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Abstract

This paper shows that the endogeneity test using the control function approach in linear instru-

mental variable models is a variant of the Hausman test. Moreover, we find that the test statistics used

in these tests can be numerically ordered, indicating their relative power properties in finite samples.
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1 Introduction

This paper investigates the endogeneity test for potentially endogenous regressors in linear instrumental

variable (IV) models that utilizes the control function (CF) approach. Specifically, we focus on the

following model:

y2 = y>1 β + z
>
1 γ + ε = x>θ + ε, (1)

y1 = z>1 π1 + z
>
2 π2 + v = z>π + v, (2)

where x ≡ (y>1 , z
>
1 )
>, y1 represents potentially endogenous regressors, ε and v are unobserved error

terms in the structural and reduced-form equations respectively, and z ≡ (z>1 , z>2 )> represents exogenous

variables which satisfy:

E[zε] = 0 and E[zv>] = 0. (3)
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Since z2 is excluded from the structure equation (1) and satisfies the orthogonality conditions in (3), it

serves as instruments for y1.

One widely used method for testing the endogeneity of y1 is the Hausman test (Hausman, 1978). This

test compares the ordinary least squares (OLS) estimator β̂ols of β against the two-stage least squares

(2SLS) estimator β̂2sls. The test rejects the null hypothesis that y1 is exogenous if the difference between

β̂ols and β̂2sls exceeds a certain threshold determined by the significance level of the test.

As an alternative to the Hausman test in the IV approach, we can also apply the CF approach

to obtain a consistent estimator of β and test for the endogeneity of y1. Specifically, we run an OLS

regression of the following model

y2 = x>θ + v>ρ+ u, (4)

where we replace v by the estimated residual v̂ in the OLS regression of the reduced-form equation (2),

and obtain estimators θ̂cf and ρ̂cf . Then we test the endogeneity of y1 using the Wald test for the null

hypothesis H0 : ρ = 0.

This paper makes several contributions to the existing literature. First, we demonstrate that ρ̂cf

is a linear transformation of β̂ols − β̂2sls, thereby elucidating the connection between the Wald test for

H0 : ρ = 0 in the CF approach and the Hausman test in the IV approach. Second, we show that the

Wald test differs from the Hausman test primarily in how the asymptotic variances of β̂2sls and β̂ols

are estimated, thus representing a variant of the Hausman test. Third, our analysis reveals that the

Wald test statistic is numerically larger than the Hausman test statistics, which rely on β̂ols or β̂2sls to

obtain estimators of the asymptotic variances of β̂ols and β̂2sls. Since the Wald test employs the same

critical value as the Hausman test, it exhibits larger statistical power in finite samples. These findings

are established without imposing restrictive assumptions on either the null or alternative hypotheses.

The remainder of the paper is structured as follows. Section 2 introduces the test statistics employed

in both the Hausman test and the Wald test. Section 3 establishes a numerical order among the test

statistics introduced in Section 2 and discusses its implications for relative power properties of the tests

in finite samples. Section 4 concludes the paper. The proofs are presented in the Appendix.

Notation. We use a ≡ b to indicate that a is defined as b. For any real vector a, da denotes the

dimension of a. For any positive integer k, Ik denotes the k × k identity matrix. For any k1 × k2 matrix

A, A> denotes the transpose of A, PA ≡ A(A>A)−1A> and MA ≡ Ik1 − A(A>A)−1A> as long as A>A

is non-singular. For any square matrix A, A > 0 means A is positive definite.
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2 Testing for Endogeneity

We begin by formulating the Hausman test for assessing the endogeneity of y1 in the model specified by

(1) and (2). Suppose we have a random sample {y1,i, y2,i, zi}ni=1, where zi ≡ (z>1,i, z>2,i)> for i = 1, . . . , n.

