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Where we’re going

What is the dynamic impact of the minimum wage on inequality?

Theory: inequality effects grow over time

Empirics: document these dynamic effects

The impact of the minimum wage on inequality grows over time, with
the effect more than doubling over two years



How we get there

1 Motivation (The Race Between...): In national time series, the real minimum wage
helps shape the evolution of U.S. college premium + partially resolves a “puzzle”

2 Theory: Job-ladder model with many skills (or groups)

▶ On impact ↑ mw ⇒ ↑ in wages for those individuals bound by it (direct effect)

▶ Over time, workers move up the job ladder ⇒ magnified effect (indirect effect)

▶ Elasticity of the average wage of a skill group wrt mw ↑ in share of wage income
bound by mw and grows over time (combo of effects)

▶ Theory embeds into any aggregate production function combining skill outputs:

“The Race Between Education, Technology, and the Minimum Wage”

3 Empirics: Using state-and-group-level data, document that the elasticity of the
state × group average wage w.r.t. the minimum wage

▶ is ↑ in share of wage income earned at the mw on impact (direct effect)

▶ this difference in elasticities ↑ by a factor of > 2 over 2 years (indirect effect)

⋆ quantitative elasticity consistent w/ national elasticity from “The Race...”

⋆ ↓ in real wage of HSD in 1980s and early 1990s caused by ↓ real minimum wage



Contributions

Canonical model (Tinbergen 74, Katz and Murphy 92, ...) including minimum wage (Autor, Katz, Kearney 08)

▶ While supply and demand remain crucial, so too is the minimum wage

▶ Minimum wage helps resolve the apparent rapid slowing of SBTC in the 1990s

Impact of minimum wage on inequality
Meyer, Wise, 83; DiNardo et al., 96; Lee, 99; Card, DiNardo, 02; Autor ea., 16; Cengiz ea. 19; Dube, 19; Fortin ea. 21; Chen, Teulings 22; ...

▶ Direct effect dominates in short run, but indirect effect grows over time

▶ Identified within worker groups (i.e. for fixed observable characteristics)

Growing macro-labor literature of monopsony using quantitative models
Haanwinckel, 20; Engbom, Moser, 21; Ahlfeldt et al., 22; Berger et al., 22; Hurst et al., 22; Trottner, 22; ...

▶ Job-ladder model like EM, but focus on dynamics

▶ Dynamics like HKPW, but driven by job ladder rather than putty-clay capital



Motivation:

National time-series variation



Canonical model + minimum wage

I consider (for now atheoretical) regressions of the form

log

Å
wht

wℓt

ã
= α+ νm logmt + νL log

Å
Supplyht
Supplyℓt

ã
+ γ1t + [...] + ιt

national time-series, t, variation across college and non-college workers, h and ℓ

▶ logwht and logwℓt are measures of average log wages

▶ log Supplyht and log Supplyℓt are measures of labor supply (hours worked)

▶ mt is a measure of the real minimum wage at the national level

Measurement

▶ Supply and wages are composition adjusted (March CPS 1964 - 2017 spanning working years 1963 - 2016)

▶ Instrument for supply is composition-adjusted population (March CPS)

▶ National real minimum wage (Cengiz et al. (2019), DOL, FRED, March CPS)

⋆ For each state use the max of the state and national statutory minima

⋆ ... then average across states using time-invariant weights

⋆ ... and apply the GDP deflator



Data
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Result I: out-of-sample fit (2SLS)
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Residualized data
Using the population-based measure of relative college supply
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Result II: in-sample elasticities...
... of the national college wage premium wrt relative supply and the real minimum wage

Regression Models for the College Wage Premium
(1) (2) (3) (4) (5) (6)

Relative supply of college workers -0.632 -0.703 -0.608 -0.619 -0.387 -0.541
(0.069) (0.077) (0.104) (0.119) (0.134) (0.067)

Real minimum wage -0.220 -0.199 -0.133 -0.129 -0.132
(0.048) (0.059) (0.052) (0.064) (0.046)

Real federal minimum wage -0.161
(0.044)

Time 0.021 0.019
(0.002) (0.002)

Time Polynomial 1 2 3 4 5 1

The extended canonical model including polynomials of time up to degree j in column j . Estimated using 2SLS, instrumenting for hours-based supply using
population-based measure. Robust standard errors are shown in parentheses.

