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Abstract

Motivated by the evidence that risk premia are large and countercyclical, this paper

studies a tractable real business cycle model with a small, exogenously time-varying risk of

disaster. Disaster risk a¤ects both asset prices and macroeconomic quantities. An increase

in disaster risk leads to a decline of output, investment, stock prices, and interest rates,

and an increase in the expected return on risky assets. The model matches well data on

quantities, asset prices, and the relations between quantities and prices. Empirically, shocks

to disaster risk, or more generally shocks to risk premia, play a signi�cant role in investment

dynamics.
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1 Introduction

The empirical �nance literature has provided substantial evidence that risk premia vary over time,

and that they are countercyclical.1 Yet, standard business cycle models such as the real business

�Boston University and NBER. Address: Department of Economics, 270 Bay State Road, Boston MA 02215.
Email: fgourio@bu.edu. Phone: (617) 353 4534. I thank participants in presentations at Boston University,
Carnegie-Mellon University, Chicago BSB, Duke Fuqua, FRB Dallas, FRB NY, Georgetown, MIT Sloan, the
NBER ME and EFG meetings, Penn State, Pompeu Fabra, SED 2009, Syracuse, Toulouse (TSE), and Wharton
for comments, and I thank Fernando Alvarez, David Backus, Emmanuel Farhi, Xavier Gabaix, Pedro Gete, Simon
Gilchrist, Joao Gomes, Urban Jermann, Lars Hansen, Yang Lu, Alex Monge, Erwan Quintin, Leena Rudanko,
Adrien Verdelhan, Jessica Wachter, and Amir Yaron for helpful discussions or comments. This paper was �rst
circulated in February 2009 under the title �Time-varying risk premia, time-varying risk of disaster, and macro-
economic dynamics.�NSF funding under grant SES-0922600 is gratefully acknowledged.

1See e.g. Campbell and Shiller (1988) and Fama and French (1989) for stocks, Cochrane and Piazzesi (2006) for
Treasury bonds, Philippon (2008) and Gilchrist and Zakrajsek (2007) for corporate bonds, and Cochrane (2007)
or Backus, Routledge and Zin (2008) for recent overviews.
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cycle model, or the dynamic stochastic general equilibrium (DSGE) models used for monetary

policy analysis, largely fail to replicate the level, the volatility, and the countercyclicality of risk

premia. In these models, the variation in expected returns is entirely driven by variation in the

risk-free interest rate. Is this a signi�cant limitation of macroeconomic models? Do risk premia

matter for macroeconomic dynamics?

To attack this question, I introduce a tractable real business cycle model with a small, sto-

chastically time-varying risk of economic �disaster�, following the work of Rietz (1988), Barro

(2006), and Gabaix (2007). In my model, risk premia vary because the real quantity of risk

varies, leading to a reaction of both asset prices and macroeconomic aggregates. Existing work

has so far been con�ned to endowment economies, and hence does not consider the feedback

from time-varying risk to macroeconomic aggregates. An increase in the probability of disaster

creates a collapse of investment and a recession, as risk premia rise, increasing the cost of capital.

Demand for precautionary savings increase, leading the yield on less risky assets to fall, while

spreads on risky securities increase. These business cycle dynamics occur with no change in total

factor productivity.2

Before turning to a quantitative analysis, I prove two theoretical results, which hold under the

assumption that a disaster reduces total factor productivity (TFP) and the capital stock by the

same amount. First, when the probability of disaster is constant, the path for macroeconomic

quantities implied by the model is the same as that implied by a model with no disasters, but

a di¤erent discount factor �. This �observational equivalence� (in a sample without disasters)

is reminiscent of the numerical analysis of Tallarini (2000), who found that macroeconomic dy-

namics are essentially una¤ected by the amount of risk or the degree of risk aversion. Second,

when the probability of disaster is stochastic, an increase in probability of disaster is observation-

ally equivalent to a preference shock. This implies that these shocks have a signi�cant e¤ect on

macroeconomic aggregates, and this provides an interpretation of the �equity premium shocks�

introduced by Smets and Wouters (2003) and other authors in their estimations of DSGE mod-

els. Consistent with the literature, the paper argues that these shocks play a signi�cant role in

macroeconomic dynamics. However I arrive at this conclusion from a very di¤erent path, since

these shocks are calibrated to replicate asset prices in my model.

Quantitatively, I �nd that this parsimonious model can match many asset pricing facts - the

mean, volatility, and predictability of returns - while doing at least as well as the RBC model in

2Because disasters are rare, the risk is usually not realized in sample. However, my results are not driven by
sample selection (peso problem); see sections 4.3 and 5.5.
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accounting for quantities. This is important since many asset pricing models which are successful

in endowment economies do not generalize well to production economies.3 Most interestingly,

the model matches well the relations between macroeconomic aggregates (such as investment or

output) and asset prices (such as expected returns, the P-D ratio, or the VIX index). As is well

known, this connection between prices and quantities is problematic for most macroeconomic

models.

Empirical tests of the disaster model are notoriously di¢ cult. Barro (2006) measured historical

disasters in cross-country data. To measure the time-varying probability of disaster, I use the

most natural restriction of the model - disaster risk a¤ects powerfully asset prices. I infer the

probability of disaster from the observed price-dividend ratio. I then feed into the model this

estimated probability of disaster. The variation over time in this probability appears to account

for a share of business cycle dynamics, and is especially important during the sharpest downturns

such as the current recession.

This risk of an economic disaster may be a strictly rational expectation. For instance, dur-

ing the recent �nancial crisis, many commentators, including well-known macroeconomists, have

highlighted the possibility that the U.S. economy might fall into another Great Depression.4 My

results suggest that the probability of a disaster was indeed high in Fall 2008. More generally it

could re�ect a time-varying belief, which may di¤er from the objective probability - i.e., waves

of optimism or pessimism (see e.g. Jouini and Napp (2008)). My model studies the macroeco-

nomic e¤ects of such time-varying beliefs. (Of course in reality beliefs may be an endogenous,

but understanding the e¤ects that they have is important.) This simple modeling device captures

the idea that aggregate uncertainty is sometimes high, i.e. people sometimes worry about the

possibility of a deep recession. It also captures the idea that there are some asset price changes

which are not obviously related to current or future TFP, i.e. �bubbles�, �animal spirits�, and

which in turn a¤ect the macroeconomy.

Introducing time-varying risk requires solving a model using nonlinear methods, i.e. going

beyond the �rst-order approximation and considering higher order terms in the Taylor expansion.

3As explained in Jermann (1998), Lettau and Uhlig (2000), Kaltenbrunner and Lochstoer (2008).
4 Greg Mankiw (NYT, Oct 25, 2008): "Looking back at [the great Depression], it�s hard to avoid seeing parallels

to the current situation. (...) Like Mr. Blanchard at the I.M.F., I am not predicting another Great Depression.
But you should take that economic forecast, like all others, with more than a single grain of salt.�

Robert Barro (WSJ, March 4, 2009): �... there is ample reason to worry about slipping into a depression. There is
a roughly one-in-�ve chance that U.S. GDP and consumption will fall by 10% or more, something not seen since
the early 1930s.�

Paul Krugman (NYT, Jan 4, 2009): �This looks an awful lot like the beginning of a second Great Depression.�
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Researchers disagree on the importance of these higher order terms, and a fairly common view is

that they are irrelevant for macroeconomic quantities. Lucas (2003), in his presidential address,

summarizes: �Tallarini uses preferences of the Epstein-Zin type, with an intertemporal substi-

tution elasticity of one, to construct a real business cycle model of the U.S. economy. He �nds

an astonishing separation of quantity and asset price determination: The behavior of aggregate

quantities depends hardly at all on attitudes toward risk, so the coe¢ cient of risk aversion is left

free to account for the equity premium perfectly.�5 My results show, however, that when risk varies

over time, risk aversion a¤ects macroeconomic dynamics in a signi�cant way, and hence matching

the equity premium or other asset pricing facts can lead to di¤erent business cycle implications.

Overall, the contribution of the paper is twofold. Substantively, the quantitative and empir-

ical results of this paper suggest an important role for time-varying risk in accounting for business

cycles and asset prices. This result obtains in the context of a model which matches well data on

prices, quantities, and the relations between quantities and prices, which in itself is an important

achievement. Besides this substantive contribution, the technical contribution of the paper is to

provide a tractable framework which leads to volatile, countercyclical risk premia in a standard

macroeconomic model. The tractability of the framework is such that extensions to include credit

frictions, monetary policy, or several countries, are quite feasible.

The paper is organized as follows: the rest of the introduction reviews the literature. Section 2

studies a simple analytical example in an AK model which can be solved in closed form and yields

the central intuition for the results. Section 3 gives the setup of the full model and presents the

analytical results. Section 4 studies the quantitative implications of the model numerically. Sec-

tion 5 considers some extensions of the baseline model. Section 6 presents an empirical evaluation

of the model, backing out the probability of disaster from asset prices.

Related Literature

Gabaix (2007, 2009) independently obtained propositions 1 and 2. On top of that, he develops

a speci�c model where variation in the probability of disaster has no macroeconomic e¤ect. In

contrast, my paper uses the standard real business cycle model, and shows that a shock to

the probability of disaster is equivalent to a preference shock (proposition 3) and hence has

a macroeconomic e¤ect. Unlike Gabaix then, my model generates an empirically compelling

correlation between asset prices and macroeconomic quantities. Moreover, my paper is more

5Note that Tallarini (2000) actually picks the risk aversion coe¢ cient to match the Sharpe ratio of equity.
Since return volatility is very low in his model (there are no capital adjustment costs), the equity premium is much
smaller in his model than in the data.
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quantitative and uses Epstein-Zin utility.

This paper is mostly related to four strands of literature. First, a large literature in �nance

builds and estimates models which attempt to match not only the equity premium and the risk-

free rate, but also the variation of risk premia (i.e. the predictability of excess returns). Two

prominent examples are Bansal and Yaron (2004) and Campbell and Cochrane (1999). However,

this literature is limited to endowment economies, and hence is of limited use to analyze the

business cycle or to study policy questions.

Second, my paper is closely related to a small literature which studies business cycle mod-

els (i.e. with endogenous consumption, investment and output), and attempts to match both

business cycle statistics but also asset returns �rst and second moments.6 Many of these studies

consider only the implications of productivity shocks, and generally study only the mean and

standard deviations of return and do not attempt to match the predictability of returns. My pa-

per contributes to this literature by focusing on the variation of risk premia and the correlations

between asset prices or returns, on the one hand, and macroeconomic quantities, on the other

hand. In contrast to my paper, many of these studies also abstract from employment, which is

a critical business cycle variable. Many of these studies have di¢ culty reconciling business cycle

dynamics and asset returns, but my model does well in this dimension.

Third, the paper draws from the recent literature on �disasters�or rare events (Rietz (1988),

Barro (2006), Barro and Ursua (2008), Gabaix (2007), Gourio (2008a,2008b), Julliard and Ghosh

(2008), Martin (2008), Santa Clara and Yan (2008), Wachter (2008), Weitzmann (2007), Backus,

Chernov and Martin (2009)). Disasters are a powerful way to generate large risk premia. More-

over, as we will see, disasters are relatively easy to embed into a standard macroeconomic model.

Last, my paper studies the real e¤ects of a shock to uncertainty, a channel recently emphasized

by Bloom (2009). Bloom (2009) considers a partial-equilibrium model with heterogeneous �rms

facing �xed and linear costs to adjusting capital or labor. In his model, the uncertainty shock is a

temporary increase in the variance of aggregate and especially idiosyncratic productivity shocks.

His model generates a recession and a decrease in endogenous aggregate TFP in response to an

uncertainty shock. My model also generates a recession in response to higher uncertainty, but

there are several di¤erences: (1) risk is modeled di¤erently since the higher uncertainty a¤ects

both productivity and the capital stock; (2) the mechanism is di¤erent since it relies on the

6A non-exhaustive list includes Jermann (1998), Tallarini (2000), Boldrin, Christiano and Fisher (2001), Lettau
and Uhlig (2000), Kaltenbrunner and Lochstoer (2008), Campanele et al. (2008), Croce (2005), Papanikolaou
(2008), Kuehn (2008), Uhlig (2006), Jaccard (2008), and Fernandez-Villaverde et al. (2008).

5



general equilibrium feedback, i.e. risk-averse consumers are less willing to invest in risky capital

when uncertainty is high; (3) the model does not generate any change in TFP. Most importantly,

my model focuses on the relations between asset prices and the macroeconomy. For instance, my

model can replicate the empirical �nding that shocks to VIX a¤ect output negatively.7

2 A simple analytical example in an AK economy

To highlight the key mechanism of the paper, this section studies a streamlined model. Section 3

relaxes many of the simplifying assumptions, such as constant productivity, no adjustment costs,

etc., which are made for clarity. Consider a simple economy with a representative consumer who

has power utility:

U = E0

1X
t=0

�t
C1�t

1� 
;

where Ct is consumption and  is the risk aversion coe¢ cient (and also the inverse of the the

intertemporal elasticity of substitution of consumption). This consumer operates an AK technol-

ogy:

Yt = AKt;

where Yt is output, Kt is capital, and A is productivity, which is assumed to be constant. The

resource constraint is:

Ct + It � AKt:

The economy is randomly hit by disasters. A disaster destroys a share bk of the capital stock.8

This may be because of a war which physically destroys capital, but there are alternative interpre-

tations. For instance, bk could re�ect expropriation of capital holders (if the capital is taken away

and then not used as e¤ectively), or it could be a �technological revolution�that makes a large

share of the capital worthless. It could also be that even though physical capital is not literally

destroyed, some intangible capital (such as matches between �rms, employees, and customers)

is lost. Finally, one can imagine a situation where the demand for some goods falls sharply,

rendering worthless the factories which produce them.9

7Fernandez-Villaverde et al. (2009) also study the e¤ect of shocks to risk, but they focus on a small open
economy which faces exogenous time-varying interest rate risk.

