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Abstract

We introduce methods for estimating nonparametric, nonadditive models with simul-

taneity. The methods are developed by directly connecting the elements of the structural

system to be estimated with features of the density of the observable variables, such as the

values of derivatives and of average derivatives of this density. The estimators are easily

computed functionals of nonparametric estimators of these features. We consider in detail

a model where to each structural equation there corresponds an exclusive regressor and a

model with one equation of interest and one instrument. For the first model, our estimator

for the matrix of derivatives of the structural function has a form analogous to the one of a

standard Least Squares estimator, (X ′X)−1 (X ′Y ) , except that the elements of the matrices

X and Y are constructed from average derivative estimators of the conditional density of

the observed endogenous variables given the observed exogenous variables. For the second

model, with one equation of interest and one instrument, we provide several identification

and estimation results. The estimators that we develop are based on using the estimated

density of the observable variables to find particular values of the instrument where one can

read off the derivative of the function of interest. We show that our estimators are consistent

and asymptotically normal. We also indicate several ways in which our new identification

results can be used to develop new estimation methods.
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1. Introduction

Estimation of structural models has been one of the main objectives of econometrics since

its early times. The analysis of counterfactuals, the evaluation of welfare, and the prediction

of the evolution of markets, among others, require knowledge of primitive functions and

distributions in the economy, such as technologies and distributions of preferences, which

often can only be estimated using structural models.

Estimation of parametric structural models dates back to the early works of Haavelmo

(1943, 1944), Hurwicz (1950), Koopmans (1949), Koopmans and Reiersol (1950), Koop-

mans, Rubin, and Leipnik (1950), (1950), Fisher (1959, 1961, 1966), Wegge (1965), Rothen-

berg (1971), and Bowden (1973). (See Hausman (1983) and Hsiao (1983) for early review

articles.)

In more recent years, estimation of semiparametric and nonparametric models has re-

ceived increasing interest and significant development. Several estimators have been de-

veloped based on conditional moment restrictions. These include Newey and Powell (1989,

2003), Darolles, Florens, and Renault (2002), Ai and Chen (2003), Hall and Horowitz (2003),

and specifically for models with nonadditive random terms, Chernozhukov and Hansen (2005)

and Chernozhukov, Imbens, and Newey (2007). Identification in these models has been

mostly analyzed in terms of restrictions leading to completeness type conditions. Estima-

tion has often required dealing with ill-posed inverse problems.

In this paper, we make assumptions and construct nonparametric estimators in ways

that are different from those nonparametric methods for models with simultaneity. In

particular, our estimators are closely tied to conditions on the structural model, which allow

us to directly read off the density of the observable variables the particular elements of

the structural model that we are interested in estimating. In this vein, estimators for

conditional expectations can be easily constructed by integrating nonparametric estimators

for conditional probability densities, such as the kernel estimators of Nadaraya (1964) and

Watson (1964). Conditional quantiles estimators can be easily constructed by inverting

nonparametric estimators for conditional distribution functions, such as in Bhattacharya

(1963) and Stone (1977).1 For structural functions with nonadditive unobservable random

terms, several methods exist to estimate the nonparametric function directly from estimators

for the distribution of the observable variables. These include Matzkin (1999, 2003), Altonji

and Matzkin (2001, 2005), Chesher (2003), and Imbens and Newey (2003, 2009). These

methods cannot handle simultaneous equation models that do not satisfy control function

separability (Blundell and Matzkin (2010)). The goal of this paper is to fill this important

gap.

1See Koenker (2005) for other quantile methods.

1



Our simultaneous equations models are nonparametric and with nonadditive unobserv-

able random terms. Unlike linear models with additive errors, each reduced form function in

the nonadditive model depends separately on the value of each of the unobservable variables

in the system. We show that our estimators are consistent and asymptotically normal.

Alternative estimators for nonparametric simultaneous equations can be formulated using

a nonparametric version of Manski (1983) Minimum Distance from Independence, as in

Brown and Matzkin (1998). Those estimators are defined as the minimizers of a distance

between the joint and the multiplication of the marginal distributions of the exogenous

variables, and typically do not have a closed form. To our knowledge, no asymptotic

distribution is known for estimators of nonparametric functions defined in this way.

To describe the estimation approach, we focus on two particular models. Our first model

is a system where to each equation there corresponds an exclusive regressor. Consider for

example a model where the vector of observable endogenous variables consists of the Nash

equilibrium actions of a set of players. Each player chooses his or her action as a function

of his or her individual observable and unobservable costs, taking the other players’ actions

as given. In this model, each individual player’s observable cost would be the exclusive

observable variable corresponding to the reaction function of that player. Our method al-

lows to estimate nonparametrically the reaction functions of each of the players, from the

distribution of observable equilibrium actions and players’ costs. The calculation of our

estimator for the reaction functions requires only a simple matrix inversion and a multipli-

cation, analogous to the solution of Linear Least Squares estimators. The difference is that

the elements in our matrices are calculated using nonparametric average derivative methods.

In this sense, our estimators can be seen as the extension to models with simultaneity of

the average derivative methods of Stoker (1986) and Powell, Stock and Stoker (1989). As

in those papers, we extract the structural parameters using averages of nonparametrically

estimated derivatives of the densities of the observable variables.2

The second model for which we develop estimators is one such as a demand function,

where the object of interest is the derivative of the demand with respect to price. Price is

determined by another function, the supply function, which depends on quantity produced,

an unobservable shock, and at least one observable cost. We provide conditions under which

the derivative of the demand function with respect to price can be easily read off the joint

density of the equilibrium price, the equilibrium quantity and the observable cost, and we

develop consistent and asymptotically normal estimators for this derivative. We also present

new results that can be used to develop new identification results and related estimators.

2Existent extensions of the average derivative methods of Stoker (1986) and Powell, Stock, and Stoker

(1989) for models with endogeneity, such as Altonji and Ichimura (2000), Altonji and Matzkin (2001, 2005),

Blundell and Powell (2003a), and Imbens and Newey (2003, 2009), require conditions that are generally not

satisfied by models with simultaneity.
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We focus in this paper on the most simple models we can deal with, which exhibit si-

multaneity. However, our proposed techniques can be used in models where simultaneity is

only one of many other possible features of the model. For example, our results can be used

in models with simultaneity in latent dependent variables, models with unobserved hetero-

geneity, and models where the unobservable variables are only conditionally independent of

the explanatory variables. (See Matzkin (2010a) for identification of some such models and

Matzkin (2010b) for applications of the estimation methods in this paper to such models.)

The structure of the paper is as follows. In the next section we present a basic model

and discuss some of its features. In Section 3 we present an estimator for a simultaneous

model with exclusive regressors. Section 4 deals with the model of one equation of interest

and one excluded instrument. It presents identification and estimation results. Section 5

presents results for this latter model that can be used to develop additional identification

results and estimators. The Appendix contains some of the proofs

2. Nonadditive simultaneous equations

Our basic model can be described as

(21)  ( ) = 0

where  denotes a -dimensional vector of observable endogenous variables,  denotes a

-dimensional vector of observable exogenous variables,  denotes a -dimensional vector

of unobserved variables, and  : ++ →  is an unknown function.

We assume that the function  is such that for any value ( ) of ( )  there exists a

unique value  of  such that  (  ) = 0 and for any value ( ) there exists a unique

value  such that  (  ) = 0We will denote the function that assigns the values of  that

satisfies (2.1) for ( ) by  ( ) and we will denote the function that assigns the value of 

satisfying (2.1) for ( ) by  ( )  The function  corresponds to the reduced form model

of (21) while the function  corresponds to the structural form model of (21)

We will assume that the functions  and  are each twice continuously differentiable and

that, for each fixed value  of  both functions are onto  The vector of unobservable

variables will be assumed to be distributed independently of and to possess an everywhere

positive and continuously differentiable density  These assumptions were also made in

Matzkin (2008) to analyze identification of nonparametric simultaneous equation models.

To describe the complications that arise in model (2.1) due to the nonlinearity of the

structural system of equations, consider the textbook example of a system of demand and
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supply,

(22)  =  (  )

 =  ( )

where is observed quantity,  is observed price,  is observed income of the consumers, is

observed production costs,  and  are the unobservable random terms in, respectively, the

demand and supply functions, and  and  are the unknown demand and supply functions.

Suppose that the functions  and  were linear in the endogenous variables and additive

in, respectively,  and 

 = 0 + 1 + 2 + 

 = 0 + 1+ 2 + 

Under conditions on the parameters guaranteeing the existence of unique solutions for () 

this system generates reduced form functions for  and  of the form

 = 0 + 1 + 2 + 

 = 0 + 1 + 2 + 

each with one additive unobservable variable. The linearity and additivity of the structural

equations guarantees that the effect of the two unobservable variables,  and  in each

reduced form equation collapses into one unobservable additive variable for each equation.

This allows one to estimate the reduced form equations by standard linear least squares

methods. Estimation of the structural parameters can then be obtained, for example, from

that of the reduced form parameters.

When the structural model is nonlinear in the endogenous variables or nonadditive in the

unobservable variables, the effect of the unobservable variables  and  will not in general

collapse into one unobserved variable for each reduced form equation. The reduced form

function will then depend separately on both unobservable variables,  and  In other

words, we will only be able to establish that for some nonparametric functions  and 

 =  (  )

 =  (  )

Nonparametric identification of the reduced form functions,  and  the structural func-

tions  and  and the distribution of ( )  or of particular features of them, was studied

inMatzkin (2008), following results by Brown (1983), Roehrig (1988), and Benkard and Berry
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(2006). In the next section, we apply those results to show identification of the derivatives

of the function  and we develop estimators that are calculated by an expression analogous

to that of the standard Least Squares form, ( 0)−1 0 except that the elements of the

matrices are formed from estimated average derivative estimators. In Section 4, we consider

the estimation of the function  in the model

(23)  =  ( )

 =  ( )

where  is not an argument of  We provide conditions under which the derivative of 

with respect to price can be read off directly from the density of ( ), and it can be

estimated by an easily computable, consistent and asymptotically normal estimator.

