Online Supplemental Appendix to
“A Consistent Specification Test for Dynamic Quantile Models”

Peter Horvath* Jia Li† Zhipeng Liao‡ Andrew Patton§

September 17, 2020

Abstract

This appendix contains the technical lemmas used in the proofs of the main theorems.

SA Proofs

Throughout the proofs, we use K to denote a generic finite constant that may change from line to line. For $p \geq 1$, let $\| \cdot \|_p$ denote the L_p norm for random variables. For notational simplicity, we write \sum_t in place of $\sum_{t=1}^n$.

SA.1 Technical lemmas for Theorem 1

Lemma S1. Under Assumptions 1 and 2, we have for any $R > 0$,

$$\sup_{\theta \in B_n(R)} n^{-1} \sum_t \left\| P(X_t(\theta)) - P(X^*_t) \right\|^2 = O_p(\zeta_1^2 n m n^{-1}),$$

$$n^{-1} \sum_t \left\| P(\tilde{X}_t) - P(X^*_t) \right\|^2 = O_p(\zeta_1^2 n m n^{-1}).$$

*Department of Economics, Duke University, Durham, NC 27708; e-mail: peter.horvath@duke.edu.
†Department of Economics, Duke University, Durham, NC 27708; e-mail: j410@duke.edu.
‡Department of Economics, UCLA, Los Angeles, CA 90095; e-mail: zhipeng liao@econ.ucla.edu.
§Department of Economics, Duke University, Durham, NC 27708; e-mail: andrew.patton@duke.edu.
Proof. Fix some constant $\eta > 0$. Since the variables $(L_{X,t})_{1 \leq t \leq n}$ are L_p-bounded, we can use a maximal inequality to deduce $E \left[\max_{1 \leq t \leq n} |L_{X,t}| \right] \leq n^{1/p} \max_{1 \leq t \leq n} \|L_{X,t}\|_p \leq Kn^{1/p}$. Note that
\[
\sup_{\theta \in B_n(R)} \max_{1 \leq t \leq n} \|X_t(\theta) - X^*_t\| \leq Kn^{-1/2} \max_{1 \leq t \leq n} |L_{X,t}| = O_p(n^{1/p-1/2}).
\]
Hence, there exists some constant $C > 0$ such that
\[
\mathbb{P}(\Omega^c_n) < \eta/2, \quad \text{where} \quad \Omega_n = \left\{ \sup_{\theta \in B_n(R)} \max_{1 \leq t \leq n} \|X_t(\theta) - X^*_t\| \leq Cn^{1/p-1/2} \right\}.
\]
In particular, $X_t(\theta) \in \mathcal{X} \oplus Cn^{1/p-1/2}$ for all t and $\theta \in B_n(R)$ in restriction to Ω_n, and hence,
\[
\sup_{\theta \in B_n(R)} n^{-1} \sum_t \|P(X_t(\theta)) - P(X^*_t)\|^2 = \sup_{\theta \in B_n(R)} n^{-1} \sum_{l=1}^{m_n} \sum_t \left| \partial p_l(\tilde{X}_{\theta,t})^\top (X_t(\theta) - X^*_t) \right|^2 \\
\leq \sup_{\theta \in B_n(R)} n^{-1} \sum_{l=1}^{m_n} \sum_t \left| \partial p_l(\tilde{X}_{\theta,t}) \right|^2 \|X_t(\theta) - X^*_t\|^2 \\
\leq K\zeta^2_{1,n} m_n n^{-1} \left(n^{-1} \sum_t L_{X,t}^2 \right) = O_p(\zeta^2_{1,n} m_n n^{-1}),
\]
where $\tilde{X}_{\theta,t}$ is some mean value between $X_t(\theta)$ and X^*_t, the first inequality is by the Cauchy–Schwarz inequality, and the second inequality is by Assumptions 1 and 2. Therefore, there exists some constant $K > 0$ such that
\[
\mathbb{P} \left(\left\{ \sup_{\theta \in B_n(R)} n^{-1} \sum_t \|P(X_t(\theta)) - P(X^*_t)\|^2 > K\zeta^2_{1,n} m_n n^{-1} \right\} \cap \Omega_n \right) < \eta/2.
\]
Hence,
\[
\mathbb{P} \left(\left\{ \sup_{\theta \in B_n(R)} n^{-1} \sum_t \|P(X_t(\theta)) - P(X^*_t)\|^2 > K\zeta^2_{1,n} m_n n^{-1} \right\} \cap \Omega_n \right) \\
\leq \mathbb{P} \left(\left\{ \sup_{\theta \in B_n(R)} n^{-1} \sum_t \|P(X_t(\theta)) - P(X^*_t)\|^2 > K\zeta^2_{1,n} m_n n^{-1} \right\} \cap \Omega_n \right) + \mathbb{P}(\Omega^c_n) < \eta.
\]
This proves the first assertion of the lemma. Since $\hat{\theta}_n = \theta^* + O_p(n^{-1/2})$, the second assertion readily follows from the first. \hspace{1cm} Q.E.D.

Below, we denote
\[
\hat{Q}_n(\theta) = n^{-1} \sum_t P(X_t(\theta))P(X_t(\theta))^\top.
\]
Lemma S2. Suppose that Assumptions 1 and 2 hold. Then, we have for any \(R > 0 \),
\[
\sup_{\theta \in B_n(R)} \left\| \hat{Q}_n(\theta) - Q_n \right\|_S = O_p(\delta_{Q,n} + \zeta_{1,n}m_n^{1/2}n^{-1/2}) = o_p(1),
\]
\[
\left\| \hat{Q}_n - Q_n \right\|_S = O_p(\delta_{Q,n} + \zeta_{1,n}m_n^{1/2}n^{-1/2}) = o_p(1).
\]

Proof. Note that \(\hat{Q}_n = \hat{Q}_n(\theta^*) \). By the triangle inequality,
\[
\left\| \hat{Q}_n(\theta) - \hat{Q}_n^* \right\| \leq \left\| n^{-1} \sum_t (P(X_t(\theta)) - P(X_t^*))(P(X_t(\theta)) - P(X_t^*))^\top \right\|
\]
\[
+ 2 \left\| n^{-1} \sum_t P(X_t^*)(P(X_t(\theta)) - P(X_t^*))^\top \right\|.
\]
(S.1)

By the Cauchy–Schwarz inequality and Lemma S1, we have uniformly in \(\theta \in B_n(R) \),
\[
\left\| n^{-1} \sum_t (P(X_t(\theta)) - P(X_t^*))(P(X_t(\theta)) - P(X_t^*))^\top \right\|^2
\]
\[
\leq \left(n^{-1} \sum_{l=1}^{m_n} \sum_t (p_l(X_t(\theta)) - p_l(X_t^*))^2 \right)^2 = O_p(\zeta_{1,n}^2m_n^2n^{-2}).
\]
(S.2)

In addition, we have uniformly in \(\theta \in B_n(R) \),
\[
\left\| n^{-1} \sum_t P(X_t^*)(P(X_t(\theta)) - P(X_t^*))^\top \right\|^2
\]
\[
= \sum_{l=1}^{m_n} \left\| n^{-1} \sum_t P(X_t^*)(p_l(X_t(\theta)) - p_l(X_t^*)) \right\|^2
\]
\[
\leq \lambda_{\max}(\hat{Q}_n^*) \sum_{l=1}^{m_n} n^{-1} \sum_t (p_l(X_t(\theta)) - p_l(X_t^*))^2 = O_p(\zeta_{1,n}^2m_nn^{-1}),
\]
(S.3)

where the bound on the last line follows from Lemma S1 and \(\lambda_{\max}(\hat{Q}_n^*) = O_p(1) \), with the latter implied by Assumption 2. By (S.1), (S.2), and (S.3), we have uniformly in \(\theta \in B_n(R) \),
\[
\left\| \hat{Q}_n(\theta) - \hat{Q}_n^* \right\| = O_p(\zeta_{1,n}^2m_nn^{-1} + \zeta_{1,n}m_n^{1/2}n^{-1/2})
\]
\[
= O_p(\zeta_{1,n}m_n^{1/2}n^{-1/2}) = o_p(1),
\]
where the second line follows from \(\zeta_{1,n}m_n^{1/2}n^{-1/2} = o(1) \) which is implied by Assumption 2(ii).

The first assertion of the lemma thus follows from the estimate above and the assumption that \(\| \hat{Q}_n^* - Q_n \|_S = O_p(\delta_{Q,n}) \). The second assertion then follows from \(\hat{\theta}_n = \theta^* + O_p(n^{-1/2}) \). \(Q.E.D. \)

Lemma S3. Under Assumption 1, we have for each \(R > 0 \),
\[
\sup_{\theta \in B_n(R)} n^{-1} \sum_t (Z_{t+1}(\theta) - Z_{t+1}^*)^2 = O_p(n^{-1/2}).
\]
Recall that $\bar{\lambda}_1(\theta) \in \mathbb{R}_n$.

Proof. Fix any $R > 0$. Note that for each $\theta \in B_n(R)$, $f_t(\theta^*) \leq f_t(\theta) \leq f_t(\theta^*) + Rn^{-1/2}L_t$, and hence,

$$|Z_{t+1}(\theta) - Z_{t+1}(\theta^*)|^2 = |1\{Y_{i+1} \leq f_t(\theta)\} - 1\{Y_{i+1} \leq f_t(\theta^*)\}| \leq U_t^+ - U_t^-,$$

where we set $U_t^\pm \equiv 1\{Y_{i+1} \leq f_t(\theta^*) \pm Rn^{-1/2}L_t\}$.

Therefore,

$$\sup_{\theta \in B_n(R)} n^{-1} \sum_t (Z_{t+1}(\theta) - Z_{t+1}(\theta^*))^2 \leq n^{-1} \sum_t (U_t^+ - U_t^-).$$

(S.4)

Recall that $F_{t+1|t}(\cdot)$ is the \mathcal{F}_t-conditional distribution function of Y_{t+1}. By Assumption 1,

$$\mathbb{E}[U_t^+ - U_t^- | \mathcal{F}_t] = F_{t+1|t}(f_t(\theta^*) + Rn^{-1/2}L_t) - F_{t+1|t}(f_t(\theta^*) - Rn^{-1/2}L_t) \leq 2Rn^{-1/2}L_t^2.$$

(S.5)

Since L_t is L_2-bounded, $\mathbb{E}[U_t^+ - U_t^-] \leq Kn^{-1/2}$. The assertion of the lemma then readily follows from this estimate and (S.5).

Q.E.D.