Recall that xi ≡ (y>1,i, z>1,i)>, i = 1, . . . , n, denotes the regressors in (1). Let X ≡ (x1, . . . , xn)>, Y1 ≡

(y1,1, . . . , y1,n)
>, Y2 ≡ (y2,1, . . . , y2,n)>, and Z ≡ (z1, . . . , zn)>. The OLS and 2SLS estimators of θ in (1)

are given by

θ̂ols ≡ (X>X)−1X>Y2 and θ̂2sls ≡ (X>PZX)−1X>PZY2

respectively. Let β̂ols and β̂2sls denote the leading dy1 × 1 subvectors of θ̂ols and θ̂2sls respectively. The

Hausman test statistic can be characterized by

tH,n(σ̂
2
1, σ̂

2
2) ≡ (β̂ols − β̂2sls)>(σ̂21(Ŷ >1 MZ1 Ŷ1)

−1 − σ̂22(Y >1 MZ1Y1)
−1)−1(β̂ols − β̂2sls), (5)

where Ŷ1 ≡ PZY1, σ̂21(Ŷ
>
1 MZ1 Ŷ1)

−1 and σ̂22(Y
>
1 MZ1Y1)

−1 are estimators of the asymptotic variances of

β̂ols and β̂2sls respectively, and σ̂21 and σ̂
2
2 are (possibly different) estimates of the variance σ

2
ε of the error

term ε in the structural equation (1).

In practice, σ2ε can be estimated by the sample variance of the fitted residual in the OLS estimation:

σ̂2ols ≡ n−1(Y2 −Xθ̂ols)>(Y2 −Xθ̂ols),

or through its counterpart in the 2SLS estimation:

σ̂22sls ≡ n−1(Y2 −Xθ̂2sls)>(Y2 −Xθ̂2sls),

resulting in three popular versions of the Hausman test with test statistics tH1 ≡ tH,n(σ̂
2
ols, σ̂

2
ols), tH2 ≡

tH,n(σ̂
2
2sls, σ̂

2
2sls), and tH3 ≡ tH,n(σ̂22sls, σ̂2ols) respectively (Wooldridge, 2010, Section 6.3.1; Baum, Schaffer,

and Stillman, 2003).

Alternatively, we can apply the CF approach and obtain the estimators of θ and ρ in (4) as

(θ̂>cf , ρ̂
>
cf )
> ≡ ((X, V̂ )>(X, V̂ ))−1(X, V̂ )>Y2, (6)

where V̂ ≡MZY1, and then test the endogeneity of y1 using the Wald test with the test statistic

tCF ≡ ρ̂>cf
(
Âsv(ρ̂cf )

)−1
ρ̂cf , (7)

where Âsv(ρ̂cf ) denotes an estimator of the asymptotic variance of ρ̂cf . Applying the partitioned re-

gression formula (which is also known as the Frisch-Waugh-Lovell Theorem, see, e.g., Davidson and
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MacKinnon (1993, Section 1.4)) to (6) yields

ρ̂cf = (V̂
>MX V̂ )

−1(V̂ >MXY2) = ρ+ (V̂ >MX V̂ )
−1[V̂ >MXU − V̂ >MX(V̂ − V )ρ], (8)

where U ≡ (u1, . . . , un)
>, V ≡ (v1, . . . , vn)

>, and the second equality follows by (4). Although the

regressor v is estimated and hence the estimation error V̂ − V should be taken into account when

calculating Âsv(ρ̂cf ), the expansion in (8) shows that this estimation error can be ignored under the

null that ρ = 0. Therefore, in the rest of the paper we use the estimator

Âsv(ρ̂cf ) = σ̂2u(V̂
>MX V̂ )

−1, (9)

where σ̂2u is the sample variance of the fitted residual in the OLS regression of (4)

σ̂2u ≡ n−1(Y2 −Xθ̂cf − V̂ ρ̂cf )>(Y2 −Xθ̂cf − V̂ ρ̂cf ). (10)

As we shall see in the next section, choosing this estimator makes the Wald statistic tCF comparable to

tH,n(σ̂
2
1, σ̂

2
2).

Throughout this paper, we assume that X>X, X>PZX, and (X, V̂ )>(X, V̂ ) are non-singular so

that the estimators θ̂ols, θ̂2sls, θ̂cf and ρ̂cf are well defined. Under these primitive conditions, we have

Y >1 MZ1Y1 > 0, Ŷ
>
1 MZ1 Ŷ1 > 0 and

Y >1 MZ1Y1 − Ŷ >1 MZ1 Ŷ1 = Y >1 MZY1 > 0,

which further implies that

(Ŷ >1 MZ1 Ŷ1)
−1 − (Y >1 MZ1Y1)

−1 > 0. (11)

In view of (11) and the definitions of tHj (j = 1, 2, 3) and tCF , we also assume that σ̂
2
ols, σ̂

2
2sls and σ̂

2
u are

strictly positive so that these test statistics are well defined.