Sizable elasticity of the college premium wrt the real minimum wage

▶ e.g., 26% ↓ in real minimum wage 1979 – 89 =⇒ 2.7 – 5.7% ↑ in national college premium

To baseline empirics



Summary + robustness

Summary:

1 relative supply growth fluctuations + trend demand growth crucial drivers of
college premium, but changes in real minimum wage are also important

2 less dramatic slowing of SBTC (more generally, improved out-of-sample fit)

Sensitivity and additional results:

▶ ... using two alternative measures of relative supply
⋆ Tables with estimated elasticities go

⋆ Figures with out-of-sample fit go

▶ ... using Autor, Katz, and Kearney (2008) data go

▶ ... separately for college and non-college workers go



Theory



Framework

Supply and demand:

▶ Exogenous supply Lst of homogeneous skill s = 1, ..., S workers

▶ Aggregate production function combining skill output with skill-time-specific
productivity Ast shaping relative demand

Job ladder:

▶ Zero discount factor: analysis of transitions to aggregate shocks

▶ Worker can be employed or unemployed with exogenous separation (δs) and
job-finding rates (λsu unemployed and λse employed)

▶ Bilateral generalized Nash bargaining btw new worker-firm match (βs =
worker weight) over fixed real wage w/ current job as worker outside option

Real minimum wage: mt

▶ Impose no employment effect of mw (mt < VMPLst), but will generalize

Discrete time: within t, separation shocks occur first, then new matches
realized for those workers who did not separate in t
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Steady-state characterization
Suppose “binding” mw for given s (for exposition only)

Wage ladder across “rungs”

First rung is the minimum wage...

... and move up over time (if no separation shock)

Average wage an average of mw and VMPL

details and distribution

…

m

Ps

(1-β)m + βPs

unemployment

rung

1

wage

2

∞ …

m

VMPLs

unemployment

rung

1

wage

2

∞

3
4



Transitions

Proposition

Consider an economy in steady state at date 0 that faces a small one-time change
from m to m′ > m. For any skill s that was bound by m:

1 For all t ≥ 0 two job ladders coexist, with first rungs m (old) and m′ (new)

2 The share on each rung j summed across the two ladders is constant across t

3 The share on rung j of the new ladder weakly increases in t

4 At each rung j, wage on the new job ladder > than on the old one

5 The elasticity of the average wage wrt the minimum wage rises in t

6 On impact, this elasticity equals the share of income earned at m (the “bite”)

visualization minimum wage decline proof of 2



Transitions implication

D-period elasticity of any group’s average wage wrt to a one-time increase in
the real mw from m to m′ > m at t = 0 (impulse response)

log

Å
wD,s

w−1,s

ã¡
log

Å
m′

m

ã
︸ ︷︷ ︸

D period elasticity of average wage wrt m

≡ MD,s × b−1,s

decomposed into initial minimum wage “Bite” + “Magnification” elasticity

▶ b−1,s is the pre-shock share of wage income earned at the mw
▶ MD,s is the “Magnification elasticity”

⋆ M0,s = 1

⋆ dMD,s/dD > 0

If δ, λu, λe , β common across s ⇒ elasticity of college premium (or any relative wage)

log

Å
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w−1,h/w−1,ℓ
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ã
≡ MD × (b−1,h − b−1,ℓ)
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CS across steady states