Lemma S4. Suppose that Assumptions 1 and 2 hold. Then, we have for any $R > 0$,

$$\sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(Z_{t+1}(\theta) - Z^*_{t+1}) \right\| = O_p(n^{-1/2} + m^{1/2}_n(n^{-5/4} + \zeta_0 n^{-3/4})).$$

Proof. Step 1. By Lemma S2, $\sup_{\theta \in B_n(R)} \| \bar{Q}_n(\theta) - Q_n \| = o_p(1)$. Since the eigenvalues of Q_n are bounded from above and away from zero, we further deduce

$$\lambda_{\min}(\bar{Q}_n(\theta)) + \lambda_{\max}(\bar{Q}_n(\theta)) = O_p(1), \quad \text{uniformly in } \theta \in B_n(R).$$

(S.7)

Recall that $Z_{t+1}(\theta) = f_{t+1|t}(\theta) - q$ is the \mathcal{F}_t-conditional mean of $Z_{t+1}(\theta)$. Let $\bar{Z}_{t+1}(\theta) \equiv Z_{t+1}(\theta) - \bar{Z}_{t+1}(\theta)$, which forms a martingale difference sequence with respect to \mathcal{F}_t by construction. By the triangle inequality,

$$\sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(Z_{t+1}(\theta) - Z^*_{t+1}) \right\| \leq \sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(\bar{Z}_{t+1}(\theta) - \bar{Z}_{t+1}(\theta^*)) \right\| + \sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(\bar{Z}_{t+1}(\theta) - \bar{Z}_{t+1}(\theta^*)) \right\|. $$

(S.8)
The first term on the majorant side of (S.8) can be further bounded as follows

\[
\sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*)) \right\|^2 \\
\leq \sup_{\theta \in B_n(R)} \lambda_{\max}(\hat{Q}_n(\theta)) \sup_{\theta \in B_n(R)} n^{-1} \sum_t (\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*))^2 \\
\leq O_p(1) \cdot \sup_{\theta \in B_n(R)} \left\{ n^{-1} \sum_t \left(\|\partial_\theta \tilde{Z}_{t+1}(\theta^*)\| \|\theta - \theta^*\| + \tilde{L}_{t+1} \|\theta - \theta^*\|^2 \right) \right\} \\
= O_p(n^{-1}),
\]

where the first inequality is obtained by using the contraction property of least-square projections, the second inequality is due to Assumption 1, and the last line follows from the \(L_2\)-boundedness of \(\|\partial_\theta \tilde{Z}_t(\theta^*)\|\) and \(\tilde{L}_t\). This estimate further implies that

\[
\sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*)) \right\| = O_p(n^{-1/2}).
\]

Hence, to prove the assertion of the lemma, it remains to show that the second term on the majorant side of (S.8) satisfies

\[
\sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t P(X_t(\theta))(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*)) \right\| = O_p(m_1^{1/2}(\zeta_1 n^{-5/4} + \zeta_0 n^{-3/4})). \tag{S.9}
\]

Below, we prove (S.9) in two steps.

Step 2. For ease of notation, we set for each \(l \in \{1, \ldots, m_n\}\),

\[
\pi_{l,n}(\theta) \equiv n^{-1/2} \sum_t p_l(X_t(\theta)) (\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*)), \quad \theta \in \Theta.
\]

In this step, we establish the following technical estimate:

\[
\|\pi_{l,n}(\theta_1) - \pi_{l,n}(\theta_2)\|_p \leq K(\zeta_1 n^{-1/2} + \zeta_0) \|\theta_1 - \theta_2\|^{1/2}, \quad \text{for } \theta_1, \theta_2 \in B_n(R). \tag{S.10}
\]

Recall that \(\tilde{Z}_{t+1}(\theta) = Z_{t+1}(\theta) - \mathbb{E}[Z_{t+1}(\theta) | \mathcal{F}_t]\). It is then easy to see that

\[
\mathbb{E} \left[(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*))^2 | \mathcal{F}_t \right] \leq \mathbb{E} \left[(Z_{t+1}(\theta) - Z_{t+1}(\theta^*))^2 | \mathcal{F}_t \right] .
\]

By (S.4) and (S.6), the majorant side of the above inequality can be further bounded by \(Kn^{-1/2}L_t^2\) uniformly in \(\theta \in B_n(R)\). Hence,

\[
\mathbb{E} \left[(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*))^2 | \mathcal{F}_t \right] \leq Kn^{-1/2}L_t^2. \tag{S.11}
\]
For $\theta_1, \theta_2 \in B_n(R)$, we can decompose

$$
\pi_{t,n}(\theta_1) - \pi_{t,n}(\theta_2) = n^{-1/2} \sum_t [p_t(X_t(\theta_1)) - p_t(X_t(\theta_2))] (\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta^*)) + n^{-1/2} \sum_t p_t(X_t(\theta_2)) (\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta_2)).
$$

We now derive L_p-bounds for the two terms on the right-hand side of (S.12). By (S.11), Burkholder’s inequality, and Hölder’s inequality, we have

$$
\mathbb{E} \left[\left| n^{-1/2} \sum_t [(p_t(X_t(\theta_1)) - p_t(X_t(\theta_2))] (\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta^*)) \right|^p \right]
\leq K \mathbb{E} \left[n^{-1} \sum_t [(p_t(X_t(\theta_1)) - p_t(X_t(\theta_2))]^2 n^{-1/2} L_t^2 \right]^{p/2}
\leq K n^{-p/4} \zeta_{1,n} \mathbb{E} \left[n^{-1} \sum_t L_{X_t}^2 L_t^p \right]^{p/2}
\leq K n^{-p/4} \zeta_{1,n} \mathbb{E} \left[n^{-1} \sum_t L_{X_t}^p L_t^p \right] \|\theta_1 - \theta_2\|^p.
$$

Since $\mathbb{E}[L_{X,t}^p L_t^p] \leq K$ by Assumption 1, we can bound the L_p-norm of the first term in the decomposition (S.12) as follows

$$
\left\| n^{-1/2} \sum_t [(p_t(X_t(\theta_1)) - p_t(X_t(\theta_2))] (\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta^*)) \right\|_p \leq K n^{-1/4} \zeta_{1,n} \|\theta_1 - \theta_2\|.
$$

Turning to the second term in the decomposition (S.12), we note that

$$(Z_{t+1}(\theta_1) - Z_{t+1}(\theta_2))^2 \leq 1_{Y_{t+1} \leq f_t(\theta_1) + |f_t(\theta_1) - f_t(\theta_2)|} - 1_{Y_{t+1} \leq f_t(\theta_1) - |f_t(\theta_1) - f_t(\theta_2)|}.$$

Hence,

$$
\mathbb{E} \left[(\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta_2))^2 \mid F_t \right] \leq 2L_t |f_t(\theta_1) - f_t(\theta_2)| \leq 2L_t^2 \|\theta_1 - \theta_2\|.
$$

By (S.14), Burkholder’s inequality, and Hölder’s inequality,

$$
\mathbb{E} \left[\left| n^{-1/2} \sum_t p_t(X_t(\theta_2)) (\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta_2)) \right|^p \right]
\leq K \mathbb{E} \left[n^{-1} \sum_t p_t(X_t(\theta_2))^2 \mathbb{E} \left[(\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta_2))^2 \mid F_t \right] \right]^{p/2}
\leq K \|\theta_1 - \theta_2\|^{p/2} \mathbb{E} \left[n^{-1} \sum_t p_t(X_t(\theta_2))^2 L_t^2 \right]^{p/2}
\leq K \zeta_{0,n}^{p} \|\theta_1 - \theta_2\|^{p/2} n^{-1} \sum_t \mathbb{E}[L_t^p] \leq K \zeta_{0,n}^{p} \|\theta_1 - \theta_2\|^{p/2}.
$$
Hence,
\[\left\| n^{-1/2} \sum_t p_t(X_t(\theta_2)) (\tilde{Z}_{t+1}(\theta_1) - \tilde{Z}_{t+1}(\theta_2)) \right\|_p \leq K \zeta_{0,n} \| \theta_1 - \theta_2 \|^{1/2}. \] (S.15)

Since \(\| \theta_1 - \theta_2 \| \leq R n^{-1/2} \), the assertion in (S.10) readily follows from (S.13) and (S.15).

Step 3. We shall use a chaining argument to establish (S.9). Construct nested sets \(\Theta_{0,n} \subset \Theta_{1,n} \subset \cdots \subset B_n(R) \) such that \(\Theta_{0,n} = \{ \theta^* \} \) and for each \(j \geq 1 \), \(\Theta_{j,n} \) is a maximal set of points such that each pair of distinct elements in \(\Theta_{j,n} \) has distance greater than \(R n^{-1/2} 2^{-j} \). Note that the number of points in \(\Theta_j \) is less than \(C (2^j)^{d_0} \) for some constant \(C > 0 \) that does not depend on \(j \).

Link every point \(\theta_{j+1} \in \Theta_{j+1} \) to a unique \(\theta_j \in \Theta_j \) such that \(\| \theta_{j+1} - \theta_j \| \leq R n^{-1/2} 2^{-j} \). Then for any \(J \geq 0 \) and \(\theta_{J+1} \in \Theta_{J+1} \), we can construct a chain \(\theta_{J+1}, \ldots, \theta_0 = \theta^* \), and hence, by the triangle inequality

\[|\pi_{t,n}(\theta_{j+1})| = \left| \sum_{j=0}^{J} [\pi_{t,n}(\theta_{j+1}) - \pi_{t,n}(\theta_j)] \right| \leq \sum_{j=0}^{J} \max |\pi_{t,n}(\theta_{j+1}) - \pi_{t,n}(\theta_j)| \] (S.16)

where, for each \(j \), the maximum is taken over all links \((\theta_{j+1}, \theta_j) \) from \(\Theta_{j+1} \) to \(\Theta_j \) (with the total number less than \(C (2^{j+1})^{d_0} \)). We then observe

\[\left\| \max_{\theta \in \Theta_{j+1}} |\pi_{t,n}(\theta)| \right\|_p \leq \sum_{j=0}^{J} \left\| \max |\pi_{t,n}(\theta_{j+1}) - \pi_{t,n}(\theta_j)| \right\|_p \]

\[\leq K \sum_{j=0}^{J} (2^j)^{d_0/p} \max \|\pi_{t,n}(\theta_{j+1}) - \pi_{t,n}(\theta_j)\|_p \]

\[\leq K \sum_{j=0}^{J} (2^j)^{d_0/p} (\zeta_{1,n} n^{-1/2} + \zeta_{0,n}) \left(R n^{-1/2} 2^{-j} \right)^{1/2} \]

\[\leq K (\zeta_{1,n} n^{-3/4} + \zeta_{0,n} n^{-1/4}) \]

where the first inequality is by (S.16); the second inequality is by a maximal inequality under the \(L_p \)-norm; the third inequality follows from (S.10); and the last inequality holds because \(\sum_j (2^j)^{d_0/p} (2^{-j})^{1/2} < \infty \) as implied by \(p > 2d_0 \). Since the stochastic process \(\pi_{t,n}(\theta) \) indexed by \(\theta \) is separable, by letting \(J \rightarrow \infty \), we further have

\[\left\| \sup_{\theta \in B_n(R)} |\pi_{t,n}(\theta)| \right\|_p \leq K (\zeta_{1,n} n^{-3/4} + \zeta_{0,n} n^{-1/4}). \] (S.17)