Under the null that y1 is exogenous, along with other regularity conditions, one can establish that

the asymptotic distributions of tHj (j = 1, 2, 3) and tCF are Chi-square with k1 degrees of freedom

(denoted as χ2(k1)). Consequently, the Hausman tests and the Wald test reject the null hypothesis if

the corresponding test statistic exceeds the 1 − α quantile of χ2(k1), where α denotes the significance

level. As we shall see in the next section, the test statistics tHj (j = 1, 2, 3) and tCF can be numerically

ordered, indicating their relative rejection properties in finite samples.
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3 Main Results

Our first objective is to establish a numerical relationship between the OLS and 2SLS estimators and the

estimators in the CF approach. This result serves as a foundation for further investigating the numerical

order among tHj (j = 1, 2, 3) and tCF in finite samples.

Lemma 1 The estimators in the CF approach satisfy θ̂cf

ρ̂cf

 =

 θ̂2sls

(Y >1 MZY1)
−1(Y >1 MZ1Y1)(β̂ols − β̂2sls)

 . (12)

Moreover, the Wald test statistic tCF satisfies

tCF = (β̂ols − β̂2sls)>
(
σ̂2u(Ŷ

>
1 MZ1 Ŷ1)

−1 − σ̂2u(Y >1 MZY1)
−1
)−1

(β̂ols − β̂2sls), (13)

where σ̂2u is defined in (10).

The lemma above carries two important implications. First, θ̂cf is numerically equivalent to θ̂2sls,

implying that θ̂cf shares the same standard error as θ̂2sls. This finding has been well recognized in the

literature since at least Hausman (1978) (see also Davidson and MacKinnon (1993, Section 7.9) and

Wooldridge (2010, Problem 5.1)). Second, ρ̂cf is a linear transformation of β̂ols − β̂2sls, establishing a

connection between the Wald test based on tCF and the Hausman tests based on tH,n(σ̂21, σ̂
2
2). To the best

of our knowledge, this numerical relationship is a novel contribution to the literature. The expression of

tCF in (13) further suggests that tCF is a special case of tH,n(σ̂21, σ̂
2
2) with σ̂

2
1 = σ̂22 = σ̂2u.

Since tHj (j = 1, 2, 3) and tCF differ only in how the variance estimators σ̂
2
1 and σ̂

2
2 in (5) are calculated,

their relative performances are determined by the differences of these variance estimators. Intuitively, σ̂2u

should not be larger than σ̂2ols since, compared with the OLS estimation of (1), the CF approach includes

an extra regressor v in (4), and the resulting R2 should not be smaller. Moreover, we have σ̂2ols ≤ σ̂22sls

by the definitions of OLS and 2SLS estimation. Therefore, we expect a weak order among these variance

estimators: σ̂2u ≤ σ̂2ols ≤ σ̂22sls, which together with the definitions of tHj (j = 1, 2, 3) and tCF implies

a weak numerical order among the test statistics: tCF ≥ tH1 ≥ tH2 ≥ tH3 . Our next lemma establishes

the exact relationships among the variance estimators σ̂2u, σ̂
2
ols and σ̂

2
2sls, enabling us to obtain a strong

numerical order among them as well as among the test statistics tHj (j = 1, 2, 3) and tCF .

Lemma 2 Let Hn ≡ (nσ̂22sls)−1(β̂ols − β̂2sls)>(Y >1 MZ1Y1)(β̂ols − β̂2sls). Then

σ̂2u = σ̂2ols

(
1− tH1

n

)
= σ̂22sls

(
1− tH2

n
−Hn

)
. (14)
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Since tHj (j = 1, 2, 3) and Hn are non-negative, from (14) we immediately obtain σ̂22sls ≥ σ̂2ols ≥ σ̂2u,

which implies that tCF ≥ tH1 ≥ tH2 ≥ tH3 . Moreover, when β̂ols − β̂2sls 6= 0, tHj and Hn are strictly

positive. In this case, we can deduce from (14) that σ̂22sls > σ̂2ols > σ̂2u, and a strong numerical order

among tHj (j = 1, 2, 3) and tCF , which is summarized in the lemma below.

Lemma 3 Suppose that β̂ols − β̂2sls 6= 0. Then we have tCF > tH1 > tH2 > tH3.