Across steady state effects of changes in the real mw, supply, demand

Average wage of skill s for given changes in VMPL

d logws = Msbs∂ logm + (1−Msbs) ∂ logVMPLs

where VMPLs is real and Ms is the steady-state magnification elasticity

Ms ≡ lim
D→∞

MD,s =
δs + (1− δs)λse

δs + βs(1− δs)λse
> 1

And finally, solving for changes in VMPL

▶ Given assumption m doesn’t affect unemployment (m < VMPLs for all s)

▶ VMPLs same as in competitive model w/ same aggregate production function except

⋆ Replace Lst with (1 − us )Lst

⋆ Hence, w/ 2 skills + CES production function + linear rates of growth of Ast :

“Race between education, technology, and the minimum wage” The race

Distribution of wages for skill s Distributional implication



Empirical Approach



From theory to estimation

Theory (omit s): if one-time permanent m ↑ in any period btw t − T and t then

log
wt

wt−T
=

T−1∑
j=0

Mjbt−j−1 log
mt−j

mt−j−1

This is a distributed lag model where the lag weights equal the magnification elasticities

Theory: allowing the one-time m ↑ to occur earlier, btw t − T ′ and t for T ′ > T then

log
wt

wt−T
=

T−1∑
j=0

Mjbt−j−1 log
mt−j

mt−j−1
+

T ′−1∑
j=T

(Mj −Mj−T )bt−j−1 log
mt−j

mt−j−1

Now lag weights equal the magnification elasticities only over the t − T to t period;
otherwise lag weights are smaller than the magnification elasticities

In practice, m is changing in every period in every empirical context

▶ Apply versions of previous formula in presence of many changes

▶ And run same regressions in model-generated data
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Mapping to the data

Time t: half year periods (m1-6, m7-12) between 1979m1 – 2016m12

Skills s: labor groups g × regions r

▶ 100 labor groups (5 age bins × 2 genders × 2 races × 5 educations)

▶ 50 regions (U.S. states)

▶ Minimum wages are r , t specific

▶ Wages and minimum wage bites are g , r , t specific

I study disaggregate outcomes as in the theory, rather than aggregating up
and composition adjusting



Specification augmented in five ways (relative to theory)

log
wg ,r ,t

wg ,r ,t−6
= α+

9∑
j=−4

µj × bg ,r ,t−j−1 × log
mt−j,r

mt−j−1,r
+ FEt × bg ,r + αt + εg ,r ,t

1 Incorporate leads (j < 0) in addition to lags (j ≥ 0)

2 Estimate lag weights µj that don’t depend on worker characteristics

3 Omit changes in minimum wages that occurred more than 5 years before t



Specification augmented in five ways (relative to theory)

log
wg ,r ,t

wg ,r ,t−6
= α+

9∑
j=−4

µj × bg ,r ,t−j−1 × log
mt−j,r

mt−j−1,r
+ FEt × bg ,r + αt + εg ,r ,t

4 Instrument replaces bg ,r ,t−j−1 in interactions with its median value bg ,r

▶ bg,r,t is measured with error

▶ this ME can be correlated w/ ME in dependent variable
⋆ as pointed out in related context by Autor et al., 2016



Specification augmented in five ways (relative to theory)

log
wg ,r ,t
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= α+

9∑
j=−4

µj × bg ,r ,t−j−1 × log
mt−j,r

mt−j−1,r
+ FEt × bg ,r + αt + εg ,r ,t

5 Include two additional controls FEt × bg ,r and αt

▶ Treatment fits into “shock-exposure” framework of Borusyak and Hull (2023)

▶ Specification may suffer from OVB. For example:
⋆ In periods experiencing m ↓ (e.g., 1980s), treatment − correlated w/ bite

⋆ Bite can be correlated with other shocks in residual, e.g., SBTC, which raises
wages of groups with lower bites

▶ Avoid by controlling for E[treatment]

▶ FEt × bg,r controls for E[treatment] under assumption of an arbitrary
time-varying national expectation of the change in the real minimum wage

▶ Additional benefits:

⋆ Control absorbs changes in inflation: identical RF results using nominal mw.