Finally, note that \(\left\| n^{-1/2} \sum_t P(X_t(\theta)) (\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*)) \right\|^2 = \sum_{t=1}^{m_{n}} \pi_{t,n}(\theta)^2 \). Therefore,

\[\mathbb{E} \left[\sup_{\theta \in B_n(R)} \left\| n^{-1/2} \sum_t P(X_t(\theta)) (\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*)) \right\|^2 \right] \leq \sum_{t=1}^{m_{n}} \left\| \pi_{t,n}(\theta) \right\|_p^2. \]

The assertion in (S.9) then readily follows from this estimate and (S.17). \(Q.E.D. \)
Lemma S5. Suppose that Assumptions 1 and 2 hold. Under the null hypothesis, we have for any $R > 0$,

$$\sup_{\theta \in B_n(R)} \left\| n^{-1} \sum_t (P(X_t(\theta)) - P(X_t(\theta^*)))u_t^* \right\| = O_p \left(\zeta_{1,n} n^{1/2} n^{-1} \right).$$

Proof. We set $\pi_{l,n}(\theta) \equiv n^{-1/2} \sum_t (p_t(X_t(\theta)) - p_t(X_t(\theta^*)))u_t^*$. Note that under the null hypothesis, $(p_t(X_t(\theta)) - p_t(X_t(\theta^*)))u_t^*$ forms a martingale difference sequence. For any $\theta_1, \theta_2 \in \Theta$, we observe

$$E [|\pi_{l,n}(\theta_1) - \pi_{l,n}(\theta_2)|^p] \leq K E \left[\left| n^{-1} \sum_t (p_t(X_t(\theta_1)) - p_t(X_t(\theta_2)))^2 \right|^{p/2} \right] \leq K \zeta_{1,n}^p \| \theta_1 - \theta_2 \|^p n^{-1} \sum_t E[L_{X,t}] \leq K \zeta_{1,n}^p \| \theta_1 - \theta_2 \|^p,$$

where the first inequality is by Burkholder’s inequality and the boundedness of u_t^*, and the second line follows from Assumptions 1 and 2. Hence,

$$\| \pi_{l,n}(\theta_1) - \pi_{l,n}(\theta_2) \|_p \leq K \zeta_{1,n} \| \theta_1 - \theta_2 \|. \quad (S.18)$$

Construct $\Theta_{0,n} \subset \Theta_{1,n} \cdots \subset B_n(R)$ as in step 3 in the proof of Lemma S4. Using the same chaining argument but with $(S.10)$ replaced by $(S.18)$, we deduce that

$$\left\| \max_{\theta \in \Theta_{j+1}} |\pi_{l,n}(\theta)| \right\|_p \leq \sum_{j=0}^J \| \max_{\theta \in \Theta_{j+1}} |\pi_{l,n}(\theta_{j+1}) - \pi_{l,n}(\theta_j)| \|_p \leq K \sum_{j=0}^J (2^j)^{d_\delta/p} \max_{\theta \in \Theta_{j+1}} \| \pi_{l,n}(\theta_{j+1}) - \pi_{l,n}(\theta_j) \|_p \leq K \zeta_{1,n} n^{-1/2} \sum_{j=0}^J (2^{-j})^{1-d_\delta/p} \leq K \zeta_{1,n} n^{-1/2}.$$

Sending $J \to \infty$, we further deduce

$$\left\| \sup_{\theta \in B_n(R)} |\pi_{l,n}(\theta)| \right\|_p \leq K \zeta_{1,n} n^{-1/2}. \quad (S.19)$$

Finally, note that $\| n^{-1} \sum_t (P(X_t(\theta)) - P(X_t(\theta^*)))u_t^* \|^2 = \sum_{l=1}^{m_n} \pi_{l,n}(\theta)^2$. Therefore,

$$E \left[\sup_{\theta \in B_n(R)} \left\| n^{-1/2} \sum_t (P(X_t(\theta)) - P(X_t(\theta^*)))u_t^* \right\|^2 \right] \leq \sum_{l=1}^{m_n} \left\| \sup_{\theta \in B_n(R)} |\pi_{l,n}(\theta)| \right\|_p^2.$$

The assertion of the lemma then readily follows from $(S.19)$. Q.E.D.
Lemma S6. Suppose that Assumptions 1 and 2 hold. Then, we have $\|\hat{b}_n - b^*_n\| = O_p(\delta_{b,n})$, where

$$
\delta_{b,n} = \begin{cases}
\frac{m_{n}^{1/2}}{n^2} & \text{under the null,} \\
\frac{\zeta_{1,n} m_n^{1/2}}{n^{-1/2}} + \frac{\zeta_{0,n} m_n^{1/2}}{n^{-3/4}} & \text{in general.}
\end{cases}
$$

Proof. By Lemma S2, $\|\hat{Q}_n - Q_n\|_S = o_p(1)$. Since the eigenvalues of Q_n are bounded from above and away from zero, we further have

$$
\lambda_{\min}^{-1}(\hat{Q}_n) + \lambda_{\max}(\hat{Q}_n) = O_p(1). \tag{S.20}
$$

Recall that $u_t^* = Z_{t+1}^* - E[Z_{t+1}^*|X_t^*]$. By the definition of \hat{b}_n, we can decompose

$$
\hat{b}_n - b^*_n = \hat{Q}_n^{-1} \left(n^{-1} \sum P(X_t^*)u_t^* \right) + \hat{Q}_n^{-1} \left(n^{-1} \sum (P(\hat{X}_t) - P(X_t^*))u_t^* \right) + \hat{Q}_n^{-1} \left(n^{-1} \sum P(\hat{X}_t)(h(X_t^*) - P(\hat{X}_t)^\top b_n^*) \right) + \hat{Q}_n^{-1} \left(n^{-1} \sum P(\hat{X}_t)(\hat{Z}_{t+1} - Z_{t+1}^*) \right). \tag{S.21}
$$

It remains to bound the four terms on the right-hand side of this decomposition.

First, recall that $\overline{A}_n = \text{Var}(n^{-1/2} \sum P(X_t^*)u_t^*)$ has bounded eigenvalues (Assumption 2). Hence, $E[\|n^{-1/2} \sum P(X_t^*)u_t^*\|^2] = \text{Trace}(\overline{A}_n) \leq Km_n$, which, combined with (S.20), implies that

$$
\hat{Q}_n^{-1} \left(n^{-1} \sum P(X_t^*)u_t^* \right) = O_p(m_n^{1/2} n^{-1/2}). \tag{S.22}
$$

Second, by the Cauchy–Schwarz inequality, the boundedness of u_t^*, and Lemma S1,

$$
\left\| n^{-1} \sum (P(\hat{X}_t) - P(X_t^*))u_t^* \right\|^2 \leq Kn^{-1} \sum \left\| P(\hat{X}_t) - P(X_t^*) \right\|^2 = O_p(\zeta_{1,n}^2 m_n n^{-1}).
$$

In addition, under the null hypothesis, we can apply Lemma S5 to get

$$
n^{-1} \sum (P(\hat{X}_t) - P(X_t^*))u_t^* = O_p\left(\zeta_{1,n} m_n^{1/2} n^{-1} \right). \tag{S.23}
$$

Hence,

$$
\hat{Q}_n^{-1} \left(n^{-1} \sum (P(\hat{X}_t) - P(X_t^*))u_t^* \right) = \begin{cases}
O_p\left(\zeta_{1,n} m_n^{1/2} n^{-1} \right) & \text{under the null,} \\
O_p\left(\zeta_{1,n} m_n^{1/2} n^{-3/4} \right) & \text{in general.}
\end{cases} \tag{S.24}
$$
Third, we note that
\[
\left\| \hat{Q}^{-1}_n n^{-1} \sum_t P(\hat{X}_t)(h(X_t^*) - P(\hat{X}_t)^\top b^*_n) \right\|^2
\leq \lambda_{\min}^{-1}(\hat{Q}_n) n^{-1} \sum_t (h(X_t^*) - P(\hat{X}_t)^\top b^*_n)^2
\leq 2\lambda_{\min}^{-1}(\hat{Q}_n) n^{-1} \sum_t (h(\hat{X}_t) - P(\hat{X}_t)^\top b^*_n)^2
+ 2 \lambda_{\min}^{-1}(\hat{Q}_n) n^{-1} \sum_t (h(\hat{X}_t) - h(X_t^*))^2.
\]

Define \(\Omega_n \) as in the proof of Lemma S1, so that \(\hat{X}_t \in \mathcal{X} \oplus \varepsilon_n \) for some \(\varepsilon_n \sim n^{1/p-1/2} \) in restriction to \(\Omega_n \). By (S.20) and Assumption 2, \(\lambda_{\min}^{-1}(\hat{Q}_n) n^{-1} \sum_t (h(\hat{X}_t) - P(\hat{X}_t)^\top b^*_n)^2 = O_p(n^{-1}) \). Moreover, since \(h(\cdot) \) is continuously differentiable, it is Lipschitz on the compact set \(\mathcal{X} \oplus \varepsilon_n \). Therefore,
\[
\lambda_{\min}^{-1}(\hat{Q}_n) n^{-1} \sum_t (h(\hat{X}_t) - h(X_t^*))^2 \leq O_p(1) n^{-1} \sum_t (\hat{X}_t - X_t^*)^2
\leq O_p(1) \left(n^{-1} \sum_t L^2_{X,t} \right) \left\| \hat{\theta}_n - \theta^* \right\|^2
= O_p(n^{-1}).
\]

Combining the three estimates above yields
\[
\left\| \hat{Q}^{-1}_n n^{-1} \sum_t P(\hat{X}_t)(h(X_t^*) - P(\hat{X}_t)^\top b^*_n) \right\| = O_p\left(n^{-1/2} \right). \tag{S.25}
\]

