The Race Between Education, Technology, and the Minimum Wage

Jonathan Vogel

April 2024

Where we're going

- What is the dynamic impact of the minimum wage on inequality?
- Theory: inequality effects grow over time
- Empirics: document these dynamic effects
- The impact of the minimum wage on inequality grows over time, with the effect more than doubling over two years

How we get there

(1) Motivation (The Race Between...): In national time series, the real minimum wage helps shape the evolution of U.S. college premium + partially resolves a "puzzle"
(2) Theory: Job-ladder model with many skills (or groups)

- On impact $\uparrow \mathrm{mw} \Rightarrow \uparrow$ in wages for those individuals bound by it (direct effect)
- Over time, workers move up the job ladder \Rightarrow magnified effect (indirect effect)
- Elasticity of the average wage of a skill group wrt mw \uparrow in share of wage income bound by mw and grows over time
- Theory embeds into any aggregate production function combining skill outputs: "The Race Between Education, Technology, and the Minimum Wage"
(3) Empirics: Using state-and-group-level data, document that the elasticity of the state \times group average wage w.r.t. the minimum wage
- is \uparrow in share of wage income earned at the mw on impact (direct effect)
- this difference in elasticities \uparrow by a factor of >2 over 2 years (indirect effect)
* quantitative elasticity consistent w/ national elasticity from "The Race..."
$\star \downarrow$ in real wage of HSD in 1980s and early 1990s caused by \downarrow real minimum wage

Contributions

- Canonical model (Tinbergen 74, Katz and Murphy $92, \ldots$) including minimum wage (Autor, Katz, Kearney 08)
- While supply and demand remain crucial, so too is the minimum wage
- Minimum wage helps resolve the apparent rapid slowing of SBTC in the 1990s
- Impact of minimum wage on inequality

Meyer, Wise, 83; DiNardo et al., 96; Lee, 99; Card, DiNardo, 02; Autor ea., 16; Cengiz ea. 19; Dube, 19; Fortin ea. 21; Chen, Teulings 22; ...

- Direct effect dominates in short run, but indirect effect grows over time
- Identified within worker groups (i.e. for fixed observable characteristics)
- Growing macro-labor literature of monopsony using quantitative models Haanwinckel, 20; Engbom, Moser, 21; Ahlfeldt et al., 22; Berger et al., 22; Hurst et al., 22; Trottner, 22; ...
- Job-ladder model like EM, but focus on dynamics
- Dynamics like HKPW, but driven by job ladder rather than putty-clay capital

Motivation:

National time-series variation

Canonical model + minimum wage

- I consider (for now atheoretical) regressions of the form

$$
\log \left(\frac{w_{h t}}{w_{\ell t}}\right)=\alpha+\nu_{m} \log m_{t}+\nu_{L} \log \left(\frac{\text { Supply }_{h t}}{\text { Supply }_{\ell t}}\right)+\gamma_{1} t+[\ldots]+\iota_{t}
$$

national time-series, t, variation across college and non-college workers, h and ℓ

- $\log w_{h t}$ and $\log w_{\ell t}$ are measures of average log wages
- log Supplyht and log Supplyet are measures of labor supply (hours worked)
- m_{t} is a measure of the real minimum wage at the national level
- Measurement
- Supply and wages are composition adjusted (March CPS 1964-2017 spanning working years 1963-2016)
- Instrument for supply is composition-adjusted population (March CPS)
- National real minimum wage (Cengiz et al. (2019), DOL, FRED, March CPS)
* For each state use the max of the state and national statutory minima
^ ... then average across states using time-invariant weights
* ... and apply the GDP deflator

Data

Result I: out-of-sample fit (2SLS)

Result I: out-of-sample fit (2SLS)

Residualized data

Using the population-based measure of relative college supply

Result II: in-sample elasticities...

... of the national college wage premium wrt relative supply and the real minimum wage
Regression Models for the College Wage Premium

	(1)	(2)	(3)	(4)	(5)	(6)
Relative supply of college workers	-0.632	-0.703	-0.608	-0.619	-0.387	-0.541
	(0.069)	(0.077)	(0.104)	(0.119)	(0.134)	(0.067)
Real minimum wage	-0.220	-0.199	-0.133	-0.129	-0.132	
	(0.048)	(0.059)	(0.052)	(0.064)	(0.046)	
Real federal minimum wage						-0.161
					(0.044)	
Time	0.021				0.019	
	(0.002)				(0.002)	
Time Polynomial	1	2	3	4	5	1

The extended canonical model including polynomials of time up to degree j in column j. Estimated using 2SLS, instrumenting for hours-based supply using population-based measure. Robust standard errors are shown in parentheses.