⋆ “Design-based” approach avoids negative ex-ante weights (BH, 2024)
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Data

NBER Merged Outgoing Rotation Group of the CPS (1979 – 2016)

▶ Drop 1994 and 1995m1–m8: missing allocation flags
▶ End 2016m12 before many municipalities begin setting their own mws; e.g.,

⋆ NYC + Nassau, Suffolk, and Westchester counties on 12/31/2016

⋆ Minneapolis, MN in 2018

⋆ Los Angeles $0.50 above for large businesses on 7/1/16

⋆ San Diego $0.75 above on 1/1/15

▶ Measure bg,r,t defining mw worker as those with wage ≤ 1.05 mw

Minimum wage data from Vaghul and Zipperer (2016), Cengiz et al. (2019)

▶ Use maximum nominal mw in state-period

▶ Deflate by maximum monthly GDP deflator in period

5,000 (g , r) pairs + ≈ 60,000 obs. per t ⇒ ≈ 12 obs. per (g , r , t)

▶ Winsorize wage at 2nd percentile within each (g , r)

▶ Weigh by product of (g , r) work hours in t and t − T divided by their sum

▶ Use balanced sample: (g , r) with no missing wage data across t



Additional details

Cluster standard errors by state

All results in figures, which...

▶ ... convert pre-trends to their more typical “levels” form

⋆ negative of coefficients for j < 0

⋆ see Roth (2024): “Interpreting Event-Studies...”

▶ ... display averaged annual effects, except for impact effect

⋆ for period j > 0, display (µj + µj+1)/2 + corresponding 95% confidence interval

⋆ for period j < 0, display (µj + µj−1)/2 + corresponding 95% confidence interval

⋆ for period j = 0, display µ0 + corresponding 95% confidence interval



Results



Outline of results

1 2SLS specification in model-generated data

2 Reduced-form specification

3 2SLS specification

4 Robustness of 2SLS specification

5 Implications



Model parameterization and quantitative exercise

Choose model parameters

▶ Externally to direct survey evidence (Hall and Mueller, 2018)

⋆ Converting from weekly to bi-annual: γu ≈ 0.79, γe = γu/2, and δ ≈ 0.10

▶ β = 0.25 to obtain long-run magnification elasticity of 2.4 (using analytics)

▶ Choose 5,000 values of VMPLg,r targeting average real wages

Quantify impacts of changes in minimum wages

▶ Start from a steady state in 1979m1 – m6

▶ Feed in observed changes in real minimum wages in every state, period

▶ Estimate baseline 2SLS specification using model-generated data
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2SLS specification using model-generated data

log
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= α+

9∑
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mt−j−1,r
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Notes: Point estimate for µ0, linear combination of (µj + µj+1)/2 for j > 0 and of −(µj + µj−1)/2 for j < 0

Estimates rise from 1 to 2.1 over three years, given magnification elasticity of 2.4



RF specification

log
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Notes: Point estimate and 95% CI for µ0, linear combination of (µj + µj+1)/2 for j > 0 and of −(µj + µj−1)/2 for j < 0

Qualitative pattern as in model-generated data

No evidence of pre-existing differential trends before changes in m



RF specification: Sensitivity

log
wg,r,t

wg,r,t−6
= α+

9∑
j=−4

µj × bg,r,t−j−1 × log
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Baseline: mw workers those with wages ≤ 1.05× mw

▶ mw workers those with wages ≤ 1.00× mw Go

▶ mw workers those with wages ≤ 1.10× mw Go

▶ mw workers those with wages ≤ 1.15× mw Go

Baseline uses all groups

▶ Only for groups without college degrees Go

▶ Separately by gender Go

▶ Exclude final 6 sample years (w/ sub-state mws) Go

▶ Unbalanced panel of (g , r) Go



2SLS specification
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Notes: Point estimate and 95% CI for µ0, linear combination of (µj + µj+1)/2 for j > 0 and of −(µj + µj−1)/2 for j < 0