8A disaster does not a¤ect productivity A. I will relax this assumption in section 3. In an AK model, a
permanent reduction in productivity would lead to a permanent reduction in the growth rate of the economy,
since the level of A a¤ect the growth rate of output.

9In a large downturn, the demand for some luxury goods such as boats, private airplanes, etc. would likely fall
sharply. If this situation were to last, the boats-producing factories would never operate at capacity, and hence
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Throughout the paper I denote by xt+1 an indicator which is one if there is a disaster at time

t+ 1; and 0 if not.

The probability of a disaster varies over time. To maintain tractability I assume in this section

that it is i:i:d:: pt, the probability of a disaster at time t+ 1; is drawn at the beginning of time t

from a cumulative distribution function F: The law of accumulation for capital is thus:

Kt+1 = ((1� �)Kt + It) (1� xt+1bk).

Finally, I assume that the two random variables pt+1; and xt+1 are independent. I also discuss

this assumption in more detail in section 3.

This model has one endogenous state variable, the capital stock K and one exogenous state p;

and there is one control variable C: There are two shocks: the realization of disaster x0 2 f0; 1g ;

and the draw of a new probability of disaster p0. The Bellman equation for the representative

consumer is:

V (K; p) = max
C; I

�
C1�

1� 
+ �Ep0;x0 (V (K

0; p0))

�
s:t: :

C + I � AK;

K 0 = ((1� �)K + I) (1� x0bk) :

The assumptions made ensure that V is homogeneous, i.e. V is of the form V (K; p) = K1�

1� g(p);

where g satis�es the Bellman equation:

g(p) = max
i

(
(A� i)1�

1� 
+ �

(1� � + i)1� (1� p+ p(1� bk)
1�)

1� 
(Ep0g(p

0))

)
; (1)

and i = I
K
is the investment rate. This implies that consumption and investment are both

proportional to the current stock of capital, but they typically depend on the probability of

disaster as well:

Ct = f(pt)Kt;

It = h(pt)Kt:

the value would fall to zero.
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As a result, when a disaster occurs and the capital stock falls by a factor bk, both consumption

and investment also fall by a factor bk: Given that there are no adjustment costs, the value of

capital is equal to the quantity of capital, and hence it falls also by a factor bk in a disaster.

Finally, the return on an all-equity �nanced �rm is:

Ret;t+1 = (1� � + A) (1� xt+1bk);

i.e. it is 1� �+A if there is no disaster, and (1� � + A) (1� bk) if there is a disaster. Clearly, the

equity premium will be high, since the equity return and consumption are both very low during

disasters. Moreover, the equity premium is larger when the probability of disaster pt is higher.

Let us �nally turn to the e¤ect of p on the consumption-savings decision, i.e. the function

f(p): Using equation (1), the �rst-order condition with respect to i yields, after rearranging:

�
A� i

1� � + i

��
= �

�
1� p+ p(1� bk)

1�� (Ep0g(p0)) : (2)

Given that p is i:i:d:, the expectation of g on the right-hand side is independent of the current

p. The term (1 � bk)
1� is greater than unity if and only if  > 1: Hence, the right-hand side is

increasing in p if and only if  > 1. Since the left-hand side is an increasing function of i; we

obtain that i is increasing in p if  > 1; it is decreasing in p if  < 1; and it is independent of p if

 = 1:

The intuition for this result is as follows: if p goes up, investment in physical capital becomes

more risky and hence less attractive, i.e. the risk-adjusted physical return on capital goes down.10

The e¤ect of a change in the return on the consumption-savings choice depends on the value of

the intertemporal elasticity of substitution (IES), because of o¤setting wealth and substitution

e¤ects. If the IES is unity (i.e. utility is log), savings are unchanged and thus the investment rate

does not respond to a change in the probability of disaster. But if the IES is larger than unity,

i.e.  < 1, the substitution e¤ect dominates, and i is decreasing in p. Hence, an increase in the

probability of disaster leads initially, in this model, to a decrease in investment, and an increase

in consumption, since output is unchanged on impact. Next period, the decrease in investment

leads to a decrease in the capital stock and hence in output. This simple analytical example thus

shows that a change in the perceived probability of disaster can lead to a decline in investment

and output. The key mechanism is the e¤ect of rate-of-return uncertainty on the optimal savings

10Following Weil (1989), I de�ne the risk-adjusted return as E(R1�)
1

1� ; where R is the physical return on
capital.
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decision.11

Extension to Epstein-Zin preferences

To illuminate the respective role of risk aversion and the intertemporal elasticity of substitu-

tion, it is useful to extend the preceding example to the case of Epstein-Zin utility. Assume, then,

that the utility Vt satis�es the recursion:

Vt =
�
C1�t + �Et

�
V 1��
t+1

� 1�
1��
� 1
1�

; (3)

where � measures risk aversion towards static gambles,  is the inverse of the intertemporal

elasticity of substitution (IES) and � re�ects time preference.12 It is straightforward to extend

the results above; the �rst-order condition now reads

�
A� i

1� � + i

��
= �

�
1� p+ p(1� bk)

1��� 1�1��
�
Ep0g(p

0)
1��
1�

� 1�
1��

;

and we can apply the same argument as above, in the realistic case where risk aversion � � 1 :

the now risk-adjusted return on capital is
�
1� p+ p(1� bk)

1��� 1
1�� ; it falls as p rises; an increase

in the probability of disaster will hence reduce investment if and only if the IES is larger than

unity.13 Hence, the parameter which determines the sign of the response is the IES, and the risk

aversion coe¢ cient (as long as it is greater than unity) determines the magnitude of the response

only. While this example is revealing, it has a number of simplifying features, which lead us to

turn now to a quantitative model.

3 A Real Business Cycle model with Time-Varying Risk

of Disaster

This section introduces a real business cycle model with time-varying risk of disaster and study its

implications analytically. The next section considers the quantitative implications of the model

11The e¤ect of rate-of-return uncertainty di¤ers from that of labor-income uncertainty, as is well known at least
since Levhari and Srinivasan (1969) and Sandmo (1970). The example of this secton is related to work by Epaulard
and Pommeret (2003).
12Note that it is commonplace to have a (1� �) factor in front of u(C;N) in equation (3), but this is merely a

normalization, which it is useful to forgo in this case.
13The disaster reduces the mean return itself, but this is actually not important. We could assume that there

is a small probability of a �capital windfall� so that a change in p does not a¤ect the mean return on capital.
Crucially, what matters here is the risk-adjusted return on capital, E(R1��)

1
1�� ; and a higher risk reduces this

return. See section 5.6 for more details.
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using numerical methods. The model extends the simple example of the previous section in

the following dimensions: (a) the probability of disaster is persistent instead of i:i:d:; (b) the

production function is neoclassical and a¤ected by standard TFP shocks; (c) labor is elastically

supplied; (d) disasters may a¤ect total factor productivity as well as capital; (e) there are capital

adjustment costs.

3.1 Model Setup

The representative consumer has preferences of the Epstein-Zin form, and the utility index incor-

porates hours worked Nt as well as consumption Ct:

Vt =
�
u(Ct; Nt)

1� + �Et
�
V 1��
t+1

� 1�
1��
� 1
1�

; (4)

where the per period felicity function u(C;N) is assumed to have the following form:

u(C;N) = C�(1�N)1��:

Note that u is homogeneous of degree one, hence  is the inverse of the intertemporal elasticity

of substitution (IES) over the consumption-leisure bundle, and � measures risk aversion towards

static gambles over the bundle.

There is a representative �rm, which produces output using a standard Cobb-Douglas pro-

duction function:

Yt = K�
t (ztNt)

1�� ;

where zt is total factor productivity (TFP), to be described below. The �rm accumulates capital

subject to adjustment costs:

Kt+1 =

�
(1� �)Kt + �

�
It
Kt

�
Kt

�
(1� xt+1bk):

where � is an increasing and concave function, which curvature captures adjustment costs, and

xt+1 is 1 if there is a disaster at time t + 1 (with probability pt) and 0 otherwise (probability

1� pt). At this stage bk is a parameter, which may be zero - i.e., a disaster only a¤ects TFP. We

explore quantitatively the role of bk in section 5.2.

The resource constraint is

Ct + It � Yt:

10



Aggregate investment cannot be negative: It � 0: Depending on parameter values, this constraint

may bind in the periods immediately following a disaster.

Finally, we describe the shock processes. Total factor productivity (TFP) is assumed to follow

a unit root process, and is a¤ected by standard normally distributed shocks "t as well as disasters.

Mathematically,

log zt+1 = log zt + �+ �"t+1 + xt+1 log(1� btfp);

where � is the drift of TFP, and � is the standard deviation of normal shocks, and btfp is the

reduction in TFP following a disaster. Here too, we will consider various values for btfp; including

possibly zero - i.e., a disaster only destroys capital but does not actually a¤ect TFP. Last, the

probability of disaster pt follows a stationary Markov process with transition function T: In the

quantitative application, I will simply assume that the log of pt follows an AR(1) process.

I assume that the three exogenous shocks pt+1; "t+1; and xt+1 are all independent conditional on

pt: This assumption requires that the occurrence of a disaster today does not a¤ect the probability

of a disaster tomorrow. This assumption may be wrong either way: a disaster today may indicate

that the economy is entering a phase of low growth or is less resilient than thought, leading agents

to revise upward the probability of disaster, following the occurrence of a disaster. But on the

other hand, if a disaster occurred today, and capital or TFP fell by a large amount, it is unlikely

that they will fall again by a large amount next year. Rather, historical evidence suggests that

the economy is likely to grow above trend for a while (Gourio (2008a), Barro et al. (2009)). In

section 5.3, I extend the model to consider these di¤erent scenarios.

3.2 Bellman Equation

In this section I set up a recursive formulation of the problem, which is used to prove analytical

results. The model has three state variables: capital K, technology z and probability of disaster

p. There are two independent controls: consumption C and hours worked N ; and three shocks:

the realization of disaster x0 2 f0; 1g ; the draw of the new probability of disaster p0, and the

normal shock "0: The �rst welfare theorem holds, hence the competitive equilibrium is equivalent

to a social planner problem, which is easier to solve. Denote V (K; z; p) the value function, and
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de�ne W (K; z; p) = V (K; z; p)1�: The social planning problem can be formulated as:

W (K; z; p) = max
C;I;N

(�
C�(1�N)1��

�1�
+ �

�
Ep0;"0;x0W (K

0; z0; p0)
1��
1�
� 1�

1��
)
; (5)

s:t: :

C + I � z1��K�N1��;

K 0 =

�
(1� �)K + �

�
I

K

�
K

�
(1� x0bk) ;

log z0 = log z + �+ �"0 + x0 log(1� btfp):

(Because we take a power 1 �  of the value function, if  > 1, the max operator must

be transformed into a min.) A standard homogeneity argument implies that we can write

W (K; z; p) = z�(1�)g(k; p); where k = K=z, and g satis�es the associated Bellman equation:

g (k; p) = max
c;i;N

8><>:
c�(1�)(1�N)(1��)(1�)

+�e��(1�)
�
Ep0;"0;x0e

�"0�(1��) (1� x0btfp)
�(1��) g (k0; p0)

1��
1�
� 1�

1��

9>=>; ; (6)

s:t: :

c+ i = k�N1��;

k0 =
(1� x0bk)

�
(1� �)k + �

�
i
k

�
k
�

e�+�"0 (1� x0btfp)
:

Here c = C=z and i = I=z are consumption and investment detrended by the stochastic tech-

nology level z: This homogeneity argument simpli�es the problem substantially. It delivers some

analytical results, and makes the numerical analysis simpler: �rst, k is stationary; second, the

dimension of the state space is reduced.

3.3 Asset Prices

It is straightforward to compute asset prices in this economy. The stochastic discount factor is

given by the formula

Mt;t+1 = �

�
Ct+1
Ct

��(1�)�1�
1�Nt+1
1�Nt

�(1��)(1�)0@ Vt+1

Et
�
V 1��
t+1

� 1
1��

1A��

: (7)

The price of a one-period risk-free bond is Et (Mt;t+1) ; but this risk-free asset may not have an

observable counterpart. Following Barro (2006), I will assume that government bonds are not
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risk-free but are subject to default risk during disasters.14 More precisely, if there is a disaster,

the recovery rate on government bonds is r, i.e. the loss is 1 � r: The T-Bill price can then be

easily computed as Q1;t = Et (Mt;t+1(1 + xt+1(r � 1))))
def
= Q1(k; p): The ex-dividend value of the

�rm assets Pt is de�ned through the value recursion:

Pt = Et (Mt;t+1 (Dt+1 + Pt+1)) ;

where Dt = F (Kt; ztNt) � wtNt � It is the payout of the representative �rm, and wt is the

wage rate, given by the marginal rate of substitution of the representative consumer between

consumption and leisure. The equity return is then Rt;t+1 =
Dt+1+Pt+1

Pt
: If the positivity constraint

on investment does not bind, the unlevered equity return can be rewritten, following a standard

Q-theory argument (See Jermann (1998) or Kaltenbrunner and Lochstoer (2008)) as

Rt;t+1 = (1� xt+1bk)�
0
�
It
Kt

�0@1� � + �
�
It+1
Kt+1

�
�0
�
It+1
Kt+1

� +
�K�

t+1z
1��
t+1 N

1��
t+1 � It+1

Kt+1

1A ; (8)

where the �rst term emphasize that if bk > 0; capital holders make a loss in the event of a disaster.