- Sizable elasticity of the college premium wrt the real minimum wage
- e.g., $26 \% \downarrow$ in real minimum wage $1979-89 \Longrightarrow 2.7-5.7 \% \uparrow$ in national college premium

Summary + robustness

- Summary:
(1) relative supply growth fluctuations + trend demand growth crucial drivers of college premium, but changes in real minimum wage are also important
(2) less dramatic slowing of SBTC (more generally, improved out-of-sample fit)
- Sensitivity and additional results:
- ... using two alternative measures of relative supply
\star Tables with estimated elasticities
\star Figures with out-of-sample fit
- ... using Autor, Katz, and Kearney (2008) data
- ... separately for college and non-college workers

Theory

Framework

- Supply and demand:
- Exogenous supply $L_{\text {st }}$ of homogeneous skill $s=1, \ldots, S$ workers
- Aggregate production function combining skill output with skill-time-specific productivity $A_{\text {st }}$ shaping relative demand

Framework

- Supply and demand:
- Exogenous supply $L_{\text {st }}$ of homogeneous skill $s=1, \ldots, S$ workers
- Aggregate production function combining skill output with skill-time-specific productivity $A_{\text {st }}$ shaping relative demand
- Job ladder:
- Zero discount factor: analysis of transitions to aggregate shocks
- Worker can be employed or unemployed with exogenous separation (δ_{s}) and job-finding rates ($\lambda_{\text {su }}$ unemployed and $\lambda_{\text {se }}$ employed)
- Bilateral generalized Nash bargaining btw new worker-firm match ($\beta_{s}=$ worker weight) over fixed real wage $\mathrm{w} / \mathrm{current}$ job as worker outside option

Framework

- Supply and demand:
- Exogenous supply $L_{\text {st }}$ of homogeneous skill $s=1, \ldots, S$ workers
- Aggregate production function combining skill output with skill-time-specific productivity $A_{\text {st }}$ shaping relative demand
- Job ladder:
- Zero discount factor: analysis of transitions to aggregate shocks
- Worker can be employed or unemployed with exogenous separation (δ_{s}) and job-finding rates ($\lambda_{s u}$ unemployed and $\lambda_{s e}$ employed)
- Bilateral generalized Nash bargaining btw new worker-firm match ($\beta_{s}=$ worker weight) over fixed real wage $\mathrm{w} / \mathrm{current}$ job as worker outside option
- Real minimum wage: m_{t}
- Impose no employment effect of $\mathrm{mw}\left(m_{t}<V M P L_{s t}\right)$, but will generalize

Framework

- Supply and demand:
- Exogenous supply $L_{\text {st }}$ of homogeneous skill $s=1, \ldots, S$ workers
- Aggregate production function combining skill output with skill-time-specific productivity $A_{\text {st }}$ shaping relative demand
- Job ladder:
- Zero discount factor: analysis of transitions to aggregate shocks
- Worker can be employed or unemployed with exogenous separation (δ_{s}) and job-finding rates ($\lambda_{\text {su }}$ unemployed and $\lambda_{\text {se }}$ employed)
- Bilateral generalized Nash bargaining btw new worker-firm match ($\beta_{s}=$ worker weight) over fixed real wage $\mathrm{w} / \mathrm{current}$ job as worker outside option
- Real minimum wage: m_{t}
- Impose no employment effect of mw $\left(m_{t}<V M P L_{s t}\right)$, but will generalize
- Discrete time: within t, separation shocks occur first, then new matches realized for those workers who did not separate in t

Steady-state characterization

Suppose "binding" mw for given s (for exposition only)

- Wage ladder across "rungs"
- First rung is the minimum wage...
- ... and move up over time (if no separation shock)
- Average wage an average of mw and VMPL

Transitions

Proposition

Consider an economy in steady state at date 0 that faces a small one-time change from m to $m^{\prime}>m$. For any skill s that was bound by m :
(1) For all $t \geq 0$ two job ladders coexist, with first rungs m (old) and m^{\prime} (new)
(2) The share on each rung j summed across the two ladders is constant across t
(The share on rung j of the new ladder weakly increases in t
(1) At each rung j, wage on the new job ladder $>$ than on the old one
(0) The elasticity of the average wage wrt the minimum wage rises in t

- On impact, this elasticity equals the share of income earned at m (the "bite")

Transitions implication

- D-period elasticity of any group's average wage wrt to a one-time increase in the real mw from m to $m^{\prime}>m$ at $t=0$ (impulse response)

$$
\underbrace{\log \left(\frac{w_{D, s}}{w_{-1, s}}\right) / \log \left(\frac{m^{\prime}}{m}\right)}_{\text {period elasticity of average wage wrt } m} \equiv M_{D, s} \times b_{-1, s}
$$

decomposed into initial minimum wage "Bite" + "Magnification" elasticity

- $b_{-1, s}$ is the pre-shock share of wage income earned at the mw
- $M_{D, s}$ is the "Magnification elasticity"
$\star M_{0, s}=1$
$\star d M_{D, s} / d D>0$

Transitions implication

- D-period elasticity of any group's average wage wrt to a one-time increase in the real mw from m to $m^{\prime}>m$ at $t=0$ (impulse response)

$$
\underbrace{\log \left(\frac{w_{D, s}}{w_{-1, s}}\right) / \log \left(\frac{m^{\prime}}{m}\right)}_{\text {period elasticity of average wage wrt } m} \equiv M_{D, s} \times b_{-1, s}
$$

decomposed into initial minimum wage "Bite" + "Magnification" elasticity

- $b_{-1, s}$ is the pre-shock share of wage income earned at the mw
- $M_{D, s}$ is the "Magnification elasticity"
$\star M_{0, s}=1$
$\star d M_{D, s} / d D>0$
- If $\delta, \lambda_{u}, \lambda_{e}, \beta$ common across $s \Rightarrow$ elasticity of college premium (or any reative wage)

$$
\log \left(\frac{w_{D, h} / w_{D, \ell}}{w_{-1, h} / w_{-1, \ell}}\right) / \log \left(\frac{m^{\prime}}{m}\right) \equiv M_{D} \times\left(b_{-1, h}-b_{-1, \ell}\right)
$$