Lemma 3 demonstrates that in finite samples, the endogeneity test based on tCF has the largest rejec-

tion probability compared with tHj (j = 1, 2, 3), although these four tests are asymptotically equivalent

under the null hypothesis and local alternatives where β̂ols − β̂2sls = op(1).

4 Conclusion

This paper explores the endogeneity test using the CF approach in linear IV models. We find that

the OLS estimator of the coeffi cients of the generated CF is a linear transformation of the difference

between the OLS and 2SLS estimators of the coeffi cients of endogenous regressors. This finding allows

us to demonstrate that the commonly used endogeneity test using the CF approach is a variant of the

Hausman test. In addition, we establish a numerical order among the test statistics employed in the

Hausman tests and the endogeneity test using the CF approach. This numerical order highlights that

the endogeneity test using the CF approach exhibits the highest rejection probability in finite samples.
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Appendix

A Proofs

Proof of Lemma 1. By partitioned regression/partialling out formula, θ̂cf

ρ̂cf

 =

 (
X>MV̂X

)−1
X>MV̂ Y2

(V̂ >MX V̂ )
−1V̂ >MXY2

 . (15)

Since X>V̂ = X>MZY1 = (Y
>
1 MZY1, 0dy1×dz1 )

> and V̂ >V̂ = Y >1 MZY1, we have

X>MV̂X = X>X −

 Y >1 MZY1 0dy1×dz1

0dz1×dy1 0dz1×dz1

 =

 Y >1 PZY1 Y >1 Z1

Z>1 Y1 Z>1 Z1

 = X>PZX

and

X>MV̂ Y2 = X>Y2 −

 Y >1 MZY2

0dz1×1

 =

 Y >1 PZY2

Z>1 Y2

 = X>PZY2,

which together with (15) implies that

θ̂cf = (X
>PZX)

−1X>PZY2 = θ̂2sls. (16)

By the definitions of θ̂ols and θ̂2sls, it is easy to show that

β̂ols = (Y
>
1 MZ1Y1)

−1Y >1 MZ1Y2 and β̂2sls = (Y
>
1 (PZ − PZ1)Y1)−1Y >1 (PZ − PZ1)Y2. (17)

Moreover,

V̂ >MX V̂ = Y >1 MZY1 − (Y >1 MZY1, 0dy1×dz1 )(X
>X)−1(Y >1 MZY1, 0dy1×dz1 )

′

= Y >1 MZY1 − Y >1 MZY1(Y
>
1 MZ1Y1)

−1Y >1 MZY1

= Y >1 (PZ − PZ1)Y1(Y >1 MZ1Y1)
−1Y >1 MZY1, (18)

and

V̂ >MXY2 = Y >1 MZY2 − (Y >1 MZY1, 0dy1×dz1 )(X
>X)−1X>Y2

= Y >1 MZY2 − Y >1 MZY1(Y
>
1 MZ1Y1)

−1Y >1 MZ1Y2

= Y >1 (PZ − PZ1)Y1(Y >1 MZ1Y1)
−1Y >1 MZ1Y2 − Y >1 (PZ − PZ1)Y2,

= Y >1 (PZ − PZ1)Y1(β̂ols − β̂2sls) (19)
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where the second equality is by the partitioned regression formula on (X>X)−1X>Y2, and the last

equality is by (17). Combining the expressions in (18) and (19) yields

ρ̂cf = (V̂
>MX V̂ )

−1V̂ >MXY2 = (Y
>
1 MZY1)

−1Y >1 MZ1Y1(β̂ols − β̂2sls). (20)

The claim in (12) follows from (16) and (20).

By the definition of Âsv(ρ̂cf ) in (9) and the expression in (18),

Âsv(ρ̂cf ) = σ̂2u(Y
>
1 MZY1)

−1Y >1 MZ1Y1(Y
>
1 (PZ − PZ1)Y1)−1. (21)

Using (12) and (21), we have

ρ̂>cf (Âsv(ρ̂cf ))
−1ρ̂cf = ρ̂>cf

Y >1 (PZ − PZ1)Y1(Y >1 MZ1Y1)
−1Y >1 MZY1

σ̂2u
ρ̂cf

= (β̂ols − β̂2sls)>
Y >1 MZ1Y1(Y

>
1 MZY1)

−1Y >1 (PZ − PZ1)Y1
σ̂2u

(β̂ols − β̂2sls). (22)

Since MZ =MZ1 − PZ + PZ1 and Ŷ1 = PZY1, we derive

(Y >1 (PZ − PZ1)Y1)−1Y >1 MZY1(Y
>
1 MZ1Y1)

−1

= (Y >1 (PZ − PZ1)Y1)−1Y >1 (MZ1 − PZ + PZ1)Y1(Y >1 MZ1Y1)
−1

= (Y >1 (PZ − PZ1)Y1)−1 − (Y >1 MZ1Y1)
−1

= (Ŷ >1 MZ1 Ŷ1)
−1 − (Y >1 MZ1Y1)

−1,

which together with (22) proves the second claim of the lemma.