On the other hand, under the null hypothesis, we have \(h(\cdot) = 0 \) and \(b^*_n = 0 \). We thus have
\[
\hat{Q}^{-1}_n n^{-1} \sum_t P(\hat{X}_t)(h(X_t^*) - P(\hat{X}_t)^\top b^*_n) = \begin{cases}
0 & \text{under the null,} \\
O_p\left(n^{-1/2} \right) & \text{in general.}
\end{cases} \tag{S.26}
\]

Finally, by Lemma S4,
\[
\hat{Q}^{-1}_n \left(n^{-1} \sum_t P(\hat{X}_t)(\hat{Z}_{t+1} - Z_{t+1}^*) \right) = O_p(n^{-1/2} + m_n^{1/2}(\zeta_{1,n} n^{-5/4} + \zeta_{0,n} n^{-3/4})). \tag{S.27}
\]

Combining (S.22), (S.24), (S.26), and (S.27), we deduce that
\[
\left\| \hat{\theta}_n - b^*_n \right\| = \begin{cases}
O_p\left(m_n^{1/2} n^{-1/2} + \zeta_{1,n} m_n^{1/2} n^{-1} + \zeta_{0,n} m_n^{1/2} n^{-3/4} \right) & \text{under the null,} \\
O_p\left(\zeta_{1,n} m_n^{1/2} n^{-1/2} + \zeta_{0,n} m_n^{1/2} n^{-3/4} \right) & \text{in general.}
\end{cases}
\]

Under the maintained rate condition on \(\zeta_{0,n} \) and \(\zeta_{1,n} \) (see Assumption 2), we can further reduce the rates displayed above into those asserted in the lemma. \(Q.E.D. \)
Lemma S7. Suppose that Assumptions 1 and 2 hold. Then,
\[\|A_n - A_n\|_S \leq \begin{cases} O_p \left(\delta_{A,n} + \zeta_{1,n}m_n^{1/2}n^{-1/2} + \zeta_{0,n}m_n^{1/2}n^{-1/4} \right) & \text{under the null}, \\ O_p \left(\delta_{A,n} + \zeta_{0,n}m_n^{1/2}n^{-1/4} + \zeta_{0,n}\zeta_{1,n}mn^{-1/2} \right) & \text{in general}. \end{cases} \]

In particular, \(\|A_n - A_n\|_S = o_p(1) \).

Proof. Step 1. We outline the proof in this step. Recall that \(\hat{A}_n^* \equiv n^{-1} \sum_t u_t^2 P(X_t^*) P(X_t^*)^\top \). By the triangle inequality,
\[
\|\hat{A}_n - \hat{A}_n^*\| = \left\| n^{-1} \sum_t \hat{u}_t^2 P(\hat{X}_t) P(\hat{X}_t)^\top - n^{-1} \sum_t u_t^2 P(X_t^*) P(X_t^*)^\top \right\|
\leq \left\| n^{-1} \sum_t u_t^2 (P(\hat{X}_t) - P(X_t^*)) (P(\hat{X}_t) - P(X_t^*))^\top \right\|
+ 2 \left\| n^{-1} \sum_t u_t^2 P(X_t^*) (P(\hat{X}_t) - P(X_t^*))^\top \right\|
+ \left\| n^{-1} \sum_t (\hat{u}_t^2 - u_t^2) P(\hat{X}_t) P(\hat{X}_t)^\top \right\|. \tag{S.28}
\]

Below, we bound the three terms on the majorant side of (S.28) in turn.

We start with the first two terms. Note that \(u_t^* \) is bounded. By the triangle inequality, the Cauchy–Schwarz inequality, and Lemma S1,
\[
\left\| n^{-1} \sum_t u_t^2 (P(\hat{X}_t) - P(X_t^*)) (P(\hat{X}_t) - P(X_t^*))^\top \right\|
\leq Kn^{-1} \left\| P(\hat{X}_t) - P(X_t^*) \right\|^2 = O_p(\zeta_{1,n}m_n n^{-1}). \tag{S.29}
\]
Using Lemma S1, we can also deduce that
\[
\left\| n^{-1} \sum_t u_t^2 P(X_t^*) (P(\hat{X}_t) - P(X_t^*))^\top \right\|
= \left(\sum_{l=1}^m n^{-1} \sum_t u_t^2 P(X_t^*) (p_l(\hat{X}_t) - p_l(X_t^*))^2 \right)^{1/2}
\leq \left(\sum_{l=1}^m \lambda_{\max}(\hat{Q}_n^*) n^{-1} \sum_t u_t^2 (p_l(\hat{X}_t) - p_l(X_t^*))^2 \right)^{1/2}
\leq O_p(1) \cdot \left(n^{-1} \sum_t \left\| P(\hat{X}_t) - P(X_t^*) \right\|^2 \right)^{1/2}
= O_p(\zeta_{1,n}m_n^{1/2}n^{-1/2}). \tag{S.30}
\]
The assertion of the lemma then follows from this estimate and the assumption that \(\|\hat{\theta}_t - \theta_t^*\| = O_p(n^{-1/2}) \), we can apply Lemma S3 to get

\[
\left\| n^{-1} \sum_t (\hat{\theta}_t - \theta_t^*) P(\hat{\theta}_t) P(\hat{\theta}_t) \right\|^2 = O_p \left(\sum_{i=1}^{m_n} n^{-1} \sum_t P(\hat{\theta}_t)p_i(\hat{\theta}_t)(\hat{\theta}_t - \theta_t^*) \right)^2 \leq \sum_{i=1}^{m_n} \lambda_{\max}(\hat{Q}_n)n^{-1} \sum_t p_i(\hat{\theta}_t)^2 (\hat{\theta}_t - \theta_t^*)^2 \leq \zeta_{0,n} m_n \lambda_{\max}(\hat{Q}_n)n^{-1} \sum_t (\hat{\theta}_t - \theta_t^*)^2. \tag{S.31}
\]

In steps 2–4, below, we shall show that

\[
n^{-1} \sum_t (\hat{\theta}_t - \theta_t^*)^2 = O_p(\delta_{b,n}^2 + \zeta_{0,n} m_n \delta_{b,n}^4). \tag{S.32}
\]

Then (S.31) and (S.32) imply

\[
\left\| n^{-1} \sum_t (\hat{\theta}_t - \theta_t^*) P(\hat{\theta}_t) P(\hat{\theta}_t) \right\|^2 = O_p \left(\zeta_{0,n} m_n^{1/2} n^{-1/4} + \zeta_{0,n} m_n^{1/2} \delta_{b,n} + \zeta_{0,n} m_n^2 \delta_{b,n}^2 \right) \leq O_p \left(\zeta_{0,n} m_n^{1/2} n^{-1/4} + \zeta_{0,n} m_n^{1/2} \delta_{b,n} \right), \tag{S.33}
\]

where \(\delta_{b,n} \) is defined in Lemma S6, and the second line follows from \(\zeta_{0,n} m_n^{1/2} \delta_{b,n} = o(1) \) which is implied by Assumption 2. Therefore, by (S.29), (S.30), and (S.33),

\[
\left\| \hat{A}_n - \hat{A}_n^* \right\| = O_p \left(\zeta_{1,n} m_n^{1/2} n^{-1/2} + \zeta_{0,n} m_n^{1/2} n^{-1/4} + \zeta_{0,n} m_n^{1/2} \delta_{b,n} \right). \tag{S.34}
\]

Recalling the definition of \(\delta_{b,n} \) from Lemma S6, we can further simplify the rate in (S.34) via some elementary calculations, yielding

\[
\left\| \hat{A}_n - \hat{A}_n^* \right\| = \begin{cases} O_p \left(\zeta_{0,n} m_n^{1/2} n^{-1/4} + \zeta_{1,n} m_n^{1/2} n^{-1/2} \right) & \text{under the null,} \\ O_p \left(\zeta_{0,n} m_n^{1/2} n^{-1/4} + \zeta_{0,n} \zeta_{1,n} m_n^{-1} \right) & \text{in general.} \end{cases}
\]

The assertion of the lemma then follows from this estimate and the assumption that \(\|\hat{A}_n - A_n\|_S = O_p(\delta_{A,n}) \). The remaining steps, below, are devoted to proving (S.32).

Step 2. We collect some technical estimates in this step. Since \(\|\hat{\theta}_n - \theta^*\| = O_p(n^{-1/2}) \), we can apply Lemma S3 to get

\[
n^{-1} \sum_t |\hat{Z}_{t+1} - Z_{t+1}^*|^2 = O_p(n^{-1/2}). \tag{S.35}
\]

Since \(\hat{Z}_{t+1} \) and \(Z_{t+1}^* \) are bounded, this estimate further implies

\[
n^{-1} \sum_t |\hat{Z}_{t+1} - Z_{t+1}^*|^4 \leq n^{-1} \sum_t |\hat{Z}_{t+1} - Z_{t+1}^*|^2 = O_p(n^{-1/2}). \tag{S.36}
\]
Denote \(h_n (\cdot) = P (\cdot)^\top b_n^{*} \). By Lemma S6 and (S.20),

\[
\frac{1}{n} \sum_{t} \left| \hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t) \right|^2 \leq \lambda_{\max} (\hat{Q}_n) \left\| \hat{b}_n - b_n^* \right\|^2 = O_p (\delta_{b,n}^2).
\]

(S.37)

Note that for some \(\varepsilon_n \propto n^{1/p-1/2} \), \{\hat{X}_t : 1 \leq t \leq n\} \in \mathcal{X} \oplus \varepsilon_n \) with probability arbitrarily close to one and, in restriction to this event, we have \(\|P (\hat{X}_t)\|^2 \leq \zeta_{0,n}^2 m_n \) by the definition of \(\zeta_{0,n} \). Then, by Lemma S6 and (S.37), we have

\[
\frac{1}{n} \sum_{t} \left| \hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t) \right|^4
\leq \zeta_{0,n}^2 m_n \left\| \hat{b}_n - b_n^* \right\|^2 \frac{1}{n} \sum_{t=1}^{n} \left| \hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t) \right|^2 = O_p (\zeta_{0,n}^2 m_n \delta_{b,n}^4).
\]

(S.38)

Finally, we note that (recalling \(\hat{u}_t = \hat{Z}_{t+1} - \hat{h}_n (\hat{X}_t) \) and \(u_t^* = Z_{t+1}^* - h (X_t^*) \))

\[
\left| \hat{u}_t - u_t^* \right| \leq \left| \hat{Z}_{t+1} - Z_{t+1}^* \right| + \left| \hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t) \right|
\leq \left| (\hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t)) \right| + \left| h_n (\hat{X}_t) - h (X_t) \right|.
\]

(S.39)