CS across steady states

Across steady state effects of changes in the real mw, supply, demand

- Average wage of skill s for given changes in VMPL

$$
d \log w_{s}=M_{s} b_{s} \partial \log m+\left(1-M_{s} b_{s}\right) \partial \log V M P L_{s}
$$

where VMPL_{s} is real and M_{s} is the steady-state magnification elasticity

$$
M_{s} \equiv \lim _{D \rightarrow \infty} M_{D, s}=\frac{\delta_{s}+\left(1-\delta_{s}\right) \lambda_{s e}}{\delta_{s}+\beta_{s}\left(1-\delta_{s}\right) \lambda_{s e}}>1
$$

- And finally, solving for changes in VMPL
- Given assumption m doesn't affect unemployment ($m<V M P L_{s}$ for all s)
- $V M P L_{s}$ same as in competitive model $\mathrm{w} /$ same aggregate production function except
\star Replace $L_{s t}$ with $\left(1-u_{s}\right) L_{s t}$
\star Hence, w/ 2 skills + CES production function + linear rates of growth of $A_{s t}$:
"Race between education, technology, and the minimum wage"
- Distribution of wages for skill s

Empirical Approach

From theory to estimation

- Theory (omit s): if one-time permanent $m \uparrow$ in any period btw $t-T$ and t then

$$
\log \frac{w_{t}}{w_{t-T}}=\sum_{j=0}^{T-1} M_{j} b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}
$$

- This is a distributed lag model where the lag weights equal the magnification elasticities

From theory to estimation

- Theory (omit s): if one-time permanent $m \uparrow$ in any period btw $t-T$ and t then

$$
\log \frac{w_{t}}{w_{t-T}}=\sum_{j=0}^{T-1} M_{j} b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}
$$

- This is a distributed lag model where the lag weights equal the magnification elasticities
- Theory: allowing the one-time $m \uparrow$ to occur earlier, btw $t-T^{\prime}$ and t for $T^{\prime}>T$ then

$$
\log \frac{w_{t}}{w_{t-T}}=\sum_{j=0}^{T-1} M_{j} b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}+\sum_{j=T}^{T^{\prime}-1}\left(M_{j}-M_{j-T}\right) b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}
$$

- Now lag weights equal the magnification elasticities only over the $t-T$ to t period; otherwise lag weights are smaller than the magnification elasticities

From theory to estimation

- Theory (omit s): if one-time permanent $m \uparrow$ in any period btw $t-T$ and t then

$$
\log \frac{w_{t}}{w_{t-T}}=\sum_{j=0}^{T-1} M_{j} b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}
$$

- This is a distributed lag model where the lag weights equal the magnification elasticities
- Theory: allowing the one-time $m \uparrow$ to occur earlier, btw $t-T^{\prime}$ and t for $T^{\prime}>T$ then

$$
\log \frac{w_{t}}{w_{t-T}}=\sum_{j=0}^{T-1} M_{j} b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}+\sum_{j=T}^{T^{\prime}-1}\left(M_{j}-M_{j-T}\right) b_{t-j-1} \log \frac{m_{t-j}}{m_{t-j-1}}
$$

- Now lag weights equal the magnification elasticities only over the $t-T$ to t period; otherwise lag weights are smaller than the magnification elasticities
- In practice, m is changing in every period in every empirical context
- Apply versions of previous formula in presence of many changes
- And run same regressions in model-generated data

Mapping to the data

- Time t : half year periods (m1-6, m7-12) between 1979m1-2016m12
- Skills s : labor groups $g \times$ regions r
- 100 labor groups (5 age bins $\times 2$ genders $\times 2$ races $\times 5$ educations)
- 50 regions (U.S. states)
- Minimum wages are r, t specific
- Wages and minimum wage bites are g, r, t specific
- I study disaggregate outcomes as in the theory, rather than aggregating up and composition adjusting

Specification augmented in five ways (relative to theory)

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F} \mathbb{E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

(1) Incorporate leads $(j<0)$ in addition to lags $(j \geq 0)$
(2) Estimate lag weights μ_{j} that don't depend on worker characteristics
(3) Omit changes in minimum wages that occurred more than 5 years before t

Specification augmented in five ways (relative to theory)

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

(9) Instrument replaces $b_{g, r, t-j-1}$ in interactions with its median value $b_{g, r}$

- $b_{g, r, t}$ is measured with error
- this ME can be correlated w/ ME in dependent variable
* as pointed out in related context by Autor et al., 2016

Specification augmented in five ways (relative to theory)

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F} \mathbb{E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

(5) Include two additional controls $\mathbb{F}_{t} \times b_{g, r}$ and α_{t}

- Treatment fits into "shock-exposure" framework of Borusyak and Hull (2023)
- Specification may suffer from OVB. For example:
\star In periods experiencing $m \downarrow$ (e.g., 1980s), treatment - correlated w/ bite
\star Bite can be correlated with other shocks in residual, e.g., SBTC, which raises wages of groups with lower bites

Specification augmented in five ways (relative to theory)

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F} \mathbb{E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