The empirical counterpart to this unlevered equity return is not stock returns, because in

the real world, �rms have �nancial leverage and operating leverage (e.g. �xed costs and labor

contracts). This is a substantial source of pro�t and dividend volatility, which is not present in

the model. Under the Modigliani and Miller theorem, in the absence of �nancial friction or taxes,

the only e¤ect of leverage is to modify the payout process and subsequently the asset prices.

Rather than model the leverage explicitly, I follow the asset pricing literature (e.g. Abel (1999))

and compute the price of a claim to Dlev
t = Y �

t ; where � > 1 is the leverage parameter. This

formulation implies that � logDlev
t = �� log Yt; making dividends more volatile than output, as

in the data. I will use the price of this levered claim to output as the model counterpart to stock

prices. In section 5.1, I show that this formulation of leverage gives nearly identical results to a

formulation based on a constant debt-equity ratio.

3.4 Analytical results

This section proves some analytical results in the special case bk = btfp; i.e. productivity and

capital fall by the same amount if there is a disaster. Under this assumption, we �rst establish

14Empirically, default often takes the form of high rates of in�ation which reduces the real value of nominal
government debt.
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the behavior of quantities and returns following a disaster. Then we establish the equivalence

between disaster risk and a change in impatience (discount factor). All these results stem directly

from equation (6).15

Proposition 1 Assume that bk = btfp: Then, a disaster leads consumption, investment, and

output to drop by a factor bk = btfp; while hours do not change. The return on capital is also

reduced by the same factor, while the return on government bonds is reduced by a factor r. There

is no further e¤ect of the disaster on quantities or prices, i.e. all the e¤ect is on impact.

Proof. Equation (6) leads to policy functions c(k; p); i(k; p); N(k; p) and y(k; p) = k�N(k; p)1��

which express the solution as a function of the probability of disaster p (the exogenous state

variable) and the detrended capital k (the endogenous state variable). The detrended capital

evolves according to the shocks "0; x0; p0 through

k0 =
(1� x0bk)

�
(1� �)k + �

�
i(k;p)
k

�
k
�

e�+�"0 (1� x0btfp)
:

The key remark is that if bk = btfp; then

k0 =

�
(1� �)k + �

�
i(k;p)
k

�
k
�

e�+�"0

is independent of the realization of disaster x0: As a result, the realization of a disaster does not

a¤ect c; i; N; y, since k is unchanged, and hence it leads consumption C = cz; investment I = iz;

and output Y = yz to drop by a factor bk = btfp on impact. Furthermore, once the disaster

has hit, it has no further e¤ect since all the endogenous dynamics are captured by k, which is

una¤ected. The statement regarding returns follows from the expression of the stock return (8):

given that the investment-capital ratio and output-capital ratios are una¤ected by the disaster,

the only e¤ect of the disaster is to multiply Rt;t+1 by the factor (1� bk):

The intuition for proposition 1 stems directly from the condition for the steady-state of the

neoclassical growth model, which is determined by the level of TFP according to the familiar

formula 1
�
� 1 + � = �K��1 (Nz)1�� : Given the preference speci�cation, the steady-state hours

are una¤ected by the change in TFP. The decrease in z hence requires an equal decrease in K

to reach a steady-state. When bk = btfp; the amount of capital destruction is exactly what is

15An alternative derivation, using the Euler equation, is provided in the appendix.
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required for the economy to jump from one steady-state to another steady-state, and there are

no further transitional dynamics.

In contrast, when bk 6= btfp; a disaster leads both to impact e¤ects and to further transitional

dynamics. For instance, a capital destruction without reduction in productivity leads to high

investment and a recovery as the economy converges back to its initial steady-state. Inversely, a

productivity decline without capital destruction leads to a persistently low level of investment as

the economy adjusts gradually to reach its new steady-state.

We can now state the �rst main result.

Proposition 2 Assume that the probability of disaster p is constant, and that bk = btfp: Then the

policy functions c(k), i(k); N(k); and y(k) are the same as in a model without disasters (p = 0);

but with a di¤erent time discount factor �� = �(1� p+ p(1� bk)
�(1��))

1�
1�� : Assuming � � 1; we

have �� � � if and only if  < 1: Asset prices and expected returns, however, will be di¤erent

under the two models.

Proof. Following proposition 1, note that k0 is independent of the realization of disaster x0. As

a result, we can simplify the expectation in the Bellman equation (6):

g (k) = max
c;i;N

8><>:
c�(1�)(1�N)(1��)(1�)

+�e��(1�)
�
Ex0 (1� x0btfp)

�(1��) � E"0e
�"0�(1��)g (k0)

1��
1�
� 1�

1��

9>=>; ;

i.e.:

g (k) = max
c;i;N

(
c�(1�)(1�N)(1��)(1�) + ��e��(1�)

�
E"0e

�"0�(1��)g (k0)
1��
1�
� 1�

1��
)
:

We see that this is the same Bellman equation as the one in a standard neoclassical model, with

discount rate ��: As a result, the policy functions c(k); N(k); i(k) and y(k) are also the same as

a standard neoclassical model.

Asset prices, on the other hand, are driven by the stochastic discount factor, which weights

the possibility of disaster (see the expression of the SDF in the computational appendix). Both

consumption and the return on capital are low in a disaster as show in Proposition 1, hence the

equity premium will be larger than in a model without disaster risk.

This result has several implications. First, in a sample without disasters, the quantities

implied by the model (consumption, investment, hours, output and capital) are exactly the same

as those implied by the standard RBC model, provided that the discount factor is adjusted. In
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practice, this adjustment is small and hence has very little e¤ect on quantity dynamics. For

the benchmark calibration, we have � = :994; and �� � :9934. As a particular implication, the

response to a standard normal TFP shock " will be exactly the same, hence the model will generate

the standard patterns of higher investment, output, employment and consumption following an

increase in TFP.

Second, this analytical result clari�es the numerical �ndings of Tallarini (2000). As discussed

in the introduction, he found, in a model where the IES is unity, that higher risk aversion has

little e¤ect on business cycle quantity dynamics (a �nding often interpreted as ��xing the asset

pricing properties of a RBC model need not change the quantity dynamics�). In my model, if the

IES is unity ( = 1), �� is exactly equal to �, hence no adjustment is required and the equivalence

of dynamics is an exact result. The model nevertheless generates a large equity premium, since a

disaster leads to a large decline in consumption and in the equity return. This proposition hence

shows how to construct a model with large risk premia and reasonable business cycle dynamics,

addressing the question studied by Jermann (1998) and Boldrin, Christiano and Fisher (2001).

Third, the result implies that the steady-state level of capital stock will be a¤ected by the

probability of disaster. If risk aversion � is greater than unity, and the IES is above unity, then

�� < �, leading people to save less: the steady-state capital stock is lower than in a model without

disasters. While higher risk to productivity leads to higher precautionary savings, rate-of-return

risk can reduce savings.

While this �rst result is interesting, it is not fully satisfactory however, since the constant

probability of disaster implies constant risk premia. As is well known, constant risk premia imply

that price-dividend ratios and returns are not volatile enough. This motivates extending the

result for a time-varying p:

Proposition 3 Assume that bk = btfp; and that p follows a stationary Markov process. Then the

policy functions c(k; p), i(k; p); N(k; p); and y(k; p) are the same as in a model without disasters

(p = 0), but with stochastic discounting (i.e. � follows a stationary Markov process). Assuming

� � 1, � is inversely related to p if and only if  < 1:

Proof. The proof also uses the fact that k0 is independent of x0, to simplify the expectation inside

the Bellman equation (6):

g (k; p) = max
c;i;N

8><>:
c�(1�)(1�N)(1��)(1�)

+�e��(1�)
�
Ex0jp (1� x0btfp)

�(1��)E"0;p0e
�"0�(1��)g (k0; p0)

1��
1�
� 1�

1��

9>=>; :
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De�ne

�(p) = �
�
Ex0jp (1� x0btfp)

�(1��)
� 1�
1��

= �
�
1� p+ p(1� btfp)

�(1��)� 1�1��
:

Since p is Markov, � is Markov too. Assuming � � 1; � is increasing in p if and only if  < 1:We

have:

g (k; p) = max
c;i;N

(
c�(1�)(1�N)(1��)(1�) + �(p)e��(1�)

�
E"0;p0e

�"0�(1��)g (k0; p0)
1��
1�
� 1�

1��
)
;

i.e. the Bellman equation of a model with time-varying �, but no disasters.

This result shows that the time-varying risk of disaster has the same implications for quantities

as a preference shock. It is well known that these shocks have a signi�cant e¤ect on macroeconomic

quantities (a point that we will quantify later). In a sense, this version of the model breaks the

�separation theorem�of Tallarini (2000): when risk varies over time, risk aversion has an e¤ect

on the quantities. Asset prices will respond as well, generating correlations of risk premia and

quantities.

This result is interesting in light of the empirical literature which suggests that �preference

shocks�or �equity premium shocks�may be important (e.g., Smets and Wouters (2003)). Chari,

Kehoe and McGrattan (2009) criticize these shocks which lack microfoundations. My model

provides a simple microfoundation, which allows to tie these shocks to asset prices precisely, and

justi�es the label �equity premium shock�. Of course, my model is signi�cantly simpler than the

medium-scale models of Smets and Wouters (2003), but I conjecture that this equivalence can be

generalized to a large class of models.

Interestingly, this result also shows that it is technically feasible to solve DSGE models with

time-varying risk premia. A full non-linear solution of a medium-scale DSGE model is daunting.

But under this result, we can solve the quantities of the model by solving a model with shocks to

� and no disasters, i.e. a fairly standard model which we can approximate well using log-linear

methods. Once quantities are found, we can solve for asset prices using nonlinear methods. The

computational appendix details this solution method.

The three propositions require that bk = btfp; analytical results are impossible without this

assumption. As discussed above, proposition 1 does not hold if bk 6= btfp. On the other hand,

numerical experiments suggest that proposition 2 is robust to this assumption, in that the dynamic

response to a TFP shock is largely una¤ected by the presence or type of disasters (i.e. bk vs.

btfp). Proposition 3 is somewhat more fragile. For instance, if disasters a¤ect only TFP, and

17



there are no adjustment costs, then an increase in p will lead people to want to hold more capital,

for standard precautionary savings reasons. This is true regardless of the IES. We discuss this

further and relax the assumption bk = btfp in Section 5.2.

4 Quantitative Results

This section �rst presents the calibration. I then successively study the implications of the model

for business cycle quantities, for asset prices, and �nally for the relations between asset prices

and quantities. In general, the model cannot be solved analytically, leading me to resort to a

numerical approximation. A nonlinear method is crucial to analyze time-varying risk premia. I use

a standard policy function iteration algorithm, which is described in detail in the computational

appendix.

4.1 Calibration

Parameters are listed in Table 1. The period is one quarter. Many parameters follow the business

cycle literature (Cooley and Prescott (1995)). The risk aversion parameter is picked to replicate

the mean equity premium, and it is set at 6. However, this is risk aversion over the consumption-

hours bundle. Since the share of consumption in the utility index is .3, the e¤ective risk aversion

to a consumption gamble is 1:8 (Swanson (2010)).

The intertemporal elasticity of substitution of consumption (IES) is set at 2. There is a

large debate regarding the value of the IES. Most direct estimates using aggregate data �nd low

numbers (e.g. Hall (1988)), but this view has been challenged by several authors (see among

others Bansal and Yaron (2004), Guvenen (2006), Mulligan (2004), Vissing-Jorgensen (2002)).

As emphasized by Bansal and Yaron (2004), a low IES has the counterintuitive e¤ects that higher

expected growth lowers asset prices, and higher uncertainty increases asset prices. The IES plays

a key role for only part of my results, namely the response of macroeconomic quantities to an

increase in the probability of disaster.

The functional form for the adjustment cost function follows Jermann (1998): �(x) = a1
x1��

1�� +

a2; where a1 and a2 are set such that the steady-state is independent of � and marginal Q is one.

The unique parameter � is set to match approximately the volatility of investment, relative to

output, leading to � = :15, a value well in the range of empirical estimates.16

16The volatility of investment is limited by general equilibrium feedbacks, as in the RBC model, hence only
moderate adjustment costs are required to lower further a bit the volatility of investment.

18



One crucial element of the calibration is the probability and size of disaster. I assume that

bk = btfp = :43 and the probability is :017 per year on average. These numbers are motivated by

the evidence in Barro (2006) who reports this unconditional probability, and the risk-adjusted size

of disaster is on average 43%. (Barro actually uses the historical distribution of sizes of disaster.

In his model, this distribution is equivalent to a single disaster with size 43%.) In my model,

with bk = btfp = :43; both consumption and output fall by 43% if there is a disaster. Note that

since the Solow residual is z1��; the actual drop in productivity is 30:2%.