Step 3. In this step, we prove (S.32) under the null hypothesis. In this case, \(h (\cdot) = 0 \) and \(h_n (\cdot) = 0 \). Hence, by (S.39), \(\left| \hat{u}_t - u_t^* \right| \leq \left| \hat{Z}_{t+1} - Z_{t+1}^* \right| + \left| \hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t) \right| \). By (S.35) and (S.37), we have

\[
\frac{1}{n} \sum_{t} \left| \hat{u}_t - u_t^* \right|^2 \leq K n^{-1} \sum_{t} \left| \hat{Z}_{t+1} - Z_{t+1}^* \right|^2 + K n^{-1} \sum_{t} \left| \hat{h}_n (\hat{X}_t) - h_n (\hat{X}_t) \right|^2
\]

\[
= O_p (n^{-1/2}) + O_p (\delta_{b,n}^2).
\]

(S.40)

Similarly, by (S.36) and (S.38), we have

\[
\frac{1}{n} \sum_{t} \left| \hat{u}_t - u_t^* \right|^4 = O_p (n^{-1/2}) + O_p (\zeta_{0,n}^2 m_n \delta_{b,n}^4).
\]

(S.41)

Consider the following elementary inequality: for any \(|x| \leq 1 \) and \(y \in \mathbb{R} \),

\[
\left((x + y)^2 - x^2 \right)^2 = (2xy + y^2)^2 \leq 8x^2 y^2 + 2y^4 \leq K (y^2 + y^4).
\]

(S.42)

Applying this inequality with \(x = u_t^* \) and \(y = \hat{u}_t - u_t^* \), we deduce

\[
\frac{1}{n} \sum_{t} (\hat{u}_t^2 - u_t^{*2})^2 \leq K n^{-1} \sum_{t} \left| \hat{u}_t - u_t^* \right|^2 + K n^{-1} \sum_{t} \left| \hat{u}_t - u_t^* \right|^4
\]

\[
= O_p (n^{-1/2} + \delta_{b,n}^2 + \zeta_{0,n}^2 m_n \delta_{b,n}^4).
\]

(S.43)

This finishes the proof of (S.32) under the null hypothesis.
Step 4. In this step, we prove (S.32) in the general case without imposing the null hypothesis. We first observe that

\[
\frac{1}{n} \sum_{t} \left| h(\bar{X}_t) - h(X_t^*) \right|^4 \leq \frac{1}{n} \sum_{t} \left| h(\bar{X}_t) - h(X_t^*) \right|^2
\]

\[
\leq K \left\| \hat{\theta}_n - \theta^* \right\|^2 \frac{1}{n} \sum_{t} L^2_{X,t} = O_p(n^{-1}), \tag{S.44}
\]

where the first inequality holds because \(h(\cdot) \) is bounded, and the second inequality follows from the Lipschitz continuity of \(h(\cdot) \) and \(\|X_t(\theta) - X_t^*\| \leq L_{X,t}\|\theta - \theta^*\| \). By (S.39), we have for \(q = 2 \) or 4,

\[
\frac{1}{n} \sum_{t} \left| \bar{u}_t - u_t^* \right|^q \leq K n^{-1} \sum_{t} \left| \bar{Z}_{t+1} - \bar{Z}_{t+1}^* \right|^q + K n^{-1} \sum_{t} \left| h_n(\bar{X}_t) - h_n(\bar{X}_t) \right|^q
\]

\[
+ K n^{-1} \sum_{t} \left| h_n(\bar{X}_t) - h_n(\bar{X}_t) \right|^q + K n^{-1} \sum_{t} \left| h(\bar{X}_t) - h(\bar{X}_t) \right|^q.
\]

Then, by (S.35), (S.37), (S.44), and Assumption 2(ii), we deduce

\[
\frac{1}{n} \sum_{t} \left| \bar{u}_t - u_t^* \right|^2 = O_p(n^{-1/2} + \delta_{b,n}^2). \tag{S.45}
\]

Similarly, by (S.36), (S.38), (S.44), and Assumption 2(ii), we deduce

\[
\frac{1}{n} \sum_{t} \left| \bar{u}_t - u_t^* \right|^4 = O_p(n^{-1/2} + \zeta_{0,n}^2 m_n \delta_{b,n}^4). \tag{S.46}
\]

Using (S.42), (S.45), and (S.46), we derive

\[
\frac{1}{n} \sum_{t} (\bar{u}_t^2 - u_t^2)^2 \leq K n^{-1} \sum_{t} \left| \bar{u}_t - u_t^* \right|^2 + K n^{-1} \sum_{t} \left| \bar{u}_t - u_t^* \right|^4
\]

\[
= O_p(n^{-1/2} + \delta_{b,n}^2 + \zeta_{0,n}^2 m_n \delta_{b,n}^4).
\]

This finishes the proof of (S.32), and hence, the assertion of the lemma. \(\Box \)

Lemma S8. Suppose that Assumptions 1 and 2 hold. Then

\[
\sup_{x \in \mathcal{X}} \left| \frac{P(x)^\top \hat{Q}_n^{-1/2} \sum_{t} P(\hat{X}_t)(\bar{Z}_{t+1} - Z_{t+1}^*)}{\sigma_n(x)} \right| = o_p((\log n)^{-1/2}).
\]

Proof. Step 1. We outline the proof in this step. Recall \(\bar{Z}_{t+1}(\theta) = \mathbb{E}[Z_{t+1}(\theta)|\mathcal{F}_t] \) and set \(\bar{Z}_{t+1}(\theta) = Z_{t+1}(\theta) - \bar{Z}_{t+1}(\theta) \). For ease of notation, we denote \(\bar{Z}_{t+1} = \partial \theta \bar{Z}_{t+1}(\theta^*) \). Our proof relies on the following decomposition:

\[
\frac{P(x)^\top \hat{Q}_n^{-1/2} \sum_{t} P(\hat{X}_t)(\bar{Z}_{t+1} - Z_{t+1}^*)}{\sigma_n(x)} = \sum_{j=1}^{3} R_{j,n}(x), \tag{S.47}
\]
where
\[
R_{1,n}(x) = \frac{P(x)\top \tilde{Q}_n^{-1} n^{-1/2} \sum_t P(\tilde{X}_t)(\tilde{Z}_{t+1}(\hat{\theta}_n) - \tilde{Z}_{t+1}(\theta^*))}{\sigma_n(x)},
\]
\[
R_{2,n}(x) = \frac{P(x)\top \tilde{Q}_n^{-1} n^{-1/2} \sum_t \{P(\tilde{X}_t)(\tilde{Z}_{t+1}(\hat{\theta}_n) - \tilde{Z}_{t+1}(\theta^*)) - P(X_t^*)\tilde{Z}_{t+1}^\top(\hat{\theta}_n - \theta^*)\}}{\sigma_n(x)},
\]
\[
R_{3,n}(x) = \frac{P(x)\top \tilde{Q}_n^{-1} n^{-1/2} \sum_t P(X_t^*)\tilde{Z}_{t+1}^\top(\hat{\theta}_n - \theta^*)}{\sigma_n(x)}.
\]

By (S.9), we have
\[
\left\| n^{-1/2} \sum_t P(\tilde{X}_t)(\tilde{Z}_{t+1}(\hat{\theta}_n) - \tilde{Z}_{t+1}(\theta^*)) \right\| = O_p \left(\zeta_{1,n} m_1^{1/2} n^{-3/4} + \zeta_{0,n} m_2^{1/2} n^{-1/4} \right),
\]
which further implies
\[
\sup_{x \in \mathcal{X}} |R_{1,n}(x)| \leq O_p \left(\zeta_{1,n} m_1^{1/2} n^{-3/4} + \zeta_{0,n} m_2^{1/2} n^{-1/4} \right) = o_p((\log n)^{-1/2}). \tag{S.48}
\]

In steps 2 and 3, below, we show that
\[
\sup_{x \in \mathcal{X}} |R_{j,n}(x)| = o_p((\log n)^{-1/2}), \quad \text{for } j = 2, 3. \tag{S.49}
\]

The assertion of the lemma then follows from (S.47), (S.48), and (S.49).

Step 2. In this step, we prove (S.49) for the \(j = 2, 3 \) case. We first observe that, for any \(R > 0 \),
\[
\sup_{\theta \in B_n(R)} \sup_{x \in \mathcal{X}} \left| \frac{P(x)\top \tilde{Q}_n^{-1} n^{-1/2} \sum_t P(\tilde{X}_t)(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*) - \tilde{Z}_{t+1}^\top(\theta - \theta^*))}{\sigma_n(x)} \right|
\]
\[
\leq O_p(1) \sup_{\theta \in B_n(R)} \left\| \left(n\tilde{Q}_n\right)^{-1/2} \sum_t P(\tilde{X}_t) \left(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*) - \tilde{Z}_{t+1}^\top(\theta - \theta^*)\right) \right\|
\]
\[
\leq O_p(1) \sup_{\theta \in B_n(R)} \left(\sum_t \left(\tilde{Z}_{t+1}(\theta) - \tilde{Z}_{t+1}(\theta^*) - \tilde{Z}_{t+1}^\top(\theta - \theta^*)\right)^2 \right)^{1/2}
\]
\[
\leq O_p(1) \left(n^{-2} \sum_t \tilde{L}_t^2 \right)^{1/2} = O_p \left(n^{-1/2} \right) = o_p((\log n)^{-1/2}),
\]
where the first inequality follows from the fact that \(\lambda_{\min}(\Sigma_n) \) is bounded away from zero; the second inequality follows from the contraction property of the least-square projection; and the last line follows from the definition of \(B_n(R) \) and the \(L_2 \)-boundedness of \(\tilde{L}_t \). Since \(\hat{\theta}_n - \theta^* = O_p(n^{-1/2}) \), this estimate further implies
\[
\sup_{x \in \mathcal{X}} \left| \frac{P(x)\top \tilde{Q}_n^{-1} n^{-1/2} \sum_t P(\tilde{X}_t)(\tilde{Z}_{t+1}(\hat{\theta}_n) - \tilde{Z}_{t+1}(\theta^*) - \tilde{Z}_{t+1}^\top(\hat{\theta}_n - \theta^*))}{\sigma_n(x)} \right| = o_p((\log n)^{-1/2}). \tag{S.50}
\]
We further observe that
\[
\sup_{x \in \mathcal{X}} \frac{\left\| P(x)^\top \hat{Q}_n^{-1} n^{-1} \sum_t (P(\bar{X}_t) - P(X_t^*)) \hat{Z}_{t+1}^\top \right\|}{\sigma_n(x)} \\
\leq O_p(1) \left\| n^{-1} \sum_t (P(\bar{X}_t) - P(X_t^*)) \hat{Z}_{t+1}^\top \right\| \\
\leq O_p(1) \left(n^{-1} \sum_t \left\| P(\bar{X}_t) - P(X_t^*) \right\|^2 \right)^{1/2} \left(n^{-1} \sum_t \left\| \hat{Z}_{t+1}^\top \right\|^2 \right)^{1/2} \\
= O_p(\zeta_{1,n} m_n^{1/2}n^{-1/2}) = o_p((\log n)^{-1/2}),
\]
where the first inequality follows from the fact that \(\lambda_{\min}(\hat{Q}_n) \) and \(\lambda_{\min}(\Sigma_n) \) are bounded away from zero with probability approaching 1; the second inequality is by the Cauchy–Schwarz inequality; and the last line follows from Lemma S1. Then, by the Cauchy–Schwarz inequality, we further deduce
\[
\sup_{x \in \mathcal{X}} \frac{\left\| P(x)^\top \hat{Q}_n^{-1} n^{-1/2} \sum_t (P(\bar{X}_t) - P(X_t^*)) \partial_0 \hat{Z}_{t+1}^\top (\theta_0^* - \theta) \right\|}{\sigma_n(x)} = o_p((\log n)^{-1/2}). \tag{S.51}
\]

The claim in (S.49) for the case \(j = 2 \) readily follows from (S.50) and (S.51).