3. A model with exclusive regressors

We consider the model

1 = 1 (2 3   1 1)

2 = 2 (1 3   2 2)

(31) · · ·
 =  (1 2  −1  )

where (1  ) is a vector of observable endogenous variables, (1 ) is a vec-

tor of observable exogenous variables, and (1  ) is a vector of unobservable variables.

Inclusion in each of the functions  of the observable vector  does not create any ma-

jor complications. For simplicity of exposition, we will not include such a vector  If 

were included, all our assumptions and conclusions would hold conditionally on  We will

assume that the functions 1  are invertible in, respectively, 1   This can be

guaranteed if for each   is strictly increasing in  We will denote the corresponding

inverse functions by 1   Hence, our system of indirect structural equations, denoting

the mapping from the vectors of observable variables to the vector of unobservable variables,

is expressed as

1 = 1 (1   1)

2 = 2 (1   2)

· · ·
 =  (1  )
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In addition to the existence of this system of indirect structural equations, we will also

assume that there exists a reduced form system. That is, we assume that for any values of

(1  1  )  the system in (3.1) has a unique solution. We will let the values of

functions 1   denote the solution to these equations,

1 = 1 (1   1  )

2 = 2 (1   1  )

· · ·
 =  (1  1  )

Our first assumption specifies the sense in which the explanatory observable regressors,

1  are exclusive. It states that, for any  the  −  structural function does not

depend on  for all  6= 

Assumption 3.1: For any  and any values − of (1  −1 +1  )    of

 and − of (1  −1 +1  ), the value of the function  at (−  ) is

constant over −

Our second assumption can be interpreted as specifying units of measurement for each 

Since  is unobservable, its value can be determined only up to a monotone transformation.

We tie the values of  to that of  by requiring that the derivative of 
 with respect to

 is equal in absolute value to the derivative of 
 with respect to  The assumption

also imposes a strict monotonicity of  on  by bounding from below the derivative of 


with respect to  Alternative conditions can be derived using results in Matzkin (2008).

Assumption 3.2: For all 

−  (−  )


=
 (−  )


 0

The following set of assumptions imposes conditions guaranteeing that the mapping be-

tween the structural elements  and  and the conditional densities of the observable vari-

ables,  |= is given by the transformation of variables equation

 |=() =  ( ( ))

¯̄̄̄
 ( )



¯̄̄̄


These assumptions also guarantee that both sides of these equation can be differentiated with

respect to  and  Some weakening of these assumptions is possible. One such direction is
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highlighted by Assumptions 3.4’ and 3.4”.

Assumption 3.3: (1  ) is distributed independently of (1 ) with an every-

where positive and continuously differentiable density, 

Assumption 3.4: (1 ) possesses a differentiable density whose support is such

that for any  ∈  and any  ∈  there exists  in this support such that  =  ( ).

Assumption 3.5: Conditional on (1  )  the functions  =
¡
1  

¢
and

 =
¡
1  

¢
are twice continuously differentiable, 1 − 1, onto  and their Jacobian

determinants are strictly positive.

The next assumption imposes a restriction at  + 1, not necessarily known, points on

the support of  It states that at one point, ∗(0) the derivative of  with respect to all its

coordinates is zero, and at G points ∗(1)  ∗() the derivative of  with respect to all

its coordinates except one equals zero. For each  the coordinate for which the derivative

of  is different from zero at ∗() is the −th coordinate. For some of our results, this
assumption can be replaced by alternative invertibility conditions on the matrix of values of

 log 
¡
∗()

¢
 ( = 1  ;  = 1  ).

Assumption 3.6: The density,  of (1  ) is such that

(i) for some, not necessarily known, value ∗(0) = (∗1  
∗
) 

 log  (
∗
1  

∗
)  = 0   = 1  

(ii) for each  there exists a, not necessarily known, value ∗() such that

 log 
¡
∗()

¢
 6= 0 and for all  6=   log 

¡
∗()

¢
 = 0

Assumption 3.6 together with 3.4 implies that, given any value  we will be able

to find values ∗(0) ∗(1)  ∗()of  such that the value of  ( ) equals the values of

∗(0) ∗(1)  ∗() Identification requires only these values of  to recover the derivative of

 with respect to  Hence, when we are interested in identifying the derivative of  with

respect to  at only one particular value  Assumption 3.4 is too strong. It suffices to

guarantee that the values ∗(0) ∗(1)  ∗()of  are in the support of  Moreover, if the

interest is only on the identification of the derivatives of only one coordinate function, say

1 of  we need to guarantee that only ∗(0) and ∗(1) are in the support of  We state
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these weaker assumptions in Assumptions 3.4’ and 3.4”. For both assumptions, ∗ denotes

a given specific value of 

Assumption 3.4’:  possesses a twice continuously differentiable density with  + 1

points ∗(0) ∗(1)  ∗() in the interior of the support of  such that 
¡
∗ ∗(0)

¢
= ∗(0)

and 
¡
∗ ∗()

¢
= ∗() for  = 1   where ∗(0) and ∗(1)  ∗() are as in Assumption

3.6.

Assumption 3.4”:  possesses a twice continuously differentiable density with 2 points,

∗(0) and ∗(1) in the interior of the support of  such that 
¡
∗ ∗(0)

¢
= ∗(0) and


¡
∗ ∗(1)

¢
= ∗(1) where ∗(0) and ∗(1) are as in Assumption 3.6.

3.1. Identification

Denote the matrices of derivatives of  with respect to  and  by  and  The following

result follows from Section 4.2 in Matzkin (2008), once we prove that Assumption 3.2 implies

that for all ( )   ( ) = 3

Theorem 3.1: Suppose that the model satisfies Assumptions 3.1-3.6. Then,  and 

are identified. If, in addition, it is specified that at some values  of  and  of  and

for some  ∈   ( ) =  then the function  and the density  are identified. Let

∗ denote a specific value of  If Assumption 3.4 is substituted with Assumption 3.4’, then

 (
∗ ) is still identified. If Assumption 3.4 is substituted with Assumption 3.4”, then

1 (
∗ ) is still identified.

Proof of Theorem 3.1: Let e denote a function satisfying the same assumptions
that  is assumed to satisfy. Let ∆ denote the  × 1 vector whose  −  element is

 log ||  −  log |e|  and let ∆ denote the  × 1 vector whose  −  element is

 log ||  −  log |e|  both evaluated at ( )  We first note that our assumptions
imply that for all ( )

(31) e =  =  , ∆ = 0 and
∆


= 0

To see this, note that by the definition of 

3See also Matzkin (2005), Matzkin (2007b, Example 4), Berry and Haile (2009), and Chiappori and

Komunjer (2009) for identification results in similar models.
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 =  (−  
 ( )) 

Differentiating with respect to  gives

0 =



+









Assumption 3.2 then implies that  = 1 Similarly, e = 1 By Assumption

3.1,  = e = 0 for  6=  Hence, e =  = 

Since  = e = 1 and  = e = 0 holds for all ( )  it follows that for all    

 = e = 0
Hence, for all  

 log [||]


=
 log [||]


=

 log [|e|]


=
 log [|e|]


= 0

By the same arguments, for all  and 

2 log [||]


=
2 log [||]


=
2 log [|e|]


=
2 log [|e|]


= 0

Hence, for all  the values of  log [||]  and  log [|e|]  are not functions of (1  ) 
We have then shown that ∆ = 0 and ∆ = 0

(31) implies that the properties of  and e are as those of the additive functions in
Section 4.2 in Matzkin (2008). Repeating the arguments in that section, it follows that if e
is observationally equivalent to  then for any arbitrary argument ( ) of e and 

¡e0 − 0
¢
 = 0

where  denotes the × 1 vector whose  −  element is  log  ( ( )) 

Since for all   , 2 = 2e = 0 each of the elements of e and of 
are constant over  This together with our Assumptions 3.4 and 3.6 imply, as in Matzkin

(2008, Section 4.2) that e0 = 0

Hence,  and  =  are identified. Assume that  ( ) =  Then, since  and  are

identified,  is identified also. And since  is identified,  is identified also. (To see this,
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note that by the transformation of variables equation

 () =  |=() () | ( ())|−1

where () be the value of  at which  ( ()) = )

We remark that, as shown in Matzkin (2008, Section 4.2) for any specific value ∗ we

only require the existence of ∗(0) to guarantee that for all values  0

¡e0 (∗ )− 0 (
∗ )

¢
 ( (

∗ 0)) = 0

This together with the existence of ∗() as in Assumption 3.4 implies that the derivatives of

the −th coordinate of e (∗ ) must equal those of  (∗ )  Hence, when Assumption 3.4’
is satisfied, the derivatives of  (∗ ) are identified, and when Assumption 3.4” is satisfied,

the derivatives of 1 (∗ ) are identified. This completes the proof.