Lag weight ≈ 0.5 on impact, ↑ to 1 in one year, and peaks at > 2.2 over two years

Conclude a magnification elasticity of approximately 2.4



2SLS specification: Sensitivity
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▶ mw workers those with wages ≤ 1.15× mw Go

Baseline uses all groups

▶ Only for groups without college degrees Go

▶ Separately by gender Go

▶ Exclude final 6 sample years (w/ sub-state mws) Go

▶ Unbalanced panel of (g , r) Go

Assume t- and r - specific components of m changes (control for FErbg,r ) Go

Incorporate an (r , t) fixed effect Go

Incorporate a (g , t) fixed effect Go



Implication I: Revisiting the college premium

College premium elasticity with respect to m

Long-run national elasticity of college premium wrt to the minimum wage of

M × (bh − bℓ)

Estimates suggest a long-run magnification elasticity of 2.4

Average value across all (g , r , t) of bg,r,t is (mw workers those with wages ≤ 1.05× mw)

▶ for college g : 1.8%

▶ for non-college g : 7.6%

College premium elasticity wrt to m in the range of 2.4× (−0.058) ≈ −0.14

▶ In the middle of the range of the national estimates Go

Both national and disaggregated state × group estimates imply similar and sizable
elasticities of the college premium with respect to the real minimum wage



Implication II: Real wages (and their decline)

Real wage elasticity with respect to m

Real wages of low-education workers declined dramatically in 1980s into early 1990s

This decline is impossible in “The Race Between Education and Technology”
without a ↓ in productivity (Acemoglu and Restrepo, 2020)

Possible in “The Race Between Education, Technology, and the Minimum Wage”

Consider those without completed high school (HSD)

▶ 26% decline of real mw between 1979 and 1989

▶ Average value across all (g , r , t) of bg,r,t among HSD is 13.9%

▶ ↓ m ⇒ ↓ 8.7% (≈ 0.26 × 0.139 × 2.4) in HSD real wage

↓ real minimum wage explains entirety of ↓ real wage of HSD btw 1979 – 1992



Model limitations

What might these results suggest the theory lacks?

In the data, coefficients begin to ↓ one period early (compared to in the model)

▶ Something is either pushing up wages higher in the wage distribution over time

▶ ... or pushing down wages lower in the wage distribution over time

Prominent possibilities:

1 Fairness or efficiency wage concerns ↑ wages higher up distribution
⋆ e.g., Grossman (1983)

2 Technical change ↑ demand for higher-wage and/or ↓ demand for lower-wage groups

⋆ results apply with g , t fixed effects: localized demand changes Go

⋆ e.g., Hurst et al. (2022)



Conclusions

What is the impact of the mw on inequality?

Empirical motivation: two new facts in the national time series

▶ minimum wage helps shape U.S. college wage premium

▶ incorporating mw improves fit of “The Race” + reduces trend break in SBTC

Theoretically:

▶ on impact, ↑ mw raises wages more for groups more bound by it

▶ over time, this difference in wage elasticities rises due to indirect effects

Empirically: Find evidence consistent with these dynamic predictions

▶ using state and group level data

▶ holding the composition of workers fixed

with magnification elasticity > 2 after ≈ 2 years

▶ quantitatively consistent w/ national-time series estimates

▶ ↓ m ⇒ all of ↓ real wage of HSD in 1980s and early 1990s



Empirical Appendix



Robustness: alternative supply #1

Regression Models for the College Wage Premium
Using dual of composition-adjusted changes in wages

Instrumenting with efficiency-unit populations

(1) (2) (3) (4) (5) (6)

Relative supply of college workers -0.584 -0.724 -0.745 -0.668 -0.518 -0.512
(0.063) (0.085) (0.118) (0.124) (0.175) (0.058)