Step 3. In this step, we prove (S.49) for the \(j = 3 \) case. Recall the definition \(\eta_t \equiv \hat{Z}_{t+1} - \mathbb{E}[\hat{Z}_{t+1}^\top | X_t^*] \). We then observe, for each \(j \in \{1, \ldots, d_0\} \),
\[
\mathbb{E} \left[\left\| n^{-1} \sum_t P(X_t^*) \eta_{jt, t} \right\|^2 \right] = n^{-1} \text{Trace} \left(\text{Var} \left(n^{-1/2} \sum_t P(X_t^*) \eta_{jt, t} \right) \right) \leq K m_n n^{-1}, \tag{S.52}
\]
which further implies that \(\left\| n^{-1} \sum_t P(X_t^*) \eta_t \right\| = O_p(m_n^{1/2} n^{-1/2}) \). Hence,
\[
\sup_{x \in \mathcal{X}} \frac{\left\| P(x)^\top \hat{Q}_n^{-1} n^{-1/2} \sum_t P(X_t^*) \eta_t^\top (\hat{\theta}_n - \theta^*) \right\|}{\sigma_n(x)} \\
\leq O_p(1) \left\| n^{-1} \sum_t P(X_t^*) \eta_t^\top \right\| = O_p(m_n^{1/2} n^{-1/2}) = o_p((\log n)^{-1/2}). \tag{S.53}
\]

Recall that \(g(X_t^*) = \mathbb{E}[\hat{Z}_{t+1}^\top | X_t^*] \). Hence, \(\mathbb{E}[\| g(X_t^*) \|^2] \leq \mathbb{E}[\| \hat{Z}_{t+1}^\top \|^2] \leq K \) and
\[
n^{-1} \sum_t \| g(X_t^*) \|^2 = O_p(1). \tag{S.54}
\]
By (S.54) and Lemma S2,
\[
\sup_{x \in \mathcal{X}} \left| \frac{P(x)^\top (\hat{Q}_n^{-1} - Q_n^{-1}) n^{-1/2} \sum_t P(X_t^*) g(X_t^*)^\top (\hat{\theta}_n - \theta^*)}{\sigma_n(x)} \right| \\
\leq O_p(1) \left\| \hat{Q}_n - Q_n \right\|_S \left\| n^{-1} \sum_t P(X_t^*) g(X_t^*)^\top \right\| \\
\leq O_p(1) \left\| \hat{Q}_n - Q_n \right\|_S \left(n^{-1} \sum_t \|g(X_t^*)\|^2 \right)^{1/2} \\
= O_p(\delta_{Q,n} + \zeta_{1,n} m_n^{1/2} n^{-1/2}) = o_p((\log n)^{-1/2}). \quad (S.55)
\]

Using (S.53), (S.55), and the triangle inequality, we further deduce that
\[
\sup_{x \in \mathcal{X}} \left| \frac{P(x)^\top \hat{Q}_n^{-1} n^{-1/2} \sum_t P(X_t^*) Z_{i+1}^\top (\hat{\theta}_n - \theta^*)}{\sigma_n(x)} - \frac{P(x)^\top Q_n^{-1} n^{-1/2} \sum_t P(X_t^*) g(X_t^*)^\top (\hat{\theta}_n - \theta^*)}{\sigma_n(x)} \right| = o_p((\log n)^{-1/2}). \quad (S.56)
\]

Next, for each \(j \in \{1, \ldots, d_\theta \} \), let \(g_{j,n}(\cdot) = P(\cdot)^\top \gamma_{j,n} \) and observe that
\[
\sup_{x \in \mathcal{X}} \left| \frac{P(x)^\top \hat{Q}_n^{-1} n^{-1} \sum_t P(X_t^*) g_{j}(X_t^*) - g_{j}(x)}{\sigma_n(x)} \right| \\
\leq \sup_{x \in \mathcal{X}} \left| \frac{P(x)^\top \hat{Q}_n^{-1} n^{-1} \sum_t P(X_t^*) (g_{j}(X_t^*) - g_{j,n}(X_t^*))}{\sigma_n(x)} \right| + \sup_{x \in \mathcal{X}} \left| \frac{g_{j}(x) - g_{j,n}(x)}{\sigma_n(x)} \right| \\
\leq O_p(1) \left(n^{-1} \sum_t (g_{j}(X_t^*) - g_{j,n}(X_t^*))^2 \right)^{1/2} + K \sup_{x \in \mathcal{X}} |g_{j}(x) - g_{j,n}(x)| \\
= o_p((\log n)^{-1/2}),
\]
where the last line follows Assumption 1(v). This estimate further implies
\[
\sup_{x \in \mathcal{X}} \left| \frac{P(x)^\top Q_n^{-1} n^{-1/2} \sum_t P(X_t^*) g(X_t^*)^\top (\hat{\theta}_n - \theta^*) - n^{1/2} g(x)^\top (\hat{\theta}_n - \theta^*)}{\sigma_n(x)} \right| \\
\leq n^{1/2} \left\| \hat{\theta}_n - \theta^* \right\| \sup_{x \in \mathcal{X}} \left\| \frac{P(x)^\top Q_n^{-1} n^{-1} \sum_t n P(X_t^*) g(X_t^*) - g(x)}{\sigma_n(x)} \right\| \\
= o_p((\log n)^{-1/2}). \quad (S.57)
\]

Finally, since \(\sup_{x \in \mathcal{X}} \|P(x)\|^{-1} = o((\log n)^{-1/2}) \) under Assumption 1(vii),
\[
\sup_{x \in \mathcal{X}} \left| \frac{n^{1/2} g(x)^\top (\hat{\theta}_n - \theta^*)}{\sigma_n(x)} \right| \leq O_p(1) \sup_{x \in \mathcal{X}} \left\| \frac{g(x)}{\|P(x)\|} \right\| = o_p((\log n)^{-1/2}). \quad (S.58)
\]
Combining (S.56), (S.57), and (S.58), we derive (S.49) for \(j = 3 \) as claimed. This finishes the proof of the lemma.
\[Q.E.D.\]
SA.2 Technical lemmas for Theorem 2

In this subsection, we prove Theorem 2 in the main text. We first explicitly introduce some notation for various bootstrap quantities:

\[\hat{Q}_n^* = n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top, \quad \hat{b}_n^* = \left(\hat{Q}_n^* \right)^{-1} \left(n^{-1} \sum_t P(\hat{X}_t^*)Z_{t+1}^* \right), \]

\[\hat{u}_t^* = \hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top \hat{b}_n^*, \quad \hat{A}_n^* = n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top (\hat{u}_t^*)^2, \quad \hat{\Sigma}_n^* = (\hat{Q}_n^*)^{-1} \hat{A}_n^*(\hat{Q}_n^*)^{-1}. \]

We need some technical lemmas before proving Theorem 2. Below, we use \(\mathcal{D}_n \) to denote the \(\sigma \)-field generated by data and use \(\mathbb{P}^* \) (resp. \(\mathbb{E}^* \cdot \cdot \cdot \)) to denote the conditional probability (resp. expectation) given data.

Lemma S9. Under Assumptions 1 and 2,

\[\left\| \hat{Q}_n^* - \hat{Q}_n \right\|_S = O_p(\zeta_{0,n}(\log(m_n)m_n^{-1/2}) = o_p(1). \]

Proof. Denote \(D_t^* \equiv P(\hat{X}_t^*)P(\hat{X}_t^*)^\top - \mathbb{E}^*P(\hat{X}_t^*)P(\hat{X}_t^*)^\top \). We further set

\[R_{D,n} \equiv 2 \max_{1 \leq t \leq n} \left\| P(\hat{X}_t) \right\|^2, \quad \sigma_{D,n}^2 \equiv n \lambda_{\text{max}}(\hat{Q}_n) \max_{1 \leq t \leq n} \left\| P(\hat{X}_t) \right\|^2. \]

It is easy to see that

\[\max_{1 \leq t \leq n} \left\| D_t^* \right\|_S \leq R_{D,n}, \quad \sum_t \mathbb{E}^* [D_t^* D_t^*]_S \leq \sigma_{D,n}^2. \quad (S.59) \]

Since the matrix-valued variables \((D_t^*)_{t \geq 1} \) are i.i.d. with zero mean conditional on data, by (S.59), we can invoke the matrix Bernstein inequality (see, e.g., Theorem 1.4 in Tropp (2012)) to deduce that, for any finite constant \(C \geq 1, \)

\[\mathbb{P}^* \left(\left\| \hat{Q}_n^* - \hat{Q}_n \right\|_S \geq C \sqrt{\log(m_n)R_{D,n}n^{-1}} \right) \]

\[= \mathbb{P}^* \left(\left\| \sum_t D_t^* \right\|_S \geq C \sqrt{\log(m_n)R_{D,n}n} \right) \]

\[\leq m_n \exp \left(\frac{-C^2 \log(m_n)R_{D,n}n/2}{\sigma_{D,n}^2 + C(\log(m_n))^{1/2}R_{D,n}^{3/2}n^{1/2}/3} \right) \]

\[\leq m_n \exp \left(\frac{-C \log(m_n)/2}{\lambda_{\text{max}}(\hat{Q}_n) + (\log(m_n)R_{D,n}n^{-1})^{1/2}} \right), \quad (S.60) \]

where the second inequality is by \(\sigma_{D,n}^2 \leq n \lambda_{\text{max}}(\hat{Q}_n)R_{D,n}. \) Under Assumptions 1 and 2, \(R_{D,n} = O_p(\zeta_{0,n}^2 m_n) \) and

\[\log(m_n)R_{D,n}n^{-1} = O_p((\log(m_n))\zeta_{0,n}^2 m_n^{-1}) = o_p(1). \]
By Lemma S2, \(\lambda_{\max}(\hat{Q}_n) = O_p(1) \). We can then deduce from (S.60) that
\[
\|\hat{Q}_n - \hat{Q}_n^*\|_S = O_p \left(\sqrt{\log(m_n)\zeta_{0,n}^2 m_n n^{-1}} \right).
\]
which finishes the proof.