3.2. Estimation

Our estimation methods make use of the transformation of variables relationship

(32)  |= () =  ( ( ))

¯̄̄̄
 ( )



¯̄̄̄


Let e( ) denote a positive function satisfying R e( )  = 1 Let b |= () denote
a nonparametric estimator for  |= ()  And let Θ denote the set of functions (e e) for
which there exists a pair of a structural function and a density (e ) satisfying Assumptions
3.1-3.6. In the proof of Theorem 3.1, we showed that if ( ) and (e ) is a pair such that
( ) and (e ) satisfy Assumptions 3.1-3.6 and for all ( )

 ( ( ))

¯̄̄̄
 ( )



¯̄̄̄
=  (e ( )) ¯̄̄̄

e ( )


¯̄̄̄
then

 = e and  = e
This implies that if  |= were known, ( ) would be the unique minimizer over Θ of

(33)

Z £
 |= ()−  (e ( ) ; e e) |e|¤2 e( ) 

In such minimization, e and  (·; e e) are any function and density that (i) are consistent
with the model and with (e e)  and (ii) are such that for all ( ) with e ( )  0

 |= () =  (e( ); e e) |e ( ) |  A natural estimator for ( ) could then be
10



defined as (b b) that minimizes over Θ the distance

(34)

Z h b |= ()−  (e ( ) ; e e) |e|i2 e( ) 

where b |= is a nonparametric estimator of  |= In principle, one could impose sufficient
regularity conditions to guarantee that (34) converges uniformly in probability to (33) and

use this to show that (b b) converges in probability to ( )  A normalization on the

value of  at some point would also allow one to obtain consistent nonparametric estimators

for  and  over some domain.

Our estimator can be interpreted in a similar way, except that instead of minimizing

(3.4), our estimator minimizes over ( ) the distance between the derivatives with respect

to the observable variables of the logarithms of each side of (3.2):

(35)

Z °°°°° log b |= ()( )
−  log  ( ( ) ;  )

( )
−  log |( )|

( )

°°°°°
2 e( ) 

We will develop below an estimator for (( ) ( )) at one arbitrary value for 

Hence, the weight function e will be defined only over Wewill denote it as () As we have
shown in the proof of Theorem 3.1, under our assumptions, for all  and  ( ) = 

Hence, the values of  ( ) are constant over  and identification of ( ) requires a

condition, described in Assumption 3.4’, on  + 1 points in the support of  We will

assume that our weight function, () is strictly positive at those  + 1 points, but not

necessarily strictly positive everywhere. We denote

( ) =
 log  |=()


; ( ) =

 log  |=()


 and

 ( ) =
 log ( ( ))




Taking first logarithms and next derivatives of (3.2) with respect to  we get that

 ( ) =  ( )
0
 (( )) +

| ( )|
|( )|

( ) = ( )
0  (( )) +

|( )|
|( )|

Our assumptions imply that |( )| = 0 and ( ) =  Hence, our equations become
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 ( ) =  ( )
0
 (( )) +

|( )|
|( )|

 ( ) =  (( ))

Note that this means that if  is identified, one can obtain an estimator of  log  directly

from an estimator of  Combining these we obtain an expression between the "known"

 ( ) and  ( ) and the unknown  ( ) and |( )| :

 ( ) =  ( )
0
 ( ) +

|( )|
|( )|

Since, as noted above,  is constant over  we will denote ( ) by () Equation (3.5)

becomes

(36)

Z °°°°° ( )−  ()
0
 ( )−

|()|
|()|

°°°°°
2

 () 

where
R
() = 1 and our identification result implies that (36) is uniquely minimized

at () For each  denoteZ
() =

Z
( ) ()  =

Z
 log  |=()


() 

Z
() =

Z
( ) ()  =

Z
 log  |=()


() 

Hence, from

 ( ) =  ()
0
 ( ) +

|()|
|()|

we get

 ( )−
Z

() =  ()
0
µ
 ( )−

Z
()

¶
Multiplying each row by

¡
 ( )−

R
()

¢
and integrating with respect to  we get the

system of equations, which is the solution to the minimization of (36) :

Π()

µ
()



¶
= Γ() where

Π() =

⎛⎜⎜⎜⎜⎝
11() 21() · · 1()

· · ·
· · ·

1() 2() · · ()

⎞⎟⎟⎟⎟⎠

12



Γ() =

⎛⎜⎜⎜⎜⎝
11() 21() · · 1()

· · ·
· · ·

1() 2() · · ()

⎞⎟⎟⎟⎟⎠

() =

Z µ
( )−

Z
()

¶µ
( )−

Z
()

¶
() and

 () =

Z µ
( )−

Z
()

¶µ
( )−

Z
()

¶
()

Each of the elements, () and  () in the matrices Π and Γ can be estimated from

the distribution of the observable variables using average derivative methods, by extending

the methods in Stoker (1985) and Powell, Stock, and Stocker (1989). Denote such estima-

tors by b() and b () and let [Π() and dΓ() denote the matrices whose elements
are, respectively, b () and b () Then, the estimator for the matrix of derivatives
(()) is defined as

\µ()


¶
=
h
[Π()

i−1dΓ()
3.3. Asymptotic properties

We develop the asymptotic properties of our estimators for the case when the estimatorb |=() for the conditional density of  given  is estimated by kernel methods. Let

{  }=1 denote  iid observations generated from   The estimator is

b |=() =
P

=1
³
 −


 
−


´


P

=1
³
−


´
where  is a kernel function and  is a bandwidth. The element in the j-th row, i-th

column of our estimator for b isZ µb( )− Z b()¶µb( )− Z b()¶()

where for  = 1  

b( ) =  log b |=()


and

Z b() = Z  log b |=()


() 
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Similarly, the element in the j-th row, i-th column of our estimator for b  isZ µb( )− Z b()¶µb( )− Z b()¶()

where for  = 1  

b( ) =  log b |=()


and

Z b() = Z  log b |=()


() 

We will specify the weight function () to be bounded, twice continuously differentiable on

, strictly positive in the interior of a compact and convex subset, 

 of  and zero

outside

We will let


denote a compact set such that the value  at which we estimate

 is an interior point of 

 Our results use the following assumptions.

Assumption 3.7: The density  generated by  and  is bounded, everywhere

positive, and continuously differentiable of order  ≥  + 2 where  denotes the order of

the kernel function. Moreover, there exists   0 such that for all  ∈ 

 ()  

and ( )  

Assumption 3.8: The  + 1 values satisfying Assumption 3.4’ are interior points of



 where 


is the compact and convex subset of  such that for every  in the interior

of 

 ()  0.

Assumption 3.9: The kernel function  is of order  where  + 2 ≤  It attains

the value zero outside a compact set, integrates to 1, is differentiable of order ∆ and its

derivatives of order ∆ are Lipschitz, where ∆ ≥ 2

Assumption 3.10: The sequence of bandwidths,   is such that  → 0 +2 →∞
√


(2)+1+

 → 0
£
2+2  ln()

¤→∞ and
√


(2)+1



∙q
ln()2+2 + 

¸2
→

0 .

To describe the asymptotic behavior of our estimator, we will denote by () the

vector in 2 formed by stacking the columns of () so that () = (()) =

(11()  

1
(); 12()  


2
(); ; 1()  



())0 Let b() denote the estimator

for () Accordingly, we will denote the matrix () by  ⊗ () and its esti-

mator c () =  ⊗ b() The vector () will be the vector formed by stack-

ing the columns of () : () = (11()  1(); 21()  2(); ;

14



1()  ())
0 with its estimator defined by substituting each coordinate by its

estimator. For each  denote

∆ log  |=() =
 log  |=()


−
Z

 log  |=()


()

and for each   denote

g  =

½Z ∙Z µ
(e e)



¶
e¸ ∙Z µ

(e e)


¶
e¸ e¾

In the proof of Theorem 3.2, which we present in the Appendix, we show that under our

assumptions q
+2

³c ()− ()
´
→

 (0  ())

where the element in the diagonal of  () corresponding to  is½Z ¡
∆ log  |=()

¢2µ ()2

( )

¶


¾(Z ∙Z µ
(e e)



¶
e¸2 e)

and the element in  () corresponding to the covariance between  and  is½Z ¡
∆ log  |=()

¢ ¡
∆ log  |=()

¢µ ()2

( )

¶


¾ g  

Theorem 3.2: Suppose that the model satisfies Assumptions 3.1-3.10. Then,q
 +2 ( b()− ())→



¡
0 (())

−1
 () (())

−1¢

4. A system with two equations and one instrument

In this section, we consider the model

(41) 1 = 1 (2 1)

2 = 2 (1  2)

where the object of interest is the derivative 1 (2 1) 2 and where we can estimate

the joint density 12 of the observable variables. We concentrate on conditions that are

closely related to those used in Section 3. In Section 5, we present additional results that can

15



be used for the identification and estimation of 1 (2 1) 2 under other assumptions

in the model. We make the following assumptions, which are analogous to the assumptions

made in Section 3. We note in particular that the support of  does not need to be the real

line.

Assumption 4.1: For all (1  2)

− 2 (1  2)


=

2 (1  2)

2
 0

Assumption 4.2: (1 2) is distributed independently of  with an everywhere positive

and continuously differentiable density, 

Assumption 4.3:  possesses a twice continuously differentiable density.

Assumption 4.4: The functions  = (1 2) and  = (1 2) exist and are twice

continuously differentiable, 1− 1 and onto 2

We will show identification first under Assumption 4.5 and next under Assumption 4.5’.