Real minimum wage -0.207 -0.158 -0.171 -0.186 -0.175
(0.044) (0.054) (0.060) (0.063) (0.052)

Real federal minimum wage -0.163
(0.039)

Time 0.022 0.020
(0.002) (0.001)

Time Polynomial 1 2 3 4 5 1

Back



Robustness: alternative supply #2

Regression Models for the College Wage Premium
Reduced-form specification

(1) (2) (3) (4) (5) (6)

Relative supply of college workers -0.555 -0.816 -0.632 -0.692 -0.356 -0.464
(0.060) (0.083) (0.101) (0.110) (0.106) (0.060)

Real minimum wage -0.307 -0.257 -0.132 -0.115 -0.126
(0.053) (0.058) (0.047) (0.058) (0.038)

Real federal minimum wage -0.236
(0.048)

Time 0.019 0.016
(0.001) (0.001)

Time Polynomial 1 2 3 4 5 1

Back



Results: predicted college premium alternative supply

Using dual of composition-adjusted changes in wages
Instrumenting with efficiency-unit populations
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Results: predicted college premium reduced form

Reduced-form specification
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Robustness: using data from AKK

Regression Models for the College Wage Premium
Using Data from AKK Replication Package (1963-2005)

Using AKK data

(a) (b) (c) (d) (e)

Relative supply of college workers -0.431 -0.607 -0.612 -0.216 0.013
(0.051) (0.077) (0.091) (0.113) (0.104)

Minimum wage -0.112 -0.108 -0.064 -0.174 -0.123
(0.049) (0.049) (0.048) (0.052) (0.040)

Using my baseline real minimum wage

(a) (b) (c) (d) (e)

Relative supply of college workers -0.459 -0.605 -0.610 -0.244 -0.019
(0.051) (0.078) (0.089) (0.108) (0.106)

Minimum wage -0.150 -0.139 -0.087 -0.184 -0.119
(0.051) (0.053) (0.057) (0.059) (0.050)

Time Polynomial 1 2 3 4 5
Observations 43 43 43 43 43

Impact of minimum wage is at least as robust as impact of supply Back



National: separate regressions by education

Replace log wht

wℓt
with logwht and with logwℓt

Regression Models for the College and Non-College Wages

Linear Quadratic Cubic

(Premium) (High) (Low) (Premium) (High) (Low) (Premium) (High) (Low)

Relative supply -0.632 -0.414 0.218 -0.703 -1.029 -0.327 -0.608 -1.117 -0.509
(0.069) (0.127) (0.123) (0.077) (0.140) (0.139) (0.104) (0.158) (0.103)

Real minimum wage -0.220 -0.104 0.117 -0.199 0.083 0.282 -0.133 0.022 0.155
(0.048) (0.059) (0.058) (0.059) (0.077) (0.066) (0.052) (0.091) (0.063)

Time 0.021 0.020 -0.002
(0.002) (0.003) (0.002)

↑ mw ⇒ ↑ non-college average wage with no robust impact on college wage

Back



RF specification: Non-college sample

log
wg,r,t

wt−D,g,r
= α+

D−1∑
j=−K

µj × biteg,r × log
mr,t−j+1

mr,t−j
+ εg,r,t
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RF specification: Female sample

log
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RF specification: Male sample

log
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RF specification: 1979-2010 sample

log
wg,r,t
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RF specification: Unbalanced sample

log
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RF specification: mw cutoff of 1.00

log
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RF specification: mw cutoff of 1.10

log
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RF specification: mw cutoff of 1.15

log
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2SLS specification: Non-college sample

log
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2SLS specification: Female sample
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2SLS specification: Male sample
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2SLS specification: 1979-2010 sample
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2SLS specification: Unbalanced sample
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2SLS specification: mw cutoff of 1.00
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2SLS specification: mw cutoff of 1.10
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2SLS specification: mw cutoff of 1.15
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2SLS specification: An additional control
Assuming changes in the mw are i.i.d. + a t-specific component + an r -specific component
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Back to baseline robustness