Q.E.D.

Lemma S10. Under Assumptions 1 and 2, we have \(\|\hat{b}_n^* - \hat{b}_n\| = O_p(\delta_{b,n}) \) where
\[
\delta_{b,n}^* = \begin{cases} m_n^{1/2} n^{-1/2} & \text{under the null,} \\ \zeta_{0,n} \log(m_n)^{1/2} m_n^{1/2} n^{-1/2} & \text{in general.} \end{cases}
\]

Proof. Since \(\mathbb{E}[P(\hat{X}_t^*) \hat{Z}_{t+1}^*] = n^{-1} \sum_t P(\hat{X}_t) \hat{Z}_{t+1} \), we have
\[
\hat{b}_n^* - \hat{b}_n = (\hat{Q}_n^*)^{-1} \left(n^{-1} \sum_t P(\hat{X}_t) \hat{Z}_{t+1} \right) - (\hat{Q}_n)^{-1} \left(n^{-1} \sum_t P(\hat{X}_t) \hat{Z}_{t+1} \right)
\]
\[
= (\hat{Q}_n^*)^{-1} \left(n^{-1} \sum_t (P(\hat{X}_t) \hat{Z}_{t+1} - \mathbb{E}^*[P(\hat{X}_t^*) \hat{Z}_{t+1}^*]) \right)
\]
\[
+ (\hat{Q}_n^*)^{-1} - (\hat{Q}_n)^{-1} \left(n^{-1} \sum_t P(\hat{X}_t) \hat{Z}_{t+1} \right).
\] (S.61)

By (S.20) and Lemma S9,
\[
\lambda_{\min}(\hat{Q}_n^*) + \lambda_{\max}(\hat{Q}_n^*) = O_p(1).
\] (S.62)

Note that \(n^{-1} \sum_t (P(\hat{X}_t^*) \hat{Z}_{t+1} - \mathbb{E}^*[P(\hat{X}_t^*) \hat{Z}_{t+1}^*]) \) is an average of \(D_n \)-conditionally i.i.d. zero-mean elements. Therefore,
\[
\mathbb{E}^* \left[\left\| n^{-1} \sum_t (P(\hat{X}_t^*) \hat{Z}_{t+1} - \mathbb{E}^*[P(\hat{X}_t^*) \hat{Z}_{t+1}^*]) \right\|^2 \right]
\]
\[
= n^{-1} \mathbb{E}^* \left[\left\| P(\hat{X}_t^*) \hat{Z}_{t+1} - \mathbb{E}^*[P(\hat{X}_t^*) \hat{Z}_{t+1}^*] \right\|^2 \right]
\]
\[
\leq n^{-1} \mathbb{E}^* \left[\left\| P(\hat{X}_t^*) \hat{Z}_{t+1} \right\|^2 \right]
\]
\[
\leq n^{-2} \sum_t \left\| P(\hat{X}_t) \right\|^2 = n^{-1} \text{Trace} (\hat{Q}_n) = O_p \left(m_n n^{-1} \right),
\] (S.63)

where the second inequality is by \(|\hat{Z}_{t+1}^*| \leq 1 \) for any \(t \) and \(\mathbb{E}^*[\|P(\hat{X}_t^*)\|^2] = n^{-1} \sum_t \|P(\hat{X}_t)\|^2 \), and the last equality is by (S.20). Combining the results in (S.62) and (S.63), we get
\[
(\hat{Q}_n^*)^{-1} \left(n^{-1} \sum_t (P(\hat{X}_t^*) \hat{Z}_{t+1} - \mathbb{E}^*[P(\hat{X}_t^*) \hat{Z}_{t+1}^*]) \right) = O_p(m_n^{1/2} n^{-1/2}).
\] (S.64)
Since $|\hat{Z}_{t+1}^*| \leq 1$ for any t, by (S.20) we obtain
\[\left\| n^{-1} \sum_t P(\hat{X}_t)\hat{Z}_{t+1} \right\|^2 \leq \lambda_{\max}(\hat{Q}_n)n^{-1} \sum_t \hat{Z}_{t+1}^2 = O_p(1). \]
Hence, by Lemma S9,
\[((\hat{Q}_n^*)^{-1} - (\hat{Q}_n)^{-1}) \left(n^{-1} \sum_t P(\hat{X}_t)\hat{Z}_{t+1} \right) = O_p(\zeta_{0,n}(\log(m_n)m_n n^{-1})^{1/2}). \quad (S.65) \]
Combining (S.64) and (S.65), we prove the assertion of the lemma in the general case.

If we further impose the null hypothesis, we see that
\[((\hat{Q}_n^*)^{-1} - (\hat{Q}_n)^{-1}) \left(n^{-1} \sum_t P(\hat{X}_t)\hat{Z}_{t+1} \right) = ((\hat{Q}_n^*)^{-1} - (\hat{Q}_n)^{-1})\hat{Q}_n \hat{b}_n = o_p \left(m_n^{1/2} n^{-1/2} \right), \]
where the second equality follows from Lemma S6. This estimate and (S.64) imply the assertion of the lemma under the null.

Q.E.D.

Lemma S11. Under Assumptions 1 and 2, we have $\|A_n^* - \hat{A}_n\|_S = o_p(1)$. In addition, under the null hypothesis, $\|A_n^* - \hat{A}_n\|_S = O_p(\zeta_{0,n}m_n n^{-1/2})$.

Proof. We decompose $\hat{u}_t^* = \hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top \hat{b}_n^*$ as
\[\hat{u}_t^* = \hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top \hat{b}_n - P(\hat{X}_t^*)^\top (\hat{b}_n^* - \hat{b}_n). \]
Therefore,
\[\hat{A}_n^* = n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top (\hat{u}_t^*)^2 \]
\[= n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top (\hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top \hat{b}_n)^2 \]
\[- 2n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top (\hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top \hat{b}_n)P(\hat{X}_t^*)^\top (\hat{b}_n^* - \hat{b}_n) \]
\[+ n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top (P(\hat{X}_t^*)^\top (\hat{b}_n^* - \hat{b}_n))^2 \]
\[\equiv R_{1,n} - 2R_{2,n} + R_{3,n}. \quad (S.66) \]
We analyze these terms in turn, starting with the (leading) term $R_{1,n}$ defined as
\[R_{1,n} \equiv n^{-1} \sum_t P(\hat{X}_t^*)P(\hat{X}_t^*)^\top (\hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top \hat{b}_n)^2. \]
Note that \(\hat{b}_n \) is \(\mathcal{D}_n \)-measurable (where \(\mathcal{D}_n \) is the \(\sigma \)-field generated by data) and \(R_{1,n} \) is the average of conditionally i.i.d. variables. The conditional mean of each summand term is

\[
E^* \left[P(\hat{X}_t^\ast) P(\hat{X}_t^\ast)^\top (\hat{Z}_{t+1}^\ast - P(\hat{X}_t^\ast)^\top \hat{b}_n)^2 \right] = n^{-1} \sum_t P(\hat{X}_t) P(\hat{X}_t)^\top (\hat{Z}_{t+1} - P(\hat{X}_t)^\top \hat{b}_n)^2.
\]

and the conditional second moment of each centered summand term satisfies

\[
E^* \left[\left\| n^{-1} \sum_t P(\hat{X}_t^\ast) P(\hat{X}_t^\ast)^\top (\hat{Z}_{t+1}^\ast - P(\hat{X}_t^\ast)^\top \hat{b}_n)^2 - \hat{A}_n \right\|^2 \right]
\leq n^{-1} \sum_{l_1,l_2=1}^{m_n} E^* \left[(p_{l_1}(\hat{X}_t) p_{l_2}(\hat{X}_t)) (\hat{Z}_{t+1}^\ast - P(\hat{X}_t)^\top \hat{b}_n)^2 \right]^2
= n^{-2} \sum_t \sum_{l_1,l_2=1}^{m_n} (p_{l_1}(\hat{X}_t) p_{l_2}(\hat{X}_t)) (\hat{Z}_{t+1} - P(\hat{X}_t)^\top \hat{b}_n)^2 \right)^2
= n^{-2} \sum_t \left\| P(\hat{X}_t) \right\|^4 \hat{u}_t^4.
\]

Next, we observe that

\[
n^{-2} \sum_t \left\| P(\hat{X}_t) \right\|^4 \hat{u}_t^4
\leq K n^{-2} \sum_t \left\| P(\hat{X}_t) \right\|^4 (u_t^\ast)^4 + K n^{-2} \sum_t \left\| P(\hat{X}_t) \right\|^4 (\hat{u}_t - u_t^\ast)^4
\leq K \zeta_{0,n}^2 m_n n^{-2} \sum_t \left\| P(\hat{X}_t) \right\|^2 + \zeta_{0,n}^4 m_n^2 n^{-2} \sum_t (\hat{u}_t - u_t^\ast)^4
= O_p (\zeta_{0,n}^2 m_n^2 n^{-1}) + O_p (\zeta_{0,n}^4 m_n^2 n^{-1}) O_p (n^{-1/2} + \zeta_{0,n}^2 m_n \delta b_n^4)
= O_p (\zeta_{0,n}^2 m_n^2 n^{-1}),
\]

where the second inequality follows from \(|u_t^\ast| \leq K \) and \(\left\| P(X_t) \right\| \leq \zeta_{0,n} m_n^{1/2} \), the first equality follows from (S.46), and the last line is implied by the maintained rate conditions in Assumption 2. Therefore,

\[
\left\| R_{1,n} - \hat{A}_n \right\| = O_p (\zeta_{0,n} m_n n^{-1/2}).
\]

