$

- g_j rung j share in SS; $g_{t,j}$ and $g'_{t,j}$ rung j shares on original, new ladders at t

At $t = 0$: first rung + unemployment fully reallocate (and nothing else)

$\implies g_{0,j} + g'_{0,j} = g_j$ for all $j \geq 0$

For some $t \geq 0$: suppose $g_{t,j} + g'_{t,j} = g_j$ for all $j \geq 0$

\implies date $t + 1$ and for any $j > 1$, we have

$g_{t+1,j} = g_{t,j}(1 - \delta)(1 - \lambda_e) + g_{t-1,j-1}(1 - \delta)\lambda_e$

$g'_{t+1,j} = g'_{t,j}(1 - \delta)(1 - \lambda_e) + g'_{t-1,j-1}(1 - \delta)\lambda_e$

and if $j = 1$ replace $(1 - \delta)\lambda_e$ w/ λ_u [and note that $g_{t,0} = 0$]

\implies Summing these expressions yields

$g_{t+1,j} + g'_{t+1,j} = g_j(1 - \delta)(1 - \lambda_e) + g_{j-1}(1 - \delta)\lambda_e = g_j$

where the final equality follows from the steady-state derivation of g_j
Distribution and the average wage

- Density $g_s(w_j)$ satisfies

$$[\delta_s + (1 - \delta_s)\lambda_{se}] g_s(w_{1,s}) = \lambda_{su} g_s(w_{0,s})$$
$$[\delta_s + (1 - \delta_s)\lambda_{se}] g_s(w_{j+1,s}) = (1 - \delta_s)\lambda_{se} g_s(w_{j,s}) \text{ for } j \geq 1$$

- Unemployment rate

$$g_s(w_{0,s}) = \frac{\delta_s}{\delta_s + \lambda_{su}}$$

- Share at each rung

$$g_s(w_{j,s}) = \left(\frac{(1 - \delta_s)\lambda_{se}}{\delta_s + (1 - \delta_s)\lambda_{se}}\right)^{j-1} \frac{\lambda_{su}}{\delta_s + (1 - \delta_s)\lambda_{se}} \frac{\delta_s}{\delta_s + \lambda_{su}} \text{ for } j \geq 1$$

- Average wage $w_s \equiv \frac{1}{1 - g_s(w_{0,s})} \sum_{j \geq 1} w_{j,s} g_s(w_{j,s})$ among the employed

$$w_s = \frac{\delta_s}{\delta_s + \beta_s(1 - \delta_s)\lambda_{se}} m + \left(1 - \frac{\delta_s}{\delta_s + \beta_s(1 - \delta_s)\lambda_{se}}\right) P_s$$
Burdett and Mortensen (1998) + binding minimum wage

- Equation (2.10) in van den Berg and Ridder (1998), eqm earnings density

\[g(w) = \frac{\delta (P - m)^{1/2}}{2\lambda_e} (P - w)^{-3/2} \text{ for all } w \in [m, w_{\text{max}}] \]

with maximum wage

\[w_{\text{max}} \equiv \left(\frac{\delta}{\delta + \lambda_e} \right)^2 m + \left(1 - \frac{\delta}{\delta + \lambda_e} \right)^2 P \]

- Average wage is then

\[w = \frac{(100\delta)^2}{(w_{\text{max}}\lambda_e + 100\delta)(m\lambda_e + 100\delta)} m + \left(1 - \frac{(100\delta)^2}{(w_{\text{max}}\lambda_e + 100\delta)(m\lambda_e + 100\delta)} \right) P \]

weighted avg of \(m \) and \(P \) as in baseline model, but weights depend on \(m \)

back to steady state
CS across steady states (including unemployment effects)

Across steady state effects of changes in the real mw, supply, demand

- Distribution of wages for skill s (whether or not m affects unemployment)

\[W_s(c) < W_s(c') \Rightarrow \frac{d \left[\frac{W_s(c)}{W_s(c')} \right]}{dm} > 0 \]

where $W_s(c)$ is wage at percentile c of employed skill s workers

back to CS across steady states
equivalent result in Burdett and Mortensen (1998)
Burdett and Mortensen (1998) + binding minimum wage

- $W_c(m)$: wage at centile $c \in [0, 100]$

$$W_c(m) = P - (P - m) \left(\frac{100\delta}{c\lambda_e + 100\delta} \right)^2$$

- Hence

$$\frac{W_c'(m)}{W_c(m)} = \frac{P - (P - m) \left(\frac{100\delta}{c'\lambda_e + 100\delta} \right)^2}{p - (P - m) \left(\frac{100\delta}{c\lambda_e + 100\delta} \right)^2}$$

- Differentiating with respect to m yields

$$\frac{d \left[W_c'(m)/W_c(m) \right]}{dm} < 0 \iff c' > c$$

- As in baseline model, $W_c(m)$ is log-submodular in (c, m)

- This result has been shown quantitatively in Engbom and Moser (2021)
Suppose mw doesn’t affect unemployment

\[d \log VMP L_s \] the same as in neoclassical model, replacing \(L_s \) with \((1 - u_s)L_s \)

Given focus on canonical model, impose those assumptions

\[+ \text{ assumptions s.t. } \beta = \beta_s \] [see SS Magnification elasticity]

Then across steady states (to a first-order approximation)

\[
\Delta \log \left(\frac{w_{ht}}{w_{Lt}} \right) = \beta Bite \Delta \log m_t - \beta_L \Delta \log \left(\frac{L_{ht}}{L_{Lt}} \right) + \beta_A \Delta t + \iota_t
\]

where \(Bite \equiv B_{ht} - B_{Lt} \)

“Race between education, technology, and the minimum wage”

\[\text{Extended canonical model} \]
Comparative statics across steady states: β_L

- Elasticity wrt relative supply

$$\beta_L \equiv \frac{1}{\eta} (1 - \beta_m B_{\ell}) \frac{P_h (1 - u_h) L_h}{Y} + \frac{1}{\eta} (1 - \beta_m B_h) \frac{P_\ell (1 - u_\ell) L_\ell}{Y}$$

- When $B_s = 0$ for both s, this is just $1/\eta$ as in canonical model