2SLS specification: An additional control
Assuming changes in the mw are i.i.d. + a t-specific component + include an (r , t) fixed effect

log
wg,r,t

wg,r,t−6
=

9∑
j=−4

µj × bg,r,t−j × log
mr,t−j+1

mr,t−j
+ FEtbg,r + αr,t + εg,r,t

-2
-1

0
1

2
3

La
g w

ei
gh

ts

-3 -2 -1 0 1 2 3 4 5 6 7 8
Event time (in half years)

Notes: Point estimate and 95% CI for µ0, linear combination of (µj + µj+1)/2 for j > 0 and of −(µj + µj−1)/2 for j < 0

Back to baseline robustness



2SLS specification: An additional control
Assuming changes in the mw are i.i.d. + a t-specific component + include a (g , t) fixed effect
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Back to Sensitivity Back to model limitations



Theoretical Appendix



Transitions

Proposition

Consider an economy in steady state at date 0 that faces a small one-time change
from m to m′ > m. Then for any skill s that was bound by m:

1 For all t ≥ 0 two job ladders coexist, with first rungs m (old) and m′ (new)

2 The share on each rung j summed across the two ladders is constant across t

3 The share on rung j of the new ladder rises (weakly) in t

4 At each rung j, wage on the new job ladder is higher than on the old one

5 The elasticity of the average wage wrt the minimum wage rises in t

6 On impact, this elasticity equals the share of income earned at m (the “bind”)

And, if m′ < m, then

1 , 2 , and 3 are identical

4 and 5 are reversed

6 : the instantaneous elasticity of the average wage = 0

back



Transitions (for one s bound by m)

Economy in steady state at date 0

…

pre shock
t = — 1



Transitions (for one s bound by m)

Economy in steady state at date 0; a small one-time change to m′ > m

… …

pre shock
t = — 1

shock occurs
t = + 0

On impact, the first rung disappears on the original ladder and appears,
higher, on the new ladder (direct effect)

log

Å
w0+,s

w−1,s

ã¡
log

Å
m′

m

ã
︸ ︷︷ ︸

instantaneous elasticity

≡ b−1,s︸ ︷︷ ︸
share of wage income earned at mw before shock



Transitions (for one s bound by m)

Economy in steady state at date 0; a small one-time change to m′ > m

… … …

pre shock
t = — 1

shock occurs
t = + 0

one period after
t = 1

One period later, the second rung on the original ladder starts emptying out
as the second rung on the new ladder starts filling in (small indirect effect)

log

Å
w1,s

w−1,s

ã¡
log

Å
m′

m

ã
> b−1,s



Transitions (for one s bound by m)

Economy in steady state at date 0; a small one-time change to m′ > m

… … … …

pre shock
t = — 1

one period after
t = 1

two periods after
t = 2

new SS
t → ∞

…

…

shock occurs
t = + 0

... converging to the new steady state, w/ all on the new job ladder, with the
importance of the indirect effect growing each period

log

Å
wt′,s

w−1,s

ã¡
log

Å
m′

m

ã
> log

Å
wt,s

w−1,s

ã¡
log

Å
m′

m

ã
for all t ′ > t ≥ 0
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Transition proof (for given s) for a small ↑ m at t = 0

gj rung j share in SS; gt,j and g ′
t,j rung j shares on original, new ladders at t

At t = 0: first rung + unemployment fully reallocate (and nothing else)

▶ ⇒ g0,j + g ′
0,j = gj for all j ≥ 0

For some t ≥ 0: suppose gt,j + g ′
t,j = gj for all j ≥ 0

▶ ⇒ date t + 1 and for any j > 1, we have

gt+1,j = gt,j(1− δ)(1− λe) + gt,j−1(1− δ)λe

g ′
t+1,j = g ′

t,j(1− δ)(1− λe) + g ′
t,j−1(1− δ)λe

and if j = 1 replace (1− δ)λe w/ λu [and note that gt,0 = 0]