Assumption 4.5: The density, 12 of (1 2) is such that for all 1 there exists at

least one value ∗2(1) of 2 such that

2 log  (1 
∗
2(1))

22
= 0 

At any such value 2 log  (1 
∗
2(1)) 21 6= 0

Assumption 4.5’: The density, 12 of (1 2) is such that for all 1 there exist

distinct values ∗2(1) and ∗∗2 (1) of 2 such that

 log  (1 
∗
2(1))

2
=

 log  (1 
∗∗
2 (1))

2
= 0

For any such two values,  log  (1 
∗
2(1)) 1 6=  log  (1 

∗∗
2 (1)) 1

Assumption 4.6: For any 1 2 and 1 = 1 (1 2)  there exists a value ∗ in the

interior of the support of  such that for ∗2(1) as in Assumption 4.5, ∗2 = 2 (1 2 
∗) 

16



Assumption 4.6’: For any 1 2 and 1 = 1 (1 2)  there exists distinct values 
∗ and

∗∗ in the interior of the support of  such that for ∗2(1) and ∗∗2 (1) as in Assumption

4.5’, ∗2 = 2 (1 2 
∗) and ∗∗2 = 2 (1 2 

∗∗) 

Assumptions 4.5-4.6 and 4.5’-4.6’ play a role similar to Assumptions 3.6 and 3.4” in

Section 3. Assumption 4.5 is satisfied, for example, when there exists a function  (1)

with  (1) 1 6= 0 and the value and derivatives of the conditional density of 2 given

1 when 2 = 0 coincide with the values and derivatives of a conditional density of the

form 2|1 (2) =  exp (− (1) 32)  for some  which could depend on 1 The conditional

density 2|1 (2) is not restricted to possess this form for values of 2 other than 2 = 0

An example that satisfies Assumption 4.5’ is where the conditional density of 2 given 1 has

the form 2|1 (2) =  exp (− (1) 32 −  22 ) locally at 2 = 0 and 2 = (−2)(3(1))
Again, the conditional density 2|1 (2) is not restricted to possess this form for other

values of 2 These conditional densities also satisfy a local invertibility condition at 2 =

0 in the first example, and at 2 = 0 and 2 = (−2)(3(1)) in the second, which is
required in Assumptions 4.8 and 4.8’ below, to guarantee desired asymptotic properties for

our estimators of 1 (2 1) 2. Assumptions 4.6 and 4.6’ guarantee that the values of

2 satisfying, respectively, Assumptions 4.5 and 4.5’ possess corresponding values of  in the

support of 

4.1. Identification

The following theorem establishes an identification result for 1(2 1)2 when Assump-

tions 4.1-4.6 are satisfied. It uses a relationship between log  and log  | in terms of second

order derivatives4 Theorem 4.2 establishes identification of 1(2 1)2 when Assump-

tions 4.1-4.4 and 4.5’-4.6’ are satisfied, using a relationship between log  and log  | in

terms of first order derivatives, as in Section 3. In each case, our proof proceeds by first

showing how to identify the value(s) of  satisfying Assumption 4.6 (4.6’), and then using

Assumption 4.5 (4.5’) to find the appropriate functional of  from which one can calculate

1(2 1)2

Theorem 4.1: Suppose that Assumptions 4.1-4.6 are satisfied. Then,

1(2 1)

2
is identified

4The closest work that uses the relationship between second order derivatives of observed and unobserved

densities is, we believe, the generic identification result for multiple choice models in Chiappori and Komunjer

(2009).
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Proof: The proof is constructive. Differentiating the identity 1 = 1 (2 
1 (1 2))

with respect to 1 and with respect to 2 we get that

1(2 1)

2
=
−12
11

where 11 = 1(1 2)1 and 12 = 1(1 2)2 Hence, we only need to show identi-

fication of the ratio, 12
1
1
 As in the proof of Theorem 3.1, Assumption 4.1 implies that

2 = 2(1 2 ) = 1 We use the transformation of variables equation

 |=(1 2) = 12
¡
1 (1 2)  

2 (1 2 )
¢ ¯̄̄̄

(1 2 )



¯̄̄̄
to show that under our assumptions, for any (1 2)  the ratio 12

1
1
can be read off the

density of the observable variables,  |(1 2) Taking logarithms, differentiating both sides

with respect to  and noting that 2 = 1 implies that  |(1 2 )|  = 0 we get
that for all 1 2 

 log  |=(1 2)


=
 log 12 (

1 (1 2)  
2 (1 2 ))

2

Differentiating with respect to 1 2 and  we get

2 log  |=()
1

=
2 log 12(

1 2)

21
11 +

2 log 12(
1 2)

22
21

2 log  |=()
2

=
2 log 12(

1 2)

21
12 +

2 log 12(
1 2)

22
22

2 log  |=()


=
2 log 12(

1 2)

22

By Assumption 4.5 there exists ∗2 such that 
212 (1 

∗
2) 

2
2 = 0 and by Assumptions

4.3 and 4.6, there exists a value ∗ such that ∗2 = 2 (1 2 
∗)  Conditioning on such value

of  we get that

2 log  |=∗(1 2)
1

=
2 log 12
21

11 and

2 log  |=∗(1 2)
2

=
2 log 12
21

12

Since by our assumptions 2 log 12 (
1 (1 2)  

2 (1 2 
∗)) 21 = 2 log 12 (1 

∗
2) 21
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6= 0 it follows from these equations that

12
11

=

∙
2 log  |=∗(1 2)

1

¸−1 ∙
2 log  |=∗(1 2)

2

¸

Hence, 1(2 1)2 = −
£
2 log  |=∗(1 2)1

¤−1 £
2 log  |=∗(1 2)2

¤


This completes the proof.

Our next theorem establishes identification when assumptions 4.1-4.4 and 4.5’-4.6’ are

satisfied.

Theorem 4.2: Suppose that Assumptions 4.1-4.4 and 4.5’-4.6’ are satisfied. Then,

1(2 1)2 is identified

Proof: Let (1 2) be given and 1 = 1 (1 2). By the same arguments in the proof

of Theorem 4.1, we need to show that we can recover the ratio 12
1
1
 Taking logarithms

and differentiating the transformation of variables equation used in the proof of Theorem

4.1, we get that for all 1 2 

(41)
 log  |=()

1
=

 log 12(
1 2)

1
11 +

 log 12(
1 2)

2
21 +

 log ||
1

(42)
 log  |=()

2
=

 log 12(
1 2)

1
12 +

 log 12(
1 2)

2
22 +

 log ||
2

(43)
 log  |=()


=

 log 12(
1 2)

2

By Assumption 4.6’, there exist ∗ and ∗∗ such that for ∗2 and ∗∗2 as in Assumption 4.5’,

∗2 = 2 (1 2 
∗) and ∗∗2 = 2 (1 2 

∗∗). Let 2∗ and 2∗∗ denote the value of 2 at,

respectively, (1 2 
∗) and (1 2 ∗∗)  By (41)− (43)

 log  |=∗()


=
 log  |=∗∗()


= 0

When  = ∗

 log  |=∗()
1

=
 log 12(

1 2∗)
1

11 +
 log ||

1

 log  |=∗()
2

=
 log 12(

1 2∗)
1

12 +
 log ||

2
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while when  = ∗∗,

 log  |=∗∗()
1

=
 log 12(

1 2∗∗)
1

11 +
 log ||
1

 log  |=∗∗()
2

=
 log 12(

1 2∗∗)
1

12 +
 log ||
2

Taking differences, we get

 log  |=∗()
1

−  log  |=∗∗()
1

=

µ
 log 12(

1 2∗)
1

−  log 12(
1 2∗∗)

1

¶
11

 log  |=∗()
2

−  log  |=∗∗()
2

=

µ
 log 12(

1 2∗)
1

−  log 12(
1 2∗∗)

1

¶
12

By Assumption 4.5’,  log 12(
1 2∗)1 6=  log 12(

1 2∗∗)1. Hence,

1 (2 1)

2
=
−12
11

=

 log  |=∗∗ ()
2

−  log  |=∗()
2

 log  |=∗()
1

−  log  |=∗∗()
1

is identified.

4.2. Estimation and asymptotic properties

Our estimation methods for 1(2 1)2 under either Assumption 4.5 or 4.5’, are closely

related to our proofs of identification. When Assumptions 4.1-4.4 and 4.5-4.6 are made, the

estimator for 1(2 1)2 is obtained by first estimating nonparametrically the deriv-

atives 2 log  |=()1 2 log  |=()2 and 2 log  |=() at the

particular value of (1 2) for which we want to estimate 1(2 1)2 The next step

consists of finding a value ∗ of  satisfying

\2 log  |=∗()


= 0

The estimator for 1(2 1)2 is then defined by

(42)
\1(2 1)

2
=
− \2 log  |=∗()

2

\2 log  |=∗()
1

When 2 log  |=()1 2 log  |=()2 and 2 log  |=() are esti-

mated using kernel methods, the asymptotic distribution of the estimator for 1(2 1)2

defined in this way can be shown to be consistent and asymptotically normal.
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When instead of Assumptions 4.5-4.6, we make Assumption 4.5’-4.6’, our estimator

for 1(2 1)2 is obtained by first estimating nonparametrically  log  |=() 

 log  |=()1 and  log  |=()2 at the particular value of (1 2) for which

we want to estimate 1(2 1)2 The next step consists of finding values 
∗ and ∗∗ of

 satisfying

\ log  |=∗()


=
\ log  |=∗∗()


= 0

Our estimator for 1(2 1)2 is then defined by

(43)
\1(2 1)

2
=

\ log  |=∗∗()
2

− \ log  |=∗()
2

\ log  |=∗()
1

− \ log  |=∗∗()
1

Again, when  log  |=()1   log  |=()2 and  log  |=() are estimated

using kernels, the estimator for 1(2 1)2 defined in this way will be consistent and

asymptotically normal, under standard conditions. We present below the asymptotic prop-

erties for both estimators, without exploiting possible averaging, as in Section 3.

Asymptotic properties

To derive the asymptotic properties of the estimator defined in (4.2), we make the following

assumptions

Assumption 4.7: The density  and the density  generated by  and  are

bounded, everywhere positive, and continuously differentiable of order  where  ≥ 5 + 

and  denotes the order of the kernel function  (·)  specified below in Assumption 4.10.