Proof of Lemma 2. By the definition of θ̂ols and θ̂2sls, we can write

θ̂ols − θ̂2sls =(X>X)−1X>MZY2 + (X
>X)−1X>PZY2 − θ̂2sls

=(X>X)−1X>MZY2 + (X
>X)−1(X>PZX −X>X)θ̂2sls

=(X>X)−1(X>MZ1Y2 −X>MZ1Xθ̂2sls)

− (X>X)−1(X>(PZ − PZ1)Y2 −X>(PZ − PZ1)Xθ̂2sls)

=(X>X)−1(X>MZ1Y2 −X>MZ1Xθ̂2sls). (23)

Applying the formula for the inverse of block matrix to X>X = (Y1, Z1)
>(Y1, Z1) and elementary matrix

operations yields

(X>X)−1(X>MZ1Y2 −X>MZ1Xθ̂2sls)

=

 (Y T1 MZ1Y1)
−1

−(Z>1 Z1)−1Z>1 Y1(Y >1 MZ1Y1)
−1

 (Y >1 MZ1Y1 − Y >1 MZ1Y1β̂2sls).
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Note that

Y >1 MZ1Y1 − Y >1 MZ1Y1β̂2sls = Y >1 MZ1Y1(β̂ols − β̂2sls).

Therefore, we can further derive

θ̂ols − θ̂2sls =

 Idy1

−(Z>1 Z1)−1Z>1 Y1

 (β̂ols − β̂2sls). (24)

To show the first equality in (14), we write

û = Y2 −Xθ̂cf − V̂ ρ̂cf = Y2 −Xθ̂ols +X(θ̂ols − θ̂2sls)− V̂ ρ̂cf . (25)

Note that XT (Y2 −Xθ̂ols) = 0 by the definition of θ̂ols. Some elementary matrix operations lead to

V̂ T (Y2 −Xθ̂ols) = Y >1 MZY2 − Y >1 MZXθ̂ols

= Y >1 MZY2 − Y >1 MZY1β̂ols

= Y >1 MZ1Y2 − Y >1 MZ1Y1β̂ols + Y
>
1 (PZ − PZ1)Y1β̂ols − Y >1 (PZ − PZ1)Y2

= Y >1 (PZ − PZ1)Y1(β̂ols − β̂2sls).

Hence, by Lemma 1

ρ̂Tcf V̂
T (Y2 −Xθ̂ols) = (β̂ols − β̂2sls)>Y >1 MZ1Y1(Y

>
1 MZY1)

−1Y >1 (PZ − PZ1)Y1(β̂ols − β̂2sls). (26)

Moreover, observe that by (24) and Lemma 1

X(θ̂ols − θ̂2sls)− V̂ ρ̂cf =MZ1Y1(β̂ols − β̂2sls)−MZY1(Y
>
1 MZY1)

−1(Y >1 MZ1Y1)(β̂ols − β̂2sls)

= (MZ1Y1 −MZY1(Y
>
1 MZY1)

−1Y >1 MZ1Y1)(β̂ols − β̂2sls)

and by elementary matrix operations

(MZ1Y1 −MZY1(Y
>
1 MZY1)

−1Y >1 MZ1Y1)
>(MZ1Y1 −MZY1(Y

>
1 MZY1)

−1Y >1 MZ1Y1)

= Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 MZ1Y1 − Y >1 MZ1Y1

= Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 (PZ − PZ1)Y1.