Whether one should model a disaster as a capital destruction or a reduction in TFP is an

important question. Clearly some disasters, e.g. in South America since 1945, or Russia 1917,

a¤ected TFP, perhaps by introducing an ine¢ cient government and poor policies. On the other

hand, World War II led in many countries to massive physical destructions and losses of human

capital. It would be interesting to gather further evidence on disasters, and measure bk and btfp

directly. This is beyond the scope of this paper. I concentrate on the parsimonious benchmark

case bk = btfp.This has the advantage of clarity, since the analytical results of section 3 apply, and

generates the same consumption dynamics during disasters as assumed in the literature that uses

endowment economies (Barro (2006), Gabaix (2007), Wachter (2008), Gourio (2008)). In section

5.2, I discuss an alternative calibration with bk = 0, which generates many of the same results,

provided that there are capital adjustment costs. Hence the capital destruction is not necessary

for the model to match the data well.

The second crucial element is the persistence and volatility of movements in this probability

of disaster. I assume that the log of the probability follows an AR(1) process:

log pt+1 = �p log pt + (1� �p) log p+ �p"p;t+1;

where "p;t+1 is i:i:d: N(0; 1):17 The parameter p is picked so that the average probability is :017

per year, and I set �p = :92 and the unconditional standard deviation �pp
1��2p

= 1:85, which allows

the model to �t reasonably well the volatility and predictability of equity returns. Regarding the

default of government bonds during disasters, I follow the work of Barro (2006): conditional on

a disaster, government bonds default with probability :6; and the default rate is the size of the

disaster. The leverage parameters � is set to 2 (Abel (1999)).

On top of this benchmark calibration, I will also present results from di¤erent calibrations

17This equation allows the probability to be greater than one, however I will approximate this process with a
�nite Markov chain, which ensures that 0 < pt < 1 for all t � 0:
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(no disasters, constant probability of disaster, and in section 5 more extensions) to illustrate the

sensitivity of the results.

Some may argue that this calibration of disasters is extreme. A few remarks are in order.

First, a long historical view makes this calibration sound more reasonable, as shown by Barro

(2006) and Barro and Ursua (2008). An example is the U.K., which sounded very safe in 1900, but

experienced a variety of very large negative shocks during the XXth century. The recent crisis also

illustrates some large declines in consumption or GDP: for instance, real consumption in Iceland

is expected to drop by 7.1% in 2008 and 24.1% in 2009, according to the o¢ cial government

forecast (January 2009). According to the IMF World economic outlook (April 2009), output

in Germany, Ireland, Ukraine, Japan, Latvia, Singapore, Taiwan, are expected to contract by

respectively 5.6%, 8.0%, 8.0%, 6.2%, 12.0%, 10.0%, 7.5% in 2009 alone. Second, it is also possible

to change the calibration, and increase risk aversion18 while reducing the size or probability of

disasters. One can also employ fairly standard devices to boost the equity premium, and reduce

the probability of disaster further - e.g., the disasters may be concentrated on a limited set

of agents, or some agents may have background risk (private businesses); or idiosyncratic risk

might be countercyclical. These features could all be added to the model, at a cost in terms of

complexity, and would likely reduce the magnitude of disasters required to make the model �t

the data.

4.2 An increase in the probability of a disaster

We can now perform the key experiment of an increase in the probability of disaster, i.e. an

increase in risk. Figure 1 plots the impulse response of quantities to a doubling of the probability

of disaster at time t = 6, starting at its long-run average (.017% per year or 0.00425% per

quarter).19 Investment decreases, and consumption increases, as in the analytical example of

section 2, since the elasticity of substitution is assumed to be greater than unity. Employment

decreases too, through an intertemporal substitution e¤ect: the return on savings is low and thus

working today is less attractive. (This is in spite of a negative wealth e¤ect which tends to push

employment up; given the large IES the substitution e¤ect overwhelms the wealth e¤ect both for

18The risk aversion in my calibration less than two, and hence even lower than in Barro (2006), because the
variation over time in the probability of disaster is an additional source of risk.
19For clarity, to compute this �gure, I assume that there are no realized disaster. The simulation is started of

after the economy has been at rest for a long time (i.e. no realized disasters, no normal shocks, and no change in
the probability of disaster). I obtain this �gure by averaging out over 100,000 simulations which start at t = 6 in
the same position, but then have further shocks to " or p:
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consumption and for leisure.) Hence, output decreases because both employment and the capital

stock decrease, even though there is no change in current or future total factor productivity.

This is one of the main result of the paper: this shock to risk leads to a recession. After impact,

consumption starts falling. These results are robust to changes in parameter values, except for the

IES which crucially determines the sign of the responses, and the assumption that bk = btfp (as we

discuss in section 5.2 below). The size of adjustment costs, and the level of risk aversion, a¤ect only

the magnitude of the response of investment and hours. This �gure is consistent with proposition

3: the shock is equivalent, for quantities, to a preference shock to �: The model predicts some

negative comovement between consumption and investment, which may seem undesirable.20 I

discuss this further in Section 5.4.

Regarding asset prices, �gure 2 reveals that, following the shock, the risk premium on equity

increases (the spread between the red�crosses line and the black-full line becomes larger), and

the short rate decreases, as investors try to shift their portfolio towards safer assets - a ��ight to

quality�. Hence, in the model, an increase in risk premia coincides with a recession. On impact

(at t = 6); the increase in the risk premium lowers equity prices substantially, through a discount

rate e¤ect.

4.3 First and second moments of quantities and asset returns

Table 2 reports the standard business cycle moments obtained from model simulations. Results

are reported both for a sample where no disaster actually takes place (i.e. agents fear a disaster

but it does not occur in sample), and, in the starred rows, for a full sample that includes disaster

realizations (i.e. population moments). The data row reports the standard U.S. post-WWII

statistics. Given the lack of disasters in these data, one should compare the data to the model

results in a sample without disasters.

Row 2 shows the results for the standard model (i.e. bk = btfp = 0). The success of the basic

RBC model is clear: consumption is less volatile than output, and investment is more volatile

than output. The volatility of hours is on the low side, a standard defect of the basic RBC model

driven by the speci�cation of the utility function and adjustment costs.

Introducing a constant probability of disaster, in row 3, does not change the moments signi�-

cantly. This is consistent with proposition 2. However, the presence of the risk shock - the change

20Despite the fact that consumption rises on impact, states of nature with high probability of disaster are still
"bad states", i.e. high marginal utility states. This is because the stochastic discount factor also includes current
hours and future utility, and the higher uncertainty reduces the future value due to risk aversion (i.e. volatility is
a priced factor; see e.g. Bansal and Yaron (2004) for a related analysis).
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in the probability of disaster - leads to additional dynamics, which are visible in row 5. Specif-

ically, the correlation of consumption with output is reduced. Total volatility increases, since

there is an additional shock, but this is especially true for investment and employment. Overall

the model gets closer to the data for most moments, except the relative volatility of investment

which is slightly too high.

Turning to returns, table 3 shows that the benchmark model (row 4) can generate a large

equity premium: about 6% (=4*(1.93-0.42)) per year for a levered equity (the model counterpart

to real stocks). The unlevered equity also has a signi�cant risk premium of 1.8% per year. These

risk premia are computed over short-term government bonds, which are not riskless in the model;

they would be larger if computed over the risk-free asset. Whether these risk premia are calculated

in a sample with disasters or without disasters does not matter much quantitatively - the risk

premia are reduced by 15�25 basis point per quarter or 0.6-1% per year. Hence, sample selection

is not a critical issue.

Table 3 shows that the volatility of the levered equity approximately matches that of the data

(7.14% per quarter vs. 8.14% in the data). This is in sharp contrast with the RBC model (1.59%)

or the model with constant probability of disaster (1.53%). Importantly, the model matches the

low volatility of short-term interest rates (0.85% vs. 0.81% in the data), an improvement over

the studies of Jermann (1998) and Boldrin, Christiano and Fisher (2001) which implied highly

volatile interest rates.

For completeness, it is important to note that an unlevered equity does not have volatile

returns, however (0.40% per quarter). The intuition is that, without adjustment costs, Tobin q

is unity, and the return on capital is simply 1� � + �K��1
t+1 (zt+1Nt+1)

1��; which is very smooth.

My calibration has only a small amount of adjustment costs, hence Tobin q varies little and the

return on unlevered capital is smooth.21

21This foonote describes, for completeness, the implications of the model for the term structure of interest rates.
Because the model does not incorporate in�ation, it is di¢ cult to estimate the extent to which the model �ts the
data. Moreover, these results for the yield curve are similar to those in the endowment economy model of Gabaix
(2007). Assume that all bonds default by the same amount during disasters. The model then generates a negative
term premium, consistent with the evidence for indexed bonds in the UK. This negative term premium is not
due to what happens during disasters, since short-term bonds and long-term bonds are assumed to default by the
same amount. As usual, TFP shocks generate very small risk premia. The term premium is thus driven by the
third shock, i.e. the shock to the probability of disaster. An increase in the probability of disaster reduces interest
rates, as the demand for precautionary savings rises. As a result, long-term bond prices rise. Hence, long term
bonds hedge against the shock to the probability of disaster, they have lower average return than the short-term
bonds, and the yield curve is on average downward sloping. Obviously, one possibility to make the yield curve
upward-sloping is to assume that long-term bonds will default by a larger amount, should a disaster happen.
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4.4 Relations between asset prices and macroeconomic quantities

This section evaluates the ability of the model to reproduce some relations between asset prices

and macroeconomic quantities.

4.4.1 Countercyclicality of risk premia

An important feature of the data is that risk premia are countercyclical. This has been illustrated

strikingly by the recent crisis, where the yield on risky assets such as corporate bonds went up

while the yield on safe assets such as government bonds went down. This pattern is common to

most U.S. recessions. To illustrate it simply, �gure 3 reports the covariance between detrended

output eyt and stock excess returns at di¤erent leads and lags, i.e. Cov
�eyt; Ret+k �Rft+k

�
;for

k = �12 to k = 12 quarters. In the data (full line), this covariance is positive for k < 0, re�ecting

the well-known fact that excess returns lead GDP, but this covariance becomes negative for

k � 0, implying that output negatively leads excess returns, i.e. risk premia are lower when

output is high.22 I concentrate on the covariance rather than the correlation because the size

of the association is critical (correlations can look good even if there is only a tiny variation,

provided it has the right sign). GDP is detrended using the one-sided version of the Baxter-King

(1999) �lter.

The fact that returns lead GDP, while interesting, might be rationalized by several models,

e.g. a model of advance information and adjustment costs or time-to-build. More simply, as

can be seen in the �gure 3, even the basic RBC model generates this pattern, since high returns

re�ect positive TFP shocks, and positive TFP shocks lead to a period of above-trend output.

More interesting, and more discriminating, is the right-side of this picture, i.e. high output is

associated with low future excess returns. The model without shocks to p, i.e. the RBC model,

does not generate any variation in risk premia, so the model-implied covariance is very close to

zero.23 In contrast, my model generates about the right comovement of output and risk premia.

This is a validation of the model key mechanism: changes in risk drive both expected returns and

output.

22I use this particular statistic because it has a natural model counterpart. There are other, more powerful ways
to show in the data that risk premia are countercyclical. First one can use additional variables, not present in
the model: e.g. the unemployment rate forecasts excess stock returns negatively. Second, one can use a standard
return forecasting regression, i.e. running future returns on the current dividend yield, the short rate and the
term spread, and observe that the �tted values from this regression are signi�cantly negatively correlated with
detrended GDP.
23It is important to use a one-sided �lter for this purpose, since with a two-sided �lter output is low when future

output is high, i.e. in the RBC model when future TFP is high, i.e. when future returns are high: hence, the RBC
model generates a negative covariance between two-sided �ltered output and future excess returns.
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4.4.2 VIX and GDP

The VIX index is a measure of the implied volatility of the SP500, constructed by the CBOE from

option prices with di¤erent strikes. Mathematically, it is de�ned as
q
4varQt

�
rmt+1

�
; where the

variance is taken under the risk-neutral measure, and the factor 4 annualizes the variance. In an

in�uential study, Bloom (2009) shows using a reduced-form VAR that shocks to the VIX index

have a signi�cant negative e¤ect on output. Figure 4 reproduces this results by depicting the

impulse response of output to a shock to VIX in the data (full blue line). This impulse response

function is computed using a Cholesky decomposition, under the orthogonalization assumption

that a shock to VIX has no instantaneous impact on GDP.24

Running the same VAR on the model-generated data yields a response that is fairly similar

to the data (red crosses). In the model, VIX is largely driven by the fear of a disaster, i.e. VIX

is nearly one-to-one with the state variable p. Increases in p lead to an increase in VIX and a

decline in output. Hence, the model generates an impulse response consistent with the data. In

contrast, in a real business cycle model without disaster risk, VIX is small and nearly constant,

and the VAR �nds actually a positive e¤ect of VIX on output.

4.4.3 Investment and Asset Prices

One enduring puzzle in macroeconomics and �nance is the relation between investment and the

stock market. While the Q-theory correctly predicts a positive correlation, the level of adjustment

costs required to match the investment and the stock market is widely considered excessive (see

e.g. Philippon (2009) for a recent discussion). In contrast, I show here (see also section 6) that

my model captures well the magnitude of the relation between the stock market and investment,

even with small adjustment costs.

One way to measure this association is to compute the covariance between investment and asset

prices in the RBCmodel. Figure 5 presents the cross-covariogram k = Cov(it+k; log(Pt=Dt));where

it+k is HP-�ltered log investment, for k = �12 to k = 12 quarters.