Next, we analyze

\[
R_{2,n} = n^{-1} \sum_t P(\hat{X}_t^\ast) P(\hat{X}_t^\ast)^\top (\hat{Z}_{t+1}^\ast - P(\hat{X}_t^\ast)^\top \hat{b}_n) (P(\hat{X}_t^\ast)^\top (\hat{b}_n^\ast - \hat{b}_n)).
\]
Consider any $a_n \in \mathbb{R}^{m_n}$ with $\|a_n\| = 1$. Observe that

$$a_n^\top R_{2,n}^2 a_n = \left\| n^{-1} \sum_t P(\hat{X}_t^*) P(\hat{X}_t^*)^\top a_n (\hat{Z}_{t+1} - P(\hat{X}_t^*)^\top b_n)(P(\hat{X}_t^*)^\top (\hat{b}_n - b_n)) \right\|^2$$

$$\leq \lambda_{\text{max}}(\hat{Q}_n) n^{-1} \sum_t (P(\hat{X}_t^*)^\top a_n)^2 (\hat{Z}_{t+1} - P(\hat{X}_t^*)^\top b_n)^2 (P(\hat{X}_t^*)^\top (\hat{b}_n - b_n))^2$$

$$\leq \lambda_{\text{max}}(\hat{Q}_n) \max_{1 \leq t \leq n} \left\| P(\hat{X}_t^*) \right\|^2 \left\| \hat{b}_n - b_n \right\|^2 n^{-1} \sum_t (P(\hat{X}_t^*)^\top a_n)^2 (\hat{Z}_{t+1} - P(\hat{X}_t^*)^\top b_n)^2$$

$$\leq O_p \left(\zeta_{0,n}^2 m_n^2 (\delta_{b,n})^2 \right) \max_{1 \leq t \leq n} \left(\hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top b_n \right)^2,$$ \hspace{1cm} \text{(S.71)}

where the last line follows from Lemma S10. In addition, since $\hat{Z}_{t+1} - h(\hat{X}_t^*)$ is bounded and $\max_{1 \leq t \leq n} |h(\hat{X}_t^*) - P(\hat{X}_t^*)^\top b_n| = o_p(1),$

$$\max_{1 \leq t \leq n} \left| \hat{Z}_{t+1}^* - P(\hat{X}_t^*)^\top b_n \right| \leq \max_{1 \leq t \leq n} \left| \hat{Z}_{t+1}^* - h(\hat{X}_t^*) \right| + \max_{1 \leq t \leq n} \left| h(\hat{X}_t^*) - P(\hat{X}_t^*)^\top b_n \right|$$

$$+ \max_{1 \leq t \leq n} \left| P(\hat{X}_t^*)^\top (\hat{b}_n - b_n^*) \right|$$

$$= O_p(1 + \zeta_{0,n}^2 m_n^{1/2} \delta_{b,n}) = O_p(1).$$ \hspace{1cm} \text{(S.72)}

Hence, (S.71) further implies that

$$\|R_{2,n}\|_S = O_p(\zeta_{0,n}^2 m_n^{1/2} \delta_{b,n}).$$ \hspace{1cm} \text{(S.73)}

It remains to study the term

$$R_{3,n} \equiv n^{-1} \sum_t P(\hat{X}_t^*) P(\hat{X}_t^*)^\top (P(\hat{X}_t^*)^\top (\hat{b}_n - b_n))^2.$$

Consider any $a_n \in \mathbb{R}^{m_n}$ with $\|a_n\| = 1$. Then by the Cauchy–Schwarz inequality

$$a_n^\top R_{3,n}^2 a_n = \left\| n^{-1} \sum_t P(\hat{X}_t^*) P(\hat{X}_t^*)^\top a_n (P(\hat{X}_t^*)^\top (\hat{b}_n^* - \hat{b}_n))^2 \right\|^2$$

$$\leq \lambda_{\text{max}}(\hat{Q}_n) n^{-1} \sum_t (P(\hat{X}_t^*)^\top a_n)^2 (P(\hat{X}_t^*)^\top (\hat{b}_n^* - \hat{b}_n))^4$$

$$\leq (\lambda_{\text{max}}(\hat{Q}_n))^2 \max_{1 \leq t \leq n} \left\| P(\hat{X}_t^*) \right\|^4 \left\| \hat{b}_n^* - \hat{b}_n \right\|^4$$

$$\leq O_p \left(\zeta_{0,n}^4 m_n^2 (\delta_{b,n})^4 \right),$$

where the last line follows from (S.62) and Lemma S10. Hence,

$$\|R_{3,n}\|_S = O_p(\zeta_{0,n}^2 m_n \delta_{b,n}^2).$$ \hspace{1cm} \text{(S.74)}

22
Lemma S12. Suppose that Assumptions 1 and 2 hold. Then under the null hypothesis,

\[\| \hat{A}_n - \hat{A}_n \|_S \leq \| R_{1,n} - \hat{A}_n \|_S + 2 \| R_{2,n} \|_S + \| R_{3,n} \|_S = O_p(\zeta_0,m_n^{-1/2} + \zeta_0,m_n^{1/2}\delta_{b,n} + \zeta_0,\delta_{b,n}) = O_p(\zeta_0,m_n^{1/2}\delta_{b,n}). \]

The assertions of the lemma then follows from the definition of \(\delta_{b,n}^* \) in Lemma S10, and the fact that \(\zeta_0,\log(m_n)^{1/2}m_n^{-1/2} = o(1) \) which is implied by the maintained rate conditions in Assumption 2. Q.E.D.

Lemma S12. Suppose that Assumptions 1 and 2 hold. Then under the null hypothesis,

\[\left\| \hat{H}_n^* - \hat{A}_n \right\|_S = O_p\left(\zeta_0,m_n n^{-1/2}\right), \]

where \(\hat{H}_n^* \equiv \mathbb{E}^*[(\hat{Z}_{t+1}^*)^2P(\hat{X}_t^*)^\top] - \mathbb{E}^*[\hat{Z}_{t+1}^*P(\hat{X}_t^*)]\mathbb{E}^*[P(\hat{X}_t^*)^\top\hat{Z}_{t+1}^*]. \)

Proof. Note that

\[\mathbb{E}^*[P(\hat{X}_t^*)\hat{Z}_{t+1}^*] = n^{-1}\sum_{t=1}^n P(\hat{X}_t)\hat{Z}_{t+1} = \hat{Q}_n\hat{b}_n. \] (S.75)

Under the null hypothesis, \(h(x) = 0 \) and \(b_n^* = 0 \). By (S.20) and Lemma S6,

\[\hat{Q}_n\hat{b}_n = O_p(m_n^{1/2}n^{-1/2}), \] (S.76)

which together with (S.75) implies that

\[\left\| \mathbb{E}^*[\hat{Z}_{t+1}^*P(\hat{X}_t^*)]\mathbb{E}^*[P(\hat{X}_t^*)^\top\hat{Z}_{t+1}^*] \right\| = O_p(m_n n^{-1}). \] (S.77)

Since \(\hat{u}_t = \hat{Z}_{t+1} - P(\hat{X}_t)^\top\hat{b}_n \),

\[\mathbb{E}^* \left[(\hat{Z}_{t+1}^*)^2P(\hat{X}_t^*)^\top \right] - \hat{A}_n = n^{-1}\sum_{t} (\hat{Z}_{t+1}^*)^2P(\hat{X}_t)^\top - \hat{A}_n \]

\[= n^{-1}\sum_{t} (P(\hat{X}_t)^\top\hat{b}_n + \hat{u}_t)^2P(\hat{X}_t)^\top - \hat{A}_n \]

\[= n^{-1}\sum_{t} (P(\hat{X}_t)^\top\hat{b}_n)^2P(\hat{X}_t)^\top + 2n^{-1}\sum_{t} \hat{u}_t(P(\hat{X}_t)^\top\hat{b}_n)P(\hat{X}_t)^\top. \] (S.78)
Let $a_n \in \mathbb{R}^{mn}$ be such that $\|a_n\| = 1$. By Assumption 2, (S.20), and (S.76),

$$a_n^\top \left(n^{-1} \sum_t (P(\hat{X}_t)\top\hat{b}_n)^2 P(\hat{X}_t) P(\hat{X}_t)\top \right)^2 a_n$$

$$= \left\| n^{-1} \sum_t P(\hat{X}_t) \left(P(\hat{X}_t)\top\hat{b}_n\right)^2 \left(P(\hat{X}_t)\top a_n \right) \right\|^2$$

$$\leq \lambda_{\text{max}}(\hat{Q}_n) n^{-1} \sum_t \left(P(\hat{X}_t)\top\hat{b}_n \right)^4 \left(P(\hat{X}_t)\top a_n \right)^2$$

$$\leq (\lambda_{\text{max}}(\hat{Q}_n))^2 \max_{1 \leq t \leq n} \left(P(\hat{X}_t)\top\hat{b}_n \right)^4$$

$$\leq (\lambda_{\text{max}}(\hat{Q}_n))^2 \max_{1 \leq t \leq n} \left\| P(\hat{X}_t) \right\|^4 \left\| \hat{b}_n \right\|^4 = O_p(\zeta_{0,n}^4 m_n^4 n^{-2}),$$

which implies that

$$\left\| n^{-1} \sum_t (P(\hat{X}_t)\top\hat{b}_n)^2 P(\hat{X}_t) P(\hat{X}_t)\top \right\|_S = O_p(\zeta_{0,n}^2 m_n^2 n^{-1}). \quad (S.79)$$

Turning to the second term in (S.78), we note that by (S.20), Lemma S7, and (S.76), we have

$$a_n^\top \left(n^{-1} \sum_t \hat{u}_t (P(\hat{X}_t)\top\hat{b}_n) P(\hat{X}_t) P(\hat{X}_t)\top \right)^2 a_n$$

$$= \left\| n^{-1} \sum_t \hat{P}(\hat{X}_t)\hat{u}_t \left(P(\hat{X}_t)\top\hat{b}_n \right) \left(P(\hat{X}_t)\top a_n \right) \right\|^2$$

$$\leq \lambda_{\text{max}}(\hat{Q}_n) n^{-1} \sum_t \left(P(\hat{X}_t)\top\hat{b}_n \right)^2 \left(\hat{u}_t P(\hat{X}_t)\top a_n \right)^2$$

$$\leq \lambda_{\text{max}}(\hat{Q}_n) \lambda_{\text{max}}(\hat{A}_n) \max_{1 \leq t \leq n} \left\| P(\hat{X}_t) \right\|^2 \left\| \hat{b}_n \right\|^2 = O_p(\zeta_{0,n}^2 m_n^2 n^{-1}), \quad (S.80)$$

which implies that

$$\left\| n^{-1} \sum_t \hat{u}_t P(\hat{X}_t)\top\hat{b}_n P(\hat{X}_t) P(\hat{X}_t)\top \right\|_S = O_p(\zeta_{0,n} m_n n^{-1/2}). \quad (S.81)$$

The assertion of the lemma then follows from (S.77), (S.78), (S.79), and (S.81). \textit{Q.E.D.}

References