Assumption 4.8: For any 0 such that 2 log  (1 (1 2)  2 (1 2 0)) 22 = 0 there

exist a neighborhood 
0
 of (1 2 

0) and 0
 of 0 such that the density () and the

density  ( ) =  (
1 (1 2)  

2 (1 2 )) | (1 2 )| () are uniformly bounded
away from zero on, respectively, 0

 and 
0
 and 3 log  (

1 (1 2)  
2 (1 2 )) 

3
2 is

bounded away from zero on those neighborhoods.

Assumption 4.9: For any 0 such that 2 log  (
1 (1 2)  

2 (1 2 
0)) 22 = 0

2 log  (
1 (1 2)  

2 (1 2 
0)) 12 is uniformly bounded away from 0 on the neigh-

borhood 
0
 defined in Assumption 4.8.

Assumption 4.10: The kernel function  attains the value zero outside a compact set,
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integrates to 1, is of order  where +5 ≤  is differentiable of order ∆ and its derivatives

of order ∆ are Lipschitz, where ∆ ≥ 5.

Assumption 4.11: The sequence of bandwidths,  , is such that  → 0

q
7+2

→ 0,
p
7 → ∞, [11  ln()] →∞, and

p
7

hp
ln()11 + 

i2
→ 0 .

Assumptions 4.7, 4.10 and 4.11 are standard for derivations of asymptotic results of ker-

nel estimators. Assumptions 4.8 are 4.9 are made to guarantee appropriate asymptotic

behavior of the estimator for the value ∗ at which \1 (2 1) 2 is calculated. Define

1(e1 e2 ) = 2(12)
1

 2(e1 e2 ) = 2(12)
2

 and (e1 e2 ) = 2(12)
2



Let (e1 e2 ) denote the 3×1 vector ¡1(e1 e2 )2(e1 e2 )(e1 e2 )¢0. De-
fine the vector ( ∗) = (1 2 3)

0
where

1 =

2 log  |=∗ ()
2h

2 log  |=∗ (∗)
1

i2
( ∗)

;2 =
− 1

2 log  |=∗()
1

( ∗)
;

3 =

³
2 log  |=∗()2
2 log  |=∗()1

´


( ∗)
³
3 log  |=∗()

3

´
Let e = ( ∗)0

∙Z
(e1 e2 ) (e1 e2 )0 (e1 e2 )¸( ∗) ( ∗)

In the Appendix we prove

Theorem 4.3: Suppose that the model satisfies Assumptions 4.1-4.11. Let the estimator

for 1 (2 1) 2 be as defined in (4.2). Then,q
 7

³
\1 (2 1) 2 − 1 (2 1) 2

´
→


³
0 e ´

To derive the asymptotic properties of the estimator defined in (4.3), we make the fol-

lowing assumptions

Assumption 4.7’: The density  and the density  generated by  and  are

bounded, everywhere positive, and continuously differentiable of order  where  ≥ 4 + 

and  is the order of the kernel function  (·) in Assumption 4.10’.
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Assumption 4.8’: For any 0 such that  log  (1 (1 2)  2 (1 2 0)) 2 = 0 there

exist a neighborhood 
0
 of (1 2 

0) and 0
 of 0 such that the density () and the

density  ( ) =  (
1 (1 2)  

2 (1 2 )) | (1 2 )| () are uniformly bounded
away from zero on, respectively, 0

 and 
0
 and 2 log  (

1 (1 2)  
2 (1 2 )) 

2
2 is

bounded away from zero on those neighborhoods.

Assumption 4.9’: For any two values 0 00 such that  log  (1 (1 2)  2 (1 2 0)) 2 =

0 and  log 
¡
1 (1 2)  

2
¡
1 2 

00¢¢
2 = 0

¡
 log 12(

1 20)1 −  log 12(
1 2

00
)1

¢
is uniformly bounded away from 0 on the neighborhoods 

0
 

00
 

0
 and 00

 defined on

Assumption 4.8’.

Assumption 4.10’: The kernel function  attains the value zero outside a compact set,

integrates to 1, is of order  where +4 ≤  is differentiable of order ∆ and its derivatives

of order ∆ are Lipschitz, where ∆ ≥ 4

Assumption 4.11’:The sequence of bandwidths,   is such that
p
5 →∞

p
5



→ 0
hp
ln()9 + 

i
→ 0 and

p
5

hp
ln()9 + 

i2
→ 0 .

Define1(e1 e2 ) = (12)
1

 2(e1 e2 ) = (12)
2

 and(e1 e2 ) = (12)




Let e(e1 e2 ) denote the 3× 1 vector ¡1(e1 e2 ) 2(e1 e2 ) (e1 e2 )¢0  Define
the vectors 1 = (11 

1
2 

1
3) and 2 = (21 

2
2 

2
3) by

11 =

−
∙
(∗2)

2
 ( 

∗
1)−

(∗1)
2

 ( 
∗
2)

¸
 ( 

∗
2)∙

(∗1)
1

 ( 
∗
2)−

(∗2)
1

 ( 
∗
1)

¸2 ;

12 =
− ( ∗2)∙

(∗1)
1

 ( 
∗
2)−

(∗2)
1

 ( 
∗
1)

¸ ;

13 =

− 
1

µ
 log  |=∗

2
()2− log  |=1 ()2

 log  |=1()1− log  |=∗2 ()1

¶
|1=∗1³

2 log  |=∗
1
()

2

´
 ( 

∗
1)

;

21 =

∙
(∗2)

2
 ( 

∗
1)−

(∗1)
2

 ( 
∗
2)

¸
 ( 

∗
1)∙

(∗1)
1

 ( 
∗
2)−

(∗2)
1

 ( 
∗
1)

¸2 ;
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22 =
 ( 

∗
1)∙

(∗1)
1

 ( 
∗
2)−

(∗2)
1

 ( 
∗
1)

¸ ; and

23 =

− 
2

µ
 log  |=2()2− log  |=∗1 ()2
 log  |=∗

1
()1− log  |=2 ()1

¶
|2=∗2³

2 log  |=∗
2
()

2

´
 ( 

∗
2)



Define

 = 10
∙Z e(e1 e2 ) e(e1 e2 )0(e1 e2 )¸ 1  ( 

∗
1)

+20
∙Z e(e1 e2 ) e(e1 e2 )0(e1 e2 )¸ 2  ( 

∗
2)

In the Appendix we prove

Theorem 4.4: Suppose that Assumptions 4.1-4.4,  4.5’-4.11’ are satisfied. Define

\1(1 1)2 as in (4.3). Then,q
5

³
\1(2 1)2 − 1(2 1)2

´
→ N

¡
0 

¢

5. Further identification and estimation results

The conditions in Section 4 under which we showed the identification of 1(2 1)2 are

by no means unique. Several other sets of conditions could be used, and estimators based

on them could be developed. We provide here results that can guide one to those other sets

of conditions. We consider again the model

(51) 1 = 1 (2 1)

2 = 2 (1  2)

where 1 2 and 12 are unknown. We will assume the existence of the functions

 = (1 2) and  = (1 2) and Assumption 4.2-4.4. Our objective is to estimate

1 (2 1)

2
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the partial effect of exogenously changing the value of the observable explanatory variable,

2 leaving the value of the unobservable 1 unchanged.

5.1. Imposing additional structure

One possibility to obtain additional estimators is to impose more structure on the functions

1 and 2 Suppose that the model is

1 =  (2) + 1

2 =  1 +  + 2

The derivative of  at 2 is identified when (1 2) has an everywhere positive, differentiable

density 12 such that for two, not necessarily known a-priori, values (1 2) and (
00
1 

00
2) 

 log 12 (1 2)

1
6=  log 12 (

00
1 

00
2)

1

and
 log 12 (1 2)

2
=

 log 12 (
00
1 

00
2)

2
= 0

(See Matzkin (2007a).) Fix the value of 2 Taking logarithms and derivatives of the trans-

formation of variables equation as in Section 3.2, but integrating this time with respect to a

measure of both  and 1, we obtain the relationship⎛⎜⎝ 11 1

1 

⎞⎟⎠
⎛⎜⎜⎝
−(2)

2



(2)

2


−1



⎞⎟⎟⎠ =

⎛⎜⎝ 21

2

⎞⎟⎠ 

Substituting the elements in the first and third matrices by nonparametric estimators, we

obtain an estimator of the derivative of  with respect to 2

5.2. Estimating derivatives of the reduced form

In many situations it is easier to consider estimation of the derivatives of the reduced form

functions,  instead of estimation of the derivatives of the structural functions  The

following theorem establishes the relationship between the derivatives of  and the derivative

of 1 It states that to identify the derivative of 1 with respect to 2 it suffices to identify,

at only one value of  the ratio of the derivatives with respect to  of the reduced form

functions 1 and 2
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Theorem 5.1: Suppose that model (5.1) satisfies Assumption 4.2-4.4. Then, for any

(2 1) and all 

(5 1 1 )
1 (2 1)

2
=

1(12)



2(12)



|2=2(1(21)2)

Proof of Theorem 5.1: Differentiating with respect to  the identity

 =  (( ) )

we get µ




¶
= −

µ




¶−1µ




¶
which in our model becomes

1 =
12 

2


|| and 2 =
−11 2
||

Hence, for all 

1 (2 1)

2
=

1(12)



2(12)



|2=2(1(21)2)

This completes the proof.