(5) Include two additional controls $\mathbb{F}_{t} \times b_{g, r}$ and α_{t}

- Treatment fits into "shock-exposure" framework of Borusyak and Hull (2023)
- Specification may suffer from OVB. For example:
\star In periods experiencing $m \downarrow$ (e.g., 1980s), treatment - correlated w/ bite
\star Bite can be correlated with other shocks in residual, e.g., SBTC, which raises wages of groups with lower bites
- Avoid by controlling for \mathbb{E} [treatment]
- $\mathbb{F E}_{t} \times b_{g, r}$ controls for $\mathbb{E}[$ treatment $]$ under assumption of an arbitrary time-varying national expectation of the change in the real minimum wage

Specification augmented in five ways (relative to theory)

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F} \mathbb{E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

(0) Include two additional controls $\mathbb{F E}_{t} \times b_{g, r}$ and α_{t}

- Treatment fits into "shock-exposure" framework of Borusyak and Hull (2023)
- Specification may suffer from OVB. For example:
\star In periods experiencing $m \downarrow$ (e.g., 1980s), treatment - correlated w/ bite
\star Bite can be correlated with other shocks in residual, e.g., SBTC, which raises wages of groups with lower bites
- Avoid by controlling for \mathbb{E} [treatment]
- $\mathbb{F E}_{t} \times b_{g, r}$ controls for $\mathbb{E}[$ treatment $]$ under assumption of an arbitrary time-varying national expectation of the change in the real minimum wage
- Additional benefits:
* Control absorbs changes in inflation: identical RF results using nominal mw.
^ "Design-based" approach avoids negative ex-ante weights (BH, 2024)

Data

- NBER Merged Outgoing Rotation Group of the CPS (1979-2016)
- Drop 1994 and 1995m1-m8: missing allocation flags
- End 2016 m 12 before many municipalities begin setting their own mws; e.g.,
^ NYC + Nassau, Suffolk, and Westchester counties on 12/31/2016
^ Minneapolis, MN in 2018
* Los Angeles $\$ 0.50$ above for large businesses on $7 / 1 / 16$
* San Diego $\$ 0.75$ above on $1 / 1 / 15$
- Measure b_{g}, r, t defining mw worker as those with wage $\leq 1.05 \mathrm{mw}$
- Minimum wage data from Vaghul and Zipperer (2016), Cengiz et al. (2019)
- Use maximum nominal mw in state-period
- Deflate by maximum monthly GDP deflator in period
- 5,000 (g, r) pairs $+\approx 60,000$ obs. per $t \Rightarrow \approx 12$ obs. per (g, r, t)
- Winsorize wage at 2nd percentile within each (g, r)
- Weigh by product of (g, r) work hours in t and $t-T$ divided by their sum
- Use balanced sample: (g, r) with no missing wage data across t

Additional details

- Cluster standard errors by state
- All results in figures, which...
- ... convert pre-trends to their more typical "levels" form
\star negative of coefficients for $j<0$
* see Roth (2024): "Interpreting Event-Studies..."
- ... display averaged annual effects, except for impact effect
\star for period $j>0$, display $\left(\mu_{j}+\mu_{j+1}\right) / 2+$ corresponding 95% confidence interval
\star for period $j<0$, display $\left(\mu_{j}+\mu_{j-1}\right) / 2+$ corresponding 95% confidence interval
\star for period $j=0$, display $\mu_{0}+$ corresponding 95% confidence interval

Results

Outline of results

(1) 2SLS specification in model-generated data
(2) Reduced-form specification
(3) 2 SLS specification
(0) Robustness of 2SLS specification

- Implications

Model parameterization and quantitative exercise

- Choose model parameters
- Externally to direct survey evidence (Hall and Mueller, 2018)
\star Converting from weekly to bi-annual: $\gamma_{u} \approx 0.79, \gamma_{e}=\gamma_{u} / 2$, and $\delta \approx 0.10$
- $\beta=0.25$ to obtain long-run magnification elasticity of 2.4 (using analytics)
- Choose 5,000 values of $V M P L_{g, r}$ targeting average real wages

Model parameterization and quantitative exercise

- Choose model parameters
- Externally to direct survey evidence (Hall and Mueller, 2018)
\star Converting from weekly to bi-annual: $\gamma_{u} \approx 0.79, \gamma_{e}=\gamma_{u} / 2$, and $\delta \approx 0.10$
- $\beta=0.25$ to obtain long-run magnification elasticity of 2.4 (using analytics)
- Choose 5,000 values of $V M P L_{g, r}$ targeting average real wages
- Quantify impacts of changes in minimum wages
- Start from a steady state in 1979m1 - m6
- Feed in observed changes in real minimum wages in every state, period
- Estimate baseline 2SLS specification using model-generated data

2SLS specification using model-generated data

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

Event time (in half years)
Notes: Point estimate for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

- Estimates rise from 1 to 2.1 over three years, given magnification elasticity of 2.4

RF specification

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

- Qualitative pattern as in model-generated data
- No evidence of pre-existing differential trends before changes in m

RF specification: Sensitivity

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

- Baseline: mw workers those with wages $\leq 1.05 \times \mathrm{mw}$
- mw workers those with wages $\leq 1.00 \times \mathrm{mw}$
- mw workers those with wages $\leq 1.10 \times \mathrm{mw}$
- mw workers those with wages $\leq 1.15 \times \mathrm{mw}$
- Baseline uses all groups
- Only for groups without college degrees
- Separately by gender
- Exclude final 6 sample years (w/ sub-state mws)
- Unbalanced panel of (g, r)