The black (diamonds) line shows the data, re�ecting the well-known pattern that investment

and the stock market are positively correlated, with the stock market leading investment. The

blue line (crosses) presents the covariogram for the model with only TFP shock, i.e. the basic

RBC model. The model generates actually a small negative covariance between the price-dividend

24The orthogonalization assumption has little impact on these results. Following Bloom, both GDP and volatility
are HP-�ltered, but this is not critical either. Last, in the model, as in the data, it makes relatively little di¤erence

whether we use the implied volatility, based on the risk-neutral measure, or the physical volatility,
q
4vart

�
rmt+1

�
:
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ratio and investment, because TFP shocks have little e¤ect on the stock market value - higher

TFP increase future cash �ows, but also increases interest rates, leading to o¤setting e¤ects on

the levered equity.

The red line (diamonds) the covariogram for the benchmark model, i.e. including both TFP

shocks and shocks to the probability of disaster. The key result is that the covariance is now of the

right magnitude. Both models are, however, unable to replicate the exact timing of the association

between the stock market and investment, i.e. to match the observed lag, but additional frictions

such as time-to-plan may account for this.

4.4.4 Other asset pricing implications

The model has several other interesting implications for asset prices, which I describe brie�y in

this section. First, the model is consistent with the evidence that equity returns are predictable,

but dividends are not. The standard regression

Ret!t+k �Rft!t+k = �+ �
Dt

Pt
+ "t+k;

yields a R2 = 25% at the four-year horizon (k = 4) in the data (this �gure, however, is sample-

speci�c), and a R2 = 54% in the model. In both data and model, the results are similar if the

left-hand side variable is returns rather than excess returns. Second, in the model as in the data,

dividends are much less forecastable than returns, i.e. in a regression

Dt+k

Dt

= �+ �
Dt

Pt
+ "t+k;

the R2 is 1% in the data at a four-year horizon, while it is 6% in the model. Hence, there is

somewhat too much predictability of returns in the model, but the model is consistent with the

�nding that discount rate variation is the key driver of stock prices.

Third, the model generates an Euler equation error. A large literature has concentrated on

the ability of models to generate a signi�cant equity premium and volatile returns. Lettau and

Ludvigson (2009) argue that a more challenging test is to generate a failure of the Euler equation,

i.e. estimating the Euler equation with CRRA utility on data simulated from the model should

lead, as in the data, to a rejection of the model. These author show that few models can pass

this test, because in most models aggregate consumption is highly correlated with returns. In

my model, the shock to the probability of disaster induces a negative comovement between asset
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returns and aggregate consumption, leading the CRRA model to be rejected.

Fourth, the model can generate qualitatively, but not quantitatively, results similar to those

of Beaudry and Portier (2006, BP hereafter), which have stimulated a large recent literature on

�news shocks�. BP show empirically that shocks to the stock market lead to a gradual increase in

TFP and GDP, suggestive of advance information about cash �ows. An alternative interpretation

of their �ndings is that the stock market movements are driven by changes in risk premia, which

then feed back to GDP (and possibly in measured TFP through variation in utilization). To

evaluate this possibility, I ran the same bivariate VAR with GDP growth and the stock market

return in the data, in the RBC model, and in my model.25 The impulse response are similar to

BP, i.e. a �return shock�leads to a cumulative increase in GDP, however the magnitude of the

response is much smaller in my model than in the data.

Fifth, it is possible to introduce corporate bonds, if one assumes (as in Philippon (2009)) that

�rms are run to maximize total value (not equity value). One can then calculate the bond prices

implied by the �rm value and an exogenous leverage policy. The credit spreads generated by

the model are high and volatile, and the model generates a strong negative correlation between

investment and credit spreads.

5 Robustness and Extensions

In this section, I discuss several extensions of the baseline model, and check that the results are

robust to various changes in the calibration.

5.1 A calibration with �nancial leverage

The benchmark model follows a formulation of leverage which is standard in the asset pricing

literature, i.e. the dividend process isDt = Y �
t : One may worry that the nonlinearity is important.

To check this, I computed the return on a levered equity, given an exogenous debt issuance policy.26

Since the Modigliani-Miller theorem holds, the debt policy has no impact on the allocation.

Assume that the �rm each period adjusts its debt issues to keep the maturity equal to 5 years,

and the book leverage ratio equal to 0.45 (Abel (1999), Barro (2006)). The expression for the

25Following BP, I use the orthogonalization assumption that the stock market shock does not a¤ect GDP
instantaneously. Obviously in my model this assumption is incorrect, hence the shocks picked by the VAR are
combinations of the fundamental shocks, of opposite e¤ect on output.
26I assume that the debt has the same default characteristics as government debt, i.e. it will default in a disaster,

but by less than the capital stock. The results are stronger if the debt is truly risk-free. An interesting extension
of the model is to make default endogenous.
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levered �rm return is

Rlevt+1 =
Pt+1 +Dt+1 + !tQ

(n�1)
t+1 � !t+1Q

(n)
t+1

Pt � !tQ
(n)
t

;

where Q(n)t is the price of a zero-coupon n-period bond, and !t is the number of bonds issued,

e.g. for a constant book leverage policy !tQ
(n)
t = :45Kt. The mean return on the levered equity

is then 2.25% per quarter, while the standard deviation of the return is 9.46%. This contrasts

with 1.93% and 7.14% in my simple formulation of leverage. Moreover, in simulations, the two

returns have a correlation above .95. Hence, the results are very similar if I use this formulation of

leverage. Alternatively, one can assume that the �rm keeps the market leverage ratio constant. In

the benchmark model, the market value of the �rm is only slightly more volatile than its capital

stock, due to (rather small) adjustment costs, hence the results are nearly identical (2.23% for

mean return and 9.37% for volatility of return).

5.2 A calibration without capital destruction

An interesting question is whether one should model a disaster as a reduction in TFP or a

destruction of the existing capital stock.27 Decreases in TFP arise for instance because of poor

government policies or extreme misallocation, while destructions of the capital stock can be due

to wars or expropriations (see the discussion in section 2). Tables 4 and 5 study the sensitivity of

the key results to this assumption, and propose a di¤erent parametrization of the model without

capital destruction which gives results similar to the benchmark. In tables 4 and 5, I keep the

parameters as in the benchmark, except for those noted in the �rst column.

First, note that a calibration with only capital destruction and no TFP decline does not �t the

data well (row 6). Business cycle statistics are, to a �rst order, similar to the benchmark model,

but the equity premium is small and returns are not volatile. Intuitively, a disaster does not

impact agents much in this economy, because capital share is only one-third, and hours increase

following the disaster, thereby limiting the initial decline in output, and moreover the economy

returns fairly quickly to its steady-state. Moreover, with recursive utility, agents take into account

their future (high) consumption and hence do not mind disasters all that much.28

Second, when disasters a¤ect solely TFP, and there are no adjustment costs (row 3), the model

27In the benchmark, I assumed that a disaster a¤ects TFP and the capital stock equally. This generates a
responses of consumption following a disaster which is the same as the endowment economy literature (e.g. Rietz
(1988), Barro (2006)).
28Following Gourio (2008), a low IES would make the equity premium larger, but this would also make increases

in p lead to booms, generating unrealistic correlations between asset prices and quantities.
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generates a sizeable equity premium, and volatile returns. The business cycle statistics, however,

imply too much volatility of investment and the correlation of consumption and investment and

output is negative, contrary to the data. There is also a qualitative change: an increase in the

probability of disaster now leads to an increase in the capital stock for precautionary savings

reasons. As a result, in this case, and regardless of the IES, an increase in the probability of

disaster leads to a boom in investment and output, i.e. the sign of the impulse responses depicted

in �gure 1 are reversed.

Adding adjustment costs can however undo this e¤ect. Intuitively, with adjustment costs, the

price of capital will fall signi�cantly if a disaster occurs. Hence investing in capital is now more

risky when the disaster probability rises, generating rate of return uncertainty (as discussed in

section 2). In row 4, I use the benchmark level of adjustment costs (� = :15), and in row 5 I use

a higher value (� = :5). These calibrations now imply that a rise in the probability of disaster

leads to a recession. The equity premium is high (about 4% per year) and returns are volatile

(over 6% per quarter). As the degree of adjustment costs is increased, the volatility of investment

becomes close to the data, and the negative correlation of consumption with output or investment

is overturned. Overall I conclude that a calibration without capital destruction can be successful,

provided that adjustment costs are large enough.

5.3 Disaster Dynamics

As pointed out by Constantinides (2008) and Barro et al. (2009), disasters have more complicated

dynamics in the real world than the pure jump typically assumed. First, disasters may last several

years. Second, a recovery might then follow. This leads me to consider two variations on the

model to study how these features a¤ect my results. First, I consider disasters which last more

than one period. Assume that a disaster leads only to a 20% drop in both productivity and the

capital stock. However, a disaster also makes the probability of a disaster next period increase

to 50%. Next period, either a disaster occurs, in which case the probability of a further disaster

remains at 50%, or it doesn�t, in which case this probability shifts back to a standard value. The

last row of tables 4 and 5 shows the impact of this modi�cation on the results. First, the business

cycle dynamics are largely una¤ected. Second, while the disaster is substantially smaller, the

model still generates a high equity premium and volatile returns (though a bit less than in the

data or benchmark). In this version of the model, a disaster initially leads to a large drop of

investment, and a smaller drop in consumption, due to the very high risk of a further disaster
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which leads people to cut back on investment. Moreover, asset prices fall further during the

disaster, since they are hit both by the realization of a disaster today and by the fear of another

disaster tomorrow. The key lesson from this illustrative computation is that adding some fear of

further disasters is a very powerful ingredient.

Second, I study how the results are a¤ected by the presence of recoveries. More precisely,

assume that following a disaster, there is a probability of recovery, i.e. an upward jump of capital

and TFP which brings these quantities back to the initial trend. Following a disaster, one of

three things can happen. Either there is a recovery right away (with probability 10%); there is

no recovery (with probability 20%); or the recovery is uncertain (with probability 70%). When

the recovery is uncertain, a new draw next period determines if there is a recovery, or not, or if

it is still uncertain; and so on. Overall this leads to a recovery with probability 50%, with an

uncertain timing. This is roughly in line with the estimates of Barro et al. (2009). The results of

this model are shown in row 7. The business cycle statistics show somewhat less volatility than

the benchmark. The equity premium and return volatility are also somewhat smaller than in

the benchmark model, but they remain signi�cant. Summarizing, the results of this section show

that the model results are weakened, but not in a dramatic way,29 when disasters are modeled in

a more realistic way.

5.4 Comovement of consumption and investment

An implication of the model that may seem odd is that, when the probability of disaster rises,

consumption initially increases, while output, employment and investment fall. Given the high

IES, the wealth e¤ect is overwhelmed by the substitution e¤ect, hence hours go down and con-

sumption goes up. More generally, given that productivity does not change, and the capital stock

is predetermined, the labor demand schedule (marginal product of labor) is unchanged on im-

pact, and, as explained by Barro and King (1984), this makes it impossible to generate on impact

positive comovement between consumption and hours worked.30

It is not clear that this lack of impact comovement is necessarily a de�ciency of the model.

29In these experiments I have kept all parameters �xed as I changed the process for disasters, to illustrate the
e¤ect of disaster dynamics. Needless to say, to put the models on an equal footing, I could have recalibrated all the
parameters, which would allow me to improve signi�cantly the match of the data, e.g. by having slightly higher
risk aversion.
30This issue is shared by many other papers which incorporate either a shock to preferences (e.g. Smets and

Wouters 2008) a shock to investment good prices (e.g. Justiniano, Primiceri and Tambalotti 2010), a shock to
micro-uncertainty (e.g. Gilchrist, Ortiz and Zakrajsek (2009), or a shock to �nancial frictions (e.g. Hall (2009)).
These models adopt the last proposed solution to the comovement puzzle, namely sticky prices (except Hall (2009)
who assumes that markups are countercyclical).
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Consumption, investment, and hours are far from perfectly correlated in the data (see Table

2), which means that any model needs a shock which pushes consumption and investment in

opposite directions sometimes. Indeed, we see in Table 2 that adding the shock to the probability

of disaster brings the model closer to the data regarding the correlations. Moreover, while the

impact response displays negative comovement, consumption eventually falls, although after a

long delay.

Alternatively, there are some extensions of the model which may overturn this result. Here

I discuss intuitively some possibilities. The most simple extension is simply to assume that the

shocks to the probability of disaster and the TFP shocks are correlated. Indeed, we observe that

during recessions, investors and workers seem to fear terrible outcomes. This can also be generated

endogenously through a learning mechanism as follows. Disasters are modeled for convenience as

jumps, but in reality the contraction is not instantaneous. As a result, it is sometimes di¢ cult for

consumers and �rms to determine if a decrease in productivity and output is a standard recession

(a shock " in our setup) or is the start of a large depression. A large decrease in productivity, due

either to a disaster or to a large negative shock "; will then lead agents to anticipate a further

decrease next period. Because consumption reacts negatively to a standard TFP shock, this

learning mechanism would attenuate the comovement puzzle.

Alternatively, it may be possible to employ non-standard preferences or adjustment cost for-

mulations, as in Jaimovich and Rebelo (2009) for instance.

Finally and probably more interestingly, countercyclical markups may alter this result. Sup-

pose one were to embed the model in a standard New Keynesian framework with sticky prices,

which generates countercyclical markups endogenously. A perfect monetary policy could repli-

cate the �exible price allocation, i.e. the results of this paper. In this case, an increase in the

probability of disaster would require the central bank to decrease short-term interest rates. If,

for some reason, monetary policy is not accommodative enough, or it is impossible to decrease

interest rates because of the zero lower bound, then consumption would have to adjust. Since

the real interest rate is too high, consumption would fall. This intuition suggests that this (very

substantial) extension of the model may resolve the comovement puzzle.31

31I thank Emmanuel Farhi for this suggestion.