To estimate the derivative 1 (2 1) 2 through estimation of the derivatives of 

we can use the following transformation of variables

() =  |=(( ))

¯̄̄̄
( )



¯̄̄̄
Taking logarithms and differentiating with respect to  we get

−  log 12|= (1 2)


=
 log 12|= (1 2)

1
1 +

 log 12|= (1 2)
2

2

+
 log

¯̄̄
()



¯̄̄


To get an expression for the last term, we can differentiate  (  ( )) =  with respect
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to  to get that µ
 ( )



¶µ
 ( )



¶
= 

which implies that

 log
¯̄̄
()



¯̄̄


= −
 log

¯̄̄
(())



¯̄̄


= −
µ
 ( )



¶0  log
¯̄̄
()


|=()

¯̄̄


−
 log

¯̄̄
()


|=()

¯̄̄


It can be verified that this last term equals 
¡¡
12 

2


¢
 ||

¢
1+

¡¡−11 2¢  ||¢ 2
which we denote loosely as  (1) 1 +  (2) 2 Hence, we can state that

(52)
−  log 12|= (1 2)


=

 log 12|= (1 2)
1

1 +
 log 12|= (1 2)

2
2

+


1

¡
1
¢
+



2

¡
2
¢

where

1 =
12 

2


|| and 2 =
−11 2
||

Equation (5.2) expresses a linear relationship between the "observable" derivatives of log

12|= (1 2) and the "unobservable" derivatives of the reduced form functions, 1 and

2. Imposing restrictions on the functions  and on the density 12 one can use this equation

to recover either 1 and 2 or the ratio, 
1


2


The two estimators developed in Section 4 can be interpreted as being derived from

(5.2). Consider for example the first estimator in Section 4. The assumptions we made

in that section on the function  imply that  (1)  =  (2)  = 2 (1) 1 =

2 (2) 2 = 0 Differentiating both sides of (52) with respect to  we then get

(53)
− 2 log 12|= (1 2)

2
=

2 log 12|= (1 2)
1

1 +
2 log 12|= (1 2)

2
2

Hence, at ∗ such that

 log 12|= (1 2) 
2 = 0
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we have that
− 1
2

=
− 2 log 12|=∗ (1 2) 2
2 log 12|=∗ (1 2) 1

The assumptions we made in Section 4 on 12 guarantee that such value of 
∗ exists.

The second estimator uses two values, ∗ and ∗∗ of  at which  log 12|= (1 2)  =

0 The assumptions we made in Section 4 imply that 1 
2
 and their derivatives are con-

stant across these two values. Hence, solving for 1
2
 using (52) at those two values, we

get

− 1
2

=

 log  |=∗∗()
2

−  log  |=∗()
2

 log  |=∗()
1

−  log  |=∗∗()
1



By Theorem 5.1,

1 (2 1)

2
=
− 2 log 12|=∗ (1 2) 2
2 log 12|=∗ (1 2) 1

in the first model and, in the second,

1 (2 1)

2
=

 log  |=∗∗()
2

−  log  |=∗()
2

 log  |=∗()
1

−  log  |=∗∗()
1



where, in both, 1 = 1 (1 2) 

5.3. Observational equivalence

Characterizations of observational equivalence are useful to determine restrictions guaran-

teeing that the true pair ( )  or some feature of it, is the unique solution to a set of

equations that depend on the density of the observable variables. These restrictions provide

the basis upon which consistent nonparametric and parametric estimation can be developed.

When the values or structures of an estimator are restricted to belong to such a set, one

can guarantee that the critical identification conditions for consistency of the estimator will

be satisfied. Our next theorem provides a set of such characterizations for Model (5.1).

The characterizations are expressed first in terms of the reduced form functions,  ( 1 2) 

then in terms of the normalized Jacobian determinant, || 2  and finally in terms of the

elements of the second equation,
¡
2 2|1

¢
 The identification results in Section 3 and 4 are

particular cases of these general characterizations. For other identified cases that can sim-

ilarly be derived from the characterizations below, one can modify the estimation methods

that we developed in those sections.
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Theorem 5.2: Suppose that in Model (5.1), Assumptions 4.2-4.4 are satisfied. Then,

the following statements are equivalent

(i) (e ) is observationally equivalent to ( ),
(ii) for all  

0 =

³
 |= (1 2)

³e1 ( e1 e2)− 1 ( 
1 2)

´´
1

+

³
 |= (1 2)

³e2 ( e1 e2)− 2 ( 
1 2)

´´
2



where  and e are the reduced form functions of, respectively,  and e and where the
arguments of 1 2 e1 e2 are (1 2 ) 
(iii) for all  

e12 

1

∙
12|= (1 2)

e2
|e|
¸
− e11 

2

∙
12|= (1 2)

e2
|e|
¸

= 12


1

∙
12|= (1 2)

2
||

¸
− 11



2

∙
12|= (1 2)

2
||
¸

where 1 = 1(1 2) e1 = e1(1 2) 2 = 2(1 2 )and e2 = e2(1 2 )
(iv) for all ( ) 

1 (e1)
1

2|1=1 (e2)
2

− 1 (e1)
2

2|1=1 (e2)
1

=
1 (

1)

1

2|1=1 (
2)

2
− 1 (

1)

2

2|1=1 (
2)

1

where 1 = 1(1 2) e1 = e1(1 2) 2 = 2(1 2 ) and e2 = e2(1 2 ) and where 1
and 1 denote the marginal cumulative distributions of, respectively, e1 and 1 and 2|1
and 2|1 denote the conditional cumulative distributions of, respectively, e2 given e1 and
2 given 1

The proof of this theorem is presented in the Appendix. Condition (ii) characterizes

observational equivalence in terms of the relationship between  |= and the derivatives of

the reduced form functions, (1 2) and
³e1e2´  After dividing by  |= (1 2)  0 the

condition can be written, for all   as

0 =
 log

¡
 |= (1 2)

¢
1

³e1 ¡ e1 e2¢− 1
¡
 1 2

¢´
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+
 log

¡
 |= (1 2)

¢
2

³e2 ¡ e1 e2¢− 2
¡
 1 2

¢´

+

³e1 ( e1 e2)− 1 ( 

1 2)
´

1
+


³e2 ( e1 e2)− 2 ( 

1 2)
´

2

When the only solution to this expression is e1 = 1
e2 = 2 and 

³e1 − 1

´
1 +


³e1 − 1

´
2 = 0 (52) will possess a unique solution in the unknown functions.

Condition (iii) in Theorem 5.3 can be used to determine restrictions on 2 || guarantee-
ing that 11 and 

1
2
 or their ratio, are uniquely determined from  |= The identification

results in Sections 3 and 4 assumed that 2 || is a constant function of  Condition (iii)
provides the means to develop new identification results when 2 || is not constant over


Condition (iv) provides conditions for identification of the elements of the first equation

in Model (51), in terms of restrictions on the elements, 2|1 and 
2 of the second equation

in Model 5.1. The first equation is characterized by 1 (
1)  while the second, conditional

on the value of 1 is characterized by 2|1=1 (
2)  To see how (iv) can be used to develop

an estimator for the ratio
¡
12

1
1

¢
 we note that 12|=(1 2) can be expressed as

(54) 12|=(1 2) =
1 (

1)

1

2|1=1 (
2)

2
− 1 (

1)

2

2|1=1 (
2)

1

Note also that 1 (
1) 1 and 1 (

1) 2 are both functions of only 1 and 2 More-

over,
1 (

1) 1

1 (
1) 2

=
11
12



which is the object of interest. Hence, identification of the derivative 1 (2 1) 2 is es-

tablished once the identification of 1 (
1) 1 and 1 (

1) 2 up to a common constant

is achieved. As 1 2 remain fixed and  varies, the value of these two functions is constant.

Changes in  affect only the other two functions in (54), which are 2|1=1 (
2) 2 and

2|1=1 (
2) 1 Note that these two functions do not depend on any of the features of

the function of interest, 1 For particular fixed values of 1 and 2 the identification problem

can then be expressed as the problem of finding coefficients 1 2 satisfying the relationship

 () = 11() + 22()

where () is a known function. When () = 12|= (1 2)  the functions 1 2 are

2|1=1 (
2) 2 and 2|1=1 (

2) 1 When () is the derivative of 12|= (1 2)

with respect to  the functions 1 and 2 are the derivatives of 2|1=1 (
2) 2 and
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2|1=1 (
2) 1 with respect to  One can consider integration, differentiation, or any

other transformation which which does not affect the values of the coefficients, 1 and 2

or their ratio. Clearly, one may impose many shape restrictions on 1() and 2() that

guarantee identification. In particular, note that

2|1=1 (
2)

2
= 2|1=1

¡
2
¢
22 

2|1=1 (
2)

1
= 2|1=1

¡
2
¢
21

Hence, when () = 12|= (1 2) identification will depend on the way in which the

values of 22 and 21 vary with 

6. Conclusions

In this paper, we have introduced several new methods for estimation of nonparametric

simultaneous equations models. We developed in detail two models. In our first model,

each structural equation contained an exclusive regressor. We introduced for this model

an estimator of the standard Least Squares form, ( 0)−1 ( 0 )  except that the elements

of the matrices  and  were constructed from average derivative estimators from the

density of the observable variables. Our second model had one function of interest and one

instrument. We introduced estimators for the derivative of the function of interest, which

were expressed in terms of ratios of derivatives of the conditional density of the observed

endogenous variables at particular estimated values of the instrument.

The estimators that we developed were special cases of new general approaches to estima-

tion for models with simultaneity, which we presented in the paper. These approaches can

be easily adapted to handle many other alternative models, satisfying different identifying

assumptions. We have indicated directions in which alternative identified models can be

found and how our estimation methods can be modified for such models.