2SLS specification

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

- Lag weight ≈ 0.5 on impact, \uparrow to 1 in one year, and peaks at >2.2 over two years
- Conclude a magnification elasticity of approximately 2.4

2SLS specification: Sensitivity

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\alpha+\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j-1} \times \log \frac{m_{t-j, r}}{m_{t-j-1, r}}+\mathbb{F E}_{t} \times b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

- Baseline: mw workers those with wages $\leq 1.05 \times \mathrm{mw}$
- mw workers those with wages $\leq 1.00 \times \mathrm{mw}$
- mw workers those with wages $\leq 1.10 \times \mathrm{mw}$
- mw workers those with wages $\leq 1.15 \times \mathrm{mw}$
- Baseline uses all groups
- Only for groups without college degrees
- Separately by gender
- Exclude final 6 sample years ($w /$ sub-state mws)
- Unbalanced panel of (g, r)
- Assume t - and r - specific components of m changes (control for $\mathbb{F}_{r} b_{g, r}$)
- Incorporate an (r, t) fixed effect
- Incorporate a (g, t) fixed effect

Implication I: Revisiting the college premium

College premium elasticity with respect to m

- Long-run national elasticity of college premium wrt to the minimum wage of

$$
M \times\left(b_{h}-b_{\ell}\right)
$$

- Estimates suggest a long-run magnification elasticity of 2.4
- Average value across all (g, r, t) of $b_{g, r, t}$ is
- for college $g: 1.8 \%$
- for non-college g: 7.6\%
- College premium elasticity wrt to m in the range of $2.4 \times(-0.058) \approx-0.14$
- In the middle of the range of the national estimates

Both national and disaggregated state \times group estimates imply similar and sizable elasticities of the college premium with respect to the real minimum wage

Implication II: Real wages (and their decline)

Real wage elasticity with respect to m

- Real wages of low-education workers declined dramatically in 1980s into early 1990s
- This decline is impossible in "The Race Between Education and Technology" without a \downarrow in productivity (Acemoglu and Restrepo, 2020)
- Possible in "The Race Between Education, Technology, and the Minimum Wage"
- Consider those without completed high school (HSD)
- 26% decline of real mw between 1979 and 1989
- Average value across all (g, r, t) of $b_{g, r, t}$ among HSD is 13.9%
- $\downarrow m \Rightarrow \downarrow 8.7 \%(\approx 0.26 \times 0.139 \times 2.4)$ in HSD real wage
\downarrow real minimum wage explains entirety of \downarrow real wage of HSD btw 1979-1992

Model limitations

What might these results suggest the theory lacks?

- In the data, coefficients begin to \downarrow one period early (compared to in the model)
- Something is either pushing up wages higher in the wage distribution over time
- ... or pushing down wages lower in the wage distribution over time
- Prominent possibilities:
(1) Fairness or efficiency wage concerns \uparrow wages higher up distribution
* e.g., Grossman (1983)
(2) Technical change \uparrow demand for higher-wage and/or \downarrow demand for lower-wage groups
\star results apply with g, t fixed effects: localized demand changes
\star e.g., Hurst et al. (2022)

Conclusions

What is the impact of the mw on inequality?

- Empirical motivation: two new facts in the national time series
- minimum wage helps shape U.S. college wage premium
- incorporating mw improves fit of "The Race" + reduces trend break in SBTC
- Theoretically:
- on impact, $\uparrow \mathrm{mw}$ raises wages more for groups more bound by it
- over time, this difference in wage elasticities rises due to indirect effects
- Empirically: Find evidence consistent with these dynamic predictions
- using state and group level data
- holding the composition of workers fixed
with magnification elasticity >2 after ≈ 2 years
- quantitatively consistent $w /$ national-time series estimates
- $\downarrow m \Rightarrow$ all of \downarrow real wage of HSD in 1980s and early 1990s

Empirical Appendix

Robustness: alternative supply \#1

Regression Models for the College Wage Premium
Using dual of composition-adjusted changes in wages
Instrumenting with efficiency-unit populations

	(1)	(2)	(3)	(4)	(5)	(6)
Relative supply of college workers	-0.584	-0.724	-0.745	-0.668	-0.518	-0.512
	(0.063)	(0.085)	(0.118)	(0.124)	(0.175)	(0.058)
Real minimum wage	-0.207	-0.158	-0.171	-0.186	-0.175	
	(0.044)	(0.054)	(0.060)	(0.063)	(0.052)	
Real federal minimum wage						-0.163
					(0.039)	
Time	0.022				0.020	
	(0.002)				(0.001)	
Time Polynomial	1	2	3	4	5	1

Robustness: alternative supply \#2

Regression Models for the College Wage Premium Reduced-form specification

	(1)	(2)	(3)	(4)	(5)	(6)
Relative supply of college workers	-0.555	-0.816	-0.632	-0.692	-0.356	-0.464
	(0.060)	(0.083)	(0.101)	(0.110)	(0.106)	(0.060)
Real minimum wage	-0.307	-0.257	-0.132	-0.115	-0.126	
	(0.053)	(0.058)	(0.047)	(0.058)	(0.038)	
Real federal minimum wage						-0.236
					(0.048)	
Time	0.019				0.016	
	(0.001)				(0.001)	
Time Polynomial	1	2	3	4	5	1