30



5.5 Government policy

In the model, the welfare theorems hold, implying no role for government policy. However, it is

tempting to �o¤set� the time-varying wedge in the Euler equation created by the volatility in

the probability of disaster. In the case where bk = btfp; a simple policy can achieve this goal:

the government commits to bail out capital holders. That is, the government provides a subsidy

to capital holders, proportional to their holdings of capital, in the event of a disaster. If the

government can �nance this policy with lump-sum taxes, the agents�decisions are the same as

in a model without disasters. The intuition for this result (proved in the appendix) can be easily

seen in the model without adjustment costs and expected utility, where the return on capital is

RKt+1 = (1� xt+1bk) (1� � + F1 (Kt+1; zt+1Nt+1)) ;

and the presence of disaster risk a¤ects the equilibrium only through the Euler equation

U1(Ct; Nt) = �Et
�
RKt+1U1(Ct+1; Nt+1)

�
:

Suppose now that the government engineers a state-contingent subsidy, so that the return to

capital holders is RKt+1 (1 + xt+1�) ; where � is the amount of subsidy, to be determined. The

equilibrium is then characterized by the equation

U1(Ct; Nt) = �Et ((1� � + F1 (Kt+1; zt+1Nt+1)) (1� xt+1bk) (1 + xt+1�)U1(Ct+1; Nt+1)) : (9)

Assuming that the utility function takes the form U(C;N) = C1�

1� v(N); it is easy to see that if

1+� = (1� bk)
�1 ; the time-varying wedge disappears: changes in p have no e¤ect, since investors

anticipate that they will be bailed out should a disaster happen. Hence, this policy reduces overall

volatility. But of course this is sub-optimal since investment should vary in response to changes

in the probability of disaster. This policy thus reduce welfare. This policy is attractive only if

agents have incorrect beliefs, and the government wants to maximize the expected utility of the

agents under the correct beliefs.

5.6 Time-varying volatility vs. time-varying jump probability

The model concentrates on a speci�c model of risk, i.e. a jump with a �xed size. However, the

results of the paper immediately generalize to a larger class of shock processes. More precisely,
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let Xt+1 be a random variable with strictly positive support, which a¤ects both the capital stock

and productivity, i.e.

Kt+1 = ((1� �)Kt + �(It; Kt))Xt+1;

and

log zt+1 = log zt + �+ �"t+1 + log (Xt+1) ;

then propositions 2 and 3 of section 2.4 can be restated as: the decision rules are the same as in

a model where the agent�s discount factor between time t and time t+ 1; �t is

�t = Et(X
1��
t+1 )

1�
1�� ; (10)

with � the risk aversion coe¢ cient and  the inverse of the IES. Hence, while I focused in the

paper on the case where Xt+1 is a binomial variable (Xt+1 = 1 w/prob 1� pt; and Xt+1 = 1� b

w/prob pt), alternative stochastic processes generate similar e¤ects. As an example, if Xt+1 is

log-normally distributed with unit mean, i.e. log(Xt+1) is N(��2t=2; �2t ); where �t follows an

exogenous stochastic process, then

�t = e��(1�)�
2
t ;

and an increase in �t reduces �t if and only if  < 1 i.e. the IES is greater than unity, as

in proposition 3. The key ingredient of my results is the fact that risk is time-varying, and

not its speci�c distribution.32 More generally, the expression (10) suggests that higher order

moments may matter,33 and the results of the paper hence readily apply to distributions with

excess kurtosis, i.e. �fat tails�.

6 The Empirical Importance of Time-Varying Risk

The previous sections show that a simple, parsimonious framework accounts for a variety of

business cycle and asset pricing facts. However one may remain skeptical since the probability

32The empirical implications are, however, somewhat di¤erent since normally distributed shocks occur every
period. The calibration would then be di¤erent, with a signi�cantly higher risk aversion and smaller shocks, but
the e¤ects would be similar in the end.
33For instance, Weitzman (2007) shows that this expression may not even be �nite for some �natural�distri-

butions. Martin (2008) provides a decomposition using cumulants, and shows in some examples that the higher
cumulants (higher moments) can play an important role in this conditional expectation. For my calibration, the
second moment (time-varying risk) is the most important. Calibrations which emphasize the risk of even more
extreme disasters, however, may imply that the time-varying skewness or kurtosis matters.
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of disaster is di¢ cult to measure.34 This section tests the model directly by identifying the

probability of disaster from asset prices �a natural approach, since asset prices are measured

precisely and the probability of disaster a¤ects them strongly. We then are able to back out the

shocks to the probability of disasters, and to compare the data and the time series implied by

two models: �rst, a model without disaster risk, where the only shock is a shock to TFP; second,

a model with both TFP shocks and the shock to the probability of disaster.

Speci�cally, I pick the probability of disaster pt to match the price-dividend ratio at each date.

Following Campbell and Shiller (1988), we know that the stock market movements are largely

due to variation in discount rates, which in my model come from variation in p: This motivates

my choice of the P-D ratio as a reasonable source of information for p:35 More precisely, in the

model, given a vector of parameters �, the price-dividend ratio Pt
Dt
is a function of the two state

variables, kt = Kt

zt
(where Kt is the capital stock and zt is TFP) and of the probability of disaster

pt :
Pt
Dt

=  (kt; pt; �) :

Standard data from the BEA lead to estimates of Kt and zt; hence kt; from 1948q1 to 2008q4.

I then calculate, for each date, the value of the probability of disaster bpt which allows to match
exactly the observed price-dividend ratio in the data. Next, I feed this probability of disaster

in the model, together with the measured TFP. For instance, the policy functions imply that

aggregate investment is It = zti(kt; pt): Finally, the implied series for investment and output are

HP-�ltered and compared to the data and to the baseline RBC model. The baseline RBC model

is constructed using the same measurements of technology zt and capital kt; as It = zti(kt):
36

Figure 6 depicts the probability of disaster obtained from this procedure. By construction,

this time series is a nonlinear function of the price-dividend ratio Pt
Dt
and the detrended capital

stock kt. The short-run �uctuations hence mostly re�ect changes in the stock market value.

The probability of disaster - a measure of perceived risk - is highly volatile, consistent with the

quantitative model. Interestingly, the highest probability of disaster is estimated to occur at the

very end of the sample, in the last quarter of 2008.

34One indirect piece of evidence is that estimated DSGE models give a signi�cant role to shocks to �, or to
shocks to the relative price of investment goods, which have similar dynamic properties, in accounting for business
cycle �uctuations. These estimation results are not based on asset prices data but on quantities alone.
35Alternatively, one could use option prices, e.g. the VIX index, to measure p. Since the model �ts well the

reduced-form relation between GDP and VIX (section 4.3), it is likely that if p is picked to match VIX in the
data, the model would also match the GDP data well. Unfortunately, data for VIX are available only since 1986,
limiting the power of this test.
36It makes little di¤erence if the capital stock is not measured, i.e. the time series for It are calculated using

only an initial estimate of the capital stock K1948 and only TFP is fed into the model to construct the path.
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Figures 7 and 8 present the quantity implications. The �rst �gure presents the data and the

RBC model, with the NBER recessions marked as shaded areas. As is well known, the RBC

model does a reasonable job at matching macroeconomic aggregates, given the observed path for

TFP, until 1985, even if it does not generate quite enough volatility, especially for investment.

The second �gure plots the data and the model with disaster risk. Comparing the two �gures

side by side, the di¤erence between the two models is small in �normal times�. During recessions

however, my model generates a sharper drop in output and especially in investment. For instance,

the e¤ect of the 1975 or 1981 recessions on investment are dramatically underpredicted by the

RBC model, while my model generates about the right decline in investment. Another episode

of special interest is the current recession. Figure 9 �zooms in�on the most recent data. Little

happens to TFP in 2008, hence the RBC model does not predict a sharp recession. My model,

however, generates a large drop in investment and output through the shock to pt, i.e. higher

perceived risk.

Table 6 summarizes the �t of the models by computing several statistics: �rst, the corre-

lation and covariance between the data and each model; second, the mean absolute error, i.e.

E jdatat �modeltj :37 A close look at �gure 8 suggests that there is a slight lag between the model

and the data, hence I also report these statistics when the model series are lagged by 2 quarters.

(There may well be delays to decisions and various adjustment costs which create such a delay,

not captured in the simple version of the model.) Finally, I report the same statistics for the

subsample of recessions.

The statistics of table 6 are consistent with the discussion of the �gures in the previous

paragraph. First, without the lag, adding the probability of disaster does not improve much the

�t of the RBC model, if at all. Second, taking into account the lag, the model with shocks to p

now improves a bit on the RBC model, especially for investment, but also for employment and

output: the correlation and covariance of model and data becomes higher (Table 6, columns 3

and 4), and there is a reduction in the mean absolute error. The model does more poorly for

consumption, however. Last, the improvement in �t for investment, output and employment is

quite signi�cant if one looks at the subsample of recessions. For instance, the correlation between

the model investment and the data investment goes from 44.9 to 61.8, and the mean absolute

error goes down from 187 to 130 (Table 6 rows 2 and 10, last two columns). The correlation of

model and data employment similarly goes from 34.0 to 43.3.

37Here and table 7, I use the mean absolute error, because (unlike the variance) it is meaningful in a subsample
with gaps, such as the subsample of recessions.
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Table 7 shows a measure of volatility, E jxtj ; for x =data, RBC model, or RBC model with

disaster risk. The table reveals that the model generates higher volatility: for instance, the

investment statistic is only 3.74 in the RBC model vs. 9.55 in the data. The model with time-

varying risk yields 6.51, a signi�cant improvement. This is especially true in recessions: the

volatility of investment or employment conditional on being in a recession almost doubles.

From an intuitive point of view, these result are not very surprising in light of the well-known

empirical regularity that the stock market is correlated with GDP and investment. Section 4

shows that the model matches the relation between asset prices and investment. Hence, feeding

in asset prices from the data (through pt) allows the model to improve on quantities by using the

empirical explanatory power of the stock market for investment or GDP. Overall, shocks to the

probability of disaster, as restricted by asset prices data, appear to help the RBC model �t the

data, especially during severe recessions, arguably the most interesting episodes.

7 Conclusion

This work shows how introducing disaster risk into a standard RBC model improves its �t of

asset return data, preserves its success for quantities in response to a TFP shock, and creates

some interesting new macroeconomic dynamics. The model can replicate not only the second

moments of quantities and asset returns, but also a variety of empirical relationships between

macroeconomic quantities and asset prices, which have so far largely eluded researchers.

This parsimonious setup is fairly tractable, which allows to derive some analytical results

and makes it easy to embed into richer models. For instance, much of the research on �nancial

frictions has taken place in models which largely abstract from macroeconomic risk premia - a

potentially signi�cant limitation which has been driven largely by technical considerations.

More broadly, the quantitative and empirical results of this paper suggest an important role

for time-varying risk in macroeconomic models, and give some hope that we may be able to

connect better asset prices and business cycles.
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Parameter Symbol Value Target
Capital share � .34 Cooley and Prescott (1995)
Depreciation rate � .02 Cooley and Prescott (1995)
Share of consumption in utility � .3 Cooley and Prescott (1995)
Discount factor � .994 Mean short-term interest rate
Adjustment cost curvature � 0.15 Investment volatility
Trend growth of TFP � .0025 Measured TFP
Standard deviation of ordinary TFP shock � .01 Measured TFP
IES 1= 2 A priori (see text)
Risk aversion over the � 6 Average equity premium
consumption-leisure bundle
Size of disaster in TFP btfp .43 Barro (2006)
Size of disaster for capital bk .43 Barro (2006)
Persistence of log(p) �p .92 Predictability regressions
Unconditional std. dev. of log(p) �pp

1��2p
1.85 Volatility of returns

Leverage � 2 Abel (1999), Barro (2006)
Recovery rate for bonds during disasters 1� r(1� b) .828 Barro (2006)

Table 1: Parameter values for the benchmark model. The time period is one quarter.

�(� logC)
�(� log Y )

�(� log I)
�(� log Y )

�(� logN)
�(� log Y )

�(� log Y ) �C;Y �I;Y �N;Y �I;C

Data 0.57 2.68 0.92 0.98 0.45 0.68 0.71 0.49
No disaster 0.66 1.86 0.24 0.78 1.00 1.00 0.99 0.99
Constant p 0.67 1.87 0.24 0.78 1.00 1.00 0.99 0.99
Constant p* 0.96 1.12 0.06 3.10 1.00 1.00 0.52 0.99
Benchmark 0.73 3.03 0.54 0.83 0.66 0.85 0.72 0.21
Benchmark* 0.96 1.35 0.15 2.88 0.87 0.90 0.42 0.60

Table 2: Business cycle statistics. Second moments implied by the model, for di¤erent cali-
brations. Quarterly data. The statistics are computed in a sample without disasters, except for
the rows marked with a star, which are computed in a full sample. rho(A,B) is the correlation of
the growth rate of time series A and B. Data sources in appendix.