Therefore, we have

(X(θ̂ols − θ̂2sls)− V̂ ρ̂cf )T (X(θ̂ols − θ̂2sls)− V̂ ρ̂cf )

= (β̂ols − β̂2sls)>Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 (PZ − PZ1)Y1(β̂ols − β̂2sls). (27)

9



Collecting the results in (25), (26), and (27), we obtain

n−1û>û =n−1(Y2 −Xθ̂ols)T (Y2 −Xθ̂ols)− 2n−1ρ̂Tcf V̂ T (Y2 −Xθ̂ols)

+ n−1(X(θ̂ols − θ̂2sls)− V̂ ρ̂cf )T (X(θ̂ols − θ̂2sls)− V̂ ρ̂cf )

=σ̂2ols − n−1(β̂ols − β̂2sls)>Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 (PZ − PZ1)Y1(β̂ols − β̂2sls)

=σ̂2ols − n−1(β̂ols − β̂2sls)>((Y >1 (PZ − PZ1)Y1)−1 − (Y >1 MZ1Y1)
−1)−1(β̂ols − β̂2sls)

=σ̂2ols

(
1−

tH,n
(
σ̂2ols, σ̂

2
ols

)
n

)
,

which together with the definition of tH1 proves the first equality in (14).

To show the second equality in (14), note that by Lemma 1

û = Y2 −Xθ̂cf − V̂ ρ̂cf = Y2 −Xθ̂2sls − V̂ ρ̂cf . (28)

By the definitions of β̂ols and β̂2sls, we have

V̂ T (Y2 −Xθ̂2sls) =Y >1 MZY2 − Y >1 MZXθ̂2sls

=Y >1 MZY2 − Y >1 MZY1β̂2sls

=Y >1 MZ1Y2 − Y >1 MZ1Y1β̂2sls − Y >1 (PZ − PZ1)Y2 + Y >1 (PZ − PZ1)Y1β̂2sls

=Y >1 MZ1Y1(β̂ols − β̂2sls). (29)

Therefore,

ρ̂Tcf V̂
T (Y2 −Xθ̂2sls) = (β̂ols − β̂2sls)>Y >1 MZ1Y1(Y

>
1 MZY1)

−1Y >1 MZ1Y1(β̂ols − β̂2sls). (30)

Moreover,

ρ̂>cf V̂
T V̂ ρ̂cf = (β̂ols − β̂2sls)>Y >1 MZ1Y1(Y

>
1 MZY1)

−1Y >1 MZ1Y1(β̂ols − β̂2sls),

which combined with (28), (29) and (30) implies that

n−1û>û =n−1(Y2 −Xθ̂2sls)>(Y2 −Xθ̂2sls) + n−1ρ̂>cf V̂ T V̂ ρ̂cf − 2n−1ρ̂Tcf V̂ T (Y2 −Xθ̂2sls)

=σ̂22sls − (β̂ols − β̂2sls)>Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 MZ1Y1(β̂ols − β̂2sls)

=σ̂22sls − n−1(β̂ols − β̂2sls)>Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 (PZ − PZ1)Y1(β̂ols − β̂2sls)

− n−1(β̂ols − β̂2sls)>Y >1 MZ1Y1(Y
>
1 MZY1)

−1Y >1 MZY1(β̂ols − β̂2sls)

=σ̂22sls − σ̂22sls
tH,n

(
σ̂22sls, σ̂

2
2sls

)
n

− (β̂ols − β̂2sls)>
Y >1 MZ1Y1

n
(β̂ols − β̂2sls).
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This together with the definitions of tH2 and Hn completes the proof.

Proof of Lemma 3. Note that by β̂ols 6= β̂2sls and (11), we have

σ̂2olstH1 = σ̂22slstH2 = σ̂2utCF = (β̂ols − β̂2sls)>((Ŷ >1 MZ1 Ŷ1)
−1 − (Y >1 MZ1Y1)

−1)−1(β̂ols − β̂2sls) > 0 (31)

and

σ̂22slsHn = n−1(β̂ols − β̂2sls)>(Y >1 MZ1Y1)(β̂ols − β̂2sls) > 0. (32)

Therefore, the equalities in (14) of Lemma 2 imply that

σ̂22sls > σ̂2ols > σ̂2u. (33)

Combining (31) and (33) yields tCF > tH1 > tH2 . By (33) and (Y
>
1 MZ1Y1)

−1 > 0, we can show that

σ̂22sls(Ŷ
>
1 MZ1 Ŷ1)

−1 − σ̂2ols(Y >1 MZ1Y1)
−1 > σ̂22sls[(Ŷ

>
1 MZ1 Ŷ1)

−1 − (Y >1 MZ1Y1)
−1],

which together with β̂ols 6= β̂2sls and the definitions of tH2 and tH3 implies that tH2 > tH3 .
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