▶ Summing these expressions and using gt,j + g ′
t,j = gj yields

gt+1,j + g ′
t+1,j = gj(1− δ)(1− λe) + gj−1(1− δ)λe = gj

where the final equality follows from the steady-state derivation of gj back
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Distribution and the average wage

Density gs(wj) satisfies

[δs + (1− δs)λse ] gs(w1,s) = λsugs(w0,s)

[δs + (1− δs)λse ] gs(wj+1,s) = (1− δs)λsegs(wj,s) for j ≥ 1

Unemployment rate

gs(w0,s) =
δs

δs + λsu

Share at each rung

gs(wj,s) =

Å
(1− δs)λse

δs + (1− δs)λse

ãj−1
λsu

δs + (1− δs)λse

δs
δs + λsu

for j ≥ 1

Average wage ws ≡ 1
1−gs (w0,s )

∑
j≥1 wj,sgs(wj,s) among the employed

ws =
δs

δs + βs(1− δs)λse
m +

Å
1− δs

δs + βs(1− δs)λse

ã
Ps

back to steady state steady state in Burdett and Mortensen (1998)



Burdett and Mortensen (1998) + binding minimum wage

Equation (2.10) in van den Berg and Ridder (1998), eqm earnings density

g(w) =
δ (P −m)1/2

2λe
(P − w)−3/2 for all w ∈ [m,wmax]

with maximum wage

wmax ≡
Å

δ

δ + λe

ã2
m +

Å
1− δ

δ + λe

ã2
P

Average wage is then

w =
(100δ)2

(wmaxλe + 100δ)(mλe + 100δ)
m +

Å
1− (100δ)2

(wmaxλe + 100δ)(mλe + 100δ)

ã
P

weighted avg of m and P as in baseline model, but weights depend on m

back to steady state



CS across steady states (including unemployment effects)

Across steady state effects of changes in the real mw, supply, demand

Distribution of wages for skill s (whether or not m affects unemployment)

Ws(c) < Ws(c
′) ⇒ d [Ws(c)/Ws(c

′)]

dm
> 0

where Ws(c) is wage at percentile c of employed skill s workers

back to CS across steady states equivalent result in Burdett and Mortensen (1998)



Burdett and Mortensen (1998) + binding minimum wage

Wc(m): wage at centile c ∈ [0, 100]

Wc(m) = P − (P −m)

Å
100δ

cλe + 100δ

ã2
Hence

Wc′(m)

Wc(m)
=

P − (P −m)
Ä

100δ
c′λe+100δ

ä2
p − (P −m)

Ä
100δ

cλe+100δ

ä2
Differentiating with respect to m yields

d
[
Wc′(m)

/
Wc(m)

]
dm

< 0 ⇐⇒ c ′ > c

As in baseline model, Wc(m) is log-submodular in (c ,m)

This result has been shown quantitatively in Engbom and Moser (2021)

back



Incorporating Supply and Demand

Given focus on canonical model, impose those assumptions
▶ + assumptions s.t. βm = βms

Then across steady states (to a first-order approximation)

log

Å
wht

wℓt

ã
= βm(bht − bℓt) logmt − βL log

Å
Lht
Lℓt

ã
+ βAt + ιt

“Race between education, technology, and the minimum wage” βL

▶ Extended canonical model

back



Comparative statics across steady states: βL

Elasticity wrt relative supply [if both s bound by mw]

βL ≡ 1

η
(1− βmbℓ)

Ph(1− uh)Lh
Y

+
1

η
(1− βmbh)

Pℓ(1− uℓ)Lℓ
Y

When bs = 0 for both s, this is just 1/η as in canonical model

back