E(Rf ) E(Rb) E(Re) E(Re;lev) �(Rf ) �(Rb) �(Re) �(Re;lev)

Data � 0.21 � 1.91 � 0.81 � 8.14
No disaster 0.71 0.71 0.71 0.74 0.04 0.04 0.24 1.59
Constant p 0.02 0.32 0.77 1.22 0.04 0.04 0.25 1.53
Constant p* 0.02 0.24 0.58 0.92 0.04 0.85 2.20 4.07
Benchmark 0.15 0.42 0.88 1.93 1.37 0.85 0.40 7.14
Benchmark* 0.17 0.36 0.69 1.60 1.29 1.28 2.06 7.94

Table 3: Financial Statistics. Mean and standard deviation of returns implied by the model
for (a) a pure risk-free asset, (b) a one-quarter government bond, (c) a claim to dividends, (d)
a claim on levered output. Quarterly data. The statistics are computed in a sample without
disasters, except for the rows marked with a star, which are computed in a full sample. Data
sources in appendix.
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�(� logC)
�(� log Y )

�(� log I)
�(� log Y )

�(� logN)
�(� log Y )

�(� log Y ) �C;Y �I;Y �N;Y �I;C

Data 0.57 2.68 0.92 0.98 0.45 0.68 0.71 0.49
Benchmark 0.73 3.03 0.54 0.83 0.66 0.85 0.72 0.21
bk = 0; � = 0 0.77 9.45 1.07 1.34 -0.13 0.89 0.89 -0.41
bk = 0 0.80 5.55 0.85 0.99 0.24 0.85 0.78 -0.21
bk = 0; � = :5 0.90 3.71 0.65 0.80 0.56 0.77 0.57 -0.03
btfp = 0; � = :15 0.77 3.67 0.66 0.87 0.50 0.83 0.71 -0.03
Recoveries 0.71 2.56 0.44 0.81 0.79 0.88 0.74 0.43
Multiperiod disasters 0.73 2.90 0.52 0.82 0.69 0.86 0.73 0.26

Table 4: Robustness and Extensions. Business cycle statistics. Second moments implied
by the model, for di¤erent calibrations. Quarterly data. The statistics are computed in a sample
without disasters.

E(Rf ) E(Rb) E(Re) E(Re;lev) �(Rf ) �(Rb) �(Re) �(Re;lev)

Data � 0.21 � 1.91 � 0.81 � 8.14
Benchmark 0.15 0.42 0.88 1.93 1.37 0.85 0.40 7.14
bk = 0; � = 0 0.57 0.77 0.60 1.71 0.72 0.38 2.07 6.15
bk = 0 0.51 0.72 0.64 1.71 0.69 0.29 1.68 6.25
bk = 0; � = :5 0.48 0.68 0.72 1.71 0.74 0.33 1.11 6.22
btfp = 0 0.70 0.80 0.91 0.86 0.32 0.12 0.51 1.60
Recoveries 0.38 0.56 0.86 1.42 0.94 0.57 0.34 4.68
Multiperiod disasters 0.49 0.62 0.86 1.52 1.04 0.64 0.38 5.52

Table 5: Robustness and Extensions. Financial statistics. Mean and standard deviation of
returns implied by the model for (a) a pure risk-free asset, (b) a one-quarter government bond, (c)
a claim to dividends, (d) a claim on levered output. Quarterly data. The statistics are computed
in a sample without disasters.

Full sample With two-quarter lag Recessions
RBC RBC+p RBC RBC+p RBC RBC+p

Corr(model,data) C 43.26 24.96 31.20 11.74 -16.29 -31.72
I 50.69 44.18 54.61 60.81 44.92 61.83
N 16.07 11.02 48.90 48.90 33.96 43.36
Y 67.71 64.33 56.56 60.80 28.88 39.27

Cov(model,data) C 0.31 0.17 0.23 0.08 -0.10 -0.19
I 5.15 8.00 5.56 10.85 3.08 8.79
N 0.08 0.14 0.26 0.60 0.10 0.39
Y 1.11 1.24 0.92 1.16 0.29 0.48

E jdata-modelj C 194.51 210.35 206.65 227.82 43.51 50.99
I 848.01 917.13 831.41 768.78 187.55 129.70
N 369.59 384.13 345.39 326.76 90.44 72.00
Y 243.94 253.55 255.29 247.30 65.31 56.20

Table 6: Fit of the model. The table reports three statistics of �t, for each time series (C,I,N,Y),
and for the full sample, with a two-quarter lag, and for the subsample of recessions. The statistics
are the correlation between model and data, the covariance between model and data, and the
mean absolute error. See section 6 for the construction of the series.
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Full sample Recessions
xt = Data RBC RBC+p Data RBC RBC+p

E jxtj C 2.11 1.18 1.18 0.52 0.29 0.22
I 9.55 3.74 6.51 2.72 1.00 1.92
N 3.72 0.53 1.23 1.03 0.14 0.35
Y 3.09 1.82 2.11 1.05 0.48 0.59

Table 7: Volatility and conditional volatilities. The table reports the mean absolute value
of each time series (C,I,N,Y), for the data and for each model; results are reported for the full
sample and for the subsample of recessions. This is a measure of the volatility implied by each
model. See section 6 for the construction of the series.
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Figure 1: The e¤ect of an increase in the probability of disaster on macroeconomic
quantities. Impulse response of (I,Y,C,N,Z) to a shock to the probability of disaster at t = 6:
Time (x-axis) is in quarters. The probability of disaster goes from its long-run average (0.425%
per quarter) to twice its long-run average then mean-reverts according to its AR(1) law of motion.
For clarity, this �gure assumes that there is no shock to TFP, and no disaster realized.
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Figure 2: The e¤ect of an increase in the probability of disaster on asset returns and
spreads. Impulse response of asset returns to a shock to the probability of disaster at t = 6: Time
(x-axis) is in quarters. The probability of disaster doubles at t = 6, starting from its long-run
average. The �gure plots the short-term government bond return, the equity return, and the
levered equity return.
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Figure 3: Cross-covariogram of GDP and excess stock returns in the model and in
the data. Cross-covariogram of the (one-sided Baxter-King �ltered) log GDP, and excess stock
returns, in the data (blue dashed line), the RBC model, i.e. the model with only TFP shocks,
(black circles) and the benchmark model with both p-shocks and TFP shocks (red crosses). The
lag/lead (x-axis) is in quarters. The model covariograms are obtained by running 1000 simulations
of length 200 each, and averaging.

44



0 2 4 6 8 10 12
4

2

0

2

4

6

8
x 10

3 resp to VIX shock: Y

quarters

data
RBC
RBC+p

Figure 4: Impulse response to a shock to VIX in a bivariate (VIX,GDP) VAR, in the
model and in the data. This �gure gives the IRF to a one-standard deviation shock to VIX, in
a bivariate VAR of HP-�ltered log GDP, and HP-�ltered VIX, in the data (blue full line), the RBC
model, i.e. the model with only TFP shocks (black circles), and the benchmark model with both p-
shocks and TFP shocks (red crosses). The model IRFs are obtained by running 1000 simulations
of length 200 each, running the VAR on each simulation, and averaging. Orthogonalization
assumption: GDP doesn�t react to a VIX shock at t = 0.
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Figure 5: Cross-covariogram of investment and P-D ratio in the model and in the
data. Cross-covariogram of the log HP �ltered investment, and the HP �ltered P-D ratio, in
the data (black diamond line), in the RBC model, i.e. the model with only TFP shocks (blue
crosses), and the benchmark model with both p-shocks and TFP shocks (red diamonds). The
model covariograms are obtained by running 1000 simulations of length 200 each, and averaging.
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Figure 6: Time-series for the quarterly probability of disaster (1948q1 to 2008q4). This
picture plots pt, as implied by the model given the observed price-dividend ratio from CRSP and
the measured capital stock and TFP (see section 6).
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Figure 7: Time-series of investment and output, in the data and in the RBC model.
This picture plots the data and the model-implied time series for macro aggregates for the RBC
model (when TFP is fed into the model). All series are logged and HP-�ltered, 1947q1-2008q4.
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Figure 8: Time-series of investment and output, in the data and in the benchmark
model. This picture plots the data and the model-implied time series for investment and output
for the benchmark model (when both TFP and the disaster probability is fed into the model).
All series are logged and HP-�ltered, 1947q1-2008q4.
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Figure 9: Time-series of investment and output, in the data, in the RBC model, and in
the benchmark model, from 2005q1 to 2008q4. This picture is a zoomed-in version of the
previous two �gures, and displays the data, the model-implied time series for macro aggregates
for the RBC model (when TFP is fed into the model) and for the benchmark model (when both
TFP and the probability of disaster are fed into the model). See section 6 for details. All series
are logged and HP-�ltered, over 1947q1-2008q4, then cut from 2005q1 onwards.
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Appendix to �Disaster Risk and Business Cycles�

NOT FOR PUBLICATION

March 2010

1 Euler equation approach

The proof of the results is based on the Bellman equation of the planner�s problem. An alternative

proof, which is also useful for intuition, uses Euler equations. For simplicity I show how this approach

works in the special case of expected utility and no adjustment costs. In this case, the realized return

on capital is

RKt+1 = (1� xt+1bk) (1� � + F1 (Kt+1; zt+1Nt+1)) ;

and the equilibrium of the economy is characterized by the four equations:

U1(Ct; Nt) = �Et
�
RKt+1U1(Ct+1; Nt+1)

�
; (1)

Kt+1 = ((1� �)Kt + It) (1� xt+1bk) ; (2)

U2(Ct; Nt) = ztF2 (Kt; ztNt)U1 (Ct; Nt) ; (3)

Ct + It = F (Kt; ztNt); (4)

with U(C;N) = C1��

1�� v(N); plus the equations characterizing the shock process f"t+1; xt+1; pt+1g :

log zt+1 = log zt + �+ �"t+1 + xt+1 log(1� btfp);

xt+1 = 1 w/prob pt; and 0 w/prob 1� pt;

pt Markov with transition T:

One can then guess and verify that the solution can be rewritten as Ct = ctzt; Kt = ktzt; It = itzt;

Yt = ytzt; which validates proposition 1. To obtain proposition 3, note that risk of disaster a¤ects the

equilibrium only through equation (1). Given proposition 1, we can decompose the expectation, between

disaster states and non-disaster states:

U1(Ct; Nt) = �(1� pt)Eno disasterpt+1;"t+1 (1� � + F1 (Kt+1; zt+1Nt+1))U1(Ct+1; Nt+1)

+pt (1� bk)Edisasterpt+1;"t+1 ((1� � + F1 (Kt+1; zt+1Nt+1))U1(Ct+1; Nt+1))

= �(1� pt + pt (1� bk)1�)Eno disasterpt+1;"t+1 (1� � + F1 (Kt+1; zt+1Nt+1))U1(Ct+1; Nt+1);(5)

1



where Eno disasterpt+1;"t+1 is the expectation over pt+1; "t+1, and conditional on xt+1 = 0 i.e. no disaster.

This equation implies proposition 3: the model is equivalent to a model without disaster, but with a

time-varying discount rate �(pt) = �(1� pt + pt (1� bk)1�):

The risk-free rate is then 1=Q(1)t ; where

Q
(1)
t = Et

�
�U1(Ct+1; Nt+1)

U1(Ct; Nt)

�
= (1� pt + pt(1� bk)�)Eno disasterpt+1;"t+1

�U1(Ct+1; Nt+1)

U1(Ct; Nt)
;

which shows explicitely that the risk-free rate always falls when pt rises, and illustrates the di¤erence

between the risk-free rate behavior and the expected equity return:

Et
�
RKt+1

�
= (1� ptbk)Eno disasterpt+1;"t+1 (1� � + F1 (Kt+1; zt+1Nt+1)) :

2 Government Policy

To prove the result, we follow the previous section of the appendix. Suppose that the government

engineers a state-contingent subsidy �; then the return on capital is:

RKt+1 = (1 + �xt+1) (1� xt+1bk) (1� � + F1 (Kt+1; zt+1Nt+1)) ;

and the equilibrium of the economy is characterized by the four equations:

U1(Ct; Nt) = �Et
�
RKt+1U1(Ct+1; Nt+1)

�
;

Kt+1 = ((1� �)Kt + It) (1� xt+1bk) ;

U2(Ct; Nt) = ztF2 (Kt; ztNt)U1 (Ct; Nt) ;

Ct + It = F (Kt; ztNt):

We can then rewrite the Euler equation:

U1(Ct; Nt) = �(1� pt)Eno disasterpt+1;"t+1 (1� � + F1 (Kt+1; zt+1Nt+1))U1(Ct+1; Nt+1)

+pt (1� bk) (1 + �)Edisasterpt+1;"t+1 ((1� � + F1 (Kt+1; zt+1Nt+1))U1(Ct+1; Nt+1))

= �(1� pt + pt (1� bk)1� (1 + �))Eno disasterpt+1;"t+1 (1� � + F1 (Kt+1; zt+1Nt+1))U1(Ct+1; Nt+1);

This formula reveals that setting 1+ � = (1� bk)�1 leads to the disappearance of this wedge from the

Euler equation, and the decision rules are then the same as in a model without disaster risk.

3 A simple method to solve models with time-varying risk pre-

mia

The model in this paper is simple enough that a full nonlinear solution is easy and relatively fast to

implement. However, many interesting extensions require to add more state variables.1 This makes a
1Also, many interesting extensions may violate the welfare theorems, making it impossible to use a social planner

approach.
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full non-linear solution di¢ cult. Proposition 3 of the paper, however, suggest a simple two-step solution

method: under the assumption that bk = btfp; the model has the same implications for quantities than a

model without disaster, but with a di¤erent, and time-varying discount factor �: As we know this model

can be solved precisely using a standard �rst-order linearization. Hence, the proposed methodology is

as follows:

(1) De�ne the average value of �; call it e� = R �(p)d�(p) = R �(1 � p + p(1 � bk)�(1��)) 1�1�� d�(p)

where � is the invariant distribution of p:

(2) Fit a linear time series process for �(p): This is an approximation since the true process may not

be linear.