7. Appendix

Proof of Theorem 3.2: We apply the Delta method in Newey (1994). Let z denote

the set of densities satisfying Assumption 3.7, and let kk denote the sum of sup norms of

 and its derivatives over 
 ×


 Define the functionals () and  () by () =

 log  |=() and () =  log  |=()Then,

() =

()



( )
and () =

Ã
()



( )
−

()



()

!
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To simplify notation, we will denote ( ) by  () by e ( ) by  

( ) by   and () by e  with similar shorthands for functions  and
 For any  such that kk is small enough,

( + )− ()

=

∙
 + 

 + 
− 



¸
=

"£
 − 

¤
2

− 
£
 − 

¤
2( + )

#
and

( + )− () =

∙
 + 
 + 

− 


¸
−
" e + ee + e −

ee
#

=

∙
[ − ]

2
−  [ − ]

2( + )

¸
−
⎡⎣
he e − eeie2 −

e he e − eeie2( e + e)
⎤⎦ 

Define  ( ;) =

£
 − 

¤
2

;  ( ;) = −

£
 − 

¤
2( + )

 ( ;) =

⎡⎣ [ − ]

2
−

he e − eeie2
⎤⎦ ; and

 ( ;) = −
⎡⎣ [ − ]

2( + )
−
e he e − eeie2( e + e)

⎤⎦ 
Then, ( + )− () =  ( ;) + ( ;) 

and ( + )− () =  ( ;) + ( ;) 

Denote ()  by  and define

Φ  () =

Z
() ()  −

µZ
() 

¶µZ
() 

¶


It is easy to verify that for all  such that kk is small enough

Φ  ( + )−Φ  ()

=

Z ¡
( + )− ()

¢µ
()−

Z
()()

¶
() 

+

Z µ
()−

Z
()()

¶¡
( + )− ()

¢
() 
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+

Z ¡
( + )− ()

¢ ¡
( + )− ()

¢
() 

−
µZ ¡

( + )− ()
¢
() 

¶µZ ¡
( + )− ()

¢
() 

¶


Hence,

Φ  ( + )−Φ  ()

=

Z
( ;)

µ
()−

Z
()()

¶
() 

+

Z
( ;)

µ
()−

Z
()()

¶
() 

+

Z
( ;)

µ
()−

Z
()()

¶
() 

+

Z
( ;)

µ
()−

Z
()()

¶
() 

+

Z ¡
 ( ;) + ( ;)

¢ ¡
 ( ;) + ( ;)

¢
() 

−
µZ ¡

 ( ;) + ( ;)
¢
() 

¶µZ ¡
 ( ;) + ( ;)

¢
() 

¶
Denote the first two terms in this last sum by Φ  ( ;) and the last four terms by

Φ  ( ;)  Our assumptions imply that for some  ∞

¯̄
Φ  ( ;)

¯̄
≤  kk and

¯̄
Φ  ( ;)

¯̄
≤  kk2 

Expanding the first term in the sum, we get

(1)

Z
( ;)

µ
()−

Z
()()

¶
() 

=

Z


"
()

¡
()−

R
()()

¢


#


−
Z



"
()

¡
()−

R
()()

¢
2

#


Expanding the second term in the sum, we get

(2)

Z
( ;)

µ
()−

Z
()()

¶
() 
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=

Z
[ − ]

2



() −

Z he e − eeie2 


() 

−
µZ

[ − ]

2
() 

¶ µZ µ




¶
()

¶

+

⎛⎝Z
he e − eeie2 ()

⎞⎠µZ µ




¶
()

¶

Our assumptions imply that [ ] 
£
  

¤
2

he 
i
 e and he  

i

h ei vanish on

the boundary of the integration. Hence, integration by parts of the terms in (2) containing

 or
e gives Z

( ;)

µ
()−

Z
()()

¶
() 

= −
Z



∙




µ
 

2

¶
+



3

¸
+

Z e " 



µ
 e 

¶
+
ee2

#


+

µZ


∙




µ




¶
+



2

¸


¶ µZ µ




¶
()

¶

−
ÃZ e" 



µ
e
¶
+
ee2

#


!µZ µ




¶
()

¶


Letting  = b −  it follows by our assumptions and standard kernel methods (see, e.g.,

Newey (1994)) that

q
+2

∙µZ
( ;

b − )

µ
()−

Z
()()

¶
()

¶
+Φ 

³
 ; b − 

´¸
→ 0

and also for the second term in (1)

q
+2

ÃZ


"
()

¡
()−

R
()()

¢
2

#


!
→ 0

Hence, by the definition of Φ it follows thatq
+2

³
Φ 

³ b´−Φ  ()
´

=

q
+2

µZ
( ;

b − )

µ
()−

Z
()()

¶
() 

¶
+ (1)
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=

q
+2

ÃZ Ã
 b ( )


−  ( )



!Ã¡
∆ log  |=()

¢
()

( )

!


!
+ (1)

where ∆ log  |=() =
 log  |=()


−
Z

 log  |=()


()

Using the notation of Section 3, and applying Newey (1994), this implies that for  () as

defined in Section 3

(3)

q
+2

³c  ()−  ()
´
→


 (0  ()) 

Define next the functional Υ () by

Υ () =

Z
() ()  −

µZ
() 

¶µZ
() 

¶


Using arguments very similar to the above, we can conclude that under our assumptions,

Υ (
b)−Υ () = Υ 

³
 ; b − 

´
+Υ 

³
 ; b − 

´

where Υ 

³
 ; b − 

´
=

Z h
( ;

b − )
¡
∆ log  |=()

¢
+( ;

b − )
¡
∆ log  |=()

¢i
() 

and for some  ∞¯̄̄
Υ 

³
 ; b − 

´¯̄̄
≤ 

°°° b − 
°°° and

¯̄̄
Υ 

³
 ; b − 

´¯̄̄
≤ 

°°° b − 
°°°2

This implies, under our assumptions that c  () →

 ()  The result of the theorem

then follows from this, (3) Slutsky’s Theorem, and the definition of b()
Proof of Theorem 4.3: Let z denote the set of densities  that satisfy Assumption

4.7. Let kk denote the maximum of the supremum of the values and derivatives up to the
fourth order of  over the compact set defined as the closure of the neighborhood defined in

Assumption 4.8. We apply again Newey (1994). For this, we first analyze the functional

that for any  assigns the value of  at which 2 log  |=()2 = 0. Define the functional

Φ ( ) by Φ ( ) = 2 log  |=()2 We will show that there exists a functional ()

on a neighborhood of  which is defined implicitly by Φ ( ()) = 0 and satisfies a Taylor

expansion of the form  ( + ) =  () + ( ;) + ( ;) with | ( ;)| of the order
kk2  We then use this to analyze the functional defining our estimator. We will denote
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( ) by () and () by e() with similar notation for other functions in z For
any  such that kk is small enough, any  in a neighborhood of ∗ and any small enough
 such that ||  0

Φ ( +  )−Φ ( )

=

2()

2
+

2()

2

() +  ()
−

h
()


+

()



i2
[() +  ()]

2
−

2()
2

+
2()
2e() + e() +

h
2()
2

+
2()
2

i2
he() + e()i2

−

⎛⎜⎝ 2()

2

()
−

h
()



i2
[()]

2
−

2()
2e() +

h
2()
2

i2
[e()]2

⎞⎟⎠ 

Φ ( + )−Φ ( )

=

2(+)

2

(+ )
−

h
(+)



i2
[(+ )]

2
−

2(+)
2e(+ )

+

h
2(+)

2

i2
[e(+ )]

2

−

⎛⎜⎝ 2()

2

()
−

h
()



i2
[()]

2
−

2()
2e() +

h
2()
2

i2
[e()]2

⎞⎟⎠
Define

Φ ( ;) =

2()

2
()2 − 2()

2
()()− 2()



()


() + 2

³
()



´2
()

[()]
3

−
2()
2

e()2 − 2()
2

e()e()− 2()


()

e() + 2³()



´2 e()
[e()]3  and

Φ ( ; ) =
3 log  |=()

3


Φ ( ;) = Φ ( +  )−Φ ( )−Φ ( ;)  and

Φ ( ; ) = Φ ( + )−Φ ( )−Φ ( ; ) 

Our assumptions imply that there exists  ∞ such that for all ( ) in a neighborhood of

( ∗) 

kΦ ( ; )k ≤  || ; kΦ ( ; )k ≤  ||2 ;
kΦ ( ;)k ≤  kk ;  kΦ ( ;)k ≤  kk2

36



Moreover, it can be verified that on a neighborhood of ( ∗)  Φ ( ; ) andΦ ( ;)

are also Fréchet differentiable on ( ) and their derivatives are continuous on ( )  By

our assumptions, for all ( ) in a neighborhood of ( ∗)  Φ ( ; ) is invertible. It

then follows by the Implicit Function Theorem on Banach spaces that there exists a unique

functional  such that for all  in a neighborhood of 

Φ ( ()) = 0

The Fréchet derivative at  is given by

 (;) =

µ
3 log  |=()

3

¶−1
[− Φ ( ;)]

Since Φ is a 2 map on a neighborhood of ( ∗) and its second order derivatives are

uniformly bounded on such neighborhood,  is a 2 map with uniformly bounded second

derivatives on a neighborhood of  Hence, by Taylor’s Theorem on Banach spaces, it follows

that there exists  ∞ such that for sufficiently small kk  |( + )− ()− ( ;)| ≤
 kk2 
We now analyze the functional of  that defines our estimator. This functional uses 

as an input. Define the functional Ψ( ()) by

Ψ ( ()) =
−
h
2(())

2
( ())− (())

2

(())



i
h
2(())

1
( ())− (())

1

(())



i
Then, Ψ ( ()) = 1 (2 1) 2 and Ψ

³ b ( b)´ = \1 (2 1) 2 For  and  such

that kk and || are small enough, define

Ψ ( 
∗;)

=
−
h
2(∗)
2

(∗) + 2(∗)
2

(∗)− (∗)
2

(∗)

− (∗)