Results: predicted college premium alternative supply

Using dual of composition-adjusted changes in wages Instrumenting with efficiency-unit populations

Results: predicted college premium reduced form

Reduced-form specification

Robustness: using data from AKK

Regression Models for the College Wage Premium Using Data from AKK Replication Package (1963-2005)

	Using AKK data					
	(a)	(b)	(c)	(d)	(e)	
Relative supply of college workers	-0.431	-0.607	-0.612	-0.216	0.013	
	(0.051)	(0.077)	(0.091)	(0.113)	(0.104)	
Minimum wage	-0.112	-0.108	-0.064	-0.174	-0.123	
	(0.049)	(0.049)	(0.048)	(0.052)	(0.040)	
	Using my baseline real minimum wage					
	(a)	(b)	(c)	(d)	(e)	
Relative supply of college workers	-0.459	-0.605	-0.610	-0.244	-0.019	
	(0.051)	(0.078)	(0.089)	(0.108)	(0.106)	
Minimum wage	-0.150	-0.139	-0.087	-0.184	-0.119	
	(0.051)	(0.053)	(0.057)	(0.059)	(0.050)	
Time Polynomial	1	2	3	4	5	
Observations	43	43	43	43	43	

National: separate regressions by education

Replace $\log \frac{w_{h t}}{w_{\ell t}}$ with $\log w_{h t}$ and with $\log w_{\ell t}$

Regression Models for the College and Non-College Wages

	Linear			Quadratic			Cubic		
	(Premium)	(High)	(Low)	(Premium)	(High)	(Low)	(Premium)	(High)	(Low)
Relative supply	$\begin{gathered} -0.632 \\ (0.069) \end{gathered}$	$\begin{aligned} & -0.414 \\ & (0.127) \end{aligned}$	$\begin{gathered} 0.218 \\ (0.123) \end{gathered}$	$\begin{gathered} -0.703 \\ (0.077) \end{gathered}$	$\begin{gathered} -1.029 \\ (0.140) \end{gathered}$	$\begin{gathered} -0.327 \\ (0.139) \end{gathered}$	$\begin{gathered} -0.608 \\ (0.104) \end{gathered}$	$\begin{gathered} -1.117 \\ (0.158) \end{gathered}$	$\begin{aligned} & -0.509 \\ & (0.103) \end{aligned}$
Real minimum wage	$\begin{gathered} -0.220 \\ (0.048) \end{gathered}$	$\begin{gathered} -0.104 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.117 \\ (0.058) \end{gathered}$	$\begin{gathered} -0.199 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.083 \\ (0.077) \end{gathered}$	$\begin{gathered} 0.282 \\ (0.066) \end{gathered}$	$\begin{gathered} -0.133 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.091) \end{gathered}$	$\begin{gathered} 0.155 \\ (0.063) \end{gathered}$
Time	$\begin{gathered} 0.021 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.003) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.002) \end{gathered}$						

$\uparrow \mathrm{mw} \Rightarrow \uparrow$ non-college average wage with no robust impact on college wage

RF specification: Non-college sample

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

RF specification: Female sample

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

RF specification: Male sample

$$
\log \frac{w_{g}, r, t}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

RF specification: 1979-2010 sample

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

RF specification: Unbalanced sample

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

RF specification: mw cutoff of 1.00

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

RF specification: mw cutoff of 1.10

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

RF specification: mw cutoff of 1.15

$$
\log \frac{w_{g, r, t}}{w_{t-D, g, r}}=\alpha+\sum_{j=-K}^{D-1} \mu_{j} \times \text { bite }_{g, r} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\varepsilon_{g, r, t}
$$

2SLS specification: Non-college sample

$\log \frac{w_{g}, r, t}{} w_{g, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: Female sample

$\log \frac{w_{g}, r, t}{w_{g}, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: Male sample

$\log \frac{w_{g}, r, t}{w_{g}, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: 1979-2010 sample

$\log \frac{w_{g}, r, t}{} w_{g, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: Unbalanced sample

$\log \frac{w_{g}, r, t}{w_{g}, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: mw cutoff of 1.00

$\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: mw cutoff of 1.10

$\log \frac{w_{g}, r, t}{w_{g}, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: mw cutoff of 1.15

$\log \frac{w_{g}, r, t}{w_{g}, r, t-6}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F E}_{t} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}$

2SLS specification: An additional control

Assuming changes in the mw are i.i.d. + a t-specific component + an r-specific component

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F}_{t} b_{g, r}+\mathbb{F}_{r} b_{g, r}+\alpha_{t}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}, linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

2SLS specification: An additional control

Assuming changes in the mw are i.i.d. + a t-specific component + include an (r, t) fixed effect

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F}_{t} b_{g, r}+\alpha_{r, t}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}. linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

2SLS specification: An additional control

Assuming changes in the mw are i.i.d. + a t-specific component + include a $(g, t$) fixed effect

$$
\log \frac{w_{g, r, t}}{w_{g, r, t-6}}=\sum_{j=-4}^{9} \mu_{j} \times b_{g, r, t-j} \times \log \frac{m_{r, t-j+1}}{m_{r, t-j}}+\mathbb{F}_{t} b_{g, r}+\alpha_{g, t}+\varepsilon_{g, r, t}
$$