(3) Solve for the nonstochastic steady-state, with discount factor e�:
(4) Linearize (or log-linearize) the model around this steady-state, using the approximate process

for � found in (2). This solves for the quantities.

(5) Solve for asset prices using the standard recursions. For simplicity I present them in the expected

utility case:

(a) Equity paying out a process Dt = z�t d(kt; pt); the price-dividend ratio f(pt; kt) = Pt=Dt satis�es:

f(p; k) = (1� p+ p(1� b)�+�(1�)�1)

�
Z
"0

Z
p0
e(�+1�)(�+�"

0) �u1(c(k
0; p0); N(k0; p0))

u1(c(k; p); N(k; p))

d(k0; p0)

d(k; p)
(f(p0; k0) + 1) dT (p0jp)dH("0);

where H is the c.d.f. of the normal shock "; and T is the transition function of the process fptg :

(b) Yield curve: the price of a zero-coupon bond maturing in n periods satis�es:

q(n)(k; p) =
�
1� p+ rp(1� b)�(1�)�1

�
�
Z
"0

Z
p0
e(1�)(�+�"

0) �u1(c(k
0; p0); N(k0; p0))

u1(c(k; p); N(k; p))
q(n�1)(k0; p0)dH("0)dT (p0jp);

with q(0)(k; p) = 1 and u(C;N) = (C�N1��)1�

1� : This simpli�cation relies on this form of preferences,

which are consistent with balanced growth. These two recursions can be solved given the policy functions

c(k; p); N(k; p), and d(k; p) which obtained in step (4).

With recursive utility, the same procedure works, but one also needs to compute the value function,

since it appears in the stochastic discount factor and hence in the asset price recursions. The value

function can be computed easily once the policy functions are known, or it can be computed inexpensively

using second-order perturbation methods as in Fernandez-Villaverde et al. (2008).

In general, for any given model, one should check that propositions 2 and 3 hold. However in several

models they do hold, hence this opens the door to solving medium-scale macro model with time-varying

risk premia.

4 Computational Method

This method used in the paper is presented for the case of a Cobb-Douglas production function, and a

Cobb-Douglas utility function, but it can be used for arbitrary homogeneous of degree one production

3



function and utility function. Also, this presentation does not allow for correlation between p and ",

and for recoveries, but it is straightforward to modify the method to allow for this.

The Bellman equation for the �rescaled�problem is:

g (k; p) = max
c;i;N

8>><>>:
c�(1�)(1�N)(1��)(1�)

+�e��(1�)
�
Ep0;"0;x0e

�"0�(1��) (1� x0btfp)�(1��) g (k0; p0)
1��
1�
� 1�

1��

9>>=>>; ;
s:t: :

c+ i = k�N1��;

k0 =
(1� x0bk)

�
(1� �)k + �

�
i
k

�
k
�

e�+�"0 (1� x0btfp)
:

Because we take a power 1
1� of the value function, the max needs to be transformed in a min if  > 1:

To approximate numerically the solution of this problem, I proceed as follows:

(1) Pick a grid for k; and a grid for i, and approximate the process for p with a Markov chain with

transition matrix T: Discretize the normal shock ", with probabilities �("): I used 120 points for the grid

for k, 1200 points for the grid for i, and 5 points for the grid for ": Finally T is picked as in Rouwenhorst

(1995). That method is a better approximation for highly persistent processes. I used 9 points for the

grid for p:

(2) Compute for any k; i in the grid the value N(k; i) which solves

R(k; i) = max
N

�
k�N1�� � i

��
(1�N)(1��):

(3) The state space and action space are now discrete, so this is a standard discrete dynamic pro-

graming problem, which can be rewritten as follows, with one endogenous state, one exogenous state,

and two additional shocks: a binomial variable x equal to one if a disaster occurs (with probability p)

and the normal shock ":

g (k; p) = max
i

8>><>>:
R(k; i) + �e��(1�) � :::�P

p0;"0;x02f0;1g �("
0)T (p; p0)e�"

0�(1��)pr(x0; p)
�
1� x0 + x0(1� btfp)�(1��)

�
g (k0; p0)

1��
1�
� 1�

1��

9>>=>>; ;
s:t: :

k0 =
(1� x0bk)

�
(1� �)k + �

�
i
k

�
k
�

e�+�"0 (1� x0btfp)
;

g (k; p) = max
i

8>><>>:
R(k; i) + �e��(1�) � :::�P

p0;"0;x02f0;1g �("
0)T (p; p0)e�"

0�(1��)pr(x0; p)
�
1� x0 + x0(1� btfp)�(1��)

�
g (k0; p0)

1��
1�
� 1�

1��

9>>=>>;
where pr(x0; p) = p1x0=1 + (1� p) 1x0=0 = px0 + (1 � p)(1 � x0): I solve this Bellman equation using

modi�ed policy iteration2 (Judd (1998), p. 416), starting with a guess value close to zero. Recursive

utility implies that the Blackwell su¢ cient conditions do not hold here, hence it is not obvious that

the Bellman operator is a contraction. However, convergence occurs in practice as long as � and the

probability of disasters are not too large. Note that to compute the expectation, we need the value

2This turns out to be signi�cantly faster than value iteration for this application.
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function outside the grid points. I use linear interpolation in the early steps of the iteration, then switch

to spline interpolation. The motivation is that linear interpolation is more robust, hence it is easier to

make the iterations converge; but spline interpolation is more precise.

(4) Given g; we have V (K; z; p) = z�g(k; p)
1

1� : We also obtain the policy functions C = zc(k; p),

I = zi(k; p); N = N(k; p); and the output policy function Y = zk�N(k; p)1��: Because these policy

functions are de�ned on a discrete grid, I use interpolation in the simulations and impulse responses to

obtain more accurate results. (Linear or spline interpolations yield nearly the same results.)

(5) To compute asset prices, we need the stochastic discount factor, which is given by the standard

formula:

Mt;t+1 = �

�
Ct+1
Ct

��(1�)�1�
1�Nt+1
1�Nt

�(1��)(1�)0@ Vt+1

Et
�
V 1��t+1

� 1
1��

1A��

:

Using homogeneity, the SDF between two states s = (k; p) and s0 = (k0; p0) is:

M(s; s0; "0; x0) = �

�
z0c(k0; p0)

zc(k; p)

��(1�)�1�
1�N(k0; p0)
1�N(k; p)

�(1��)(1�)0B@ z0�g(k0; p0)
1

1�

Ez0;p0;x0
�
z0�(1��)g(k0; p0)

1��
1�

� 1
1��

1CA
��

= �

�
z0

z

�(��)�+�(1�)�1�
c(k0; p0)

c(k; p)

��(1�)�1
� :::

:::

�
1�N(k0; p0)
1�N(k; p)

�(1��)(1�)0B@ g(k0; p0)
1

1�

Ez0;p0;x0
��

z0

z

��(1��)
g(k0; p0)

1��
1�

� 1
1��

1CA
��

:

Note that we �rst need to compute the conditional expectation which appears on the denominator of the

last term. Denote k0 = j(k; p; "0; x0) the detrended capital next period, wich depends on the detrended

investment i(k; p) and on the realization of the shocks next period "0 and x0 (but not p0). The conditional

expectation is obtained as:

Ez0;p0;x0

 �
z0

z

��(1��)
g(k0; p0)

1��
1�

! 1
1��

=

=
X
p0;"0

T (p; p0) Pr("0)e�(1��)�+�(1��)�"
0
�
p(1� btfp)�(1��)g(j(k; p; "0; 1); p0)

1��
1� + (1� p)g(j(k; p; "0; 0); p0)

1��
1�

�
:

(6) We can now obtain the price of a one-period asset, with payo¤ d(k0; z0; p0; x0; "0): e.g. a pure

risk-free asset d = 1; or a short-term government bond: d = 1� q(1� r)x0, as

P (k; p) = Ex0;p0;"0M(s; s
0; x0; "0)d(k0; z0; p0; x0; "0):

For instance, for a pure risk-free asset, the formula is:

EtMt;t+1 =

�
P

p0
P

"0 T (p; p
0) Pr("0)e((��)�+�(1�)�1)(�+�"

0) � :::

:::

0BBBBBB@
p(1� btfp)(��)�+�(1�)�1c(j(k; p; "0; 1); p0)�(1�)�1�

(1�N(j(k; p; "0; 1); p0))(1��)(1�) g(j(k; p; "0; 1); p0)
��
1�

+(1� p)c(j(k; p; "0; 0); p0)�(1�)�1�

(1�N(j(k; p; "0; 0); p0))(1��)(1�) g(j(k; p; "0; 0); p0)
��
1�

1CCCCCCA
c(k; p)�(1�)�1 (1�N(k; p))(1��)(1�)Ez0;p0;x0

��
z0

z

��(1��)
g(k0; p0)

1��
1�

� ��
1��

:
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(7) Next, we can obtain the term structure of interest rates on government bonds, using the recursion:

Qn(k; p) = Ex0;p0;"0 (M(s; s
0; x0; "0) ((1 + x0(r � 1))Qn�1(k0; p0))) :

(8), Finally, we can compute the price of equity claims. I consider three types of �equities�. De�ne

the representative �rm�s dividend as earnings less investment:

Dt = Yt � wtNt � It:

The �rst equity is simply a claim to the stream fDtg : Let Pt denote its price, which satis�es the standard

recursion:

Pt = Et (Mt;t+1 (Pt+1 +Dt+1)) :

Note that Dt can be written as Dt = ztd(kt; pt); where d(k; p) = �k�N1�� � i(k; p): Hence, we can

rewrite the �rm value recursion as:

zf(k; p) = Es0js (M(s; s
0)� (z0d(k0; p0) + z0f(k0; p0))) ; (6)

where Pt = ztf(kt; pt). The equity return is then

Ret+1 =
Pt+1 +Dt+1

Pt
(7)

=
zt+1
zt

f(kt+1; pt+1) + d(kt+1; pt+1)

f(kt; pt)
:

To solve the recursion 6 in practice, I iterate starting with an initial guess f(k; p) = 0: The recursion

can be rewritten as:

f(k; p) = Es0js

�
M(s; s0)

z0

z
(d(k0; p0) + f(k0; p0))

�

= �Ep0;"0;x0

2666664
�
z0

z

�(��)�+�(1�) �
c(k0;p0)
c(k;p)

��(1�)�1 �
1�N(k0;p0)
1�N(k;p)

�(1��)(1�)
� :::0B@ g(k0;p0)

1
1�

Ez0;p0;x0

�
( z0z )

�(1��)
g(k0;p0)

1��
1�

� 1
1��

1CA
��

(d(k0; p0) + f(k0; p0))

3777775 :

This conditional expectation can be written down, as

f(k; p) =

�
P

p0
P

"0 T (p; p
0) Pr("0)e((��)�+�(1�))(�+�"

0) � :::0BBBBBB@
p(1� btfp)(��)�+�(1�)c(j(k; p; "0; 1); p0)�(1�)�1 (1�N(j(k; p; "0; 1); p0))(1��)(1�)�

g(j(k; p; "0; 1); p0)
��
1� (d(j(k; p; "0; 1); p0) + f(j(k; p; "0; 1); p0))

+(1� p)c(j(k; p; "0; 0); p0)�(1�)�1 (1�N(j(k; p; "0; 0); p0))(1��)(1�)�

g(j(k; p; "0; 0); p0)
��
1� (d(j(k; p; "0; 0); p0) + f(j(k; p; "0; 0); p0))

1CCCCCCA
c(k; p)�Ez0;p0;x0

��
z0

z

��(1��)
g(k0; p0)

1��
1�

� ��
1��

:

Note that the return computed by solving this recursion for �rm value can be compared to the

expression obtained by the investment return. The two must give the same result (if the investment

positivity constraint never binds). In practice it is a useful numerical check to perform.
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Finally, The levered equity assumes that the payo¤ streams is
�
Y �t
	
: It is easy to adapt the same

method to price the claims to these assets. Finally, I obtain the model statistics by simulating 1000

samples of length 400, started at the nonstochastic steady-state, and cutting o¤ the �rst 200 periods.

The Matlab(c) programs are available on my web page.

5 Data Sources

Section 4: Business cycle and return moments of Tables 2-7: consumption is nondurable + services

consumption, investment is �xed investment, and output is GDP, from the NIPA Table 1.1.3, quarterly

data 1947q1-2008q4. Hours is nonfarm business hours from the BLS productivity program (through

FRED: HOABNS). The return data is from Ken French�s webpage, (benchmark factors, aggregated to

quarterly frequency, and de�ated by the CPI (CPIAUCSL through FRED)).

Predictability regressions: the data is taken from John Cochrane�s webpage (Cochrane, 2008) and

the regression results replicate exactly his speci�cation (for the simple regression of return on dividend

yield last year). This is also the CRSP value weighted return, and the risk-free rate is from Ibottson.

VIX data: he data on volatility starts in 1963, reducing the sample for the VARs using volatility or

VIX.

Section 6: the price-dividend ratio is from CRSP. Similar results are obtained using the Shiller

data. As is standard in the literature, I divided the price by the sum of the last four quarters of

dividends, given the substantial seasonality of dividends. Because of changes over the sample period in

the distribution of equity payout between dividends and share repurchases, there are lower-frequency

movements in the price-dividend ratio. Hence, I �rst removed these low-frequency movements using a

HP �lter with � = 3000 (The smoothing parameter does not a¤ect the results signi�cantly, provided

it is above 1600).The capital stock is obtained from the annual �xed assets tables, and is interpolated.

TFP is computed as output divided by labor to the power 2/3 and capital to the power 1/3.
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