2

(∗)


i
h
2(∗)
1

(∗)− (∗)
1

(∗)


i

+

h
2(∗)
2

(∗)− (∗)
2

(∗)


i h
2(∗)
1

(∗) + 2(∗)
1

(∗)− (∗)
1

(∗)

− (∗)

1

(∗)


i
h
2(∗)
1

(∗)− (∗)
1

(∗)


i2
Ψ ( 

∗; ) =

³− 2 log  |=∗()2

2 log  |=∗()1

´
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Then,

Ψ ( ();) = Ψ ( 
∗;) +Ψ ( 

∗;( ;)) and

Ψ ( ();) = Ψ ( +  ( + ))−Ψ ( ())−Ψ ( ();)

The properties we derived on  and  and our assumptions imply that for some  ∞

|Ψ ( ();)| ≤  kk and |Ψ ( ();)| ≤  kk2  By standard kernel methods and
our assumptions it follows that when  = b − q

7 Ψ ( ();)

=

q
7

− [ (∗)]h
2(∗)
1

(∗)− (∗)
1

(∗)


i 2 (∗)
2

+

q
7

h
2(∗)
2

(∗)− (∗)
2

(∗)


i
[(∗)]h

2(∗)
1

(∗)− (∗)
1

(∗)


i2 2 (∗)
1

+

q
7


³− 2 log  |=∗()2

2 log  |=∗()1

´


µ
3 log  |=∗()

3

¶−1 ∙ −1
(∗)

¸
2(∗)
2

+ (1)

Hence, when  = b −  q
7 Ψ ( ();)

=

q
7

2 log  |=∗ ()
2h

2 log  |=∗()
1

i2
( ∗)

2 (∗)
1

+

q
7

− 1
2 log  |=∗()

1
( ∗)

2 (∗)
2

+

q
7

− 


− 2 log  |=∗ ()2
2 log  |=∗ ()1




( ∗)
³
3 log  |=∗()

3

´ 2(∗)
2

+ (1)

Standard results for kernel estimators imply then thatq
7 Ψ

³
 (); b − 

´
→

(0 e )

where e is as defined prior to the statement of Theorem 4.3. Our assumptions imply thatp
7Ψ

³
 (); b − 

´
= (1) Hence,
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q
7

h
\1 (2 1) 2 − 1 (2 1) 2

i
=

q
7

h
Ψ
³ b ( b)´−Ψ ( ())

i
=

q
7Ψ

³
 (); b − 

´
+ (1) →



³
0 e ´

Proof of Theorem 4.4: The proof is similar to the proof of Theorem 4.3. Let z

denote the set of densities  that satisfy Assumption 4.7’. Let kk denote the maximum
of the supremum of the values and derivatives up to the third order of  over a compact

set that is defined by the union of the closures of the neighborhoods defined in Assumption

4.8’. We first analyze the functionals that for any  assign values 1 and 2 at which

 log  |=1() = 0 and  log  |=2() = 0 As in the proof of Theorem 4.3, we

will denote ( ) by () and () by e() with similar notation for other functions in
z Since 1 6= 2 the asymptotic covariance of our kernel estimators for the values of 1 and

2 is zero. Define the functional Φ ( 1 2) =
¡
 log  |=1()  log  |=2()

¢0


We first show that there exists a functional () = (1() 2 ()) satisfying () = (∗1 
∗
2)

which is defined implicitly in a neighborhood of  by

Φ
¡
 1() 2()

¢
= 0

Denote by 1 any value of  in a small enough neighborhood of 
∗
1 and denote by 2 any

value of  in a small enough neighborhood of ∗2 Let  denote a density in a small enough

neighborhood of  For any  such that kk is small enough, and any (1 2)  such that |1|
and |2| are small enough

Φ ( +  1 2)−Φ ( 1 2) =

⎛⎜⎜⎜⎝
(1)


+
(1)



(1)+(1)
−

(1)


+
(1)
(1)+(1) −

(1)



(1)
+

(1)
(1)

(2)


+
(2)



(2)+(2)
−

(2)


+
(2)
(2)+(2) −

(2)



(2)
+

(2)
(2)

⎞⎟⎟⎟⎠

Φ ( 1 + 1 2)− Φ ( 1 2) =
³

(1+1)



(1+1)
−

(1+1)
(1+1) −

(1)



(1)
+

(1)
(1)  0

´0
and

Φ ( 1 2 + 2)− Φ ( 1 2) =
³
0

(2+2)



(2+2)
−

(2+2)
(2+2) −

(2)



(2)
+

(2)
(2)

´0
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Define

Φ ( 1 2;) =

⎛⎜⎜⎜⎝
(1)



(1)
−

(1)


(1)

((1))
2 −

(1)
(1) +

(1)


(1)
((1))2

(2)



(2)
−

(2)


(2)

((2))
2 −

(2)
(2) +

(2)


(2)
((2))2

⎞⎟⎟⎟⎠
1Φ ( 1 2; 1) =

2 log  |=1 ()
2

1; 2Φ ( 1 2; 2) =
2 log  |=2 ()

2
2

Φ ( 1 2) = Φ ( +  1 2)−Φ ( 1 2)−Φ ( 1 2;) 

1Φ ( 1 2; 1) = Φ ( 1 + 1 2)−Φ ( 1 2)−1Φ ( 1 2; 1)  and

2Φ ( 1 2; 2) = Φ ( 1 2 + 2)−Φ ( 1 2)−2Φ ( 1 2; 2) 

Our assumptions imply that for some  ∞

°°Φ ( 1 2; )
°° ≤  || and

°°Φ ( 1 2; )
°° ≤  ||2 (for  = 1 2)

kΦ ( 1 2;)k ≤  kk ;  kΦ ( 1 2;)k ≤  kk2

Hence, Φ ( 1 2; ) is the Fréchet derivative of Φ with respect to  andΦ ( 1 2;)

is the Fréchet derivative of Φ with respect to  By their definitions and our assumptions, it

follows that both Fréchet derivatives are themselves Fréchet differentiable and their deriv-

atives are continuous and uniformly bounded on a neighborhood of ( ∗1 
∗
2)  Moreover,

again by our assumptions, each Φ( 1 2; ) ( = 1 2) has a continuous inverse on a

neighborhood of Φ ( ∗1 
∗
2)  It then follows by the Implicit Function Theorem on Banach

spaces that there exist unique functionals 1 and 2 such that 1 () = ∗1 
2 () = ∗2 for

all  in a neighborhood of 

Φ
¡
 1 ()  2 ()

¢
= 0

1 and 2 are differentiable on a neighborhood of  and their Fréchet derivatives are given

by, for j=1,2

 (;) =

µ
2 log  |=()

2

¶−1
[− Φ ( 1 2;)]

Moreover, 1 and 2 satisfy a First order Taylor expansion around  with remainder term

for  ( + )−  () bounded by kk2  Define the functional Ψ( 1 2) by

Ψ ( 1 2) =

"
(2)

2

 ( 2)
−

(1)

2

 ( 1)

#"
(1)

1

 ( 1)
−

(2)

1

 ( 2)

#−1
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Then, Ψ
³ b 1 ³ b´  2 ³ b´´ = \1 (2 1) 2 andΨ ( 

1 ()  2 ()) = 1 (2 1) 2

Denote  ( ) by  () and  ( ) by  () (j=1,2). Then, for kk  |1|  and
|2| sufficiently small,

Ψ ( +  ∗1 
∗
2)−Ψ ( ∗1 

∗
2)

=

∙
(∗2)
2

+
(∗2)
2

¸
[ (∗1) +  (∗1)]−

∙
(∗1)
2

+
(∗1)
2

¸
[ (∗2) +  (∗2)]∙

(∗1)
1

+
(∗1)
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Hence, by standard results for kernel estimators,
p
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This concludes the proof.

Proof of Theorem 5.2: To show the equivalence between () and (), we use an

observational equivalence result in Matzkin (2008). Define
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Matzkin (2008) shows that  and e are observationally equivalent if and only if for all ( ),
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As shown in the proof of Theorem 5.1, in our model,
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with similar expressions when  and  are substituted with e and e Taking the derivative
of 1( 

1 2) with respect to 1 and of 
2
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It follows that
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Substituting ( (
1 2) ||) by  |=() and multiplying both sides by  |=(1 2) we
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This shows the equivalence between () and ().

To show that equivalence between () and (), suppose first that ( ) and (e ) are
observationally equivalent, then for all 1 2 
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Using this in (), together with the expressions for 1 
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Substituting  (
1 2) by  |() || and  (e1 e2) by  |()  |e| we obtain (). We

45



have then shown that () implies ().

We next show that () implies () For this, we express  and  as the multiplication
of a marginal and a conditional density,
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Integrating both sides with respect to  under assumptions allowing to exchange the the

order of differentiation and integration, we get that

1 (
1)

2


¡R

2|1=1 (
2) 2 

¢
1

− 1 (
1)

1


¡R

2|1=1 (
2) 2 

¢
2

=
1 (e1)

2


¡R

2|1=1 (e2) e2 
¢

1
− 1 (e1)

1


¡R

2|1=1 (e2) e2 
¢

2


Using the transformation  = 2 (1 2 ) for the left hand side, and the transformatione = e2 (1 2 ) for the right-hand-side, we get
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Hence, we have shown that () implies ()

It only remains to show that () implies () But this easily follows by noticing that

taking the derivatives in () we get

1
¡
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¢
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¡
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¡
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¢
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= 1 ¡e1¢ e12 2|1=1 ¡e2¢ e21 − 1 ¡e1¢ e11 2|1=1 ¡e2¢ e22 
which is equivalent to

12 ¡e1 e2¢ |e| = 12
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1 2
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Hence, () implies () This completes the proof of Theorem 5.2.
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