Notes: Point estimate and $95 \% \mathrm{Cl}$ for μ_{0}. linear combination of $\left(\mu_{j}+\mu_{j+1}\right) / 2$ for $j>0$ and of $-\left(\mu_{j}+\mu_{j-1}\right) / 2$ for $j<0$

Theoretical Appendix

Transitions

Proposition

Consider an economy in steady state at date 0 that faces a small one-time change from m to $m^{\prime}>m$. Then for any skill s that was bound by m :
(1) For all $t \geq 0$ two job ladders coexist, with first rungs m (old) and m^{\prime} (new)
(2) The share on each rung j summed across the two ladders is constant across t
(0) The share on rung j of the new ladder rises (weakly) in t
(1) At each rung j, wage on the new job ladder is higher than on the old one
(- The elasticity of the average wage wrt the minimum wage rises in t

- On impact, this elasticity equals the share of income earned at m (the "bind")

And, if $m^{\prime}<m$, then

- (1, (2, and (3) are identical
- (4) and (5) are reversed
- (0): the instantaneous elasticity of the average wage $=0$

Transitions (for one s bound by m)

- Economy in steady state at date 0

pre shock
$\mathrm{t}=-1$

Transitions (for one s bound by m)

- Economy in steady state at date 0 ; a small one-time change to $m^{\prime}>m$

- On impact, the first rung disappears on the original ladder and appears, higher, on the new ladder (direct effect)

$$
\underbrace{\log \left(\frac{w_{0^{+}, s}}{w_{-1, s}}\right) / \log \left(\frac{m^{\prime}}{m}\right)}_{\text {instantaneous elasticity }} \equiv \underbrace{b_{-1, s}}_{\text {share of wage income earned at mw before shock }}
$$

Transitions (for one s bound by m)

- Economy in steady state at date 0 ; a small one-time change to $m^{\prime}>m$

- One period later, the second rung on the original ladder starts emptying out as the second rung on the new ladder starts filling in (small indirect effect)

$$
\log \left(\frac{w_{1, s}}{w_{-1, s}}\right) / \log \left(\frac{m^{\prime}}{m}\right)>b_{-1, s}
$$

Transitions (for one s bound by m)

- Economy in steady state at date $0 ;$ a small one-time change to $m^{\prime}>m$

- ... converging to the new steady state, w/ all on the new job ladder, with the importance of the indirect effect growing each period

$$
\log \left(\frac{w_{t^{\prime}, s}}{w_{-1, s}}\right) / \log \left(\frac{m^{\prime}}{m}\right)>\log \left(\frac{w_{t, s}}{w_{-1, s}}\right) / \log \left(\frac{m^{\prime}}{m}\right) \quad \text { for all } \quad t^{\prime}>t \geq 0
$$

Transition proof (for given s) for a small $\uparrow m$ at $t=0$

- g_{j} rung j share in $\mathrm{SS} ; g_{t, j}$ and $g_{t, j}^{\prime}$ rung j shares on original, new ladders at t

Transition proof (for given s) for a small $\uparrow m$ at $t=0$

- g_{j} rung j share in $\mathrm{SS} ; g_{t, j}$ and $g_{t, j}^{\prime}$ rung j shares on original, new ladders at t
- At $t=0$: first rung + unemployment fully reallocate (and nothing else)
- $\Rightarrow g_{0, j}+g_{0, j}^{\prime}=g_{j}$ for all $j \geq 0$

Transition proof (for given s) for a small $\uparrow m$ at $t=0$

- g_{j} rung j share in $\mathrm{SS} ; g_{t, j}$ and $g_{t, j}^{\prime}$ rung j shares on original, new ladders at t
- At $t=0$: first rung + unemployment fully reallocate (and nothing else)
- $\Rightarrow g_{0, j}+g_{0, j}^{\prime}=g_{j}$ for all $j \geq 0$
- For some $t \geq 0$: suppose $g_{t, j}+g_{t, j}^{\prime}=g_{j}$ for all $j \geq 0$
- \Rightarrow date $t+1$ and for any $j>1$, we have

$$
\begin{aligned}
& g_{t+1, j}=g_{t, j}(1-\delta)\left(1-\lambda_{e}\right)+g_{t, j-1}(1-\delta) \lambda_{e} \\
& g_{t+1, j}^{\prime}=g_{t, j}^{\prime}(1-\delta)\left(1-\lambda_{e}\right)+g_{t, j-1}^{\prime}(1-\delta) \lambda_{e}
\end{aligned}
$$

and if $j=1$ replace $(1-\delta) \lambda_{e} \mathrm{w} / \lambda_{u}$
[and note that $g_{t, 0}=0$]

- Summing these expressions and using $g_{t, j}+g_{t, j}^{\prime}=g_{j}$ yields

$$
g_{t+1, j}+g_{t+1, j}^{\prime}=g_{j}(1-\delta)\left(1-\lambda_{e}\right)+g_{j-1}(1-\delta) \lambda_{e}=g_{j}
$$

where the final equality follows from the steady-state derivation of g_{j}

Distribution and the average wage

- Density $g_{s}\left(w_{j}\right)$ satisfies

$$
\begin{aligned}
{\left[\delta_{s}+\left(1-\delta_{s}\right) \lambda_{s e}\right] g_{s}\left(w_{1, s}\right) } & =\lambda_{s u} g_{s}\left(w_{0, s}\right) \\
{\left[\delta_{s}+\left(1-\delta_{s}\right) \lambda_{s e}\right] g_{s}\left(w_{j+1, s}\right) } & =\left(1-\delta_{s}\right) \lambda_{s e} g_{s}\left(w_{j, s}\right) \quad \text { for } \quad j \geq 1
\end{aligned}
$$

- Unemployment rate

$$
g_{s}\left(w_{0, s}\right)=\frac{\delta_{s}}{\delta_{s}+\lambda_{s u}}
$$

- Share at each rung

$$
g_{s}\left(w_{j, s}\right)=\left(\frac{\left(1-\delta_{s}\right) \lambda_{s e}}{\delta_{s}+\left(1-\delta_{s}\right) \lambda_{s e}}\right)^{j-1} \frac{\lambda_{s u}}{\delta_{s}+\left(1-\delta_{s}\right) \lambda_{s e}} \frac{\delta_{s}}{\delta_{s}+\lambda_{s u}} \quad \text { for } \quad j \geq 1
$$

- Average wage $w_{s} \equiv \frac{1}{1-g_{s}\left(w_{0, s}\right)} \sum_{j \geq 1} w_{j, s} g_{s}\left(w_{j, s}\right)$ among the employed

$$
w_{s}=\frac{\delta_{s}}{\delta_{s}+\beta_{s}\left(1-\delta_{s}\right) \lambda_{s e}} m+\left(1-\frac{\delta_{s}}{\delta_{s}+\beta_{s}\left(1-\delta_{s}\right) \lambda_{s e}}\right) P_{s}
$$

Burdett and Mortensen (1998) + binding minimum wage

- Equation (2.10) in van den Berg and Ridder (1998), eqm earnings density

$$
g(w)=\frac{\delta(P-m)^{1 / 2}}{2 \lambda_{e}}(P-w)^{-3 / 2} \text { for all } w \in\left[m, w_{\max }\right]
$$

with maximum wage

$$
w_{\max } \equiv\left(\frac{\delta}{\delta+\lambda_{e}}\right)^{2} m+\left(1-\frac{\delta}{\delta+\lambda_{e}}\right)^{2} P
$$

- Average wage is then

$$
w=\frac{(100 \delta)^{2}}{\left(w_{\max } \lambda_{e}+100 \delta\right)\left(m \lambda_{e}+100 \delta\right)} m+\left(1-\frac{(100 \delta)^{2}}{\left(w_{\max } \lambda_{e}+100 \delta\right)\left(m \lambda_{e}+100 \delta\right)}\right) P
$$

weighted avg of m and P as in baseline model, but weights depend on m

CS across steady states (including unemployment effects)

Across steady state effects of changes in the real mw, supply, demand

- Distribution of wages for skill s (whether or not m affects unemployment)

$$
W_{s}(c)<W_{s}\left(c^{\prime}\right) \Rightarrow \frac{d\left[W_{s}(c) / W_{s}\left(c^{\prime}\right)\right]}{d m}>0
$$

where $W_{s}(c)$ is wage at percentile c of employed skill s workers

Burdett and Mortensen (1998) + binding minimum wage

- $W_{c}(m)$: wage at centile $c \in[0,100]$

$$
W_{c}(m)=P-(P-m)\left(\frac{100 \delta}{c \lambda_{e}+100 \delta}\right)^{2}
$$

- Hence

$$
\frac{W_{c^{\prime}}(m)}{W_{c}(m)}=\frac{P-(P-m)\left(\frac{100 \delta}{c^{\prime} \lambda_{e}+100 \delta}\right)^{2}}{p-(P-m)\left(\frac{100 \delta}{c \lambda_{e}+100 \delta}\right)^{2}}
$$

- Differentiating with respect to m yields

$$
\frac{d\left[W_{c^{\prime}}(m) / W_{c}(m)\right]}{d m}<0 \Longleftrightarrow c^{\prime}>c
$$

- As in baseline model, $W_{c}(m)$ is log-submodular in (c, m)
- This result has been shown quantitatively in Engbom and Moser (2021)

Incorporating Supply and Demand

- Given focus on canonical model, impose those assumptions
- + assumptions s.t. $\beta_{m}=\beta_{m s}$
- Then across steady states (to a first-order approximation)

$$
\log \left(\frac{w_{h t}}{w_{\ell t}}\right)=\beta_{m}\left(b_{h t}-b_{\ell t}\right) \log m_{t}-\beta_{L} \log \left(\frac{L_{h t}}{L_{\ell t}}\right)+\beta_{A} t+\iota_{t}
$$

- "Race between education, technology, and the minimum wage"
- Extended canonical model

Comparative statics across steady states: β_{L}

- Elasticity wrt relative supply [if both s bound by mw]

$$
\beta_{L} \equiv \frac{1}{\eta}\left(1-\beta_{m} b_{\ell}\right) \frac{P_{h}\left(1-u_{h}\right) L_{h}}{Y}+\frac{1}{\eta}\left(1-\beta_{m} b_{h}\right) \frac{P_{\ell}\left(1-u_{\ell}\right) L_{\ell}}{Y}
$$

- When $b_{s}=0$ for both s, this is just $1 / \eta$ as in canonical model

